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The first boundary-value problem for an autonomous second-order system of linear partial
differential equations of parabolic type with a single delay is considered. Assuming that a
decomposition of the given system into a system of independent scalar second-order linear partial
differential equations of parabolic type with a single delay is possible, an analytical solution to the
problem is given in the form of formal series and the character of their convergence is discussed.
A delayed exponential function is used in order to analytically solve auxiliary initial problems
(arising when Fourier method is applied) for ordinary linear differential equations of the first
order with a single delay.

1. Introduction

In this paper, we deal with an autonomous second-order system of linear partial differential
equations of the parabolic type with a single delay

∂u(x, t)
∂t

= a11
∂2u(x, t − τ)

∂x2
+ a12

∂2v(x, t − τ)
∂x2

+ b11
∂2u(x, t)
∂x2

+ b12
∂2v(x, t)
∂x2

,

∂u(x, t)
∂t

= a21
∂2u(x, t − τ)

∂x2
+ a22

∂2v(x, t − τ)
∂x2

+ b21
∂2u(x, t)
∂x2

+ b22
∂2v(x, t)
∂x2

,

(1.1)
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where the matrices of coefficients

A =
(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
(1.2)

are constant and τ > 0, τ = const.
Usually, when systems of differential equations are investigated, the main attention is

paid to systems of ordinary differential equations or systems of partial differential equations
[1–5]. The analysis of systems of partial differential equations with delay is rather neglected.
This investigation is extremely rare.

The first boundary-value problem for (1.1) is solved for A having real eigenvalues λ1,
λ2, and B having real eigenvalues σ1 > 0, σ2 > 0. Throughout the paper, we assume that there
exists a real constant regular matrix

S =
(
s11 s12
s21 s22

)
, (1.3)

simultaneously reducing both matrices A and B into diagonal forms

Λ =
(
λ1 0
0 λ2

)
, Σ =

(
σ1 0
0 σ2

)
, (1.4)

that is,

S−1AS = Λ, S−1BS = Σ, (1.5)

where

S−1 =
1
Δ

(
s22 −s12
−s21 s11

)
, Δ = s11s22 − s12s22. (1.6)

For some classes of matrices, suitable transformations are known. Let us mention one of such
results [6, Theorem 11′, page 291]. First, we recall that a complex square matrixA is a normal
matrix if A∗A = AA∗ where A∗ is the conjugate transpose of A. If A is a real matrix, then
A∗ = AT , that is, the real matrix is normal ifATA = AAT . A square matrixU is called unitary
if UU∗ = E where E is the identity matrix.

Theorem 1.1. If a finite or infinite set of pairwise commuting normal matrices is given, then all these
matrices can be carried by one and the same unitary transformation into a diagonal form.

Let l be a positive constant, and let

μi : [−τ,∞) −→ R, i = 1, 2,

θi : [−τ,∞) −→ R, i = 1, 2,

ϕ : [0, l] × [−τ, 0] −→ R,

ψ : [0, l] × [−τ, 0] −→ R

(1.7)
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be continuously differentiable functions such that

μ1(t) = ϕ(0, t), t ∈ [−τ, 0],
μ2(t) = ϕ(l, t), t ∈ [−τ, 0],
θ1(t) = ψ(0, t), t ∈ [−τ, 0],
θ2(t) = ψ(l, t), t ∈ [−τ, 0].

(1.8)

Together with system (1.1), we consider the first boundary-value problem, that is, the
boundary conditions

u(0, t) = μ1(t), t ∈ [−τ,∞), (1.9)

u(l, t) = μ2(t), t ∈ [−τ,∞), (1.10)

v(0, t) = θ1(t), t ∈ [−τ,∞), (1.11)

v(l, t) = θ2(t), t ∈ [−τ,∞) (1.12)

and the initial conditions

u(x, t) = ϕ(x, t), (x, t) ∈ [0, l] × [−τ, 0], (1.13)

v(x, t) = ψ(x, t), (x, t) ∈ [0, l] × [−τ, 0]. (1.14)

A solution to the first boundary-value problem (1.1), (1.9)–(1.14) is defined as a pair of
functions

u, v : [0, l] × [−τ,∞) −→ R, (1.15)

continuously differentiable with respect to variable t if (x, t) ∈ [0, l] × [0,∞), twice
continuously differentiable with respect to x if (x, t) ∈ [0, l] × [0,∞), satisfying the system
(1.1) for (x, t) ∈ [0, l]× [0,∞), the boundary conditions (1.9)–(1.12), and the initial conditions
(1.13), (1.14). If necessary, we restrict the above definition of the solution to (x, t) ∈ [0, l] ×
[−τ, kτ] where k is a positive integer.

The purpose of the paper is to describe a method of constructing a solution of the
above boundary-initial problem. Assuming that a decomposition of system (1.1) into a
system of independent scalar second-order linear partial differential equations of parabolic
type with a single delay is possible, an analytical solution to the problem (1.9)–(1.14) is
given in the form of formal series in part 3. Their uniform convergence as well as uniform
convergence of the partial derivatives of a formal solution is discussed in part 4. A delayed
exponential function (defined in part 2 together with the description of its main properties)
is used in order to analytically solve auxiliary initial problems (arising when Fourier method
is applied) for ordinary linear differential equations of the first-order with a single delay.
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To demonstrate this method, we will use systems of two equations only, although it
can simply be extended to systems of n equations.

2. Preliminaries—Representation of Solutions of
Linear Differential Equations with a Single Delay

A solution of the systems (1.1) satisfying all boundary and initial conditions (1.9)–(1.14)
will be constructed by the classical method of separation of variables (Fourier method).
Nevertheless, due to delayed arguments, complications arise in solving analytically auxiliary
initial Cauchy problems for first-order linear differential equations with a single delay. We
overcome this circumstance by using a special function called a delayed exponential, which
is a particular case of the delayed matrix exponential (as defined, e.g., in [7–10]). Here we
give a definition of the delayed exponential, its basic properties needed, and a solution
of the initial problem for first-order homogeneous and nonhomogeneous linear differential
equations with a single delay.

Definition 2.1. Let b ∈ R. The delayed exponential function expτ{b, t} : R → R is a function
continuous on R \ {−τ} defined as

expτ{b, t} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if −∞ < t < −τ,
1 if − τ ≤ t < 0,

1 + b
t

1!
if 0 ≤ t < τ,

· · ·
1 + b

t

1!
+ b2

(t − τ)2
2!

+ · · · + bk (t − (k − 1)τ)k

k!
if (k − 1)τ ≤ t < kτ,

· · ·

(2.1)

where k = 0, 1, 2, . . . .

Lemma 2.2. For the differentiation of a delayed exponential function, the formula

d

dt
expτ{b, t} = b expτ{b, t − τ} (2.2)

holds within every interval (k − 1)τ ≤ t < kτ , k = 0, 1, 2, . . . .

Proof. Within the intervals (k − 1)τ ≤ t < kτ , k = 0, 1, 2, . . ., the delayed exponential function
is expressed as

expτ{b, t} = 1 + b
t

1!
+ b2

(t − τ)2
2!

+ b3
(t − 2τ)3

3!
+ · · · + bk (t − (k − 1)τ)k

k!
. (2.3)
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Differentiating this expression, we obtain

d

dt
expτ{b, t} = b + b2

t − τ
1!

+ b3
(t − 2τ)2

2!
+ · · · + bk (t − (k − 1)τ)k−1

(k − 1)!

= b

[
1 + b

t − τ
1!

+ b2
(t − 2τ)2

2!
+ · · · + bk−1 [t − (k − 1)τ]k−1

(k − 1)!

]

= b expτ{b, t − τ}.

(2.4)

2.1. First-Order Homogeneous Linear Differential Equations with
a Single Delay

Let us consider a linear homogeneous equation with a single delay

ẋ(t) = bx(t − τ), (2.5)

where b ∈ R, together with the initial Cauchy condition

x(t) = β(t), t ∈ [−τ, 0]. (2.6)

From (2.2), it immediately follows that the delayed exponential expτ{b, t} is a solution
of the initial Cauchy problems (2.5), (2.6) with β(t) ≡ 1, t ∈ [−τ, 0].

Theorem 2.3. Let β : [−τ, 0] → R be a continuously differentiable function. Then the unique
solution of the initial Cauchy problems (2.5), (2.6) can be represented as

x(t) = expτ{b, t}β(−τ) +
∫0

−τ
expτ{b, t − τ − s}β′(s)ds, (2.7)

where t ∈ [−τ,∞).

Proof. The representation (2.7) is a linear functional of the delayed exponential function
expτ{b, t} and expτ{b, t − τ − s}. Because by Lemma 2.2 the delayed exponential function
is the solution of (2.5), the functional on the right-hand side of (2.7) is a solution of the
homogeneous equation (2.5) for arbitrary (differentiable) β(t).

We will show that initial condition (2.6) is satisfied as well, that is, we will verify that,
for −τ ≤ t ≤ 0, the next identity is correct:

β(t) ≡ expτ{b, t}β(−τ) +
∫0

−τ
expτ{b, t − τ − s}β′(s)ds. (2.8)

We rewrite (2.7) as

x(t) = expτ{b, t}β(−τ) +
∫ t
−τ

expτ{b, t − τ − s}β′(s)ds +
∫0

t

expτ{b, t − τ − s}β′(s)ds. (2.9)
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From Definition 2.1, it follows:

expτ{b, t} ≡ 1 if − τ ≤ t ≤ 0,

expτ{b, t − τ − s} ≡ 1 if − τ ≤ s ≤ t,
expτ{b, t − τ − s} ≡ 0 if t < s < 0.

(2.10)

Therefore,

x(t) = β(−τ) +
∫ t
−τ
β′(s)ds = β(−τ) + β(t) − β(−τ) = β(t). (2.11)

Remark 2.4. Computing the integral in formula (2.7) by parts, we obtain for t ≥ τ :

x(t) = expτ{b, t − τ}β(0) + b
∫0

−τ
expτ{b, t − 2τ − s}β(s)ds. (2.12)

We remark that it is possible to prove this formula assuming only continuity of the function
β, that is, continuous differentiability of β is, in general, not necessary when we represent x
by formula (2.12).

Further we will consider the linear nonhomogeneous differential equation with a
single delay

ẋ(t) = ax(t) + bx(t − τ), (2.13)

where a, b ∈ R, together with initial Cauchy condition (2.6).

Theorem 2.5. Let the function β in (2.6) be continuously differentiable. Then the unique solution of
the initial Cauchy problems (2.13), (2.6) can be represented as

x(t) = expτ{b1, t}ea(t+τ)β(−τ) +
∫0

−τ
expτ{b1, t − τ − s}ea(t−s)[β′(s) − aβ(s)]ds, (2.14)

where b1 = be−aτ and t ∈ [−τ,∞).

Proof. Transforming x by a substitution

x(t) = eaty(t), (2.15)

where y is a new unknown function, we obtain

aeaty(t) + eatẏ(t) = aeaty(t) + bea(t−τ)y(t − τ) (2.16)
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or

ẏ(t) = b1y(t − τ). (2.17)

Correspondingly, the initial condition for (2.17) is

y(t) = e−atβ(t), t ∈ [−τ, 0]. (2.18)

As follows, from formula (2.7), the solution of the corresponding initial Cauchy problems
(2.17), (2.18) is

y(t) = expτ{b1, t}eaτβ(−τ) +
∫0

−τ
expτ{b1, t − τ − s}[e−asβ′(s) − ae−asβ(s)]ds. (2.19)

Using substitution (2.15), we obtain

x(t) = expτ{b1, t}ea(t+τ)β(−τ) +
∫0

−τ
expτ{b1, t − τ − s}ea(t−s)[β′(s) − aβ(s)]ds, (2.20)

which is formula (2.14).

2.2. First-Order Nonhomogeneous Linear Differential Equations with
a Single Delay

Let a linear non-homogeneous delay equation with a single delay

ẋ(t) = ax(t) + bx(t − τ) + f(t) (2.21)

be given, where a, b ∈ R and f : [0,∞) → R. We consider the Cauchy problem with a zero
initial condition

x(t) = 0, t ∈ [−τ, 0], (2.22)

that is, we put β ≡ 0 in (2.6).

Theorem 2.6. The unique solution of the problem (2.21), (2.22) is given by the formula

x(t) =
∫ t
0
expτ{b1, t − τ − s}ea(t−s)f(s)ds, (2.23)

where b1 = be−aτ .

Proof. We apply substitution (2.15). Then

aeaty(t) + eatẏ(t) = aeaty(t) + bea(t−τ)y(t − τ) + f(t), (2.24)
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or, equivalently,

ẏ(t) = b1y(t − τ) + e−atf(t). (2.25)

We will show that the solution of the non-homogeneous equation (2.25) satisfying a zero
initial condition (deduced from (2.15) and (2.22)) is

y(t) =
∫ t
0
expτ{b1, t − τ − s}e−asf(s)ds. (2.26)

Substituting (2.26) in (2.25), we obtain

expτ{b1, t − τ − s}e−asf(s)∣∣s=t + b1
∫ t
0
expτ{b1, t − 2τ − s}e−asf(s)ds

= b1

∫ t−τ
0

expτ{b1, t − 2τ − s}e−asf(s)ds + e−atf(t).
(2.27)

Since

expτ{b1, t − τ − s}e−asf(s)∣∣s=t = exp{b1,−τ}e−atf(t) = e−atf(t), (2.28)

we obtain

e−atf(t) + b1

∫ t−τ
0

expτ{b1, t − 2τ − s}e−asf(s)ds + b1
∫ t
t−τ

expτ{b1, t − 2τ − s}e−asf(s)ds

= b1

∫ t−τ
0

expτ{b1, t − 2τ − s}e−asf(s)ds + e−atf(t).
(2.29)

Hence,

∫ t
t−τ

expτ{b1, t − 2τ − s}e−asf(s)ds = 0. (2.30)

This equality is true since

t − 2τ − s ≤ t − 2τ − (t − τ) = −τ (2.31)

and, by formula (2.1) in Definition 2.1,

expτ{b1, t − 2τ − s} ≡ 0 (2.32)
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if t − 2τ − s < −τ . In accordance with (2.15), we get

x(t) = eaty(t) =
∫ t
0
expτ{b1, t − τ − s}ea(t−s)f(s)ds, (2.33)

that is, formula (2.23) is proved.

Combining Theorems 2.5, and 2.6 we get the following Corollary.

Corollary 2.7. Let the function β in (2.6) be continuously differentiable. Then the unique solution of
the problems (2.21), (2.6) is given as

x(t) = expτ{b1, t}ea(t+τ)β(−τ)

+
∫0

−τ
expτ{b1, t − τ − s}ea(t−s)[β′(s) − aβ(s)]ds

+
∫ t
0
expτ{b1, t − τ − s}ea(t−s)f(s)ds,

(2.34)

where b1 = be−aτ .

3. Partial Differential Systems with Delay

Now we consider second-order autonomous systems of linear partial homogeneous
differential equations of parabolic type with a single delay (1.1) where 0 ≤ x ≤ l and t ≥ −τ .
The initial conditions (1.13), (1.14) are defined for (x, t) ∈ [0, l]× [−τ, 0]. Boundary conditions
(1.9)–(1.12) are defined for t ≥ −τ and compatibility conditions (1.8) are fulfilled on the
interval −τ ≤ t ≤ 0.

By the transformation

(
u(x, t)
v(x, t)

)
= S

(
ξ(x, t)
η(x, t)

)
, (3.1)

the systems (1.1) can be reduced to a form

⎛
⎜⎝

∂ξ(x, t)
∂t

∂η(x, t)
∂t

⎞
⎟⎠ = Λ

⎛
⎜⎜⎝

∂2ξ(x, t − τ)
∂x2

∂2η(x, t − τ)
∂x2

⎞
⎟⎟⎠ + Σ

⎛
⎜⎜⎝

∂2ξ(x, t)
∂x2

∂2η(x, t)
∂x2

⎞
⎟⎟⎠, (3.2)

that is, into two independent scalar equations

∂ξ(x, t)
∂t

= λ1
∂2ξ(x, t − τ)

∂x2
+ σ1

∂2ξ(x, t)
∂x2

, (3.3)

∂η(x, t)
∂t

= λ2
∂2η(x, t − τ)

∂x2
+ σ2

∂2η(x, t)
∂x2

. (3.4)
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Initial and boundary conditions reduce to

ξ(0, t) = μ∗
1(t), t ∈ [−τ,∞),

ξ(l, t) = μ∗
2(t), t ∈ [−τ,∞),

(3.5)

η(0, t) = θ∗1(t), t ∈ [−τ,∞),

η(l, t) = θ∗2(t), t ∈ [−τ,∞),
(3.6)

and to

ξ(x, t) = ϕ∗(x, t), (x, t) ∈ [0, l] × [−τ, 0], (3.7)

η(x, t) = ψ∗(x, t), (x, t) ∈ [0, l] × [−τ, 0], (3.8)

where

(
μ∗
1(t)
θ∗1(t)

)
= S−1

(
μ1(t)
θ1(t)

)
,

(
μ∗
2(t)
θ∗2(t)

)
= S−1

(
μ2(t)
θ2(t)

)
,

(
ϕ∗(x, t)
ψ∗(x, t)

)
= S−1

(
ϕ(x, t)
ψ(x, t)

)
.

(3.9)

3.1. Constructing of a Solution of (3.3)

Wewill consider (3.3)with the boundary conditions (3.5), (3.6) and the initial condition (3.7).
We will construct a solution in the form

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + μ∗
1(t) +

x

l

[
μ∗
2(t) − μ∗

1(t)
]
, (3.10)

where (x, t) ∈ [0, l] × [−τ,∞), ξ0(x, t) is a solution of (3.3) with zero boundary conditions

ξ0(0, t) = 0, ξ0(l, t) = 0, t ∈ [−τ,∞) (3.11)

and with a nonzero initial condition

ξ0(x, t) = Φ(x, t) := ϕ∗(x, t) − μ∗
1(t) −

x

l

[
μ∗
2(t) − μ∗

1(t)
]
, (x, t) ∈ [0, l] × [−τ, 0], (3.12)

and ξ1(x, t) is a solution of a non-homogeneous equation

∂ξ(x, t)
∂t

= λ1
∂2ξ(x, t − τ)

∂x2
+ σ1

∂2ξ(x, t)
∂x2

+ F(x, t), (3.13)
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where

F(x, t) := −μ̇∗
1(t) −

x

l

[
μ̇∗
2(t) − μ̇∗

1(t)
]
, (3.14)

with zero boundary conditions

ξ1(0, t) = 0, ξ1(l, t) = 0, t ∈ [−τ,∞) (3.15)

and a zero initial condition

ξ1(x, t) = 0, (x, t) ∈ [0, l] × [−τ, 0]. (3.16)

3.1.1. Equation (3.3)—Solution of the Problems (3.11), (3.12)

For finding a solution ξ = ξ0(x, t) of (3.3), we will use the method of separation of variables.
The solution ξ0(x, t) is seen as the product of two unknown functions X(x) and T(t), that is,

ξ0(x, t) = X(x)T(t). (3.17)

Substituting (3.17) into (3.3), we obtain

X(x)T ′(t) = λ1X′′(x)T(t − τ) + σ1X′′(x)T(t). (3.18)

Separating variables, we have

T ′(t)
λ1T(t − τ) + σ1T(t) =

X′′(x)
X(x)

= −κ2, (3.19)

where κ is a constant. We consider two differential equations

T ′(t) + σ1κ2T(t) + λ1κ2T(t − τ) = 0, (3.20)

X′′(x) + κ2X(x) = 0. (3.21)

Nonzero solutions of (3.21) that satisfy zero boundary conditions

X(0) = 0, X(l) = 0, (3.22)
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exist for the choice κ2 = κ2n = (πn/l)2, n = 1, 2, . . ., and are defined by the formulas

X(x) = Xn(x) = An sin
πn

l
x, n = 1, 2, . . . , (3.23)

where An are arbitrary constants. Now we consider (3.20) with κ = κn:

T ′
n(t) = −σ1

(πn
l

)2
Tn(t) − λ1

(πn
l

)2
Tn(t − τ), n = 1, 2, . . . . (3.24)

Each of (3.24) represents a linear first-order delay differential equation with constant
coefficients. We will specify initial conditions for each of (3.23), (3.24). To obtain such initial
conditions, we expand the corresponding initial condition Φ(x, t) (see (3.12)) into Fourier
series

Φ(x, t) =
∞∑
n=1

Φn(t) sin
πn

l
x, (x, t) ∈ [0, l] × [−τ, 0], (3.25)

where

Φn(t) =
2
l

∫ l
0
Φ(s, t) sin

πn

l
sds

=
2
l

∫ l
0

[
ϕ∗(s, t) − μ∗

1(t) −
s

l

(
μ∗
2(t) − μ∗

1(t)
)]

sin
πn

l
sds

=
2
l

∫ l
0
ϕ∗(s, t) sin

πn

l
sds

− 2μ∗
1(t)
l

∫ l
0
sin

πn

l
s ds − 2

(
μ∗
2(t) − μ∗

1(t)
)

l2

∫ l
0
s · sin πn

l
sds

=
2
l

∫ l
0
ϕ∗(s, t) sin

πn

l
sds +

2
πn

[
(−1)nμ∗

2(t) − μ∗
1(t)

]
, t ∈ [−τ, 0].

(3.26)

We will find an analytical solution of the problem (3.24) with initial function (3.26), that is,
we will find an analytical solution of the Cauchy initial problem

T ′
n(t) = −σ1

(πn
l

)2
Tn(t) − λ1

(πn
l

)2
Tn(t − τ),

Tn(t) = Φn(t), t ∈ [−τ, 0],
(3.27)

for every n = 1, 2, . . . . Using the results of Part 2, we will solve the problem (3.27). According
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to formula (2.14), we get

Tn(t) = expτ{r1n, t}e−σ1(πn/l)
2(t+τ)Φn(−τ)

+
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)

[
Φ′
n(s) + σ1

(πn
l

)2
Φn(s)

]
ds,

(3.28)

where

r1n = −λ1
(πn
l

)2
eσ1(πn/l)

2τ , n = 1, 2, . . . . (3.29)

Thus, the solution ξ0(x, t) of the homogeneous equation (3.3) that satisfies zero boundary
conditions (3.11) and a nonzero initial condition (3.12) (to satisfy (3.12) we set An = 1, n =
1, 2, . . . in (3.23)) is

ξ0(x, t) =
∞∑
n=1

⎡
⎣expτ{r1n, t}e−σ1(πn/l)2(t+τ)Φn(−τ)

+
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)

[
Φ′
n(s) + σ1

(πn
l

)2
Φn(s)

]
ds

⎤
⎦ sin

πn

l
x,

(3.30)

where Φn is defined by (3.26), r1n by (3.29), and (x, t) ∈ [0, l] × [−τ,∞).

3.1.2. Nonhomogeneous Equation (3.13)

Further, we will consider the non-homogeneous equation (3.13) with zero boundary
conditions (3.15) and a zero initial condition (3.16). We will try to find the solution in the
form of an expansion

ξ1(x, t) =
∞∑
n=1

T0
n(t) sin

πn

l
x, (3.31)

where (x, t) ∈ [0, l] × [−τ,∞) and T0
n : [−τ,∞) → R are unknown functions. Substituting

(3.31) into (3.13) and equating the coefficients of the same functional terms, we will obtain a
system of equations:

(
T0
n

)′
(t) = −σ1

(πn
l

)2
T0
n(t) − λ1

(πn
l

)2
T0
n(t − τ) + fn(t), t ∈ [0,∞), n = 1, 2, . . . , (3.32)
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where fn : [−τ,∞) → R are Fourier coefficients of the function F(x, t), that is,

fn(t) =
2
l

∫ l
0
F(s, t) sin

πn

l
sds

= − 2
l

∫ l
0

(
μ̇∗
1(t) +

s

l

[
μ̇∗
2(t) − μ̇∗

1(t)
])

sin
πn

l
sds

= − 2
l
μ̇∗
1(t)

∫ l
0
sin

πn

l
s ds − 2

l2
(
μ̇∗
2(t) − μ̇∗

1(t)
) ∫ l

0
s · sin πn

l
sds

= − 2
πn

(
(−1)n+1μ̇∗

2(t) + μ̇
∗
1(t)

)
.

(3.33)

In accordance with (3.15), we assume zero initial conditions

T0
n(t) = 0, t ∈ [−τ, 0], n = 1, 2, . . . (3.34)

for every equation (3.32). Then, by formula (2.23) in Theorem 2.6, a solution of each of the
problems (3.32), (3.34) can be written as

T0
n(t) =

∫ t
0
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)fn(s)ds, t ∈ [−τ,∞), n = 1, 2, . . . , (3.35)

where r1n is defined by formula (3.29).
Hence, the solution of the non-homogeneous equation (3.13) with zero boundary

conditions and a zero initial condition is

ξ1(x, t) =
∞∑
n=1

[∫ t
0
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)fn(s)ds

]
sin

πn

l
x, (3.36)

where fn is given by formula (3.33).

3.2. Formal Solution of the Boundary Value Problem

Now we complete the particular results giving a solution of the boundary value problem
of the initial system (1.1) satisfying conditions (1.9)–(1.14) in the form of a formal series.
Conditions of their convergence will be discussed in the following Part 4.

Since the solutions ξ0(x, t) and ξ1(x, t) of auxiliary problems are formally differentiable
once with respect to t and twice with respect to x, and functions μ∗

1(t), μ
∗
2(t) are once

differentiable, we conclude that a formal solution of the first boundary value problem (3.5),
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(3.6) and (3.7) for (3.3) can be expressed by the formula:

ξ(x, t) =
∞∑
n=1

[
expτ{r1n, t}e−σ1(πn/l)

2(t+τ)Φn(−τ)

+
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)

[
Φ′
n(s) + σ1

(πn
l

)2
Φn(s)

]
ds

+
∫ t
0
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)fn(s)ds

]
sin

πn

l
x

+ μ∗
1(t) +

x

l

[
μ∗
2(t) − μ∗

1(t)
]
,

(3.37)

where (x, t) ∈ [0, l]× [−τ,∞), coefficientsΦn are defined by formulas (3.26), coefficients fn by
formulas (3.33), and the numbers r1n by formula (3.29).

Similarly, a formal solution of the first boundary value problem for (3.4) is given by
the formula:

η(x, t) =
∞∑
n=1

[
expτ{r2n, t}e−σ2(πn/l)

2(t+τ)Ψn(−τ)

+
∫0

−τ
expτ{r2n, t − τ − s}e−σ2(πn/l)2(t−s)

[
Ψ′
n(s) + σ2

(πn
l

)2
Ψn(s)

]
ds

+
∫ t
0
expτ{r2n, t − τ − s}e−σ2(πn/l)2(t−s)gn(s)ds

]
sin

πn

l
x

+ θ∗1(t) +
x

l

[
θ∗2(t) − θ∗1(t)

]
,

(3.38)

where (x, t) ∈ [0, l] × [−τ,∞) and (by analogy with (3.26), (3.33) and (3.29))

Ψn(t) =
2
l

∫ l
0
ψ∗(s, t) sin

πn

l
s ds +

2
πn

[
(−1)nθ∗2(t) − θ∗1(t)

]
, t ∈ [−τ, 0],

gn(t) = − 2
πn

(
(−1)n+1θ̇∗2(t) + θ̇∗1(t)

)
, t ∈ [−τ,∞),

r2n = −λ2
(πn
l

)2
eσ2(πn/l)

2τ .

(3.39)

Then, a formal solution of the boundary value problem of the initial system (1.1)
satisfying conditions (1.9)–(1.14) is given by the formulas

u(x, t) = s11ξ(x, t) + s12η(x, t),

v(x, t) = s21ξ(x, t) + s22η(x, t),
(3.40)

where ξ(x, t), η(x, t) are defined by (3.37) and (3.38).
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4. Convergence of Formal Series

A solution of the first boundary value problem for (3.3), (3.4) is presented in the form of
formal series (3.37), (3.38). We will show that, when certain conditions are satisfied, the series
(together with its relevant partial derivatives) converges for (x, t) ∈ [0, l ] × [−τ, t∗ ]where
t∗ > 0 is arbitrarily large and, consequently, is a solution of partial delay differential equations
(3.3), (3.4).

Theorem 4.1. Let, for the functions

Φn : [−τ, 0] −→ R, fn : [−τ,∞) −→ R, n = 1, 2, . . . (4.1)

defined by (3.26) and (3.33), for an integer k ≥ 1 and arbitrary t∗ ∈ [(k − 1)τ, kτ], there exist
constantsM ≥ 0, α > 0 such that

e−σ1(πn/l)
2(t∗−(k−1)τ)n2k max

−τ≤t≤kτ

∣∣fn(t)∣∣ ≤ M

n1+α
, e−σ1(πn/l)

2(t∗−(k−1)τ)n2k max
−τ≤t≤0

|Φn(t)| ≤ M

n3+α
.

(4.2)

Then, for (x, t) ∈ [0, l] × [0, kτ], the formal series on the right-hand side of expression (3.37) as well
as its first derivative with respect to t and its second derivative with respect to x converge uniformly.
Moreover, equality (3.37) holds, and the function ξ(x, t) is a solution of (3.3) for (x, t) ∈ [0, l] ×
[−τ, kτ].

Proof. First we prove that the right-hand side of expression (3.37) uniformly converges.
Decompose the function ξ(x, t) as

ξ(x, t) = S1(x, t) + S2(x, t) + S3(x, t) + μ∗
1(t) +

x

l

[
μ∗
2(t) − μ∗

1(t)
]
, (4.3)

where

S1(x, t) =
∞∑
n=1

An(t) sin
πn

l
x,

An(t) := expτ{r1n, t}e−σ1(πn/l)
2(t+τ)Φn(−τ),

S2(x, t) =
∞∑
n=1

Bn(t) sin
πn

l
x,

Bn(t) :=
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)

[
Φ′
n(s) + σ1

(πn
l

)2
Φn(s)

]
ds,

S3(x, t) =
∞∑
n=1

Cn(t) sin
πn

l
x,

Cn(t) :=
∫ t
0
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)fn(s)ds.

(4.4)
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In the following parts, we will prove the uniform convergence of each of the series Si(x, t),
i = 1, 2, 3 separately.

Throughout the proof, we use the delayed exponential function defined by
Definition 2.1, formula (2.1). Note that this function is continuous on R \ {−τ} and at knots
t = kτ where k = 0, 1, . . . two lines in formula (2.1) can be applied. We use this property in the
proof without any special comment.

Uniform Convergence of the Series S1(x, t)

We consider the coefficients An(t), n = 1, 2, . . . of the first series S1(x, t). As follows from
Definition 2.1 of the delayed exponential function, the following equality holds:

An(t∗) = expτ{r1n, t∗}e−σ1(πn/l)
2(t∗+τ)Φn(−τ)

= e−σ1(πn/l)
2(t∗+τ)Φn(−τ)

[
1 + r1n

t∗

1!
+ r21n

(t∗ − τ)2
2!

+ · · · + rk1n
(t∗ − (k − 1)τ)k

k!

]

= e−σ1(πn/l)
2(t∗+τ)Φn(−τ)

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ t
∗

1!
+ λ21

(πn
l

)4
e2σ1(πn/l)

2τ (t
∗ − τ)2
2!

+ · · · + (−λ1)k
(πn
l

)2k
ekσ1(πn/l)

2τ (t
∗ − (k − 1)τ)k

k!

]
.

(4.5)

Therefore,

S1(x, t∗) =
∞∑
n=1

An(t∗) sin
πn

l
x =

∞∑
n=1

expτ{r1n, t∗}e−σ1(πn/l)
2(t∗+τ)Φn(−τ) sin πn

l
x

=
∞∑
n=1

e−σ1(πn/l)
2(t∗+τ)Φn(−τ) sin πn

l
x − λ1 t

∗

1!

∞∑
n=1

e−σ1(πn/l)
2t∗
(πn
l

)2
Φn(−τ) sin πn

l
x

+ λ21
(t∗ − τ)2

2!

∞∑
n=1

e−σ1(πn/l)
2(t∗−τ)

(πn
l

)4
Φn(−τ) sin πn

l
x + · · ·

+ (−1)kλk1
(t∗ − (k − 1)τ)k

k!

∞∑
n=1

e−σ1(πn/l)
2(t∗−(k−1)τ)

(πn
l

)2k
Φn(−τ) sin πn

l
x.

(4.6)

Due to condition (4.2), we conclude that

e−σ1(πn/l)
2(t∗−(k−1)τ)n2k|Φn(−τ)| ≤ M

n3+α
. (4.7)

Therefore, the series S1(x, t∗) converges uniformly with respect to x ∈ [0, l] and t∗ ∈ [(k −
1)τ, kτ]. If t∗ ∈ [(k∗ − 1)τ, k∗τ] where k∗ ∈ {1, 2, . . . , k − 1}, then the estimations remain valid.
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Note that inequalities (4.2) are also valid for k = k∗ because

max
−τ≤t≤k∗τ

∣∣fn(t)∣∣ ≤ M

n2k+1+α
≤ M

n2k∗+1+α
,

e−σ1(πn/l)
2(t∗−(k∗−1)τ)n2k max

−τ≤t≤0
|Φn(t)| ≤ M

n3+α
.

(4.8)

Consequently, it is easy to see that the series S1(x, t) converges uniformly for x ∈ [0, l] and
t ∈ [0, kτ].

Uniform Convergence of the Series S2(x, t)

We consider the coefficients Bn(t), n = 1, 2, . . . of the second series S2(x, t). In the
representation

Bn(t) = σ1
(πn
l

)2 ∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)Φn(s)ds

+
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)Φ′

n(s)ds,

(4.9)

we calculate the second integral by parts and use formula (2.2) in Lemma 2.2:

Bn(t) = σ1
(πn
l

)2 ∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)Φn(s)ds

+ expτ{r1n, t − τ}e−σ1(πn/l)
2tΦn(0) − expτ{r1n, t}e−σ1(πn/l)

2(t+τ)Φn(−τ)

+
∫0

−τ
λ1
(πn
l

)2
expτ{r1n, t − 2τ − s}e−σ1(πn/l)2(t−s−τ)Φn(s)ds

− σ1
(πn
l

)2 ∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)2(t−s)Φn(s)ds

= expτ{r1n, t − τ}e−σ1(πn/l)
2t Φn(0) − expτ{r1n, t}e−σ1(πn/l)

2(t+τ)Φn(−τ)

+
∫0

−τ
λ1
(πn
l

)2
expτ{r1n, t − 2τ − s}e−σ1(πn/l)2(t−s−τ)Φn(s)ds

= Bn1(t) − Bn2(t) + Bn3(t),

(4.10)

where

Bn1(t) = expτ{r1n, t − τ}e−σ1(πn/l)
2t Φn(0),

Bn2(t) = expτ{r1n, t}e−σ1(πn/l)
2(t+τ)Φn(−τ),

Bn3(t) =
∫0

−τ
λ1
(πn
l

)2
expτ{r1n, t − 2τ − s}e−σ1(πn/l)2(t−s−τ)Φn(s)ds.

(4.11)
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As follows from the Definition 2.1 of the delayed exponential function, for t∗ ∈ [(k − 1)τ, kτ],
the following equality holds:

Bn1(t∗) = expτ{r1n, t∗ − τ}e−σ1(πn/l)
2t∗Φn(0)

= e−σ1(πn/l)
2t∗Φn(0) ×

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ t
∗ − τ
1!

+ λ21
(πn
l

)4
e2σ1(πn/l)

2τ (t
∗ − 2τ)2

2!

+ · · · + (−1)k−1λk−11

(πn
l

)2(k−1)
e(k−1)σ1(πn/l)

2τ (t
∗ − (k − 1)τ)k−1

(k − 1)!

]
.

(4.12)

Therefore, for

S21(x, t∗) :=
∞∑
n=1

Bn1(t∗) sin
πn

l
x, (4.13)

we get

S21(x, t∗) =
∞∑
n=1

Bn1(t∗) sin
πn

l
x =

∞∑
n=1

expτ{r1n, t∗ − τ}e−σ1(πn/l)
2t∗Φn(0) sin

πn

l
x

=
∞∑
n=1

e−σ1(πn/l)
2t∗Φn(0) sin

πn

l
x − λ1 t

∗ − τ
1!

∞∑
n=1

(πn
l

)2
e−σ1(πn/l)

2(t∗−τ)Φn(0) sin
πn

l
x

+ λ21
(t∗ − 2τ)2

2!

∞∑
n=1

(πn
l

)4
e−σ1(πn/l)

2(t∗−2τ)Φn(0) sin
πn

l
x + · · ·

+ (−1)k−1λk−11
(t∗ − (k − 1)τ)k−1

(k − 1)!

∞∑
n=1

(πn
l

)2(k−1)
e−σ1(πn/l)

2(t∗−(k−1)τ)Φn(0) sin
πn

l
x.

(4.14)

Due to condition (4.2), we conclude that

e−σ1(πn/l)
2(t∗−(k−1)τ)n2k|Φn(0)| ≤ M

n3+α
. (4.15)

The proof of the uniform convergence of the series S21(x, t) for x ∈ [0, l] and t ∈ [0, kτ] can
now be performed in a way similar to the proof of the uniform convergence of the series
S1(x, t) for x ∈ [0, l] and t ∈ [0, kτ].
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For the coefficients Bn2(t), the following holds:

Bn2(t∗) = expτ{r1n, t∗}e−σ1(πn/l)
2(t∗+τ)Φn(−τ)

= e−σ1(πn/l)
2(t∗+τ)Φn(−τ) ×

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ t
∗

1!
+ λ21

(πn
l

)4
e2σ1(πn/l)

2τ (t
∗ − τ)2
2!

+ · · · + (−1)kλk1
(πn
l

)2k
ekσ1(πn/l)

2τ (t
∗ − (k − 1)τ)k

k!

]
.

(4.16)

Therefore, for

S22(x, t∗) :=
∞∑
n=1

Bn2(t∗) sin
πn

l
x, (4.17)

we get

S22(x, t∗) =
∞∑
n=1

Bn2(t∗) sin
πn

l
x =

∞∑
n=1

expτ{r1n, t∗}e−σ1(πn/l)
2(t∗+τ)Φn(−τ) sin πn

l
x

=
∞∑
n=1

e−σ1(πn/l)
2(t∗+τ)Φn(−τ) sin πn

l
x − λ1 t

∗

1!

∞∑
n=1

(πn
l

)2
e−σ1(πn/l)

2t∗Φn(−τ) sin πn
l
x

+ λ21
(t∗ − τ)2

2!

∞∑
n=1

(πn
l

)4
e−σ1(πn/l)

2(t∗−τ)Φn(−τ) sin πn
l
x + · · ·

+ λk1
(t∗ − (k − 1)τ)k

k!

∞∑
n=1

(πn
l

)2k
e−σ1(πn/l)

2(t∗−(k−1)τ)Φn(−τ) sin πn
l
x.

(4.18)

Due to (4.7), the proof of the uniform convergence of the series S22(x, t) for x ∈ [0, l] and
t ∈ [0, kτ] can now be performed in a way similar to the proof of the uniform convergence of
the series S1(x, t) for x ∈ [0, l] and t ∈ [0, kτ].

Finally, we consider the coefficients Bn3(t) at t = t∗ ∈ [(k − 1)τ, kτ]. Substituting t∗ −
2τ − s = ω, we obtain the following:

Bn3(t∗) =
∫0

−τ

(
λ1
(πn
l

)2
eσ1(πn/l)

2τexpτ{r1n, t∗ − 2τ − s}
)
e−σ1(πn/l)

2(t∗−s)Φn(s)ds

= λ1
(πn
l

)2
eσ1(πn/l)

2τ

∫ t∗−τ
t∗−2τ

expτ{r1n, ω}e−σ1(πn/l)
2(ω+2τ)Φn(t∗ − 2τ −ω)dω.

(4.19)
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We will split this integral in two:

Bn3(t∗) = λ1
(πn
l

)2
eσ1(πn/l)

2τ

∫ (k−2)τ

t∗−2τ
expτ{r1n, ω}e−σ1(πn/l)

2(ω+2τ)Φn(t∗ − 2τ −ω)dω

+ λ1
(πn
l

)2
eσ1(πn/l)

2τ

∫ t∗−τ
(k−2)τ

expτ{r1n, ω}e−σ1(πn/l)
2(ω+2τ)Φn(t∗ − 2τ −ω)dω.

(4.20)

Therefore, owing to the mean value theorem, there are values ω1 and ω2 such that

t∗ − 2τ ≤ ω1 ≤ (k − 2)τ,

(k − 2)τ ≤ ω2 ≤ t∗ − τ,
(4.21)

and (using the Definition 2.1 of the delayed exponential function) we have

Bn3(t∗) = λ1
(πn
l

)2
e−σ1(πn/l)

2(ω1+τ)Φn(t∗ − 2τ −ω1)(kτ − t∗)expτ{r1n, ω1}

+ λ1
(πn
l

)2
e−σ1(πn/l)

2(ω2+τ)Φn(t∗ − 2τ −ω2)(t∗ − (k − 1)τ)expτ{r1n, ω2}

= λ1
(πn
l

)2
e−σ1(πn/l)

2(ω1+τ)Φn(t∗ − 2τ −ω1)(kτ − t∗)

×
[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω1

1!
+ λ21

(πn
l

)4
e2σ1(πn/l)

2τ (ω1 − τ)2
2!

+ · · · + (−1)k−2λk−21

(πn
l

)2(k−2)
e(k−2)σ1(πn/l)

2τ (ω1 − (k − 3)τ)k−2

(k − 2)!

]

+ λ1
(πn
l

)2
e−σ1(πn/l)

2(ω2+τ)Φn(t∗ − 2τ −ω2)(t∗ − (k − 1)τ)

×
[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω2

1!
+ λ21

(πn
l

)4
e2σ1(πn/l)

2τ (ω2 − τ)2
2!

+ · · · + (−1)k−1λk−11

(πn
l

)2(k−1)
e(k−1)σ1(πn/l)

2τ (ω2 − (k − 2)τ)k−1

(k − 1)!

]
.

(4.22)

Hence, for

S23(x, t∗) :=
∞∑
n=1

Bn3(t∗) sin
πn

l
x, (4.23)
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we get

S23(x, t∗) =
∞∑
n=1

Bn3(t∗) sin
πn

l
x

=
∞∑
n=1

{
λ1
(πn
l

)2
e−σ1(πn/l)

2(ω1+τ)Φn

× (t∗ − 2τ −ω1)(kτ − t∗)
⎡
⎣1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω1

1!
+ λ21

(πn
l

)4
e2σ1(πn/l)

2τ

× (ω1 − τ)2
2!

+ · · · + (−1)k−2λk−21

(πn
l

)2(k−2)

×e(k−2)σ1(πn/l)2τ (ω1 − (k − 3)τ)k−2

(k − 2)!

]

+ λ1
(πn
l

)2
e−σ1(πn/l)

2(ω2+τ)Φn(t∗ − 2τ −ω2)(t∗ − (k − 1)τ)

×
[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω2

1!
+ λ21

(πn
l

)4
e2σ1(πn/l)

2τ (ω2 − τ)2
2!

+ · · ·

+(−1)k−1λk−11

(πn
l

)2(k−1)
e(k−1)σ1(πn/l)

2τ (ω2 − (k − 2)τ)k−1

(k − 1)!

]}
sin

πn

l
x.

(4.24)

After some rearranging, we get

S23(x, t∗) = λ1
∞∑
n=1

[
e−σ1(πn/l)

2(ω1+τ)Φn(t∗ − 2τ −ω1)(kτ − t∗)

+e−σ1(πn/l)
2(ω2+τ)Φn(t∗ − 2τ −ω2)(t∗ − (k − 1)τ)

](πn
l

)2
sin

πn

l
x

− λ21
∞∑
n=1

[
e−σ1(πn/l)

2ω1Φn(t∗ − 2τ −ω1)(kτ − t∗) × ω1

1!

+ e−σ1(πn/l)
2ω2Φn(t∗ − 2τ −ω2)(t∗ − (k − 1)τ)

ω2

1!

](πn
l

)4
sin

πn

l
x

+ λ31
∞∑
n=1

[
e−σ1(πn/l)

2(ω1−τ)Φn(t∗ − 2τ −ω1)(kτ − t∗)(ω1 − τ)2
2!

+ e−σ1(πn/l)
2(ω2−τ)Φn(t∗ − 2τ −ω2)(t∗ −(k − 1)τ)

(ω2 − τ)2
2!

](πn
l

)6
sin

πn

l
x

+ · · ·
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+ (−1)k−2λk−11

∞∑
n=1

[
e−σ1(πn/l)

2(ω1−(k−3)τ)Φn(t∗ − 2τ −ω1)(kτ − t∗)

× (ω1 − (k − 3)τ)k−2

(k − 2)!
+ e−σ1(πn/l)

2(ω2−(k−3)τ)Φn(t∗ − 2τ −ω2)

× (t∗ − (k − 1)τ)
(ω2 − (k − 3)τ)k−2

(k − 2)!

⎤
⎦(πn

l

)2k−2
sin

πn

l
x

+ (−1)k−1λk1(t∗ − (k − 1)τ)
(ω2 − (k − 2)τ)k−1

(k − 1)!

×
∞∑
n=1

(πn
l

)2k
e−σ1(πn/l)

2(ω2−(k−2)τ)Φn(t∗ − 2τ −ω2) sin
πn

l
x.

(4.25)

Due to condition (4.2), we conclude that

e−σ1(πn/l)
2(ω2−(k−2)τ)n2k max

−τ≤t≤0
|Φn(t)| ≤ M

n3+α
. (4.26)

The proof of the uniform convergence of the series S23(x, t) for x ∈ [0, l] and t ∈ [0, kτ] can
now be performed in a way similar to the proof of uniform convergence of the series S1(x, t)
for x ∈ [0, l] and t ∈ [0, kτ].

Uniform Convergence of the Series S3(x, t)

Wewill consider the coefficientsCn(t), n = 1, 2, . . . of the series S3(x, t) at t = t∗ ∈ [(k−1)τ, kτ].
Substituting t∗ − τ − s = ω, we obtain

Cn(t∗) =
∫ t∗
0
expτ{r1n, t∗ − τ − s}e−σ1(πn/l)2(t∗−s)fn(s)ds

=
∫ t∗−τ
−τ

expτ{r1n, ω}e−σ1(πn/l)
2(ω+τ)fn(t∗ − τ −ω)dω

=
∫0

−τ
expτ{r1n, ω}e−σ1(πn/l)

2(ω+τ)fn(t∗ − τ −ω)dω

+
∫ τ
0
expτ{r1n, ω}e−σ1(πn/l)

2(ω+τ)fn(t∗ − τ −ω)dω

+
∫2τ

τ

expτ{r1n, ω}e−σ1(πn/l)
2(ω+τ)fn(t∗ − τ −ω)dω

+ · · · +
∫ t∗−τ
(k−2)τ

expτ{r1n, ω}e−σ1(πn/l)
2(ω+τ)fn(t∗ − τ −ω)dω.

(4.27)
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Owing to the mean value theorem, there are values ωi, i = 1, 2, . . . , k such that

−τ ≤ ω1 ≤ 0, 0 ≤ ω2 ≤ τ, . . . , (k − 2)τ ≤ ωk ≤ t∗ − τ

Cn(t∗) = τe−σ1(πn/l)
2(ω1+τ)fn(t∗ − τ −ω1)

+ τ
[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω2

1!

]
e−σ1(πn/l)

2(ω2+τ)fn(t∗ − τ −ω2)

+ τ

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω3

1!
+ λ21

(πn
l

)4
e2σ1(πn/l)

2τ (ω3 − τ)2
2!

]
e−σ1(πn/l)

2(ω3+τ)

× fn(t∗ − τ −ω3) + · · · + τ
[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ωk−1
1!

+ . . .

+ (−1)k−2λk−21

(πn
l

)2(k−2)
e(k−2)σ1(πn/l)

2τ

× [ωk−1 − (k − 3)τ]k−2

(k − 2)!

]
e−σ1(πn/l)

2(ωk−1+τ)

× fn(t∗ − τ −ωk−1)

+ [t∗ − (k − 1)τ]

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ωk

1!
+ . . . + (−1)k−1

× λk−11

(πn
l

)2(k−1)
e(k−1)σ1(πn/l)

2τ [ωk − (k − 2)τ]k−1

(k − 1)!

]

× e−σ1(πn/l)2(ωk+τ)fn(t∗ − τ −ωk).
(4.28)

Hence,

S3(x, t∗) =
∞∑
n=1

Cn(t∗) sin
πn

l
x

=
∞∑
n=1

[
τ
k−1∑
i=1

e−σ1(πn/l)
2(ωi+τ)fn(t∗ − τ −ωi) + (t∗ − (k − 1)τ)

× e−σ1(πn/l)2(ωk+τ)fn (t∗ − τ −ωk)

]
× sin

πn

l
x

− λ1
∞∑
n=1

[
τ
k−1∑
i=2

ωi

1!
e−σ1(πn/l)

2ωifn(t∗ − τ −ωi) + (t∗ − (k − 1)τ)

× ωk

1!
e−σ1(πn/l)

2ωkfn (t∗ − τ −ωk)

]
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×
(πn
l

)2
sin

πn

l
x

+ λ21
∞∑
n=1

[
τ
k−1∑
i=3

(ωi − τ)2
2!

e−σ1(πn/l)
2(ωi−τ)fn(t∗ − τ −ωi)

+ (t∗ − (k − 1)τ)
(ωk − τ)2

2!
e−σ1(πn/l)

2(ωk−τ)fn(t∗ − τ −ωk)

]

×
(πn
l

)4
sin

πn

l
x + . . . + (−1)k−2λk−21

×
∞∑
n=1

[
τ
(ωk−1 − (k − 3)τ)k−2

(k − 2)!
e−σ1(πn/l)

2(ωk−1−(k−3)τ)fn(t∗ − τ −ωk−1)

+ [t∗ − (k − 1)τ]
(ωk − (k − 3)τ)k−2

(k − 2)!
e−σ1(πn/l)

2(ωk−(k−3)τ)fn(t∗ − τ −ωk)

]

×
(πn
l

)2(k−2)
sin

πn

l
x

+ (−1)k−1λk−11 [t∗ − (k − 1)τ]
(ωk − (k − 2)τ)k−1

(k − 1)!

×
∞∑
n=1

(πn
l

)2(k−1)
e−σ1(πn/l)

2(ωk−(k−2)τ)fn(t∗ − τ −ωk) sin
πn

l
x.

(4.29)

Due to condition (4.2), we conclude that

e−σ1(πn/l)
2(ωk−(k−2)τ)n2(k−1) max

−τ≤t≤kτ

∣∣fn(t)∣∣ ≤ M

n3+α
. (4.30)

S3(x, t)x ∈ [0, l]t ∈ [0, kτ]S1(x, t)x ∈ [0, l]t ∈ [0, kτ].

Uniform Convergence of the Formal Series for ξ(x, t)

Above, the absolute and uniform convergence of the series S1(x, t), S2(x, t), S3(x, t) was
proved. Therefore, the series for ξ(x, t) converges absolutely and uniformly as well.

Uniform Convergence of the Formal Series for ξ′t(x, t) and ξ
′′
xx(x, t)

To prove the uniform convergence of the series for ξ′t(x, t) and ξ
′′
xx(x, t), we can proceed as in

the above proof of the uniform convergence of ξ(x, t). The above scheme can be repeated, and
the final inequalities (4.7), (4.15), (4.26), and (4.30) are replaced as follows: inequality (4.7)
by

e−σ1(πn/l)
2(t∗−(k−1)τ)n2k+2|Φn(−τ)| ≤ M

n1+α
, (4.31)
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inequality (4.15) by

e−σ1(πn/l)
2(t∗−(k−1)τ)n2k+2|Φn(0)| ≤ M

n1+α
, (4.32)

inequality (4.26) by

e−σ1(πn/l)
2(ω2−(k−2)τ)n2k+2 max

−τ≤t≤0
|Φn(t)| ≤ M

n1+α
, (4.33)

and inequality (4.30) by

e−σ1(πn/l)
2(ωk−(k−2)τ)n2k max

−τ≤t≤kτ

∣∣fn(t)∣∣ ≤ M

n1+α
. (4.34)

The proof of the uniform convergence of the series, which represents the solution
η(x, t) by formula (3.38), and the proof of the uniform convergence of the series for η′x(x, t)
and η′′xx(x, t) are much the same.

Corollary 4.2. Functions u(x, t), v(x, t) are linear combinations of ξ(x, t) and η(x, t). Therefore,
representations (3.40) are the solutions of the system system (1.1) satisfying all boundary and initial
conditions (1.9)–(1.14).

Remark 4.3. Tracing the proof of Theorem 4.1, we see that inequalities (4.2) for functions Φn :
[−τ, 0] → R, n = 1, 2, . . ., and fn : [−τ,∞) → R, n = 1, 2, . . . are too restrictive if t∗ ∈
[(k∗ − 1)τ, (k∗ − 1)τ + ε], k∗ ∈ {1, 2, . . . , k}, where ε is an arbitrarily small positive number. The
question whether the series are uniformly convergent for (x, t) ∈ [0, l]×[(k∗−1)τ, (k∗−1)τ+ε],
k∗ ∈ {1, 2, . . . , k} remains open if, for example, Φn : [−τ, 0] → R, n = 1, 2, . . ., and fn :
[−τ,∞) → R, n = 1, 2, . . . satisfy only the inequalities

max
−τ≤t≤kτ

∣∣fn(t)∣∣ ≤ M∗

n
, max

−τ≤t≤0
|Φn(t)| ≤ M∗

n
(4.35)

for a positive constantM∗ because inequalities (4.2) cannot be valid. Nevertheless, in such a
case, the series converge at least point-wise for t ∈ [(k∗ − 1)τ, (k∗ − 1)τ + ε], k∗ ∈ {1, 2, . . . , k}
and uniformly for x ∈ [0, l]. In other words, in such a case, the series converge uniformly for

(x, t) ∈ [0, l] ×
(
[0, kτ] \

k⋃
k∗=1

[(k∗ − 1)τ, (k∗ − 1)τ + ε]

)
, (4.36)

(where ε > 0 is fixed but arbitrarily small).

Acknowledgments

The paper was supported by the Grants P201/10/1032 and P201/11/0768 of the Czech Grant
Agency (Prague), by the Council of Czech Government Grant MSM 00216 30519, and by



Abstract and Applied Analysis 27

the Grant FEKT-S-11-2-921 of Faculty of Electrical Engineering and Communication, Brno,
University of Technology.

References

[1] I. G. Petrovsky, Lectures on Partial Differential Equations, Dover Publications, New York, NY, USA, 1991,
Translated from the Russian by A. Shenitzer, reprint of the 1964 English translation.

[2] E. Kamke, Spravochnik po obyknovennym differentsial’nym uravneniyam, Izdat. Nauka, Moscow, Russia,
1971, Supplemented by a translation by N. H. Rozov of excerpts of articles by D. S. Mitrinović and J.
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