
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 641236, 15 pages
doi:10.1155/2012/641236

Research Article
A New Optimized Runge-Kutta Pair
for the Numerical Solution of the Radial
Schrödinger Equation

Yonglei Fang,1 Qinghong Li,2 Qinghe Ming,1 and Kaimin Wang1

1 School of Mathematics and Statistics, Zaozhuang University, Zaozhuang 277160, China
2 Department of Mathematics, Chuzhou University, Chuzhou 239000, China

Correspondence should be addressed to Yonglei Fang, ylfangmath@gmail.com

Received 9 May 2012; Revised 23 September 2012; Accepted 9 October 2012

Academic Editor: Malisa R. Zizovic

Copyright q 2012 Yonglei Fang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A new embedded pair of explicit modified Runge-Kutta (RK) methods for the numerical
integration of the radial Schrödinger equation is presented. The two RK methods in the pair have
algebraic orders five and four, respectively. The two methods of the embedded pair are derived
by nullifying the phase lag, the first derivative of the phase lag of the fifth-order method, and the
phase lag of the fourth-order method. Nu merical experiments show the efficiency and robustness
of our new methods compared with some well-known integrators in the literature.

1. Introduction

In molecular dynamics, quantum physics, and chemistry, no other equation has been studied
more profoundly than the Schrödinger equation [1–3]. The one-dimensional Schrödinger
equation has the form

y′′(x) = (v(x) − E)y(x), (1.1)

where E is a real number denoting the energy, the function v(x) is the effective potential
satisfying v(x) → 0 as x → ∞. There have been a lot of numerical methods, such as
exponentially fitted and phase fitted integrators based on the oscillatory property of the
solution of the Schrödinger equation (1.1) (see, e.g., [4–13]). In [7], Simos and Aguiar
constructed amodified Runge-Kutta method for the numerical integration of the Schrödinger
equation by phase fitting based on the fifth-order RK method. Recently, Vyver improved this
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method and gave an embedded pair of modified RK methods by nullifying the dispersion
(phase lag) of the fifth-order method and the fourth-order method [5].

In this paper, we derive a new kind of phase fitting RK embedded pair by nullifying
the phase lag, the first derivative of phase lag of the fifth-order method, and the phase lag of
the fourth-order method.

2. Order Conditions and Phase Properties of
Modified Runge-Kutta Methods

2.1. Modified Runge-Kutta Methods

For the numerical integration of the initial-value problem of first-order differential equations

y′(x) = f
(
x, y

)
, y(x0) = y0, (2.1)

we consider the s-stage modified explicit Runge-Kutta method of the form

Yi = γiyn + h
i−1∑

j=1

aijf
(
xn + cjh, Yj

)
, i = 1, . . . , s,

yn+1 = yn + h
s∑

i=1

bif(xn + cih, Yi),

(2.2)

which can be expressed in Butcher tableau as

c γ A

bT
=

0 1
c2 γ2 a21
...

...
...

. . .
cs γs as1 · · · ass−1

b1 · · · bs

(2.3)

or equivalently by the triplet (c, γ,A, b) with c = (0, c2, . . . , cs)
T , γ = (γ1, . . . , γs), A = (aij)s×s,

b = (b1, . . . , cs). Here, following the approach of exponential fitting and/or phase fitting in
[5, 7, 14], the frequency-depending parameters γi = γi(ν), ν = hω, i = 1, . . . , s are introduced
to adapt the traditional RK method to the oscillatory feature of the solution to the problem
[15–27], for example, in this paper, to minimize the dispersion and/or dissipation (see next
section).

The algebraic order conditions presented in [28] are not fit for themodified RKmethod
(2.2). Writing

γi = 1 + γ
(2)
i ν2 + γ

(4)
i ν4 + γ

(6)
i ν6 + · · · , (2.4)

where γ
(2j)
i = (d2jγi/dν

2j)(0), j = 1, 2, . . ., the third-to-fifth order conditions are listed as
follows (see Vyver [5]).
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(i) Order 3 requires

∑

i

biγ
(2)
i = 0; (2.5)

(ii) order 4 requires, in addition

∑

i

biciγ
(2)
i = 0,

∑

i,j

biaijγ
(2)
j = 0; (2.6)

(iii) order 5 requires, in addition

∑

i

bi
(
γ
(2)
i

)2
= 0,

∑

i

biγ
(4)
i = 0,

∑

i

bic
2
i γ

(2)
i = 0,

∑

ij

biciaijγ
(2)
j = 0,

∑

ij

biaijcjγ
(2)
j = 0,

∑

ij

biaijajkγ
(2)
k

= 0.
(2.7)

2.2. Dispersion and Dissipation of Modified Runge-Kutta Methods

Applying the modified RK method (2.2) to the test differential equation

y′ = iωy, ω > 0, (2.8)

yields

yn+1 = R(iν)yn, ν = hω, (2.9)

where

R(iν) = 1 − iνbT (I − iνA)−1γ

= 1 − iνbTγ + ν2bTAγ + iν3bTA2γ − · · · + (iν)sbTAs−1γ
(2.10)

with I the s × s identity matrix.

Definition 2.1. The quantities

P(ν) = ν − arg (R(iν)), D(ν) = 1 − |R(iν)|, (2.11)
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are called the dispersion (or phase lag) and the dissipation (or amplification factor error)
of the method (2.2), respectively. And the method is said to be dispersive of order q and
dissipative of order r if

P(ν) = O
(
νq+1

)
, D(ν) = O

(
νr+1

)
, (2.12)

respectively.
Writing

R(ν) = U
(
ν2
)
+ iνV

(
ν2
)
, (2.13)

we have
P(ν) = ν − arctan

(

ν
V
(
ν2
)

U(ν2)

)

, D(ν) = 1 −
√
U2(ν2) + ν2V 2(ν2). (2.14)

From the formula (2.10), U(ν2) and V (ν2) are polynomials in ν2:

U
(
ν2
)
= 1 − ν2bTAγ + ν4bTA3γ − · · · ,

V
(
ν2
)
= bTγ − ν2bTA2γ + ν4bTA4γ − · · · ,

(2.15)

which are completely determined by c, A, γ , and b.

3. Construction of the New Embedded Pair

In this section, we are concerned with the embeddedmodified pair which is simplify denoted
by the Butcher tableau

c A

bT

b∗T
=

0 1 0
1
5

γ2
1
5

0

3
10

γ3
3
40

9
40

0

4
5

γ4
44
45

−56
15

32
9

0

8
9

1
19372
6561

−25360
2187

64448
6561

−212
729

0

1 1
9017
3168

−355
33

46732
5247

49
176

− 5103
18656

0

1 1
35
384

0
500
1113

125
192

−2187
6784

11
84

0

35
384

0
500
1113

125
192

−2187
6784

11
84

0

5179
57600

0
7571
16695

393
640

−92097
339200

187
2100

1
40

(3.1)
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Choosing γ2 = γ3 = γ4 = 1, the classical embedded RK5(4) pair derived by Dormand and
Prince [29] is recovered, where the method (c,A, b) is of order five and (c,A, b∗) is of order
four. It should be noted that the first method (c,A, b) in this pair shares the FSAL property in
the sense that it uses only six function evaluations at each step with seven stages. Simos and
Aguiar [7] presented a modified phase fitted RK method by determining the one-parameter
γ2. Following this approach, Vyver [5] constructed a phase fitted embedded RK5(4) pair. Our
main aim in this section is to derive a more efficient embedded RK pair.

Inspired by the ideas in [30–40], with a variant expression of dispersion (see Simos
[41]), we compute the dispersion of the higher-order method and the dispersion of the lower-
order method and the first derivative of dispersion of the higher-order method of the pair
(3.1) as follows:

PH(ν) = tan(ν) − M1

N1
,

PL(ν) = tan(ν) − M2

N2
,

Der.PH(ν) = sec2(ν) − M′
1N1 −N ′

1M1

N2
1

,

(3.2)

in which

M1 = 15ν
(
107145 + 48230ν2 − 8904γ2ν4 + 5565γ4

(
2ν2 − 125

)
+ 320γ3

(
371ν2 − 1500

))
,

N1 = 7
(
225

(
563 + 3200γ3 + 1325γ4

)
ν2 + 10600

(
3γ2 − 4 − 8γ3

)
ν4 + 3816ν6 − 2289600

)
,

M2 = ν
(
216532500 + 173461225ν2 − 113080800γ2ν2 − 9283904ν4 − 17051160γ2ν4

+133560ν6 + 83475γ4
(
397ν2 − 23580

)
− 8000γ3

(
181704 − 55090ν2 + 371ν4

))
,

N2 = − 3205440000 + 75
(
2536615 + 13703168γ3 + 5129817γ4

)
ν2

− 3710
(
9263 + 2352γ2 + 24160γ3 + 225γ4

)
ν4 + 26712

(
136 + 25γ2

)
ν6.

(3.3)

Solving the systems of (3.2) we obtain

γ2=
(
−25ν

(
102879000−16468980ν2+5693624ν6+52050ν8

)
cos(ν)+4473000000 cos (ν)2 sin(ν)

+ ν
(
−25

(
76041000 − 26581020ν23569296ν4 + 469645ν6

)
cos(3ν)

−2ν
(
1225233750+380478750ν2+59883450ν4−19537525ν6−233289ν8+3710ν10

)

×sin(ν)−50ν
(
46352550−1042218ν2−804802ν4+97573ν6

)
sin(3ν)

))
/
(
5ν4M

)
,
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γ3 =
(
ν
(
211041495000

+ν2
(
−11689730450 + ν2

(
−1264487200 + 7ν2

(
58586875 + 212ν2

(
45ν2 − 8753

)))))

× cos(ν) − 212026500000 cos (ν)2 sin(ν)

+ 5ν
(
− 5

(
−39400200 − 181538138ν2 + 7037128ν4 + 878157ν6

)
cos(ν)

− 2ν
(
7258856775+ν2

(
−1213296080+7ν2

(
17587275+53ν2

(
480ν2−56077

))))

× sin(ν) − 10ν
(
149294235 − 22496216ν2 + 2498685ν4

)
sin(3ν)

))
/
(
200ν2M

)
,

(3.4)

γ4=

(

− ν
(
14108160000 − 5363145725ν2 + 258455175ν4 + 22475450ν6 − 6105436ν8 + 89040ν10

)

× cos(ν) + 18288000000 cos (ν)2 sin(ν)

+ ν

(

− 25
(
167193600 + 12945389ν2 − 2421645ν4 + 68704ν6

)
cos(3ν)

−2ν
(
2084367750+552861425ν2−100100925ν4+15041455ν6−1192856ν8+14840ν10

)

× sin(ν) + 50ν
(
−6590070 − 3738885ν2 + 176272ν4

)
sin(3ν)

))

/
(
25ν2M

)
,

(3.5)

where

M =
(
ν
(
2013125 + 23057425ν2 − 1145578ν4 + 7420ν6

)
cos(ν) + 200850000 cos (ν)2 sin(ν)

− 25ν
((

1059125 − 97573ν2
)
cos(3ν) + 2ν

(
2650105 − 310653ν2 + 1855ν4

)
sin(ν)

+389770ν sin(3ν)
))

.

(3.6)

For small values of ν, say |ν| < 0.04, the above formulae are subject to heavy cancelations and
in that case the following Taylor series expansions must be used

γ2 = 1 − 22051ν2

1175900
− 23696602511ν4

10453520523600
− 1936263085085455799ν6

921922108777593000000

− 132294694246155651595747ν8

112745173602003447304800000
+ · · · ,



Abstract and Applied Analysis 7

γ3 = 1 − 28991ν4

5879500
+

2740771225019ν6

1866700093500000
− 633801949482499571ν8

1317031583967990000000

− 708641114757728596912360427ν10

2113972005037564636965000000000
+ · · · ,

γ4 = 1 +
35008ν4

10289125
− 77729377736ν6

408340645453125
− 1838102360373886ν8

8002796083138828125

− 5030427774325408868897437ν10

19267974004248636014003906250
+ · · · .

(3.7)

It is easy to check that the two schemes in the new pair (3.1) with γ-values (3.5) are of
algebraic orders five and four, respectively. The Taylor series of the dissipations of the new
fifth-order method and the fourth-order method are given by

DH(ν) = − 215377ν6

197551200
+

637415987609ν8

9408168471240000
− 4487714698722250553ν10

66378391831986696000000
+ · · · ,

DL(ν) = −10822793ν
6

9260212500
+

7211815545941ν8

261338013090000000
− 154473286018569080117ν10

1382883163166389500000000
+ · · · ,

(3.8)

respectively.

4. Stability Analysis

In this section, we are interested in the phase properties of the new methods. Lambert and
Watson’s stability theory [42]was reconsidered by Coleman and Ixaru [43] for the periodicity
of exponentially-fitted symmetric methods for y′′ = f(x, y). Vyver [44] formulated this theory
to RK methods. Following Van de Vyver’s idea, we consider the test equation

y′ = iλy, λ > 0. (4.1)

Applying the modified RK method (3.1) to test (4.1) yields the difference equation

yn+1 = M(iθ, ν)yn, θ = λh, (4.2)

where

M(iθ, ν) =
det

(
I − iθA + iθγ(ν)bT

)

det(I − iθA)
(4.3)

with I the s × s identity matrix.
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Definition 4.1. For the modified RK method (3.1) with stability function M(iθ, ν), the
quantities

P̃(θ, ν) = θ − arg(M(iθ, ν)), D̃(θ, ν) = 1 − |M(iθ, ν)| (4.4)

are called the phase lag (dispersion) and amplification factor error (dissipation), respectively.
If

P̃(θ, ν) = cφθ
q+1 +O

(
θq+3

)
, D̃(θ, ν) = cdθ

p+1 +O
(
θp+3

)
, (4.5)

the method is said to be of phase lag order q and dissipation order p, respectively, where the cφ
and cd are called the phase lag constant and dissipation constant, respectively.

For the convenience of analyzing the phase lag and the dissipation, we denote the ratio
r = ν/θ. Then the phase lags and the dissipations of the higher-order method and the lower
order method are

P̃H(θ, rθ) = −
(
r2 − 1

)2(176385 + 198413r2
)

370408500
θ7 +O

(
θ9
)
,

D̃H(θ, rθ) =

(
164626 − 154357r2 − 656400r4

)

592653600
θ6 +O

(
θ8
)
,

P̃L(θ, rθ) = −
(
r2 − 1

)(
3421869 + 621392r2

)

4233240000
θ5 +O

(
θ7
)
,

D̃L(θ, rθ) =

(−31690505 + 26395047r2 − 37995714r4
)

37040850000
θ6 +O

(
θ8
)
,

(4.6)

respectively. Thus, the higher-order method has a phase lag of order six and a dissipation of
order five and the low-order method is of phase lag order four and dissipation order five.

5. Numerical Experiments

In this section, we will compare the numerical performance of the new pair with some
existing well-known methods proposed in the scientific literature.

5.1. Comparison with Fixed Step-Size Methods

The following fixed step-size methods are selected for comparison:

(i) PHARK5S: the phase fitted fifth-order RK method derived by Simos [6];

(ii) MODPHARK5S: the modified phase fitted fifth-order RK method obtained by
Simos and Aguiar in [7];

(iii) MODPHARK5V: the higher-order method of the modified phase fitted embedded
RK5(4) pair obtained by Vyver presented in [5];
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Figure 1: Efficiency curves for E = 53.588872.
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Figure 2: Efficiency curves for E = 163.215341.

(iv) ARK5: an adapted fifth-order RK method given by Fang et al. in [45];

(v) MODDPHARK5: the higher-order method of the new pair.
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Figure 3: Efficiency curves for E = 341.495874.

We consider the numerical integration of the Schrödinger equation (1.1)with the well-known
Woods-Saxon potential

v(x) = c0z(1 − a(1 − z)), (5.1)

in which z = (exp(a(x − b) + 1))−1, c0 = −50, a = 5/3, and b = 7. The domain of numerical
integration is [0, 15]. It is appropriate to choose ω as follows [5, 46]:

ω =

{√
50 + E, x ∈ [0, 6.5],√
E, x ∈ [6.5, 15].

(5.2)

In the numerical experiments we consider the resonance problem (E > 0), the
numerical results were compared with the analytical solution of the Woods-Saxon
potential, rounded to six decimal places. In Figures 1, 2, 3, and 4, we plot the error
of −log10|Eanalytical − Ecalculated| versus the integration step-size (1/2N) for Eanalytical =
53.588872, 163.215341, 341.495874, and 989.701916, respectively.

5.2. Comparison with Variable Step-Size Methods

Next we select the following embedded RK5(4) pairs:

(i) PHARK5(4)S: the phase fitted embedded RK5(4) pair derived by Simos [6];

(ii) MODPHARK5(4)V: the modified phase fitted embedded RK5(4) pair obtained by
Vyver presented in [5];

(iii) MODDPHARK5(4): the new embedded RK5(4) pair given in this paper.
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Figure 4: Efficiency curves for E = 989.701916.

We consider the numerical integration of the Schrödinger equation (1.1)with the well-known
Lennard-Jones potential (see [5])

v(x) =
l(l + 1)
x2

+ 500
(

1
x12

− 1
x6

)
, (5.3)

and we compute some phase shifts for this potential. In the numerical results, we compute
the phase shifts correct to four decimal places for the energies k2 = 2500 and k2 = 10000.
We choose the fitting frequency ω = k. For the calculation of the phase shifts, we show the
number of function evaluations as a function of l = 0, 1, . . . , 10 in Figures 5-6.

Figures 1–6 show that our new methods are more efficient than the other methods we
select for comparison.

6. Conclusions and Discussions

A new kind of modified phase fitted explicit embedded RK pair for the numerical integration
of the radial Schrödinger equation is presented in this paper. This new pair is based on the
classical RK5(4) pair obtained by Dormand and Prince [29]. The phase fitted technique can
be regarded as an improvement of the ideas from [5, 7, 30, 31]. The two schemes in this pair
are of orders five and four, respectively. Numerical experiments show the effectiveness and
competence of the new pair.
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Figure 5: Efficiency curves for k = 50.

3100

3200

3300

3400

3500

3600

3700

3800

3900

0 1 2 3 4 5 6 7 8 9 10

Integer L of the centrifugal potential

Fu
nc

ti
on

 e
va

lu
at

io
ns

MODDPHARK5(4)
PHRK5(4)S
MODPHARK5(4)V

Calculation of the phase shifts for k = 100

Figure 6: Efficiency curves for k = 100.

Acknowledgments

The authors are deeply grateful to the anonymous referees for their constructive comments
and valuable suggestions. This research is partially supported by NSFC (no. 11101357), the
foundation of Shandong Outstanding Young Scientists Award Project (no. BS2010SF031), the



Abstract and Applied Analysis 13

foundation of Scientific Research Project of Shangdong Universities (no. J11LG69), NSF of
Shandong Province, China (no. ZR2011AL006), NSF of Universities of Anhui Province, China
(no. KJ2010A248), and the Scientific Research Start-up Fund of Chuzhou University, China
(no. 2010qd03).

References

[1] A. C. Allison, “The numerical solution of coupled differential equations arising from the Schrödinger
equation,” Journal of Computational Physics, vol. 6, pp. 378–391, 1970.

[2] J. M. Blatt, “Practical points concerning the solution of the Schrödinger equation,” Journal of
Computational Physics, vol. 1, pp. 378–391, 1961.

[3] J. W. Cooley, “An improved eigenvalue corrector formula for solving the Schrödinger equation for
central fields,”Mathematics of Computation, vol. 15, pp. 363–374, 1961.

[4] T. E. Simos, “A family of fifth algebraic order trigonometrically fitted Runge-Kutta methods for the
numerical solution of the Schrödinger equation,” Computational Materials Science, vol. 34, no. 4, pp.
342–354, 2005.

[5] H. Van De Vyver, “An embedded phase-fitted modified Runge-Kutta method for the numerical
integration of the radial Schrödinger equation,” Physics Letters A, vol. 352, no. 4-5, pp. 278–285, 2006.

[6] T. E. Simos, “An embedded Runge-Kutta method with phase-lag of order infinity for the numerical
solution of the Schrödinger equation,” International Journal of Modern Physics C, vol. 11, no. 6, pp.
1115–1133, 2000.

[7] T. E. Simos and J. V. Aguiar, “Amodified phase-fitted Runge-Kutta method for the numerical solution
of the Schrödinger equation,” Journal of Mathematical Chemistry, vol. 30, no. 1, pp. 121–131, 2001.

[8] T. E. Simos, “Exponentially and trigonometrically fitted methods for the solution of the Schrödinger
equation,” Acta Applicandae Mathematicae, vol. 110, no. 3, pp. 1331–1352, 2010.

[9] Z.A. Anastassi and T.E. Simos, “A parametric symmetric linear four-step method for the efficient
integration of the Schrödinger equation and related oscillatory problems,” Journal of Computational
and Applied Mathematics, vol. 236, no. 16, pp. 3880–3889, 2012.

[10] D. P. Sakas and T. E. Simos, “Multiderivative methods of eighth algebraic order with minimal phase-
lag for the numerical solution of the radial Schrödinger equation,” Journal of Computational and Applied
Mathematics, vol. 175, no. 1, pp. 161–172, 2005.

[11] Z. Kalogiratou, Th. Monovasilis, and T. E. Simos, “Symplectic integrators for the numerical solution
of the Schrödinger equation,” Journal of Computational and Applied Mathematics, vol. 158, no. 1, pp.
83–92, 2003, Selected papers from the Conference on Computational and Mathematical Methods for
Science and Engineering (Alicante, 2002).

[12] T. E. Simos and P. S. Williams, “On finite difference methods for the solution of the Schrödinger
equation,” Computers and Chemistry, vol. 23, no. 6, pp. 513–554, 1999.

[13] A. Konguetsof and T. E. Simos, “A generator of hybrid symmetric four-stepmethods for the numerical
solution of the Schrödinger equation,” Journal of Computational and Applied Mathematics, vol. 158, no. 1,
pp. 93–106, 2003, Selected papers from the Conference on Computational and Mathematical Methods
for Science and Engineering (Alicante, 2002).

[14] G. Vanden Berghe, H. De Meyer, M. Van Daele, and T. Van Hecke, “Exponentially-fitted explicit
Runge-Kutta methods,” Computer Physics Communications, vol. 123, no. 1–3, pp. 7–15, 1999.

[15] A. D. Raptis and T. E. Simos, “A four-step phase-fittedmethod for the numerical integration of second
order initial value problems,” BIT, vol. 31, no. 1, pp. 160–168, 1991.

[16] Z. A. Anastassi and T. E. Simos, “Numerical multistep methods for the efficient solution of quantum
mechanics and related problems,” Physics Reports, vol. 482-483, pp. 1–240, 2009.

[17] Z. Kalogiratou and T. E. Simos, “Newton-Cotes formulae for long-time integration,” Journal of
Computational and Applied Mathematics, vol. 158, no. 1, pp. 75–82, 2003, Selected papers from the
Conference on Computational and Mathematical Methods for Science and Engineering (Alicante,
2002).

[18] G. Psihoyios and T. E. Simos, “Trigonometrically fitted predictor-corrector methods for IVPs with
oscillating solutions,” Journal of Computational and Applied Mathematics, vol. 158, no. 1, pp. 135–144,
2003, Selected papers from the Conference on Computational and Mathematical Methods for Science
and Engineering (Alicante, 2002).



14 Abstract and Applied Analysis

[19] T. E. Simos, I. T. Famelis, and C. Tsitouras, “Zero dissipative, explicit Numerov-type methods for
second order IVPs with oscillating solutions,” Numerical Algorithms, vol. 34, no. 1, pp. 27–40, 2003.

[20] T. E. Simos, “Dissipative trigonometrically-fitted methods for linear second-order IVPs with
oscillating solution,” Applied Mathematics Letters, vol. 17, no. 5, pp. 601–607, 2004.

[21] K. Tselios and T. E. Simos, “Runge-Kutta methods with minimal dispersion and dissipation for
problems arising from computational acoustics,” Journal of Computational and Applied Mathematics,
vol. 175, no. 1, pp. 173–181, 2005.

[22] G. Psihoyios and T. E. Simos, “A fourth algebraic order trigonometrically fitted predictor-corrector
scheme for IVPs with oscillating solutions,” Journal of Computational and Applied Mathematics, vol. 175,
no. 1, pp. 137–147, 2005.

[23] Z. A. Anastassi and T. E. Simos, “An optimized Runge-Kutta method for the solution of orbital
problems,” Journal of Computational and Applied Mathematics, vol. 175, no. 1, pp. 1–9, 2005.

[24] T. E. Simos, “Closed Newton-Cotes trigonometrically-fitted formulae of high order for long-time
integration of orbital problems,” Applied Mathematics Letters, vol. 22, no. 10, pp. 1616–1621, 2009.

[25] S. Stavroyiannis and T. E. Simos, “Optimization as a function of the phase-lag order of nonlinear
explicit two-step P -stable method for linear periodic IVPs,” Applied Numerical Mathematics, vol. 59,
no. 10, pp. 2467–2474, 2009.

[26] T. E. Simos, “New stable closed Newton-Cotes trigonometrically fitted formulae for long-time
integration,” Abstract and Applied Analysis, vol. 2012, Article ID 182536, 15 pages, 2012.

[27] T. E. Simos, “Optimizing a hybrid two-step method for the numerical solution of the Schrödinger
equation and related problems with respect to phase-lag,” Journal of Applied Mathematics, vol. 2012,
Article ID 420387, 17 pages, 2012.

[28] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I Nonstiff Problems, vol.
8, Springer, Berlin, Germany, 2nd edition, 1993.

[29] J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” Journal of
Computational and Applied Mathematics, vol. 6, no. 1, pp. 19–26, 1980.

[30] A. A. Kosti, Z. A. Anastassi, and T. E. Simos, “Construction of an optimized explicit Runge-Kutta-
Nyström method for the numerical solution of oscillatory initial value problems,” Computers &
Mathematics with Applications, vol. 61, no. 11, pp. 3381–3390, 2011.

[31] A. A. Kosti, Z. A. Anastassi, and T. E. Simos, “An optimized explicit Runge-Kutta-Nyström method
for the numerical solution of orbital and related periodical initial value problems,” Computer Physics
Communications, vol. 183, no. 3, pp. 470–479, 2012.

[32] I. Alolyan and T. E. Simos, “High algebraic order methods with vanished phase-lag and its first
derivative for the numerical solution of the Schrödinger equation,” Journal of Mathematical Chemistry,
vol. 48, no. 4, pp. 925–958, 2010.

[33] I. Alolyan and T. E. Simos, “A new hybrid two-step method with vanished phase-lag and its first and
second derivatives for the numerical solution of the Schrödinger equation and related problems,”
Journal of Mathematical Chemistry, vol. 50, no. 7, pp. 1861–1881, 2011.

[34] I. Alolyan and T. E. Simos, “A family of ten-step methods with vanished phase-lag and its first
derivative for the numerical solution of the Schrödinger equation,” Journal of Mathematical Chemistry,
vol. 49, no. 9, pp. 1843–1888, 2011.

[35] I. Alolyan and T. E. Simos, “A family of eight-step methods with vanished phase-lag and its
derivatives for the numerical integration of the Schrödinger equation,” Journal of Mathematical
Chemistry, vol. 49, no. 3, pp. 711–764, 2011.

[36] I. Alolyan and T. E. Simos, “Multistep methods with vanished phase-lag and its first and second
derivatives for the numerical integration of the Schrödinger equation,” Journal of Mathematical
Chemistry, vol. 48, no. 4, pp. 1092–1143, 2010.

[37] I. Alolyan and T. E. Simos, “On eight-step methods with vanished phase-lag and its derivatives for
the numerical solution of the Schrödinger equation,” Communications in Mathematical and in Computer
Chemistry, vol. 66, no. 2, pp. 473–546, 2011.

[38] T. E. Simos, “A two-step method with vanished phase-lag and its first two derivatives for the
numerical solution of the Schrödinger equation,” Journal of Mathematical Chemistry, vol. 49, no. 10,
pp. 2486–2518, 2011.

[39] I. Alolyan and T. E. Simos, “A family of high-order multistep methods with vanished phase-lag and
its derivatives for the numerical solution of the Schrödinger equation,” Computers & Mathematics with
Applications, vol. 62, no. 10, pp. 3756–3774, 2011.



Abstract and Applied Analysis 15

[40] I. Alolyan and T. E. Simos, “A new high order two-step method with vanished phase-lag and
its derivatives for the numerical integration of the Schrödinger equation,” Journal of Mathematical
Chemistry, vol. 50, no. 9, pp. 2351–2373, 2012.

[41] T. E. Simos, “Runge-Kutta interpolants with minimal phase-lag,” Computers & Mathematics with
Applications, vol. 26, no. 8, pp. 43–49, 1993.

[42] J. D. Lambert and I. A. Watson, “Symmetric multistep methods for periodic initial value problems,”
Journal of the Institute of Mathematics and its Applications, vol. 18, no. 2, pp. 189–202, 1976.

[43] J. P. Coleman and L. Gr. Ixaru, “P -stability and exponential-fitting methods for y′′ = f(x, y),” IMA
Journal of Numerical Analysis, vol. 16, no. 2, pp. 179–199, 1996.

[44] H. Van de Vyver, “Stability and phase-lag analysis of explicit Runge-Kutta methods with variable
coefficients for oscillatory problems,” Computer Physics Communications, vol. 173, no. 3, pp. 115–130,
2005.

[45] Y. Fang, Y. Song, and X. Wu, “New embedded pairs of explicit Runge-Kutta methods with FSAL
properties adapted to the numerical integration of oscillatory problems,” Physics Letters. A, vol. 372,
no. 44, pp. 6551–6559, 2008.

[46] L. G. Ixaru and M. Rizea, “A numerov-like scheme for the numerical solution of the Schrödinger
equation in the deep continuum spectrum of energies,” Computer Physics Communications, vol. 19, no.
1, pp. 23–27, 1980.


