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We give fixed point results for four mappings which satisfy almost generalized contractive
condition on partial metric space and we support the results with an example.

1. Introduction and Preliminaries

Partial metric spaces, introduced by Matthews [1, 2], are a generalization of the notion of
the metric space in which in definition of metric, the condition d(x, x) = 0 is replaced by the
condition d(x, x) ≤ d(x, y).

In [1], Matthews discussed some properties of convergence of sequence and proved
the fixed point theorems for contractive mapping on partial metric spaces: any mapping T
of a complete partial metric space X into itself that satisfies, where 0 ≤ k < 1, the inequality
d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X, has a unique fixed point. Recently, many authors (see
[3–15]) have focused on this subject and generalized some fixed point theorems from the
class of metric spaces.

The definition of partial metric space is given by Matthews (see [2]) as follows.

Definition 1.1. Let X be a nonempty set and let p : X ×X → R
+
0 satisfy

(PM1)x = y ⇔ p(x, x) = p(y, y) = p(x, y),

(PM2) p(x, x) ≤ p(x, y),
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(PM3) p(x, y) = p(y, x),

(PM4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z),

for all x, y and z ∈ X, where R
+
0 = [0,∞). Then the pair (X, p) is called a partial metric space

(in short PMS) and p is called a partial metric on X.

Let (X, p) be a PMS. Then, the functions ps, pw : X ×X → R
+
0 given by

ps
(
x, y

)
= 2p

(
x, y

) − p(x, x) − p
(
y, y

)

pw
(
x, y

)
= p

(
x, y

) −min
{
p(x, x), p

(
y, y

)} (1.1)

are ordinary equivalent metrics on X. Each partial metric p on X generates a T0 topology τp
on X with a base of the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈
X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

Example 1.2 (see [1, 2]). Let X = {[a, b] : a, b ∈ R, a ≤ b} and define

p([a, b], [c, d]) = max{b, d} −min{a, c}. (1.2)

Then (X, p) is a partial metric space.

We give same topological definitions on partial metric spaces.

Definition 1.3 (see [1, 2, 4]).

(i) A sequence {xn} in a PMS (X, p) converges to x ∈ X if and only if p(x, x) =
limn→∞p(x, xn).

(ii) A sequence {xn} in a PMS (X, p) is called a Cauchy sequence if and only if
limn,m→∞p(xn, xm) exists (and finite).

(iii) A PMS (X, p) is said to be complete if every Cauchy sequence {xn} in X converges,
with respect to τp, to a point x ∈ X such that p(x, x) = limn,m→∞p(xn, xm).

(iv) A mapping f : X → X is said to be continuous at x0 ∈ X if for every ε > 0, there
exists δ > 0 such that f(B(x0, δ)) ⊂ B(f(x0), ε).

Lemma 1.4 (see [1, 2, 4]).

(A) A sequence {xn} is Cauchy in a PMS (X, p) if and only if {xn} is Cauchy in a metric space
(X, ps).

(B) A PMS (X, p) is complete if and only if the metric space (X, ps) is complete. Moreover,

lim
n→∞

ps(x, xn) = 0 ⇐⇒ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm), (1.3)

where x is a limit of {xn} in (X, ps).
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Remark 1.5 (see [11]). Let (X, p) be a PMS. Therefore,

(A) if p(x, y) = 0, then x = y;

(B) if x /=y, then p(x, y) > 0.

Lemma 1.6 (see [10]). Assume xn → z as n → ∞ in a PMS (X, p) such that p(z, z) = 0. Then
limn→∞p(xn, y) = p(z, y) for every y ∈ X.

On the other hand, Kannan [16] proved a fixed point theorem for a map satisfying
a contractive condition that did not require continuity at each point. Afterward Sessa
[17] introduced the notion of weakly commuting maps, which generalized the concept of
commuting maps. Then Jungck generalized this idea, first to compatible mappings [18] and
then to weakly compatible mappings [19].

A pair (f, T) of self-mappings on X is said to be weakly compatible if they commute
at their coincidence point (i.e., fTx = Tfx whenever fx = Tx). A point y ∈ X is called point
of coincidence of a family Tj , j ∈ J , of self-mappings on X if there exists a point x ∈ X such
that y = Tjx for all j ∈ J .

The concept of almost contraction property was given to as follows by Berinde.

Definition 1.7 (see [20, 21]). Let (X, d) be a metric space. Amap f : X → X is called an almost
contraction if there exist a constant δ ∈ [0, 1[ and some L ≥ 0 such that for all x, y ∈ X

d
(
fx, fy

) ≤ δd
(
x, y

)
+ Ld

(
fx, y

)
. (1.4)

Berinde called this as “weak contraction” in [20], then he renamed it as “almost contraction”
in [21, 22], also Berinde [21] proved some fixed point theorems for almost contraction in
complete metric space. Definition 1.7 is a special case of the following definition (choose g =
IX , IX is the identity map on X).

Definition 1.8 (see [7]). Let (X, d) be a metric space. A map f : X → X is called an almost
contraction with respect to a mapping g : X → X if there exist a constant δ ∈ [0, 1[ and some
L ≥ 0 such that for all x, y ∈ X

d
(
fx, fy

) ≤ δd
(
gx, gy

)
+ Ld

(
fx, gy

)
. (1.5)

Babu et al. [23] considered the class of mappings that satisfy “condition (B).”
Let (X, d) be a metric space. A map T : X → X is said to satisfy “condition (B)” if

there exist a constant δ ∈ [0, 1[ and some L ≥ 0 such that for all x, y ∈ X,

d
(
fx, fy

) ≤ δd
(
x, y

)
+ Lmin

{
p
(
x, fx

)
, p
(
y, fy

)
, p
(
x, fy

)
, p
(
y, fx

)}
. (1.6)

Afterward, Berinde [21], Abbas and Ilić [24], and Ćirić et al. [7] generalized the above
definition and proved some fixed point results.

In recent paper, Altun and Acar [25] introduced the notion of (δ, L) weak contraction
in the sense of Berinde in partial metric space.
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Definition 1.9 (see [25]). Let (X, p) be a partial metric space. A map T : X → X is called
(δ, L)-weak contraction if there exist a δ ∈ [0, 1) and some L ≥ 0 such that

p
(
Tx, Ty

) ≤ δp
(
x, y

)
+ Lpw

(
y, Tx

)
, (1.7)

for all x, y ∈ X.

In this paper, we give a fixed point theorem for four mappings satisfying almost
generalized contractive condition in [26] on partial metric spaces.

2. Main Results

Theorem 2.1. Let (X, p) be a complete partial metric space and f , g, S and T be self maps onX, with
f(X) ⊆ T(X) and g(X) ⊆ S(X). If there exists δ ∈ [0, 1[ and L ≥ 0 with such that

p
(
fx, gy

) ≤ δM
(
x, y

)
+ LN

(
x, y

)
, (2.1)

for any x, y ∈ X, where,

M
(
x, y

)
= max

{

p
(
Sx, Ty

)
, p
(
fx, Sx

)
, p
(
gy, Ty

)
,
p
(
Sx, gy

)
+ p

(
fx, Ty

)

2

}

,

N
(
x, y

)
= min

{
pw

(
fx, Sx

)
, pw

(
gy, Ty

)
, pw

(
Sx, gy

)
, pw

(
fx, Ty

)}
.

(2.2)

If {f, S} and {g, T} are weakly compatible and one of f(X), g(X), S(X), and T(X) is a
complete subspace of X, then f , g, S, and T have a common fixed point.

Proof. Let x0 be an arbitrary point in X. Since f(X) ⊆ T(X), we can find x1 ∈ X such that
fx0 = Tx1 and also, as gx1 ∈ S(X), there exist x2 ∈ X such that gx1 = Sx2. In general,
x2n+1 ∈ X is chosen such that fx2n = Tx2n+1 and x2n+2 ∈ X such that gx2n+1 = Sx2n+2, we
obtain a sequences {yn} in X such that

y2n = fx2n = Tx2n+1, y2n+1 = gx2n+1 = Sx2n+2, ∀n ≥ 0. (2.3)

Suppose y2m = y2m+1 for some m. Thus, g and T have a coincidence point. Due to (2.1), we
have

p
(
y2m+2, y2m+1

)
= p

(
fx2m+2, gx2m+1

)

≤ δM(x2m+2, x2m+1) + LN(x2m+2, x2m+1),
(2.4)
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where

N(x2m+2, x2m+1) = min
{
pw

(
fx2m+2, Sx2m+2

)
, pw

(
gx2m+1, Tx2m+1

)
,

pw
(
Sx2m+2, gx2m+1

)
, pw

(
fx2m+2, Tx2m+1

)
}

= min
{
pw

(
y2m+2, y2m+1

)
, pw

(
y2m+1, y2m

)
,

pw
(
y2m+1, y2m+1

)
, pw

(
y2m+2, y2m

)
}

= 0,

M(x2m+2, x2m+1) = max

⎧
⎪⎪⎨

⎪⎪⎩

p(Sx2m+2, Tx2m+1), p
(
fx2m+2, Sx2m+2

)
,

p
(
gx2m+1, Tx2m+1

)
,

p
(
Sx2m+2, gx2m+1

)
+ p

(
fx2m+2, Tx2m+1

)

2

⎫
⎪⎪⎬

⎪⎪⎭

= max

⎧
⎪⎪⎨

⎪⎪⎩

p
(
y2m+1, y2m

)
, p
(
y2m+2, y2m+1

)
,

p
(
y2m+1, y2m

)
,

p
(
y2m+1, y2m+1

)
+ p

(
y2m+2, y2m

)

2

⎫
⎪⎪⎬

⎪⎪⎭

= p
(
y2m+2, y2m+1

)
.

(2.5)

So,

p
(
y2m+2, y2m+1

) ≤ δp
(
y2m+2, y2m+1

)
. (2.6)

Therefore, by δ ∈ [0, 1[, we have p(y2m+2, y2m+1) = 0, that is, y2m+1 = y2m+2. So, f and S have a
coincidence point.

Suppose now that yn /=yn+1 for all n ≥ 0. From (2.1), we obtain

p
(
y2n, y2n+1

)
= p

(
fx2n, gx2n+1

) ≤ δM(x2n, x2n+1) + LN(x2n, x2n+1), (2.7)

where

N(x2n, x2n+1) = min
{
pw

(
fx2n, Sx2n

)
, pw

(
gx2n+1, Tx2n+1

)
,

pw
(
Sx2n, gx2n+1

)
, pw

(
fx2n, Tx2n+1

)
}

= min
{
pw

(
y2n, y2n−1

)
, pw

(
y2n+1, y2n

)
,

pw
(
y2n−1, y2n+1

)
, pw

(
y2n, y2n

)
}

= 0,

M(x2n, x2n+1) = max

⎧
⎨

⎩

p(Sx2n, Tx2n+1), p
(
fx2n, Sx2n

)
,

p
(
gx2n+1, Tx2n+1

)
,
p
(
Sx2n, gx2n+1

)
+ p

(
fx2n, Tx2n+1

)

2

⎫
⎬

⎭

= max

⎧
⎨

⎩

p
(
y2n−1, y2n

)
, p
(
y2n, y2n−1

)
,

p
(
y2n+1, y2n

)
,
p
(
y2n−1, y2n+1

)
+ p

(
y2n, y2n

)

2

⎫
⎬

⎭
.

(2.8)
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Due to (2.7), we have

p
(
y2n, y2n+1

) ≤ δM(x2n, x2n+1). (2.9)

Due to PM4, we have

p
(
y2n−1, y2n+1

)
+ p

(
y2n, y2n

) ≤ p
(
y2n−1, y2n

)
+ p

(
y2n, y2n+1

)
. (2.10)

Hence, M(x2n, x2n+1) = max{p(y2n, y2n−1), p(y2n+1, y2n)}. If M(x2n, x2n+1) = p(y2n+1, y2n), then
by (2.7)

p
(
y2n+1, y2n

) ≤ δp
(
y2n+1, y2n

)
. (2.11)

Since δ ∈ [0, 1[, the inequality (2.9) yields a contradiction. Hence, M(x2n, x2n+1) = p(y2n,
y2n−1), then by (2.7) we have

p
(
y2n+1, y2n

) ≤ δp
(
y2n, y2n−1

)
. (2.12)

Thus, one can observe that

p
(
yn+1, yn

) ≤ δnp
(
y0, y1

)
, ∀n = 0, 1, 2, . . . . (2.13)

Consider now

ps
(
yn+2, yn+1

)
= 2p

(
yn+2, yn+1

) − p
(
yn+2, yn+2

) − p
(
yn+1, yn+1

)

≤ 2p
(
yn+2, yn+1

)

≤ δn+1p
(
y0, y1

)
.

(2.14)

Hence, regarding (2.13), we have

lim
n→∞

ps
(
yn+2, yn+1

)
= 0. (2.15)

Moreover,

ps
(
yn+1, yn+k

) ≤ ps
(
yn+k−1, yn+k

)
+ · · · + ps

(
yn+1, yn+2

)

≤ 2δn+k−1p
(
y0, y1

)
+ · · · + 2δn+1p

(
y0, y1

)
.

(2.16)

After standard calculation, we obtain that {yn} is a Cauchy sequence in (X, ps), that is,
ps(yn, ym) → 0 as n,m → ∞. Since (X, p) is complete, by Lemma 1.4, (X, ps) is complete and
sequence {yn} is convergent in (X, ps) to say z ∈ X. From Lemma 1.4,

p(z, z) = lim
n→∞

p
(
yn, z

)
= lim

n,m→∞
p
(
yn, ym

)
. (2.17)
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Since {yn} is a Cauchy sequence in (X, ps), we have

lim
n,m→∞

ps
(
yn, ym

)
= 0. (2.18)

We assert that limn,m→∞ p(yn, ym) = 0. Without loss of generality, we assume that n > m,

p
(
yn+2, yn

) ≤ p
(
yn+2, yn+1

)
+ p

(
yn+1, yn

) − p
(
yn+1, yn+1

)

≤ p
(
yn+2, yn+1

)
+ p

(
yn+1, yn

)
.

(2.19)

Similarly,

p
(
yn+3, yn

) ≤ p
(
yn+3, yn+2

)
+ p

(
yn+2, yn

) − p
(
yn+2, yn+2

)

≤ p
(
yn+3, yn+2

)
+ p

(
yn+2, yn

)
.

(2.20)

Taking into account (2.20), the expression (2.19) yields

p
(
yn+3, yn

) ≤ p
(
yn+3, yn+2

)
+ p

(
yn+2, yn+1

)
+ p

(
yn+1, yn

)
. (2.21)

Inductively, we obtain

p
(
ym, yn

) ≤ p
(
ym, ym+1

)
+ · · · + p

(
yn−2, yn−1

)
+ p

(
yn−1, yn

)
. (2.22)

Due to (2.13),

p
(
ym, yn

) ≤ δmp
(
y0, y1

)
+ · · · + δn−2p

(
y0, y1

)
+ δn−1p

(
y0, y1

)

≤ δm
(
1 + δ + · · · + δn−m−1

)
p
(
y0, y1

)
.

(2.23)

Regarding δ ∈ [0, 1[, we can observe that limn,m→∞p(yn, ym) = 0.
Since yn → z in X, {fx2n}, {Tx2n+1}, {gx2n+1}, {Sx2n+2} converge to z.
Nowwe show that z is the fixed point formaps g and T . Assume that T(X) is complete,

there exists u ∈ X such that z = Tu. We will show that gu = z. On the contrary, assume that
gu/= z.

From, (2.1) we have

p
(
fx2n, gu

) ≤ δM(x2n, u) + LN(x2n, u), (2.24)
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where

N(x2n, u) = min
{
pw

(
fx2n, Sx2n

)
, pw

(
gu, Tu

)
, pw

(
Sx2n, gu

)
, pw

(
fx2n, Tu

)}

= min
{
pw

(
fx2n, Sx2n

)
, pw

(
gu, z

)
, pw

(
Sx2n, gu

)
, pw

(
fx2n, z

)}
,

M(x2n, u) = max

⎧
⎨

⎩

p(Sx2n, Tu), p
(
fx2n, Sx2n

)
, p
(
gu, Tu

)
,

p
(
Sx2n, gu

)
+ p

(
fx2n, Tu

)

2

⎫
⎬

⎭

= max

⎧
⎨

⎩

p(Sx2n, z), p
(
fx2n, Sx2n

)
, p
(
gu, z

)
,

p
(
Sx2n, gu

)
+ p

(
fx2n, z

)

2

⎫
⎬

⎭
.

(2.25)

Since limn→∞M(x2n, u) = p(gu, z) and limn→∞N(x2n, u) = 0. We get

p
(
z, gu

) ≤ δp
(
gu, z

)
. (2.26)

Since δ ∈ [0, 1[, we get p(z, gu) = 0. Therefore, gu = Tu = z. Since the maps g and T are
weakly compatible, we have gz = gTu = Tgu = Tz. We will also show that gz = z. From
(2.1), we have

p
(
fx2n, gz

) ≤ δM(x2n, z) + LN(x2n, z), (2.27)

where

N(x2n, z) = min
{
pw

(
fx2n, Sx2n

)
, pw

(
gz, Tz

)
, pw

(
Sx2n, gz

)
, pw

(
fx2n, Tz

)}
,

M(x2n, z) = max

⎧
⎨

⎩

p(Sx2n, Tz), p
(
fx2n, Sx2n

)
,

p
(
gz, Tz

)
,
p
(
Sx2n, gz

)
+ p

(
fx2n, Tz

)

2

⎫
⎬

⎭

= max

⎧
⎨

⎩

p
(
Sx2n, gz

)
, p
(
fx2n, Sx2n

)
,

p
(
gz, gz

)
,
p
(
Sx2n, gz

)
+ p

(
fx2n, Tz

)

2

⎫
⎬

⎭
.

(2.28)

Since limn→∞M(x2n, z) = p(z, gz) and limn→∞N(x2n, z) = 0, then

p
(
z, gz

)
= lim

n→∞
p
(
fx2n, gz

) ≤ δp
(
z, gz

)
. (2.29)

Since δ ∈ [0, 1[, p(z, gz) = 0. By Remark 1.5, we get z = gz.
Similarly, we show that z is also fixed point of f and S. Hence, fz = gz = Tz = Sz = z.
The proofs for the cases in which S(X), f(X), or g(X) is complete are similar.
Last, we show z is unique. Suppose on the contrary that there is another common fixed

point t of f , g, S, and T . Then

p(z, t) = p
(
fz, gt

) ≤ δM(z, t) + LN(z, t), (2.30)
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where

N(z, t) = min
{
pw

(
fz, Sz

)
, pw

(
gt, Tt

)
, pw

(
Sz, gt

)
, pw

(
fz, Tt

)}

= 0,

M(z, t) = max

⎧
⎨

⎩

p(Sz, Tt), p
(
fz, Sz

)
, p
(
gt, Tt

)
,

p
(
Sz, gt

)
+ p

(
fz, Tt

)

2

⎫
⎬

⎭

= p(Sz, Tt)

= p(z, t).

(2.31)

Thus,

p(z, t) ≤ δp(z, t). (2.32)

Therefore, p(z, t) = 0 and Remark 1.5 z = t. So, z is the unique common fixed point os f , g, S,
and T .

Example 2.2. Let X = {0, 1, 2} endowed with the partial metric p given by p(x, y) = max{x, y}
for all x, y ∈ X. It is clear that (X, p) is a complete partial metric space. Define the mappings
f , g, S, T : X → X by

f = g, S = T,

f0 = f2 = 0, f1 = 1

T0 = 0, T1 = 2, T2 = 1.

(2.33)

We have f(X) ⊆ T(X) = X. For δ = 1/2, L = 1,

p
(
f0, f1

)
= 1 ≤ δ.2 + L.1,

p
(
f2, f1

)
= 1 ≤ δ.2 + L.0,

p
(
f2, f2

)
= p

(
f0, f0

)
= 0 ≤ δ.0 + L.1,

p
(
f1, f1

)
= 1 ≤ δ.2 + L.0.

(2.34)

Then, the contractive condition (2.1) is satisfied for every x, y ∈ X. Moreover, {f, T} is
weakly compatible. So all conditions of Theorem 2.1 are satisfied. We deduce the existence
and uniqueness of a common fixed point of f and T . Here, 0 is the unique common fixed
point.

Corollary 2.3. Let (X, p) is complete PMS and f and T be self maps on X, with f(X) ⊆ T(X). If
there exists δ ∈ [0, 1[ and L ≥ 0 such that

p
(
fx, fy

) ≤ δM
(
x, y

)
+ LN

(
x, y

)
, (2.35)
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where,

M
(
x, y

)
= max

{

p
(
Tx, Ty

)
, p
(
fx, Tx

)
, p
(
fy, Ty

)
,
p
(
Tx, fy

)
+ p

(
fx, Ty

)

2

}

,

N
(
x, y

)
= min

{
pw

(
fx, Tx

)
, pw

(
fy, Ty

)
, pw

(
Tx, fy

)
, pw

(
fx, Ty

)}
,

(2.36)

for every x, y ∈ X. If {f, T} is weakly compatible and one of f(X) and T(X) is a complete subspace
of X, then f and T have a common fixed point.

Remark 2.4. It is easy to see that for every map T : X → X, {T, IX} is weakly compatible,
where IX is identity map on X, so by taking f = g = IX in Theorem 2.1 we have the following
results.

Corollary 2.5. Let (X, p) is complete PMS and S and T be self maps on X. If there exists δ ∈ [0, 1[
and L ≥ 0 such that

p
(
x, y

) ≤ δM
(
x, y

)
+ LN

(
x, y

)
, (2.37)

for every x, y ∈ X, where

M
(
x, y

)
= max

{

p
(
Sx, Ty

)
, p(x, Sx), p

(
y, Ty

)
,
p
(
Sx, y

)
+ p

(
x, Ty

)

2

}

,

N
(
x, y

)
= min

{
pw(x, Sx), pw

(
y, Ty

)
, pw

(
Sx, y

)
, pw

(
x, Ty

)}
.

(2.38)

Then S and T have a common fixed point.
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