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The aim of the present paper is to introduce the spaces cλ0(B) and cλ(B) of generalized difference
sequences which generalize the paper due to Mursaleen and Noman (2010). These spaces are
the BK-spaces of non-absolute type and norm isomorphic to the spaces c0 and c, respectively.
Furthermore, we derive some inclusion relations determine the α-, β-, and γ-duals of those spaces,
and construct their Schauder bases. Finally, we characterize some matrix classes from the spaces
cλ0(B), and cλ(B) to the spaces �p, c0, and c.

1. Introduction

By ω, we denote the space of all complex valued sequences. Any vector subspace of ω is
called a sequence space. A sequence space Ewith a linear topology is called aK-space provided
each of the maps pi : E → C defined by pi(x) = xi is continuous for all i ∈ N, where C

denotes the complex field and N = {0, 1, 2, . . .}. A K-space is called an FK-space provided
E is a complete linear metric space. An FK-space whose topology is normable is called a
BK-space (see [1, pages 272-273]) which contains φ, the set of all finitely nonzero sequences.
We write �∞, c and c0 for the classical sequence spaces of all bounded, convergent, and null
sequences, respectively, which are BK-spaces with the usual sup-norm defined by ‖x‖∞ =
sup |xk|, where, here and in the sequel, the supremum is taken over all k ∈ N. Also by �1 and
�p, we denote the spaces of all absolutely and p-absolutely convergent series, respectively,
which are BK-spaces with the usual norm defined by ‖x‖p = (

∑
k |xk|p)1/p, where 1 ≤ p <

∞. For simplicity in notation, here and in what follows, the summation without limits runs
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from 0 to ∞. Also by bs and cs, we denote the spaces of all bounded and convergent series,
respectively.

LetX and Y be two sequence spaces, and letA = (ank) be an infinite matrix of complex
numbers ank, where n, k ∈ N. Then, we say that A defines a matrix mapping from X into Y
and we denote it by writing A : X → Y , if for every sequence x = (xk) ∈ X the sequence
Ax = {An(x)}, A-transform of x, exists and is in Y , where

An(x) :=
∑

k

ankxk, ∀n ∈ N. (1.1)

By (X : Y ), we denote the class of all infinite matrices A = (ank) such that A : X → Y . Thus
A ∈ (X : Y ) if and only if the series on the right side of (1.1) converges for each n ∈ N and
every x ∈ X, and Ax ∈ Y for all x ∈ X. A sequence x ∈ ω is said to be A-summable to l if Ax
converges to l, which is called the A-limit of x.

The domain XA of an infinite matrix A in a sequence space X is defined by

XA := {x = (xk) ∈ ω : Ax ∈ X}. (1.2)

We denote the collection of all finite subsets of N by F. Also, we write e(k) for the sequence
whose only nonzero term is a 1 in the kth place for each k ∈ N.

The approach of constructing a new sequence space by means of the matrix domain of
a particular limitation method has recently been employed by several authors, for example,
[2–14]. They introduced the sequence spaces (�∞)Nq

and cNq in [14], (�p)C1
= Xp and (�∞)C1

=
X∞ in [10], μG = Z(u, v;μ) in [9], (�∞)Rt = rt∞, cRt = rtc and (c0)Rt = rt0 in [8], (�p)Rt = rtp in
[2], (c0)Et = er0 and cEr = erc in [3], (�p)Er = erp and (�∞)Er = er∞ in [4], (c0)Ar = ar

0 and cAr = ar
c

in [5], [c0(u, p)]Ar = ar
0(u, p) and [c(u, p)]Ar = ar

c(u, p) in [6], (�p)Ar = ar
p and (�∞)Ar = ar

∞
in [7] and (c0)C1

= c̃0 and cC1 = c̃ in [11], νB(r,s,t) = ν(B) in [12], and fB(r,s,t) = f(B) in [13];
where, Nq, C1, Rt, and Er denote the Nörlund, Cesáro, Riesz, and Euler means, respectively,
Ar , G, and B(r, s, t) are, respectively, defined in [5, 9, 12], μ ∈ {c0, c, �p}, ν ∈ {�∞, c, c0, �p} and
1 ≤ p < ∞. Also c0(u, p) and c(u, p) denote the sequence spaces generated from the Maddox’s
spaces c0(p) and c(p) by Başarir [15]. In the present paper, following [2–14], we introduce
the difference sequence spaces cλ0(B) and cλ(B) of non-absolute type and derive some related
results. We also establish some inclusion relations. Furthermore, we determine the α-, β-, and
γ-duals of those spaces and construct their bases. Finally, we characterize some classes of
infinite matrices concerning the spaces cλ0(B) and cλ(B).

The rest of this paper is organized, as follows.
In Section 2, the BK-spaces cλ0(B) and cλ(B) of generalized difference sequences are

introduced. Section 3 is devoted to inclusion relations concerning with the spaces cλ0(B)
and cλ(B). In Sections 4 and 5, the Schauder bases of the spaces cλ0(B) and cλ(B) are given
and the α-, β-, and γ-duals of the generalized difference sequence spaces cλ0(B) and cλ(B)
of non-absolute type are determined, respectively. In Section 6, the classes (cλ(B) : �p),
(cλ0(B) : �p), (c

λ(B) : c), (cλ(B) : c0), (cλ0(B) : c), and (cλ0(B) : c0) of matrix transformations are
characterized, where 1 ≤ p ≤ ∞. Also, by means of a given basic lemma, the characterizations
of some other classes involving the Euler, difference, Riesz, and Cesàro sequence spaces are
derived. In the final section of the paper, we note the significance of the present results in the
literature related with difference sequence spaces and record some further suggestions.
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2. The Difference Sequence Spaces cλ0(B) and cλ(B) of
Non-Absolute Type

The difference sequence spaces have been studied by several authors in different ways (see
e.g. [12, 16–21]). In the present section, we introduce the spaces cλ0(Δ), and cλ(Δ), and show
that these spaces are BK-spaces of non-absolute type which are norm isomorphic to the
spaces c0 and c, respectively.

We assume throughout that λ = (λk)
∞
k=0 is a strictly increasing sequence of positive

reals tending to∞, that is,

0 < λ0 < λ1 < · · · , lim
k→∞

λk = ∞. (2.1)

Recently, Mursaleen and Noman [22] studied the sequence spaces cλ0 and cλ of non-
absolute type, and later they introduced the difference sequence spaces cλ0(Δ) and cλ(Δ) in
[21] of non-absolute type as follows:

cλ0(Δ) =

{

x = (xk) ∈ ω : lim
n→∞

1
λn

n∑

k=0

(λk − λk−1)(xk − xk−1) = 0

}

,

cλ(Δ) =

{

x = (xk) ∈ ω : lim
n→∞

1
λn

n∑

k=0

(λk − λk−1)(xk − xk−1) exists

}

.

(2.2)

Here and after, we use the convention that any termwith a negative subscript is equal to zero,
for example, λ−1 = 0 and x−1 = 0. With the notation of (1.2) we can redefine the spaces cλ0(Δ)
and cλ(Δ) by

cλ0(Δ) =
(
cλ0

)

Δ
, cλ(Δ) =

(
cλ
)

Δ
, (2.3)

where Δ denotes the band matrix representing the difference operator, that is, Δx = (xk −
xk−1) ∈ ω for x = (xk) ∈ ω.

Let r and s be nonzero real numbers and define the generalized difference matrix
B(r, s) = {bnk(r, s)} by

bnk(r, s) :=

⎧
⎪⎪⎨

⎪⎪⎩

r, k = n,

s, k = n − 1,
0, otherwise,

(2.4)

for all k, n ∈ N. The B(r, s)-transform of a sequence x = (xk) is

B(r, s)k(x) = rxk + sxk−1, ∀k ∈ N. (2.5)

We note that the matrix B(r, s) can be reduced to the difference matrices Δ in case r = 1 and
s = −1. So, the results related to the matrix domain of the matrix B(r, s) are more general and
more comprehensive than the consequences of the matrices domain of Δ and include them.
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Now, following Başar and Altay [18] and Aydın and Başar [17], we proceed slightly
differently to Kızmaz [19] and the other authors following him and employ a technique
of obtaining a new sequence space by means of the matrix domain of a triangle limitation
method.

We thus introduce the difference sequence spaces cλ0(B) and cλ(B), which are the
generalization of the spaces cλ0(Δ) and cλ(Δ) introduced by Mursaleen and Noman [21], as
follows:

cλ0(B) =

{

x = (xk) ∈ ω : lim
n→∞

1
λn

n∑

k=0

(λk − λk−1)(rxk + sxk−1) = 0

}

,

cλ(B) =

{

x = (xk) ∈ ω : lim
n→∞

1
λn

n∑

k=0

(λk − λk−1)(rxk + sxk−1) exists

}

.

(2.6)

With the notation of (1.2), we can redefine the spaces cλ0(B) and cλ(B) as

cλ0(B) =
(
cλ0

)

B
, cλ(B) =

(
cλ
)

B
, (2.7)

where B denotes the generalized difference matrix B(r, s) = {bnk(r, s)} defined by (2.4).
It is immediate by (2.7) that the sets cλ0(B) and cλ(B) are linear spaces with

coordinatewise addition and scalar multiplication, that is, cλ0(B) and cλ(B) are the sequence
spaces of generalized differences.

On the other hand, we define the triangle matrix Λ̂ = (λ̂nk) by

λ̂nk :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r(λk − λk−1) + s(λk+1 − λk)
λn

, k < n,

r
(λn − λn−1)

λn
, k = n,

0, k > n

(2.8)

for all n, k ∈ N. With a direct calculation we derive the equality

Λ̂n(x) =
1
λn

n∑

k=0

(λk − λk−1)(rxk + sxk−1), ∀n ∈ N (2.9)

and every x = (xk) ∈ ω which leads us together with (1.2) to the fact that

cλ0(B) = (c0)Λ̂, cλ(B) = cΛ̂. (2.10)

Further, for any sequence x = (xk) we define the sequence y(λ) = {yk(λ)} which will
be frequently used as the Λ̂-transform of x, that is, y(λ) = Λ̂(x) and so we have

yk(λ) =
k−1∑

j=0

r
(
λj − λj−1

)
+ s
(
λj+1 − λj

)

λk
xj + r

λk − λk−1
λk

xk, ∀k ∈ N, (2.11)
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Where, here and in what follows, the summation running from 0 to k−1 is equal to zero when
k = 0.

Moreover, it is clear by (2.9) that the relation (2.11) can be written as follows:

yk(λ) =
1
λk

k∑

j=0

(
λj − λj−1

)(
rxj + sxj−1

)
, ∀k ∈ N. (2.12)

We assume throughout that the sequences x = (xk) and y = (yk) are connected by the relation
(2.11).

Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. The difference sequence spaces cλ0(B) and cλ(B) are BK-spaces with the norm
‖x‖cλ0 (B) = ‖x‖cλ(B) = ‖Λ̂(x)‖∞, that is,

‖x‖cλ0 (B) = ‖x‖cλ(B) = sup
n∈N

∣
∣
∣Λ̂n(x)

∣
∣
∣. (2.13)

Proof. Since (2.10) holds and c0 and c are BK-spaces with respect to their natural norms (see
[23, pages 217-218]) and the matrix Λ̂ is a triangle, Theorem 4.3.12 of Wilansky [24, page 63]
gives the fact that cλ0(B) and cλ(B) are BK-spaces with the given norms. This completes the
proof.

Remark 2.2. One can easily check that the absolute property does not hold on the spaces cλ0(B)
and cλ(B), that is, ‖x‖cλ0 (B) /= ‖|x|‖cλ0 (B) and ‖x‖cλ(B) /= ‖|x|‖cλ(B) for at least one sequence in the
spaces cλ0(B) and cλ(B), and this shows that cλ0(B) and cλ(B) are the sequence spaces of non-
absolute type, where |x| = (|xk|).

Now, we give the final theorem of this section.

Theorem 2.3. The sequence spaces cλ0(B) and c
λ(B) of non-absolute type are norm isomorphic to the

spaces c0 and c, respectively, that is, cλ0(B)
∼= c0 and cλ(B) ∼= c.

Proof. To prove this, we should show the existence of a linear bijection between the spaces
cλ0(B) and c0. Consider the transformation T defined, with the notation of (2.11), from cλ0(B)
to c0 by x 	→ y(λ). Then, Tx = y(λ) = Λ̂(x) ∈ c0 for every x ∈ cλ0(B) and the linearity of T is
clear. Further, it is trivial that x = θ whenever Tx = θ and hence T is injective.

Furthermore, let y = (yk) ∈ c0 and define the sequence x = {xk(λ)} by

xk(λ) :=
1
r

k∑

j=0

(−s
r

)k−j j∑

i=j−1
(−1)j−i λi

λj − λj−1
yi, ∀k ∈ N. (2.14)

Then, we obtain

rxk(λ) + sxk−1(λ) =
k∑

i=k−1
(−1)k−i λi

λk − λk−1
yi, ∀k ∈ N. (2.15)



6 Abstract and Applied Analysis

Hence, for every n ∈ N, we get by (2.9)

Λ̂n(x) =
1
λn

n∑

k=0

(λk − λk−1)(rxk + sxk−1)

=
1
λn

n∑

k=0

k∑

i=k−1
(−1)k−iλiyi

= yn.

(2.16)

This shows that Λ̂(x) = y and since y ∈ c0, we conclude that Λ̂(x) ∈ c0. Thus, we deduce that
x ∈ cλ0(B) and Tx = y. Hence T is surjective.

Moreover, one can easily see for every x ∈ cλ0(B) that

‖Tx‖∞ =
∥
∥y(λ)

∥
∥
∞ =

∥
∥
∥Λ̂(x)

∥
∥
∥
∞
= ‖x‖cλ0 (B) (2.17)

which means that T is norm preserving. Consequently T is a linear bijection which show that
the spaces cλ0(B) and c0 are linearly isomorphic.

It is clear that if the spaces cλ0(B) and c0 are replaced by the spaces cλ(B) and c,
respectively, then we obtain the fact that cλ(B) ∼= c. This completes the proof.

3. The Inclusion Relations

In the present section, we establish some inclusion relations concerning with the spaces cλ0(B)
and cλ(B). We may begin with the following theorem.

Theorem 3.1. The inclusion cλ0(B) ⊂ cλ(B) strictly holds.

Proof. It is obvious that the inclusion cλ0(B) ⊂ cλ(B) holds. Further to show that this inclusion
is strict, consider the sequence x = (xk) defined by xk =

∑k
j=0 (−s/r)j/r for all k ∈ N. Then,

we obtain by (2.9) that

Λ̂n(x) =
1
λn

n∑

k=0

(λk − λk−1) ∀n ∈ N (3.1)

which shows that Λ̂(x) = e and hence Λ̂(x) ∈ c \ c0, where e = (1, 1, 1, . . .). Thus, the sequence
x is in cλ(B) but not in cλ0(B). Hence, the inclusion cλ0(B) ⊂ cλ(B) is strict and this completes
the proof.

Theorem 3.2. If s + r = 0, then the inclusion c ⊂ cλ0(B) strictly holds.

Proof. Suppose that s+ r = 0 and x ∈ c. Then B(r, s)x = (rxk +sxk−1) ∈ c0 and hence B(r, s)x ∈
cλ0 , since the inclusion c0 ⊂ cλ0 . This shows that x ∈ cλ0(B). Consequently, the inclusion c ⊂
cλ0(B) holds. Further consider the sequence y = (yk) defined by yk =

√
k + 1 for all k ∈ N.

Then, it is trivial that y /∈ c. On the other hand, it can easily seen that B(r, s)y ∈ c0. Hence,
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B(r, s)y ∈ cλ0 which means that y ∈ cλ0(B). Thus, the sequence y is in cλ0(B) but not in c. We
therefore deduce that the inclusion c ⊂ cλ0(B) is strict. This completes the proof.

On the other hand, we recall that if A ∈ (c : c) and B ∈ (c : c), then AB ∈ (c : c),
namely, Λ̂ = (λ̂nk) is stronger than the ordinary convergence, hence we have the following

Corollary 3.3. The inclusions c0 ⊂ cλ0(B) and c ⊂ cλ(B) strictly hold.

Further, it is obvious that the sequence y, defined in the proof of Theorem 3.2, is in
cλ0(B) but not in �∞. This leads us to the following result.

Corollary 3.4. Although the spaces �∞ and cλ0(B) overlap, the space �∞ does not include the space
cλ0(B).

Now, to prove the next theorem, we need the following lemma [24, page 4].

Lemma 3.5. A ∈ (�∞ : c0) if and only if limn→∞
∑

k |ank| = 0.

Theorem 3.6. The inclusion �∞ ⊂ cλ0(B) strictly holds if and only if z ∈ cλ0 , where the sequence
z = (zk) is defined by

zk =
∣
∣
∣
∣
r(λk − λk−1) + s(λk+1 − λk)

λk − λk−1

∣
∣
∣
∣, ∀k ∈ N. (3.2)

Proof. Suppose that the inclusion �∞ ⊂ cλ0(B) holds. Then we obtain that Λ̂(x) ∈ c0 for every
x ∈ �∞ and hence the matrix Λ̂ = (λ̂nk) is in the class (�∞ : c0). Thus it follows by Lemma 3.5
that

lim
n→∞

∑

k

∣
∣
∣λ̂nk

∣
∣
∣ = 0. (3.3)

Now, by taking into account the definition of the matrix Λ̂ = (λ̂nk) given by (2.8), we have for
every n ∈ N that

∑

k

∣
∣
∣λ̂nk

∣
∣
∣ =

1
λn

n−1∑

k=0

|r(λk − λk−1) + s(λk+1 − λk)| + |r|λn − λn−1
λn

. (3.4)

Thus, the condition (3.3) implies both

lim
n→∞

|r|λn − λn−1
λn

= 0, (3.5)

lim
n→∞

1
λn

n−1∑

k=0

|r(λk − λk−1) + s(λk+1 − λk)| = 0. (3.6)
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Now we have for every n ≥ 1 that

1
λn

n−1∑

k=0

|r(λk − λk−1) + s(λk+1 − λk)| = λn−1
λn

[
1

λn−1

n−1∑

k=0

(λk − λk−1)zk

]

(3.7)

and since limn→∞(λn−1/λn) = 1 by (3.5), we obtain by (3.6) that

lim
n→∞

1
λn−1

n−1∑

k=0

(λk − λk−1)zk = 0 (3.8)

which shows that z = (zk) ∈ cλ0 .
Conversely, suppose that z = (zk) ∈ cλ0 . Then we have (3.8). Further, for every n ≥ 1,

we derive that

1
λn

n−1∑

k=0

|r(λk − λk−1) + s(λk+1 − λk)| = 1
λn

n−1∑

k=0

(λk − λk−1)zk

≤ 1
λn−1

n−1∑

k=0

(λk − λk−1)zk.

(3.9)

Then, (3.9) and (3.8) together imply that (3.6) holds. On the other hand, we have for every
n ≥ 1 that

∣
∣
∣
∣
rλn−1 + s(λn − λ0)

λn

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

1
λn

n−1∑

k=0

r(λk − λk−1) + s(λk+1 − λk)

∣
∣
∣
∣
∣

≤ 1
λn

n−1∑

k=0

|r(λk − λk−1) + s(λk+1 − λk)|.
(3.10)

Therefore, it follows by (3.6) that limn→∞[rλn−1 + s(λn − λ0)]/λn = 0. Particularly, if we take
r = 1 and s = −1, then we have limn→∞[λn − λn−1 − λ0]/λn = 0 which shows that (3.5)
holds. Thus, we deduce by the relation (3.4) that (3.3) holds. This leads us with Lemma 3.5
to the consequence that Λ̂ ∈ (�∞ : c0). Hence, the inclusion �∞ ⊂ cλ0(B) holds and is strict by
Corollary 3.4. This completes the proof.

4. The Bases for the Spaces cλ0(B) and cλ(B)

In the present section, we give two sequences of the points of the spaces cλ0(B) and cλ(B)
which form the bases for those spaces.

If a normed sequence spaceX contains a sequence (bn)with the property that for every
x ∈ X there is a unique sequence of scalars (αn) such that

lim
n→∞

‖x − (α0b0 + α1b1 + · · · + αnbn)‖ = 0 (4.1)
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then (bn) is called a Schauder basis (or briefly basis) for X. The series
∑

k αkbk which has the
sum x is then called the expansion of x with respect to (bn) and is written as x =

∑
k αkbk.

Now, since the transformation T defined from cλ0(B) to c0 in the proof of Theorem 2.3
is an isomorphism, the inverse image of the basis {e(k)}∞k=0 of the space c0 is the basis for the
new space cλ0(B). Therefore, we have the following.

Theorem 4.1. Let αk(λ) = Λ̂k(x) for all k ∈ N and l = limk→∞Λ̂k(x). Define the sequence b(k)(λ) =
{b(k)n (λ)}∞k=0 for every fixed k ∈ N by

b
(k)
n (λ) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(−s
r

)n−k[ λk
r(λk − λk−1)

+
λk

s(λk+1 − λk)

]

, k < n,

1
r

λk
(λk − λk−1)

, k = n,

0, k > n.

(4.2)

Then, the following statements hold.

(a) The sequence {b(k)(λ)}∞k=0 is a basis for the space cλ0(B) and any x ∈ cλ0(B) has a unique
representation of the form x =

∑
k αk(λ)b(k)(λ).

(b) The sequence {b, b(0)(λ), b(1)(λ), . . .} is a basis for the space cλ(B) and any x ∈ cλ(B) has
a unique representation of the form x = lb +

∑
k[αk(λ) − l]b(k)(λ), where b = (bk) =

{∑k
j=0 (−s/r)j/r}

∞
k=0

.

Finally, it easily follows from Theorem 2.1 that cλ0(B) and cλ(B) are the Banach spaces
with their natural norms. Then by Theorem 4.1 we obtain the following.

Corollary 4.2. The difference sequence spaces cλ0(B) and cλ(B) are seprable.

5. The α-, β-, and γ-Duals of the Spaces cλ0(B) and cλ(B)

In this section, we state and prove the theorems determining the α-, β-, and γ-duals of the
generalized difference sequence spaces cλ0(B) and cλ(B) of non-absolute type.

For arbitrary sequence spaces X and Y , the set M(X,Y ) defined by

M(X,Y ) = {a = (ak) ∈ ω : ax = (akxk) ∈ Y ∀x = (xk) ∈ X} (5.1)

is called the multiplier space of X and Y . One can easily observe for a sequence space Z with
Y ⊂ Z and Z ⊂ X that the inclusions M(X,Y ) ⊂ M(X,Z) and M(X,Y ) ⊂ M(Z, Y ) hold,
respectively.

With the notation of (5.1), the α-, β-, and γ-duals of a sequence space X, which are
respectively, denoted by Xα, Xβ, and Xγ , are defined by

Xα = M(X, �1), Xβ = M(X, cs), Xγ = M(X, bs). (5.2)

It is clear that Xα ⊂ Xβ ⊂ Xγ . Also it can be obviously seen that the inclusions Xα ⊂ Yα,
Xβ ⊂ Yβ, and Xγ ⊂ Yγ hold whenever Y ⊂ X.
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Now, we may begin with quoting the following lemmas (see [25]) which are needed
to prove Theorems 5.5 to 5.8.

Lemma 5.1. A = (ank) ∈ (c0 : �1) = (c : �1) if and only if

sup
K∈F

∑

n

∣
∣
∣
∣
∣

∑

k∈K
ank

∣
∣
∣
∣
∣
< ∞. (5.3)

Lemma 5.2. A = (ank) ∈ (c0 : c) if and only if

lim
n→∞

ank = αk for each fixed k ∈ N, (5.4)

sup
n∈N

∑

k

|ank| < ∞. (5.5)

Lemma 5.3. A = (ank) ∈ (c : c) if and only if (5.4) and (5.5) hold, and

lim
n→∞

∑

k

ank exists. (5.6)

Lemma 5.4. A = (ank) ∈ (c : �∞) = (c0 : �∞) if and only if (5.5) holds.

Now, we prove the following result.

Theorem 5.5. The α-dual of the spaces cλ0(B) and cλ(B) is the set

hλ
1 =

{

a = (an) ∈ ω : sup
K∈F

∑

n

∣
∣
∣
∣
∣

∑

k∈K
hλ
nk

∣
∣
∣
∣
∣
< ∞

}

, (5.7)

where the matrixHλ = (hλ
nk) is defined via the sequence a = (an) ∈ ω by

h
(λ)
nk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(−s
r

)n−k[ λk
r(λk − λk−1)

+
λk

s(λk+1 − λk)

]

an, k < n,

λn
r(λn − λn−1)

an, k = n,

0, k > n

(5.8)

for all n, k ∈ N.

Proof. Let a = (an) ∈ ω. Then, by bearing in mind the relations (2.11) and (2.14), it is
immediate that the equality

anxn =
n∑

k=0

1
r

(−s
r

)n−k k∑

i=k−1
(−1)k−i λi

λk − λk−1
anyi = Hλ

n

(
y
)

(5.9)
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holds for all n ∈ N. Thus, we observe by (5.9) that ax = (anxn) ∈ �1 whenever x = (xk) ∈ cλ0(B)
or cλ(B) if and only if Hλy ∈ �1 whenever y = (yk) ∈ c0 or c. This means that the sequence
a = (an) ∈ {cλ0(B)}

α
or a = (an) ∈ {cλ(B)}α if and only ifHλ ∈ (c0 : �1) = (c : �1). We therefore

obtain by Lemma 5.4 withHλ instead of A that a = (an) ∈ {cλ0(B)}
α
= {cλ(B)}α if and only if

sup
K∈F

∑

n

∣
∣
∣
∣
∣

∑

k∈K
hλ
nk

∣
∣
∣
∣
∣
< ∞ (5.10)

which leads us to the consequence that {cλ0(B)}
α
= {cλ(B)}α = hλ

1 . This completes the proof.

Theorem 5.6. Define the sets hλ
2 , h

λ
3 , h

λ
4 , and hλ

5 , as follows:

hλ
2 =

⎧
⎨

⎩
a = (ak) ∈ ω :

∞∑

j=k

(−s
r

)n−j
aj exists for each k ∈ N

⎫
⎬

⎭
,

hλ
3 =

{

a = (ak) ∈ ω : sup
n∈N

n−1∑

k=0

|âk(n)| < ∞
}

,

hλ
4 =

{

a = (ak) ∈ ω : sup
n∈N

∣
∣
∣
∣
1
r

λk
(λk − λk−1)

ak

∣
∣
∣
∣ < ∞

}

,

hλ
5 =

⎧
⎨

⎩
a = (ak) ∈ ω :

∑

k

1
r

k∑

j=0

(−s
r

)j

ak converges

⎫
⎬

⎭
, where

âk(n) = λk

⎡

⎣
ak

r(λk − λk−1)
+
(

1
r(λk − λk−1)

+
1

s(λk+1 − λk)

) n∑

j=k+1

(−s
r

)n−j
aj

⎤

⎦ for k < n.

(5.11)

Then {cλ0(B)}
β
= hλ

2 ∩ hλ
3 ∩ hλ

4 and {cλ(B)}β = hλ
2 ∩ hλ

3 ∩ hλ
4 ∩ hλ

5 .
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Proof. Consider the equality

n∑

k=0

akxk =
n∑

k=0

⎧
⎨

⎩

k∑

j=0

1
r

(−s
r

)k−j
⎡

⎣
j∑

i=j−1
(−1)j−i λi

λj − λj−1
yi

⎤

⎦

⎫
⎬

⎭
ak

=
n−1∑

k=0

λk

⎡

⎣
ak

r(λk − λk−1)
+
(

1
r(λk − λk−1)

+
1

s(λk+1 − λk)

) n∑

j=k+1

(−s
r

)n−j
aj

⎤

⎦yk

+
1
r

λn
(λn − λn−1)

anyn

=
n−1∑

k=0

âk(n)yk +
1
r

λn
(λn − λn−1)

anyn

= Tλ
n

(
y
) ∀n ∈ N,

(5.12)

where the matrix Tλ = (tλnk) is defined by

tλnk :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

âk(n), k < n,
1
r

λn
(λn − λn−1)

an, k = n,

0, k > n

(5.13)

for all k, n ∈ N. Then, we deduce by (5.12) that ax = (akxk) ∈ cswhenever x = (xk) ∈ cλ0(B) if

and only if Tλy ∈ c whenever y = (yk) ∈ c0. This means that a = (ak) ∈ {cλ0(B)}
β
if and only

if Tλ ∈ (c0 : c). Therefore, by using Lemma 5.2, we derive from (5.4) and (5.5) that

∞∑

j=k+1

(−s
r

)n−j
aj exists for each k ∈ N, (5.14)

sup
n∈N

n−1∑

k=0

|âk(n)| < ∞,

sup
n∈N

∣
∣
∣
∣
1
r

λn
(λn − λn−1)

an

∣
∣
∣
∣ < ∞.

(5.15)

Therefore, we conclude that {cλ0(B)}
β
= hλ

2 ∩ hλ
3 ∩ hλ

4 .

Similarly, we deduce from Lemma 5.3 with (5.12) that a = (ak) ∈ {cλ(B)}β if and only
if Tλ ∈ (c : c). Therefore, we derive from (5.4) and (5.5) that (5.14), (5.15) hold.

Further, with a simple calculation one can easily see that the equality

n∑

k=0

1
r

k∑

j=0

(−s
r

)j

ak =
n−1∑

k=0

âk(n) +
1
r

λn
(λn − λn−1)

an =
∑

k

tλnk (5.16)
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holds for all n ∈ N. Consequently, from (5.6) we obtain that

⎧
⎨

⎩

1
r

k∑

j=0

(−s
r

)j

ak

⎫
⎬

⎭
∈ cs. (5.17)

Hence, we deduce that {cλ(B)}β = hλ
2 ∩ hλ

3 ∩ hλ
4 ∩ hλ

5 . This completes the proof.

Remark 5.7. We may note by combining (5.17) with the conditions (5.15) that

{∑k
j=0 (−s/r)jak/r} ∈ bs for every sequence a = (ak) ∈ {cλ0(B)}

β
.

Finally, we close this section with the following theorem which determines the γ-dual
of the spaces cλ0(B) and cλ(B):

Theorem 5.8. The γ-duals of the spaces cλ0(B) and cλ(B) are the set hλ
3 ∩ hλ

4 .

Proof. The proof of this result follows the same lines that in the proof of Theorem 5.6 using
Lemma 5.4 instead of Lemma 5.2.

6. Certain Matrix Mappings Related to the Spaces cλ0(B) and cλ(B)

In this final section, we characterize the matrix classes (cλ(B) : �p), (cλ0(B) : �p), (cλ(B) : c),
(cλ(B) : c0), (cλ0(B) : c), and (cλ0(B) : c0), where 1 ≤ p ≤ ∞. Also, by means of a given basic
lemma, we derive the characterizations of some other classes involving the Euler, difference,
Riesz, and Cesàro sequence spaces.

For an infinite matrix A = (ank), we write for brevity that

ânk(m) = λk

⎡

⎣
ank

r(λk − λk−1)
+
(

1
r(λk − λk−1)

+
1

s(λk+1 − λk)

) m∑

j=k+1

(−s
r

)n−j
anj

⎤

⎦ if k < m,

ânk = λk

⎡

⎣
ank

r(λk − λk−1)
+
(

1
r(λk − λk−1)

+
1

s(λk+1 − λk)

) ∞∑

j=k+1

(−s
r

)n−j
anj

⎤

⎦

(6.1)

for all k,m, n ∈ N provided the convergence of the series.
The following lemmas will be needed in proving our main results.

Lemma 6.1 (see [24, page 57]). The matrix mappings between the BK-spaces are continuous.

Lemma 6.2 (see [25, pages 7-8]). A = (ank) ∈ (c : �p) if and only if

sup
K∈F

∑

n

∣
∣
∣
∣
∣

∑

k∈K
ank

∣
∣
∣
∣
∣

p

< ∞,
(
1 ≤ p < ∞). (6.2)
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Lemma 6.3 (see [25, page 5]). A = (ank) ∈ (c : c0) if and only if (5.5) holds and

lim
n→∞

ank = 0 ∀k ∈ N,

lim
n→∞

∑

k

ank = 0.
(6.3)

Lemma 6.4 (see [25, page 5]). A = (ank) ∈ (c0 : c0) if and only if (5.5) and (6.3) hold.

Now, we give the following results on the matrix transformations.

Theorem 6.5. Let A = (ank) be an infinite matrix over the complex field. Then, the following
statements hold.

(i) Let (1 ≤ p < ∞). Then, A ∈ (cλ(B) : �p) if and only if

∞∑

j=k+1

(−s
r

)n−j
anj exists for each fixed k ∈ N, (6.4)

sup
K∈F

∑

n

∣
∣
∣
∣
∣

∑

k∈K
ânk

∣
∣
∣
∣
∣

p

< ∞, (6.5)

sup
m∈N

m−1∑

k=0

|ânk(m)| < ∞, ∀n ∈ N, (6.6)

⎧
⎨

⎩

1
r

k∑

j=0

(−s
r

)j

ank

⎫
⎬

⎭

∞

k=0

∈ cs for each fixed n ∈ N, (6.7)

lim
k→∞

λk
r(λk − λk−1)

ank = an for each fixed n ∈ N, (6.8)

(an) ∈ �p. (6.9)

(ii) A ∈ (cλ(B) : �∞) if and only if (6.7) and (6.8) hold, and

sup
n∈N

∑

k

|ânk| < ∞, (6.10)

(an) ∈ �∞. (6.11)

Proof. Suppose that the conditions (6.4)–(6.9) hold and take any x = (xk) ∈ cλ(B). Then,
we have by Theorem 5.6 that {ank}k∈N

∈ {cλ(B)}β for all n ∈ N and this implies that the A-
transform of x exists. Also, it is clear that the associated sequence y = (yk) is in the space c
and hence yk → l as k → ∞ for some suitable l. Further, it follows by combining Lemma 6.2
with (6.5) that the matrix Â = (ânk) is in the class (c : �p), where 1 ≤ p < ∞.
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Let us now consider the following equality derived by using the relation (2.11) from
the mth partial sum of the series

∑
k ankxk:

m∑

k=0

ankxk =
m−1∑

k=0

ânk(m)yk +
λm

r(λm − λm−1)
anmym, ∀n,m ∈ N. (6.12)

Then, since y ∈ c and Â ∈ (c : �p), the series
∑

k ânkyk converges for every n ∈ N.
Furthermore, it follows by (6.4) that the series

∑∞
j=k (−s/r)n−janj converges for all n, k ∈ N

and hence ânk(m) → ânk as m → ∞. Therefore, if we pass to limit in (6.12) as m → ∞ then
we obtain by (6.8) that

∑

k

ankxk =
∑

k

ânkyk + lan, ∀n ∈ N (6.13)

which can be written as follows:

An(x) = Ân

(
y
)
+ lan, ∀n ∈ N. (6.14)

This yields by taking p-norm that

‖Ax‖p ≤
∥
∥
∥Ây

∥
∥
∥
p
+ |l|‖(an)‖p < ∞ (6.15)

which leads us to the consequence that Ax ∈ �p. Hence, A ∈ (cλ(B) : �p).

Conversely, suppose that A ∈ (cλ(B) : �p), where 1 ≤ p < ∞. Then {ank}k∈N
∈ {cλ(B)}β

for all n ∈ N which implies with Theorem 5.6 that the conditions (6.6) and (6.7) are necessary.
On the other hand, since cλ(B) and �p are BK-spaces, we have by Lemma 6.1 that there

is a constant M > 0 such that

‖Ax‖p ≤ M‖x‖cλ(B) (6.16)

holds for all x ∈ cλ(B). Now, K ∈ F. Then, the sequence z =
∑

k∈K b(k)(λ) is in cλ(B), where
the sequence b(k)(λ) = {b(k)n (λ)}n∈N

is defined by (4.2) for every fixed k ∈ N.
Since Λ̂(b(k)(λ)) = e(k) for each fixed k ∈ N, we have

‖z‖cλ(B) =
∥
∥
∥Λ̂(z)

∥
∥
∥
∞
=

∥
∥
∥
∥
∥

∑

k∈K
Λ̂
(
b(k)(λ)

)
∥
∥
∥
∥
∥
∞
=

∥
∥
∥
∥
∥

∑

k∈K
e(k)
∥
∥
∥
∥
∥
∞
= 1. (6.17)

Furthermore, for every n ∈ N, we obtain by (4.2) that

An(z) =
∑

k∈K
An

(
b(k)(λ)

)
=
∑

k∈K

∑

j

anjb
(k)
j (λ) =

∑

k∈K
ânk (6.18)
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Hence, since the inequality (6.16) is satisfied for the sequence z ∈ cλ(B), we have for any
K ∈ F that

(
∑

n

∣
∣
∣
∣
∣

∑

k∈K
ânk

∣
∣
∣
∣
∣

p)1/p

≤ M (6.19)

which shows the necessity of (6.5). Thus, it follows by Lemma 6.2 that Â = (ânk) ∈ (c : �p).
Now, let y = (yk) ∈ c \ c0 and consider the sequence x = (xk) defined by (2.14) for

every k ∈ N. Then, x ∈ cλ(B) such that y = Λ̂(x), that is, the sequences x and y are connected
by the relation (2.11). Therefore, Ax and Ây exist. This leads us to the convergence of the
series

∑
k ankxk and

∑
k ânkyk for every n ∈ N. We thus deduce that

lim
m→∞

m−1∑

k=0

ânk(m)yk =
∑

k

ânkyk, ∀n ∈ N. (6.20)

Consequently, we obtain from (6.12) as m → ∞ that

lim
m→∞

λm
r(λm − λm−1)

anmym exists for each fixed n ∈ N (6.21)

and since y = (yk) ∈ c \ c0, we conclude that

lim
m→∞

λm
r(λm − λm−1)

anm exists for each fixed n ∈ N (6.22)

which shows the necessity of (6.8). Then relation (6.14) holds.
Finally, since Ax ∈ �p and Ây ∈ �p, the necessity of (6.9) is immediate by (6.14). This

completes the proof of Part (i) of the theorem.
Since Part (ii) can be proved by using the similar way that used in the proof of Part (i)

with Lemma 5.4 instead of Lemma 6.2, we leave the details to the reader.

Remark 6.6. It is clear by (6.10) that the limit

lim
m→∞

m−1∑

k=0

|ânk(m)| =
∑

k

|ânk| (6.23)

exists for each n ∈ N. This just tells us that condition (6.10) implies condition (6.6).

Now, we may note that (c0 : �p) = (c : �p) for 1 ≤ p ≤ ∞, (see [25, pages 7-8]). Thus,
by means of Theorem 5.6 and Lemmas 6.2 and 5.4, we immediately conclude the following
theorem.

Theorem 6.7. Let A = (ank) be an infinite matrix over the complex field. Then, the following
statements hold.
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(i) Let 1 ≤ p < ∞. Then, A ∈ (cλ0(B) : �p) if and only if (6.5) and (6.6) hold, and

∞∑

j=k

(−s
r

)n−j
anj exists for all n, k ∈ N,

{
λk

r(λk − λk−1)
ank

}∞

k=0
∈ �∞, ∀n ∈ N.

(6.24)

(ii) A ∈ (cλ0(B) : �∞) if and only if (6.10) and (6.24) hold.

Proof. It is natural that the present theorem can be proved by the same technique used in the
proof of Theorem 6.5, above, and so we omit the proof.

Theorem 6.8. A = (ank) ∈ (cλ(B) : c) if and only if (6.7), (6.8), and (6.10) hold, and

lim
n→∞

an = a, (6.25)

lim
n→∞

ânk = αk, for each k ∈ N, (6.26)

lim
n→∞

∑

k

ânk = α. (6.27)

Proof. Suppose that A satisfies the conditions (6.7), (6.8), (6.10), (6.25), (6.26), and (6.27) and
take any x ∈ cλ(B). Then, since (6.10) implies (6.6), we have by Theorem 5.6 that {ank}k∈N

∈
{cλ(B)}β for all n ∈ N and hence Ax exists. We also observe from (6.10) and (6.26) that

k∑

j=0

∣
∣αj

∣
∣ ≤ sup

m∈N

∑

j

|ânk| < ∞ (6.28)

holds for every k ∈ N. This implies that (αk) ∈ �1 and hence the series
∑

k αk(yk−l) converges,
where y = (yk) ∈ c is the sequence connected with x = (xk) by the relation (2.11) such that
yk → l as k → ∞. Further it is obvious by combining Lemma 5.3 with the condition (6.10),
(6.26), and (6.27) that the matrix Â = (ânk) is in the class (c : c).

Now reasoning as in the proof of Theorem 6.5, we obtain that the relation (6.13) holds
which can be written as follows:

∑

k

ankxk =
∑

k

ânk

(
yk − l

)
+ l
∑

k

ânk + lan, ∀n ∈ N. (6.29)

In this situation, we see by passing to the limit in (6.29) as n → ∞ that the first term on the
right tends to

∑
k αk(yk − l) by (6.10) and (6.26). The second term tends to lα by (6.27) and

the last term to la by (6.25). Consequently, we have

lim
n→∞

An(x) =
∑

k

αk

(
yk − l

)
+ l(α + a), (6.30)

which shows that Ax ∈ c, that is to say that A ∈ (cλ(B) : c).
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Conversely, Suppose that A ∈ (cλ(B) : c). Then, since the inclusion c ⊂ �∞ holds, it is
trivial that A ∈ (cλ(B) : �∞). Therefore, the necessity of the conditions (6.7), (6.8), and (6.10)
are obvious from Theorem 6.5. Further, consider the sequence b(k)(λ) = {b(k)n (λ)}n∈N

∈ cλ(B)
defined by (4.2) for every fixed k ∈ N. Then, it is easily seen that Ab(k)(λ) = {ânk}n∈N

and
hence {ânk}n∈N

∈ c for every k ∈ N which shows the necessity of (6.26). Let z =
∑

k b
(k)(λ).

Then, since the linear transformation T : cλ(B) → c, defined as in the proof of Theorem 2.3
by analogy, is continuous and Λ̂(b(k)(λ)) = e(k) for each fixed k ∈ N, we obtain that

Λ̂n(z) =
∑

k

Λ̂n

(
b(k)(λ)

)
=
∑

k

δnk = 1 for each n ∈ N (6.31)

which shows that Λ̂(z) = e ∈ c and hence z ∈ cλ(B). On the other hand, since cλ(B) and c
are the BK-spaces, Lemma 6.1 implies the continuity of the matrix mapping A : cλ(B) → c.
Thus, we have for every n ∈ N that

An(z) =
∑

k

An

(
b(k)(λ)

)
=
∑

k

ânk. (6.32)

This shows the necessity of (6.27).
Now, it follows by (6.10), (6.26), and (6.27)with Lemma 5.3 that Â = (ânk) ∈ (c : c). So

by (6.7), and (6.8), relation (6.14) holds for all x ∈ cλ(B) and y ∈ c, and x and y are connected
by relation (2.11), where yk → l (k → ∞).

Lastly, since Ax ∈ c and Âx ∈ c; the necessity of (6.25) is immediate by (6.14). This
step concludes the proof.

Theorem 6.9. A = (ank) ∈ (cλ(B) : c0) if and only if (6.7), (6.8), and (6.10) hold, and

lim
n→∞

an = 0,

lim
n→∞

ânk = 0 for each k ∈ N,

lim
n→∞

∑

k

ânk = 0.

(6.33)

Proof. Since the present theorem can be proved by the similar way used in the proof of
Theorem 6.8 with Lemma 6.3 instead of Lemma 5.3, we omit the detailed proof.

Theorem 6.10. A = (ank) ∈ (cλ0(B) : c) if and only if (6.10), (6.24), and (6.26) hold.

Proof. This is similarly obtained by using Lemma 5.2, Theorem 5.6, and Part (ii) of
Theorem 6.7.

Theorem 6.11. A = (ank) ∈ (cλ0(B) : c0) if and only if (6.10) and (6.24) hold, and (6.26) also holds
with αk = 0 for all k ∈ N.

Proof. This is immediate by Lemma 6.4, Theorems 5.6 and 6.10.
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7. Conclusion

Let ν denotes any of the classical sequence spaces �∞, c, or c0. Then, ν(Δ) consisting of the
sequences x = (xk) such thatΔx = (xk−xk+1) ∈ ν is called as the difference sequence spacewhich
was introduced by Kızmaz [19]. Kızmaz [19] proved that ν(Δ) is a Banach space with the
norm ‖x‖Δ = |x1| + ‖Δx‖∞, where x = (xk) ∈ ν(Δ) and the inclusion relation ν ⊂ ν(Δ) strictly
holds. He also determined the α-, β-, and γ-duals of the difference spaces and characterized
the classes (ν(Δ) : μ) and (μ : ν(Δ)) of infinite matrices, where ν, μ ∈ {�∞, c}. Following
Kızmaz [19], Sarıgöl [26] extended the difference space ν(Δ) to the space ν(Δr) defined by

ν(Δr) := {x = (xk) ∈ ω : Δrx = {kr(xk − xk+1)} ∈ ν for r < 1} (7.1)

and computed the α-, β-, and γ-duals of the space ν(Δr), where ν ∈ {�∞, c, c0}. It is easily
seen that ν(Δr) ⊂ ν(Δ), if 0 < r < 1 and ν(Δ) ⊂ ν(Δr), if r < 0. Recently, the difference
spaces bvp consisting of the sequences x = (xk) such that (xk − xk−1) ∈ �p have been
studied in the case 0 < p < 1 by Altay and Başar [27] and in the case 1 ≤ p ≤ ∞ by Başar
and Altay [18], Çolak et al. [28], and Malkowsky et al. [29]. Quite recently, Mursaleen and
Noman have introduced the spaces cλ and cλ0 of λ-convergent and λ-null sequences and
nextly studied the difference spaces cλ(Δ) and cλ0(Δ) in [21, 22], respectively. Of course,
there is a wide literature concerning the difference sequence spaces. By the domain of the
generalized difference matrix B(r, s) in the spaces of λ-convergent and λ-null sequences we
have generalized the difference spaces cλ(Δ) and cλ0(Δ) defined by Mursaleen and Noman
[21]. Since the generalized difference matrix B(r, s) reduces, in the special case r = 1, s = −1,
to the usual difference matrix Δ; our results are more general and more comprehensive than
the corresponding results of Mursaleen and Noman [21].

Since the difference spaces of λ-bounded and absolutely λp-summable sequences are
not studied, the domain of both the differencematrixΔ, and the generalized differencematrix
B(r, s) in those spaces are still open. So, it is meaningful to fill this gap.
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