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We consider a general variational inequality and fixed point problem, which is to find a point x*
with the property that (GVF): x* € GVI(C, A) and g(x*) € Fix(S) where GVI(C, A) is the solution
set of some variational inequality Fix(S) is the fixed points set of nonexpansive mapping S, and g
is a nonlinear operator. Assume the solution set Q of (GVF) is nonempty. For solving (GVF), we
suggest the following method g(x,.1) = fg(x,) + (1 — p)SPc[a,F(x,) + (1 — a,)(g(xn) — LAxy,)],
n > 0. It is shown that the sequence {x, } converges strongly to x* € Q which is the unique solution
of the variational inequality (F(x*) — g(x*), g(x) — g(x*)) <0, for all x € Q.

1. Introduction

Let A: C — Hand g : C — C be two nonlinear mappings. We concern the following
generalized variational inequality of finding u € C, g(u) € C such that

(g(v) — g(u), Au) >0, Vg(v)eC. (1.1)

The solution set of (1.1) is denoted by GVI(C, A, g). It has been shown that a large class
of unrelated odd-order and nonsymmetric obstacle, unilateral, contact, free, moving, and
equilibrium problems arising in regional, physical, mathematical, engineering, and applied
sciences can be studied in the unified and general framework of the general variational
inequalities (1.1), see [1-16] and the references therein. Noor [17] has introduced a new
type of variational inequality involving two nonlinear operators, which is called the general
variational inequality. It is worth mentioning that this general variational inequality is
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remarkably different from the so-called general variational inequality which was introduced
by Noor [18] in 1988. Noor [17] proved that the general variational inequalities are equivalent
to nonlinear projection equations and the Wiener-Hopf equations by using the projection
technique. Using this equivalent formulation, Noor [17] suggested and analyzed some
iterative algorithms for solving the special general variational inequalities and further proved
that these algorithms have strong convergence.

For g = I, where I is the identity operator, problem (1.1) is equivalent to finding u € C
such that

(v-u,Au) >0, Vve(C, (1.2)

which is known as the classical variational inequality introduced and studied by Stampacchia
[19] in 1964. This field has been extensively studied due to a wide range of applications in
industry, finance, economics, social, pure and applied sciences. For related works, please see
[20-35]. Our main purposes in the present paper is devoted to study this topic.

Motivated and inspired by the works in this field, in this paper, we consider a general
variational inequality and fixed point problem, which is to find a point x* with the property
that

x* e GVI(C, A), g(x*) € Fix(S), (GVF)

where Fix(S) is the fixed points set of nonexpansive mapping S. Assume the solution set £
of (GVF) is nonempty. For solving (GVF), we suggest the following method

g(xns1) = Pg(xn) + (1 - ﬁ)SPC [“nF(xn) +(1-an) (g(xn) - )‘Axn)]l n>0. (1.3)

It is shown that the sequence {x,} converges strongly to x* € £ which is the unique solution
of the following variational inequality

(F(x*) — g(x*), g(x) — g(x*)) <0, VxeQ. (1.4)

Our results contain some interesting results as special cases.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. Let C
be a nonempty closed convex subset of H. Recall that a mapping S : C — C is said to be
nonexpansive if

[[Sx =Syl < [lx -y

, 2.1)

for all x, y € C. We denote by Fix(S) the set of fixed points of S. A mapping F : C — H is said
to be L-Lipschitz continuous, if there exists a constant L > 0 such that |F (x)-F(y)|| < L||x-y||



Abstract and Applied Analysis 3

for all x,y € C. A mapping A : C — H is said to be a-inverse strongly g-monotone if and
only if

(Ax = Ay, g(x) - g(y)) 2 af Ax - Ay][", (22)

for some a > 0 and for all x,y € C. A mapping g : C — C is said to be strongly monotone if
there exists a constant y > 0 such that

2 (2.3)

(g(x)-g(y),x-y)2y[x-y

forall x,y € C.

Let B be a mapping of H into 2. The effective domain of B is denoted by dom(B), that
is, dom(B) = {x € H : Bx#0}. A multivalued mapping B is said to be a monotone operator
on H if and only if

(x-y,u-v) >0, (2.4)

forall x,y € dom(B), u € Bx,and v € By. A monotone operator B on H is said to be maximal
if and only if its graph is not strictly contained in the graph of any other monotone operator
on H. Let B be a maximal monotone operator on H and let B10 = {x € H : 0 € Bx}.

It is well known that, for any u € H, there exists a unique 1y € C such that

|l = uo|| = inf{|ju — x|| : x € C}. (2.5)

We denote uy by Pcu, where Pc is called the metric projection of H onto C. The metric
projection Pc of H onto C has the following basic properties:

(i) |Pcx = Pcy|| < ||x —y| forall x,y € H;
(ii) (x —y, Pcx — Pcy) > ||Pcx — Pcy||2 forevery x, y € H;
(iii) (x = Pcx,y — Pcx) <Oforallxe H,y € C.

It is easy to see that the following is true:

u€GVI(C,A,g) & g(u) = Pc(g(u) - LA(w)), VYA >O. (2.6)

We use the following notation:
(i) x, — x stands for the weak convergence of (x,) to x;
(ii) x, — x stands for the strong convergence of (x,) to x.
We need the following lemmas for the next section.
Lemma 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let G : C — C be

a nonlinear mapping and let the mapping A : C — H be a-inverse strongly g-monotone. Then, for
any A > 0, one has

[|Pc[g(x) - LAx] - Pe[g(y) - 1Ay | < [|g(x) — g(0)|I” + MA - 2a) || Ax - Ay, x,y€eC.
2.7)
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Proof. Consider the following;:

1Pc[g(x) - 1Ax] - Pe[g(y) - AAy]||”
< llgx) - g(y) - MAx - Ay)|I°
= lgx) - g W) I” - 21 Ax - Ay, g(x) - g(y)) + V[ Ax - Ay|]® (2.8)
< |lg(x) - gW)|* - 2Aal| Ax - Ay||* + ¥*[| Ax - Ay|]®

< [lg@) — g(W) |7 + LA - 2a) || Ax — Ay]|*.
If A € [0,2a], we have

| Pc[g(x) —AAx] - Pc[g(v) - AAy]|| < [|g(x) - g(y) - A(Ax - Ay) || < [|g(x) - g(y)llé ;
O

Lemma 2.2 (see [36]). Let C be a closed convex subset of a Hilbert space H. Let S : C — C be a
nonexpansive mapping. Then Fix(S) is a closed convex subset of C and the mapping I1-S is demiclosed
at 0, that is, whenever {x,} C C is such that x,, — x and (I — S)x,, — 0, then (I — S)x = 0.

Lemma 2.3 (see [37]). Let {x,} and {y,} be bounded sequences in a Banach space X and let {p,} be
a sequence in [0,1] with 0 < liminf, ., f, <limsup, ,  p. < 1. Suppose xp1 = (1= Pu)Yn + Prxn
foralln > 0and limsup, _,  ([yne1 = Ynll = %01 = x4ll) < 0. Then, limy, _, ||y, — x,|| = 0.

Lemma 2.4 (see [38]). Assume {a,} is a sequence of nonnegative real numbers such that
ap1 < (1 - Yn)an + 6nYn/ (2-10)

where {y,} is a sequence in (0,1) and {6, } is a sequence such that

(1) 201 ¥n = ©;
(2) limsup,,_,_, 6, <00r 3o24|6nyal < 0.

Then lim,, _, wa, = 0.

3. Main Results
In this section, we will prove our main results.

Theorem 3.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let F :
C — H be an L-Lipschitz continuous mapping, g : C — C be a weakly continuous and y-strongly
monotone mapping such that R(g) = C. Let A : C — H be an a-inverse strongly g-monotone
mapping and let S : C — C be a nonexpansive mapping. Suppose that Q#0. Let p € (0,1) and
y € (L,2a). For given x¢ € C, let {x,} C C be a sequence generated by

g(xn+1) = ﬁg(xn) + (1 - ﬂ)SPC [“nF(xn) +(1-ay) (g(xn) - -)‘Axn)]r n>0, (3.1)
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where {a,} C (0,1) satisfies (C1): lim,_a, = 0 and (C2): 3, a, = oo. Then the sequence

{x,} generated by (3.1) converges strongly to x* € L which is the unique solution of the following
variational inequality:

(F(x*) - g(x*), g(x) — g(x*)) <0, VxeQ.
(32)

Proof. First, we show the solution set of variational inequality (3.2) is singleton. Assume X €
Q also solves (3.2). Then, we have

(F(x") - g(x"), g(¥) - g(x")) <0, (F(x) - g(%),8(x") - g(%)) <0.
(3.3)

It follows that
(F(X) - g(%) - F(x") + g(x"), g(x") — g(%)) <0
= Jlg(x") - g®)|* < (F(x") - F(%), g(x") - 8(%))
= [lg(x") - g®)|I” < (F(x") - F(%), g(x") - g(®)) < [F(x") - F@|l]| g(x") - g(®)||
= ||g(x") - @) || < IIF(x") - F®)].

(3.4)
Since g is y-strongly monotone, we have
ylx-yl* < (8 - @), x-y) < llg=) -gW)lx-yl, vxyeC.
(3.5)
Hence,
rllx-yll <llg@x) -gw)ll, vxyeC
(3.6)
In particular, y|lx* - %|| < [lg(x*) — ¢(®)]. By (3.4), we deduce
yllx* = X[ < ||g(x*) - g(X)|| < IF(x*) = F(X)|| < L||x* - X|, (3.7)

which implies that X = x* because of L < y by the assumption. Therefore, the solution of
variational inequality (3.2) is unique.

Pick up any u € Q. It is obvious that u € GVI(C, A, g) and g(u) € Fix(S). Set u,, =
PelanF(x,) + (1 - a,)(g(xn) —AAxy,)], n> 0. From (2.6), we know g(u) = Pc[g(u) — pAu] for
any p > 0. Hence, we have

g(u) = Pc[g(u) — (1 — an)AAu] = Pelang(u) + (1 - ay)(g(u) — LAu)], VYn>0. (3.8)
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From (3.6), (3.8), and Lemma 2.1, we get
[l = )| = || Pe[anF (xn) + (1 - an) (8 (2n) = 1 AX)]
~Pelang(u) + (1= ) (g(w) - LA |
< ap||F(xn) — g)|| + (1 — an)|| (g(xn) — LAx,) — (g(1) — LAw) ||
< ty||F (xn) = F)l| + || F(u) = g () [| + (1 = ) [| g (xn) = g(w) |

< L[y — ull + || F () - ()| + (1 - ) || g () — g0 39)

< %”g(xn) _g(u)” + an”F(u) _g(u)” + (1 - an)”g(xn) _g(u)”

= [1- (1= ) lsten - s+ P00 - st

It follows from (3.1) that

|8 (xni1) = g || < Bllg(xn) = )|l + (1= B)||Sun — Sg(w)||
<Pllgen) —g@)|| + (1= B) [|un — g ||

< Bllsto — 50+ (1=p) [1- (1= 5 )] ) - s
+ (1= pan|[Fw) - gl (3.10)
- [1- (1-3) =P lsxo - sl

Ly R - gl
+(1 r)(l Prad

This indicates by induction that

E(u) —
18 Genia) = gw)]| < max{ lgen) - g, %}

(3.11)
Hence, {g(x,)} is bounded. By (3.6), we have ||x,, — u|| < (1/y)||g(xx) — g(u)||. This implies
that {x,} is bounded. Consequently, {F(x,)}, {Ax,}, {u,}, and {Su,} are all bounded.

Note that we can rewrite (3.1) as g(xu+1) = pg(x,) + (1 — p)Su,, for all n. Next, we will
use Lemma 2.3 to prove that ||x,.+1 — x,|| — 0. In fact, we firstly have

[Sttn = Sttn-1|| = ||SPc [anF (x0) + (1 = @) (8 (xn) = AAXy)]
—SPc[an-1F(xp1) + (1 - ap1) (§(xn1) — AAx,1)] ||
< [ anF (xn) + (1 = ata) ((xn) = L AxX)]
—[@n1 F(xn1) + (1= aty-1) (§(xn-1) = LAX,1)] ||

< “n“F(xn) - P(xn—l)” + |an - an—l|||F(xn—1)”
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+ (1= ay)||g(on) = LAX, = (8(2n1) = MAx, 1) ||
+ ety — ]| g (xn-1) — NAX, 1 ||

< Loty = Xpa || + (1 - ) [| 8 (xn) = (1) ||
+ law = | (IF (x| + || (en1) = AAxa |])

< “n(%) “g(xn) - g(xn—l)” +(1- an)”g(xn) - g(xn—l)”
+ Jetn = a1 | (IF (n-) || + || g (1) = LAxy1 [])
L
1= (12 ) gt - s

+ Jetn = 1| (IF (n-1) || + || g (xn1) = LAXu1 ]]).-

(3.12)

It follows that

Sun = Sunall = || Cen) = §Gen-1) || < lan = ctna [ (I1F (en-1) || + || g (xn-1) = LAXp-1]]).

(3.13)
Since a, — 0 and the sequences {F(x,)}, {g(xx)}, and {Ax,} are bounded, we have
liinésip(IISun = Sty - ||g(xn) — g(xu1)||) 0. (3.14)
By Lemma 2.3, we obtain
Tim [|Su, - g(x) | = 0. (3.15)
Hence,
Jim [|g(xni1) = g(xn) || = Lim (1= ) [|Sutn — gCen) || = 0. (3.16)
This together with (3.6) imply that
Jim [lxps1 = x| = 0. (3.17)

By the convexity of the norm and (3.9), we have

llgGenst) = g |17 = |B((xn) = g()) + (1= B) (Sun — Sg(w))||*
< Bllg(aen) — g@)||* + (1 - B) || Sun - Sgw)|®
<Bllgxen) - g@|* + (1 = ) [|un - g@)||?
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< Bllg(xn) - gw)]*
+ (1= P) [an || F(xn) - g(u) |
+(1 = @) || (g(ra) — AAX,) — (g() — AAu) ]
< Bllg(xa) - g()|*
+ (1= ) [aall Fx) - g0

(1= ) [[ () — AAx) = () — A Aw)[I°]
(3.18)

From Lemma 2.1, we derive

| (g(xn) = AAx,) = (g(u) = LAWY || < ||g(xn) = g@)||” + A = 2a1) || Ax,, — At
(3.19)

Thus,
g () = g@I” < pllg ) - g
+ (1= ) [aa|F () - g
+(1 =) ([lg () — g@)[|* + 1A - 20| Ax, — AulP) |

= (1-p)an||F(xn) = g@||" + [1 = (1 = p)aa] | gxa) - g [|”
+(1-B)(1 - ay)A(A - 2a)|| Ax, — Aul*.

(3.20)
So,
(1-B)(1 - an)A2a - V|| Ax, - Aul?
< (1= B)an||F(xn) = g ||+ [|8(xa) = 8w |I* = |l g(xnsn) = g0 ||*
< (1= B)an||F(xa) - gw)]|?
+ (1gGen) = 8@ || + |8 (ene1) = @) 1) || 8 (nsn) = g Cxa) ||

(3.21)

Since a, — 0, ||g(xps1) — g(x»)|| — 0and liminf,_, (1 - p)(1 - a,)L(2a — 1) > 0, we obtain

lim ||Ax, — Aul|| = 0.
(3.22)
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Set y, = g(xn) — LAx, — (g(u) — LAu) for all n. By using the property of projection, we get

|24 — g(u)”2 = ||Pc[anF (xn) + (1 = a) (g(xn) — LAxy)]
~Pe[ang (1) + (1 - ) (g (1) = NAu)] ||’
< <an(F(xn) - g(u)) + (1 - “n)]/n, Uy — g(u)>

= %{ Nl (F(xn) = g(1)) + (1 = ) yl|* + || — g(@0) ||
_“a"(F(x") - g(“)) +(1- ‘Xn)yn — Uy + g(u)||2}

< S{anllFx) - g@* + (1 - an)[|g(xa) = g@)[|* + || - g )|

N[ —

~lata (F ) = (1) = ) + 8(xn) = ttn = L(Ax = Aw)||*}

= %{“nllﬂxv» - 8@+ (1= ) || g(xn) - g@)||* + [|un - g ()|
= [lgGen) = wnl|” = 2| Ay = Autl] = a3 | F () — gu) = yul|

+ 2\, (Axy — Au, F(xy) — g(u) — Y ) + 20(g(xp) — thy, Ax, — Aut)

~2a,(g(xn) = ttn, F(xn) = g(1) = Yn) } (3.23)
It follows that

1t - g)|I* < @[ Fxa) = g)[|* + (1= @) || gea) = 8@ |* = | g o) =
+20at, || Axy, — Aul|||F (xn) — g(u) = yu| + 2X|| g (x0) — ttn ||| A — Aue] (3.24)

+ 2au]| §(en) = n ||| F Gen) = g () = |-
From (3.18) and (3.24), we have

”g(xml) - 8(“)”2 < ﬁ”g(xn) - g(u)Hz + (1 _ﬁ) ”un - g(”)”z
< Bllgxn) — g@)||* + (1 - B)an|| F(x) - g(w)||*

+ (1=a) (1= B)l|gCe) = g || = (1= ) |8 (xn) — wa|®
+20(1 - B)an||Axy, — Aul|||F(xn) — g(1) = yaul|

+20(1-B)||g(xn) — un ||| Axp — Aud]|
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+2(1 = P)anl|g(xn) = un|[[FGen) = g(ut) =yl
< llgGen) = 001+ anll Fxa) = 200 = (1= ) 8 () = wall
+ 20t | Ay — Aul[|F(xn) — g(10) = yul| + 24| g () — 10| | A — Aue]

+ 20t | g (x0n) — 14 [| || F (xn) = g (1) = ym |- (3.25)
Then, we obtain

(1-B)|Igen) = ua]|* < (| g(xn) = 8@ || + 1|8 (xne1) = ) [|) || g (enir) = g (ax) |
+ “"”F(xn) - g(”)Hz +2Ma,||Ax, — Aull ”F(xn) -g(u) - ]/n”

+ 20| g (xn) = s || A = Al + 20| g (xn) = 2| [|F (o0n) = g (1t) = -
(3.26)

Since limy, —, ooty = 0, limy, -, o || §(Xp41) — g(xp)|| = 0 and lim,, oo || Ax,, — Aul| = 0, we have
lim [[g(xn) —ual| = 0. (3.27)

Next, we prove limsup, _(F(x*) - g(x*), u, — g(x*)) < 0 where x* is the unique solution of
(3.2). We take a subsequence {uy,} of {u,} such that

limsup(F(x*) - g(x*), u, — g(x*)) = ilirg(P(x*) - g(x*), uy, — g(x7))

(3.28)
= lim (F(x7) - g(x"), 8(xn) = 8(x7))-

Since {x,,} is bounded, there exists a subsequence {xnij} of {x,,} which converges weakly
to some point z € C. Without loss of generality, we may assume that x,, — z. This implies
that g(x,,) — g(z) due to the weak continuity of g. Now, we show z € Q. First, we note
that from (3.15) and (3.27) that ||g(x,) — Sg(x,)|| — 0. Hence, lim;_, oo ||g(xn,) — Sg(xy,)|| = 0.
By the demiclosedness principle of the nonexpansive mapping (see Lemma 2.2), we deduce
g(z) € Fix(S). Next, we only need to prove z € GVI(C, A, g). Set

Av+ Nc(v), wveC,
Tov = (3.29)

0, v ¢ C.

By [39], we know that T is maximal g-monotone. Let (v, w) € G(T). Since w — Av € N¢(v)
and x,, € C, we have

(g(v) - g(xy), w - Av) > 0. (3.30)



Abstract and Applied Analysis 11

From u, = Pcla,F(x,) + (1 — a,)(g(xy) — LAx,)], we get

(2(0) = th, 1ty — [ F () + (1 = ) (g(2n) — LAX,)]) > 0. (3.31)
It follows that
<g(v) iy, ”"_Tg(x") + Axy — %(F(x,,) — () + )LAxn)> > 0. (3.32)
Then,

(g(©) — g(xn), w) > (g(v) - g(xy,), Av)

> (¢(0) - ), 40) - (g(0) - 1y, 25 )

~ (8(0) = ttn, Axy) + TH(g(0) = hn, ) = g((xn) + AA,,)

= <g(U) - g(xni)’AU - Axni> + <g(U) - g(xni)l _Axni>

- <g(v) — Un;, unl%g(xm)> - <8(U) - unirAxni>

+ S g(0) =t Flon) = g(xn) + L Axs,)

2 —<g(U) — Up,, un!%g(xnl)> - <g(xn,~) - un,-/Axni>

+ %(g(v) = Uy, F(xn,) — g(2n,) + LAxyp, ). (3.33)

Since ||g(xy,) — tp,|| — 0 and g(x,,) — g(z), we deduce that (g(v) — g(z),w) > 0 by taking
i — o0in (3.33). Thus, z € T~'0 by the maximal g-monotonicity of T. Hence, z € GVI(C, A4, ).
Therefore, z € Q. From (3.28), we obtain

limsup(F(x") - g(x), 1, = g(x')) = lim (F(x") - g(x"), g(xn) = g(x"))

n— oo

= (F(x*) - g(x*), g(z) — g(x*)) <0. (3.34)
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We take u = x* in (3.23) to get

[ = ()P < an(F () = g(x°), 1t — g(x7))
+ (1 - a)(g(xn) = LAx, — (g(x*) = LAX), u, — g(x*))
<y (F () = F(x"), 1y = g(x")) + ay (F(x") = g(x*), 1t = g(x"))
+ (1 )| gen) ~ 1A%, — (5(x") ~ 1A [ [ln ~ g
< auLllxn = x| — g(x) || + an(F(x*) - g(x7), un — g(x7))
+ (1= ) || g(xn) = g () || lun = g (") |

S%<§>Hg@w—guﬂﬂww—g@3ﬂ+aMF@3—gwﬂnm—g@3>
(1= ) |g(en) - g | flun - 5G|

1_Qf§)%hmu@—gfmwm-gfw

+ oy (F(x*) — g(x*), 1y — g(x*))

_1-(1-L/y)an
=

+ a, (F(x*) — g(x*), up — g(u)). (3.35)

g Gen) - G2+ 2l - g |
2

It follows that

[|2n - g(x*)||2 < [1 - <1 - %)zxn] |lg(xn) — g(x*)||2 +2a, (F(x*) — g(x*), uy — g(x%)). (3.36)

Therefore,

g = 2 < Bllgrn) = g + (1= B)llua - 2G|
<Bllgton - s + (1-p) 1= (12 )a gt - s
+2(1 = p)an(F(x") - g(x"), un = g(x7))
1= (1-2) =P llste) - s
+2(1 = flan(F(x7) - g(x") un — g(x7))

1- (1 - %) (1- ﬁ)an] ll8xn) = g
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+ <1—£>(1—[5)a <L<F(x*)— (x*), Uy — (x*)>>
Y n 1 _ L/Y g 7t g
= (1= 1) || gxn) = g(x)|1* + s (3.37)

wherey, = (1-L/y)(1-p)a, and 6, = (2/(1-L/y))(F(x*)-g(x*), u,—g(x*)). From condition
(C2), we have 3y, = oo. By (3.34), we have limsup, , 6, < 0. We can therefore apply
Lemma 2.4 to conclude that g(x,) — g(x*) and x, — x*. This completes the proof. O

Corollary 3.2. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let F :
C — H bean L-contraction. Let A : C — H be an a-inverse strongly monotone mapping and let
S : C — C be a nonexpansive mapping. Suppose that Q #0. Let p € (0,1) and y € (L, 2a). For given
xo € C, let {x,,} C C be a sequence generated by

X1 = Pxn + (1 = B)SPc[anF (xn) + (1 — ay) (xn — AAxy,)], n >0, (3.38)

where {a,} C (0,1) satisfies (C1): lim, . ,a,, = 0 and (C2): 3, a, = oo. Then the sequence {x,}
generated by (3.38) converges strongly to x* € Q which is the unique solution of the following
variational inequality:

(F(x*) —x",x—-x") <0, VxeQ. (3.39)
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