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A new multistage numerical method based on blending a Gauss-Siedel relaxation method
and Chebyshev pseudospectral method, for solving complex dynamical systems exhibiting
hyperchaotic behavior, is presented. The proposed method, called the multistage spectral
relaxation method (MSRM), is applied for the numerical solution of three hyperchaotic systems,
namely, the Chua, Chen, and Rabinovich-Fabrikant systems. To demonstrate the performance of
the method, results are presented in tables and diagrams and compared to results obtained using
a Runge-Kutta-(4,5)-based MATLAB solver, ode45, and other previously published results.

1. Introduction

Systems exhibiting chaotic behaviour have received increasing attention from various
researchers in recent years due to the challenge associated with computing their solutions
and their applications in a number of areas in science such as in electrical circuits, lasers, fluid
dynamics, mechanical devices, population growth, and many other areas. Chaotic behavior
was first observed by Lorenz [1] in 1963 in a system of ordinary differential equations
modelling weather phenomena.

Chaotic systems are complex dynamical systems which are characterised by rapidly
changing solutions and high sensitivity to small perturbations of the initial data and hence
computing their solutions has proven to be challenging. A chaotic system consists of only one
positive Lyapunov exponent. Chaotic systems with at least two positive Lyapunov exponents
are said to be hyperchaotic. Hyperchaotic systems generally have more complex dynamical
behaviours than ordinary chaotic systems. The concept of hyperchaos was first introduced
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by Rössler [2] in the ordinary differential equations for modeling chemical reactions. The
quest for finding accurate and efficient methods for solving chaotic systems is what drives
the research of scientists who specialise in the development of new solution methods or seek
to optimize existing methods.

For rapidly oscillating dynamical systems like the chaotic and hyperchaotic systems,
standard analytical iterative methods are not guaranteed to give solutions valid globally in
time. Recent research efforts have been able to overcome this lack of global convergence by
modifying the standard analytical iterative schemes. This is achieved by implementing the
schemes on sequences of subintervals whose union make up the domain of the underlying
problem. These modified methods are known as multi-stage (or piece-wise) methods.
Examples which have recently been applied to chaotic systems include the multi-stage
Adomian decomposition method [3–6], multistage homotopy analysis method [7, 8], multi-
stage differential transformation method [9–11], multi-stage variational iteration method
[12–14], multistage homotopy perturbation methods [15–18]. The analytical multi-stage
approaches are limited in their applications because they seek to obtain explicit analytical
solutions at each of the multiple intervals. This process involves time-consuming and tedious
computational operations and if too many small intervals are considered, as may be the
case when dealing with highly oscillatory systems, the analytical integration process will be
computationally too costly and impossible to resolve even with the use of symbolic scientific
software. To overcome the inefficiency of analytical approaches in solving chaotic systems,
attempts have recently been made to use the multi-stage implementation idea on some
numerical methods of solution. Examples of the multi-stage numerical methods that have
recently been reported for solving chaotic systems include the piecewise-spectral parametric
iteration method [19] and the piecewise successive linearization method (PSLM) [20–22].

In this work we present a new multi-stage iterative scheme which is based on
blending a Gauss-Seidel type relaxation method with spectral collocation integration. The
new method is called the multi-stage spectral relaxation method (MSRM). The MSRM is
based on simple decoupling and rearrangement of the governing IVPs and numerically
integrating the resulting equations in multiple intervals. We examine the applicability of the
proposed MSRM in hyperchaotic chaotic systems of IVPs which include the Chua, Chen,
and Rabinovich-Fabrikant systems. The computed numerical simulations are presented and
it is noted that the method is accurate, efficient, and very easy to implement because its
algorithm is easy to derive as it does not require any linearization of the original equations.
The numerical results are also compared with some Matlab built-in Runge-Kutta solvers and
good agreement is observed.

2. Multistage Spectral Relaxation Method

In this section, we give a brief description of how the multi-stage spectral relaxation method
(MSRM) algorithm is developed for the solution of common chaotic systems governed by
nonlinear systems of first order IVPs. Consider a chaotic system defined by m nonlinear first
order differential equations in the form

ẋr(t) +
m∑

k=1

αr,kxk(t) + fr[x1(t), x2(t), . . . , xm(t)] = 0, r = 1, 2, . . . , m (2.1)
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subject to the initial conditions

xr(0) = x∗
r , (2.2)

where xr are the unknown variables and x∗
r are the corresponding initial conditions, αr,k are

known constant input parameters and fr is the nonlinear component of the rth equation and
the dot denotes differentiation with respect to time t.

Following [20–22], we begin by decomposing the interval of integration 0 ≤ t ≤ tF into
nonoverlapping intervals Ωi = ti−1 ≤ t ≤ ti where i = 1, 2, 3, . . . , F and t0 = 0. Let x1

r (t) be the
solution of (2.1) in the first subinterval [t0, t1] and xi

r(t) be the solutions in the subsequent
sub-intervals Ωi (i = 2, . . . , F). Equation (2.2) is used as the initial condition for obtaining the
solution in the first subinterval [t0, t1]. After that we use the continuity condition between
neighbouring sub-intervals to obtain the initial conditions for solving (2.1) in the rest of the
Ωi sub-intervals. Thus, in each interval (ti−1, ti) we must solve

ẋi
r + αr,rx

i
r + (1 − δrs)

m∑

k=1

αr,kx
i
k + fr

[
xi
1, x

i
2, . . . , x

i
m

]
= 0, (2.3)

subject to

xi
r(ti−1) = xi−1

r (ti−1), (2.4)

where δrs is the Kronecker delta. We remark that, for the convenience of developing the
MSRM scheme, it is necessary to express the governing equation in the form (2.3).

The MSRM algorithm uses the ideas of the Gauss-Siedel method to decouple systems
of equations then apply the Chebyshev spectral collocation method to discretize and solve
the resulting decoupled subsystems. We illustrate the development of the MSRM for a four
equation IVP system (withm = 4).

In the interval Ωi = (ti−1, ti), the proposed MSRM iteration scheme is given as

ẋi
1,s+1 + α1,1x

i
1,s+1 + α1,2x

i
2,s + α1,3x

i
3,s + α1,4x

i
4,s + f1

[
xi
2,s, x

i
3,s, x

i
4,s

]
= 0, (2.5)

ẋi
2,s+1 + α2,1x

i
1,s+1 + α2,2x

i
2,s+1 + α2,3x

i
3,s + α2,4x

i
4,s + f2

[
xi
1,s+1, x

i
3,s, x

i
4,s

]
= 0, (2.6)

ẋi
3,s+1 + α3,1x

i
1,s+1 + α3,2x

i
2,s+1 + α3,3x

i
3,s+1 + α3,4x

i
4,s + f3

[
xi
1,s+1, x

i
2,s+1, x

i
4,s

]
= 0, (2.7)

ẋi
4,s+1 + α4,1x

i
1,s+1 + α4,2x

i
2,s+1 + α4,3x

i
3,s+1 + α4,4x

i
4,s+1 + f3

[
xi
1,s+1, x

i
2,s+1, x

i
3,s+1

]
= 0, (2.8)

subject to the initial conditions

xi
r,s+1(ti−1) = xi−1

r (ti−1), r = 1, 2, 3, 4, (2.9)

where xr,s is the estimate of the solution after s iterations. We remark that the iteration scheme
(2.5)–(2.8) is only suitable for IVP systems in which the nonlinear term fi does not contain
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the variable xi in the ith equation. This is usually the case for most of the well-known chaotic
and hyperchaotic systems that have been reported in literature.

A suitable initial guess to start the iteration scheme (2.5)–(2.8) is one that satisfies the
initial condition (2.9). A convenient choice of initial guess that was found to work in the
numerical experiments considered in this work is

xi
r,0(t) =

{
x∗
r if i = 1,

xi−1
r (ti−1) if 2 ≤ i ≤ F.

(2.10)

The system of (2.5)–(2.8) form a decoupled set of linear ordinary differential equations
whose solutions can easily be found analytically using standard techniques of solving
differential equations. However, since the solutions have to be computed in F intervals which,
to ensure accuracy and convergence, must be chosen to be very small, it may not be practical
to seek analytical solutions. For this reason, we use a numerical approach based on pseudo-
spectral methods to solve the equations. Spectral methods are powerful tools for solving
ODEs if the physical domain is simple and the solution is smooth. They have the distinct
advantage of having spectral accuracy and thus are significantly more accurate than related
numerical methods such as finite differences and finite elements. Details of properties of
spectral methods can be found in books by Canuto et al. [23], Fornberg [24], and Trefethen
[25].

We use the Chebyshev spectral method to solve (2.5)–(2.8) on each interval [ti−1, ti].
We first transform the region [ti−1, ti] to the interval [−1, 1] on which the spectral method is
defined by using the linear transformation

t =
(ti − ti−1)τ

2
+
(ti + ti−1)

2
(2.11)

in each interval [ti−1, ti] for i = 1, . . . , F. After the transformation, the interval [ti−1, ti] is
discretized using the Chebyshev-Gauss-Lobatto collocation points [23, 25]

τij = cos
(
πj

N

)
, j = 1, 2, . . . ,N (2.12)

which are the extrema of the Nth order Chebyshev polynomial

TN(τ) = cos
(
Ncos−1τ

)
. (2.13)

The Chebyshev spectral collocation method is based on the idea of introducing a
differentiation matrix D which is used to approximate the derivatives of the unknown
variables xi

r,s+1(t) at the collocation points as the matrix vector product

dxi
r,s+1

dt
=

N∑

k=0

Djkx
i
r,s+1 = DXi

r,s+1, j = 1, 2, . . . ,N, (2.14)
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where D = 2D/(ti − ti−1) and Xi
r,s+1 = [xi

r,s+1(τ
i
0), x

i
r,s+1(τ

i
1), . . . , x

i
r,s+1(τ

i
N)] are the vector

functions at the collocation points τij . The entries of the Chebyshev differentiation matrix
D are defined as

Djk =
cj

ck

(−1)j+k
(
τj − τk

) , j /= k, j, k = 0, 1, 2, . . . ,N,

Dkk =
τk

2
(
1 − τ2k

) , k = 1, 2, . . . ,N − 1,

D00 =
2N2 + 1

6
,

DNN = −2N
2 + 1
6

,

(2.15)

with

cj =

{
2 j = 0 or N,

1 otherwise.
(2.16)

Applying the Chebyshev spectral collocation method in (2.5)–(2.7) gives

ArXi
r,s+1 = Bi

r , Xi
r,s+1

(
τi−1N

)
= Xi−1

r

(
τi−1N

)
, r = 1, 2, 3, 4, (2.17)

with

Ar = D + αr,rI,

Bi
1 = −

[
α1,2Xi

2,s + α1,3Xi
3,s + α1,4Xi

4,s + f1
(
Xi
2,s,X

i
3,s,X

i
4,s

)]
,

Bi
2 = −

[
α2,1Xi

1,s+1 + α2,3Xi
3,s + α2,4Xi

4,s + f2
(
Xi
1,s+1,X

i
3,s,X

i
4,s

)]
,

Bi
3 = −

[
α3,1Xi

1,s+1 + α3,2Xi
2,s+1 + α3,4Xi

4,s + f3
(
Xi
1,s+1,X

i
2,s+1,X

i
4,s

)]
,

Bi
4 = −

[
α4,1Xi

1,s+1 + α4,2Xi
2,s+1 + α4,3Xi

3,s+1 + f4
(
Xi
1,s+1,X

i
2,s+1,X

i
3,s+1

)]
,

(2.18)

where I is an identity matrix of order N + 1. Thus, starting from the initial approximation
(2.10), the recurrence formula

Xi
r,s+1 = A−1

r Bi
r , r = 1, 2, 3, 4 (2.19)
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Figure 1: Comparison between the MSRM (solid line) and ode45 (dots) solution of the hyperchaotic Chua
system.

can be used to obtain the solution xi
r(t) in the interval [ti−1, ti]. The solution approximating

xr(t) in the entire interval [t0, tF] is given by

xr(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1
r (t), t ∈ [t0, t1],

x2
r (t), t ∈ [t1, t2],

...
xF
r (t), t ∈ [tF−1, tF].

(2.20)

3. Numerical Examples

In this section, we apply the proposed MSRM to systems of IVPs with chaotic behavior
to illustrate its effectiveness. In particular, we consider the hyperchaotic Chua, Chen,
Rabinovich-Fabrikant systems. The results obtained are compared to results obtained by the
built-in Matlab solvers, ode45.
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Figure 2: Phase plots for the hyperchaotic Chua system.

3.1. Chua System

The Chua system was originally created as an electic circuit by Chua in 1983 [26]. The system
is a set of equations with a smooth nonlinearity given by

ẋ1 = b
(
x2 − ax3

1 − (1 + c)x1

)
,

ẋ2 = x1 − x2 + x3,

ẋ3 = −βx2 − γx3.

(3.1)

Based on the Chua oscillator, Rech and Albuquerque [27] constructed a new four-
dimensional system by introducinga fourth variable x4 which is an adequate feedback
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Figure 3: Three-dimesional phase plots for the hyperchaotic Chua system.

controller to the third equation in system (3.1) to obtain

ẋ1 = b
(
x2 − ax3

1 − (1 + c)x1

)
,

ẋ2 = x1 − x2 + x3,

ẋ3 = −βx2 − γx3 + x4,

ẋ4 = −sx + x2x3.

(3.2)

When a = 0.03, b = 30, c = −1.2, β = 50, γ = 0.32, s = 0.1060, the system (3.2)
has two positive Lyapunov exponents and hence exhibits a hyperchaotic behavior [28]. The
hyperchaotic system (3.2) was solved for the initial conditions x1(0) = 3, x2(0) = 1, x3(0) =
6, x4(0) = 1.

In this example, the parameters used in the MSRM iteration (2.5)–(2.7) are

α11 = b(1 + c), α12 = −b, α21 = −1, α22 = 1, α32 = β, α33 = γ,

α34 = −1, α41 = s, f1 = ab(1 + c), f4 = −x2x3.
(3.3)
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Figure 4: Phase plots for the cyclic case of the hyperchaotic Chen systemwith a = 35, b = 10, c = 1, d = 34.

3.2. Chen System

Qi et al. [29] presented a four-dimensional Chen system with cubic nonlinearity in each
equation. The system is given by

ẋ1 = a(x2 − x1) + x2x3x4,

ẋ2 = b(x1 + x2) − x1x3x4,

ẋ3 = −cx3 + x1x2x4,

ẋ4 = −dx4 + x1x2x3.

(3.4)

The system exhibits hyperchaotic behavior since it contains more than one Lyapunov
exponent. Qi et al. [29] analysed the basic properties of (3.4) using Lyapunov exponents and
bifurcation diagrams and found that the system can generate cyclic, periodic, and chaotic
attractors depending on the choice of the parameters.
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Figure 5: Phase plots for the periodic case of the hyperchaotic Chen system with a = 35, b = 10, c = 1, d =
25.

Following Qi et al. [29], in implementing the MSRM on (3.4) we use the parameters
a = 35, b = 10, c = 1. The parameter d is varied between d = 34, d = 25 and d = 10 for
the cyclic, periodic and chaotic attractors respectively. The initial conditions used are x1(0) =
0, x2(0) = −0.8, x3(0) = 1.2, x4 = 3.

In this example, the parameters used in the MSRM iteration (2.5)–(2.7) are

α11 = a, α12 = −a, α21 = −b, α22 = −b, α33 = c, α44 = d,

f1 = −x1x3x4, f2 = x1x3x4, f3 = −x1x2x4, f4 = −x1x2x3.
(3.5)

3.3. Rabinovich-Fabrikant System

The Rabinovich-Fabrikant system models the dynamical behavior arising from the modula-
tion instability in a non-equilibrium dissipative medium [30, 31]. The system was introduced
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Figure 6: Phase plots for the chaotic case of the hyperchaotic Chen system with a = 35, b = 10, c = 1, d =
10.

by Rabinovich and Fabrikant [32]. The Rabinovich-Fabrikant equation possesses multiple
chaotic attractors. The system is described by the following set of equations:

ẋ1 = x2

(
x3 − 1 + x2

1

)
+ ax1,

ẋ2 = x1

(
3x3 + 1 − x2

1

)
+ ax2,

ẋ3 = −2x3(b + x1x2),

(3.6)

with parameters a, b > 0. Luo et al. [31] reported that different chaotic behaviors are observed
for different values of a and b.

In this example, the parameters used in the MSRM iteration (2.5)–(2.7) are

α11 = −a, α12 = 1, α21 = −1, α22 = −a, α33 = 2b,

f1 = −
(
x2x3 + x2x

2
1

)
, f2 = −3x1x3 + x3

1, f3 = 2x1x2x3.
(3.7)
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Figure 7: Comparison between the MSRM (solid line) and ode45 (dots) results for the Rabinovich-
Fabrikant system for a = 0.1 and b = 0.98.

Two cases are considered for this system:

Case 1. a = 0.1, b = 0.98 with initial conditions x1(0) = −0.5, x2(0) = 6, x3(0) = 1.1.

Case 2. a = 0.1, b = 0.2715 with initial conditions x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0.1.

4. Results and Discussion

We now present and discuss numerical results from the hyperchaotic systems introduced
in the last section. The MSRM results are compared with those obtained from MATLAB
solver ode45. The results are presented in table and graphical form. In generating all the
results presented in this work, it was found that N = 10 collocation points in each interval
(ti−1, ti)was sufficient to give good accuracy. TheMSRMalgorithmwas run repeatedly in each
interval until the norm of the difference between successive iterations was less than 10−6.

4.1. Chua System

Comparison of results and computation times for the Chua system is depicted in Table 1 and
Figure 1. From observation of these, it is clear that the MSRM and ode45 yield comparable
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Figure 8: Phase plots for the Rabinovich-Fabrikant equations for a = 0.1 and b = 0.98.

results. However, the MSRM is faster than ode45, as can be observed from the computation
times. Figures 2 and 3 shows two and three dimensional phase portraits of the Chua system
respectively.

4.2. Chen System

For the Chen system, computed MSRM results are compared with the piece-wise successive
linearisation method (PSLM) [22] results. The results are depicted in Tables 2, 3, and 4 for the
cyclic, periodic, and chaotic respectively. Comparable results are obtained in all the cases. The
performance comparison for the PSLM and ode45was made by Motsa and Sibanda [22] and
a good agreement of the results was observed. The phase diagrams for the cyclic, periodic
and chaotic of the Chen systems are shown by Figures 4, 5, and 6, respectively. The phase
plots are similar to those of Motsa and Sibanda [22].

4.3. Rabinovich-Fabrikant System

For the Rabinovich-Fabrikant, two cases were considered depending on the value of b, which
gives rise to different chaotic behaviors. Results for Case 1 (b = 0.98) are shown in Table 5
and results for Case 2 (b = 0.2715) are shown in Table 6. Furthermore, Figures 7 and 9 show
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Figure 9: Comparison between the MSRM (solid line) and ode45 (dots) results for the Rabinovich-
Fabrikant system for a = 0.1 and b = 0.2715.

Table 1: Comparison of the numerical solution of the hyperchaotic Chua system obtained by the MSRM
and ode45.

t
MSRM ode45 MSRM ode45

x1(t) x2(t)
2 −0.170293 −0.170293 1.551695 1.551694
4 3.990219 3.990219 2.525985 2.525985
6 5.159513 5.159513 3.058536 3.058536
8 4.648366 4.648366 1.766664 1.766664
10 2.583704 2.583704 −0.980654 −0.980654

x3(t) x4(t)
2 11.014651 11.014651 −1.493298 −1.493298
4 7.011997 7.011997 −3.597274 −3.597274
6 −6.752382 −6.752381 −7.371016 −7.371016
8 −22.334344 −22.334343 −16.055827 −16.055827
10 −27.076591 −27.076591 −22.167142 −22.167142
CPU time 0.387212 0.675014
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Table 2: Comparison of the numerical solution of the hyperchaotic Chen system obtained by the MSRM
and ode45with d = 34.

t
MSRM Ref [22] MSRM Ref [22]

x1(t) x2(t)
5 −2.530836 −2.530836 −0.829573 −0.829573
10 −2.095053 −2.095053 −2.392373 −2.392372
15 −3.887545 −3.887545 −3.202475 −3.202475
20 −3.842229 −3.842229 −1.323089 −1.323089
25 −1.768250 −1.768250 −0.704882 −0.704882

x3(t) x4(t)
5 10.015585 10.015585 1.616863 1.616863
10 9.146382 9.146382 0.846507 0.846507
15 9.332875 9.332875 2.232157 2.232157
20 10.065855 10.065855 2.561486 2.561486
25 9.841910 9.841910 1.065879 1.065879

Table 3: Comparison of the numerical solution of the hyperchaotic Chen system obtained by the MSRM
and ode45with d = 25.

t
MSRM Ref [22] MSRM Ref [22]

x1(t) x2(t)
5 −0.136746 −0.136746 −0.447315 −0.447315
10 −0.648525 −0.648525 −0.931221 −0.931221
15 −1.467115 −1.467115 −1.969698 −1.969698
20 −3.308084 −3.308084 −3.472248 −3.472248
25 −4.571305 −4.571305 −1.447157 −1.447157

x3(t) x4(t)
5 8.739333 8.739333 0.411085 0.411085
10 8.366550 8.366550 0.219825 0.219825
15 8.000950 8.000950 0.451603 0.451603
20 7.962339 7.962339 1.747536 1.747536
25 9.377642 9.377642 3.588083 3.588083

Table 4: Comparison of the numerical solution of the hyperchaotic Chen system obtained by the MSRM
and ode45with d = 10.

t
MSRM Ref [22] MSRM Ref [22]

x1(t) x2(t)
1 4.217177 4.217177 2.446151 2.446151
2 −1.176404 −1.176404 −1.210601 −1.210601
3 −2.659744 −2.659744 −3.020974 −3.020974
4 2.282134 2.282134 2.644847 2.644847
5 −2.068296 −2.068296 −1.797169 −1.797169

x3(t) x4(t)
1 7.927908 7.927908 3.766390 3.766390
2 7.107290 7.107290 1.268230 1.268230
3 6.258640 6.258640 1.532034 1.532034
4 6.293389 6.293389 1.304145 1.304145
5 7.022363 7.022363 1.860774 1.860774
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Figure 10: Phase plots for the Rabinovich-Fabrikant equations for a = 0.1 and b = 0.2715.

Table 5: Comparison of the numerical solution of Rabinovich-Fabrikant equations obtained by the MSRM
and ode45 for a = 0.1 and b = 0.98.

t
x1(t) x2(t) x3(t)

MSRM ode45 MSRM ode45 MSRM ode45

10 −0.193770 −0.193770 5.046955 5.046956 0.964453 0.964454
20 0.030179 0.030178 −1.020136 −1.020136 0.000192 0.000192
30 0.878727 0.878727 −1.845389 −1.845389 0.399523 0.399523
40 −1.029824 −1.029824 1.771524 1.771524 0.000093 0.000093
50 1.037551 1.037551 −0.878634 −0.878634 0.000091 0.000091
60 1.034005 1.034005 0.277127 0.277127 0.002862 0.002862
70 0.798540 0.798540 −0.876128 −0.876127 0.457949 0.457949
80 1.026191 1.026191 −1.979857 −1.979857 0.000876 0.000876
CPU time 0.286794 0.501966

graphical solutions for Case 1 and Case 2, respectively. As seen from the figures and tables
the MSRM and ode45 results are comparable. The different chaotic behaviors can clearly be
seen from Figures 8 and 10 which depicts the phase plots for Case 1 and Case 2, respectively.
The phase diagrams are similar to those of Luo et al. [31].
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Table 6: Comparison of the numerical solution of Rabinovich-Fabrikant equations obtained by the MSRM
and ode45 for a = 0.1 and b = 0.2715.

t
x1(t) x2(t) x3(t)

MSRM ode45 MSRM ode45 MSRM ode45

5 0.209579 0.209579 −0.115166 −0.115166 0.006755 0.006755
10 −0.186073 −0.186073 −0.348447 −0.348447 0.000415 0.000415
15 −0.470037 −0.470037 0.450639 0.450639 0.000030 0.000030
20 0.763142 0.763142 −0.755078 −0.755078 0.000002 0.000002
25 1.037421 1.037421 −1.430741 −1.430741 0.001753 0.001753
30 1.809575 1.809575 −0.478596 −0.478597 0.003993 0.003993
35 1.385747 1.385746 −1.420675 −1.420676 0.005921 0.005921
40 −0.878223 −0.878223 1.883510 1.883510 0.014795 0.014795
CPU time 0.275718 0.469540

5. Conclusion

In this work we have successfully computed solutions of three hyperchaotic systems
namely Chua, Chen, and Rabinovich-Fabrikant systems, using a new method which is
based on blending Gauss-Siedel relaxation method and the Chebyshev pseudo-spectral
method. The method, called the multi-stage spectral relaxation method (MSRM) is a multi-
stage method which is adapted to solve complex dynamical systems like the hyperchaotic
systems. The results presented in table and graphical form are comparable to results
obtained using the Runge-Kutta-(4,5)-based MATLAB built-in solver, ode45, as well as other
previously published results. The results also show that the proposed MSRM is accurate,
computationally efficient, and a reliable method for solving complex dynamical systems with
hyperchaotic behavior.
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