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This paper deals with the p(x)-Laplacian equation involving the critical Sobolev-Hardy exponent.
Firstly, a principle of concentration compactness in W

1,p(x)
0 (Ω) space is established, then by

applying it we obtain the existence of solutions for the following p(x)-Laplacian problem:
−div(|∇u|p(x)−2∇u) + |u|p(x)−2u = (h(x)|u|p∗s(x)−2u/|x|s(x)) + f(x, u), x ∈ Ω, u = 0, x ∈ ∂Ω, where
Ω ⊂ R

N is a bounded domain, 0 ∈ Ω, 1 < p− ≤ p(x) ≤ p+ < N, and f(x, u) satisfies p(x)-growth
conditions.

1. Introduction

In this paper we are concerned with the following p(x)-Laplacian problem:

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2u

=
h(x)|u|p∗s(x)−2u

|x|s(x)
+ f(x, u), x ∈ Ω, u = 0, x ∈ ∂Ω,

(1.1)

where 0 ∈ Ω ⊂ R
N is a bounded domain, p(x) is Lipschitz continuous, radially symmetric on

Ω, and 1 < p− ≤ p(x) ≤ p+ < N. s(x) is Lipschitz continuous, radially symmetric on Ω and
0 ≤ s(x) � p(x). p∗s(x) = ((N−s(x))/(N−p(x)))p(x) is the critical Sobolev-Hardy exponent,
and p∗0(x) = Np(x)/(N−p(x)) = p∗(x) is the critical Sobolev exponent. Throughout this paper
we assume the following:

(F-1) f(x, t) satisfies the Carathéodory condition.

(F-2) |f(x, t)| ≤ c1+c2|t|q(x)−1, q : Ω → R is measurable and satisfies p(x) � q(x) � p∗s(x)
or 1 < q− ≤ q(x) � p(x), for any x ∈ Ω.
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(F-3) f(x, t) = f(|x|, t), for any (x, t) ∈ Ω × R.

(F-4) f(x, t) = −f(x,−t), for any (x, t) ∈ Ω × R.

(F-5) h(x) ∈ C(Ω), h(x) = h(|x|) > 0 for any 0/=x ∈ Ω and h(0) = 0.

In this paper, we mainly consider the singularity, that is, limx→ 0h(x) · (1/|x|s(x)) = ∞.
For example, let h(x) = 1/| ln |x‖ for x /= 0; h(x) = 0 for x = 0; s0 = infx∈Ωs(x) > 0. It is easy to
get limx→ 0(1/| ln |x‖) · (1/|x|s(x)) = ∞.

Here we explain some notations employed in this paper: Let P(Ω) be the set of
all Lebesgue measurable functions p : Ω → (1,∞). For all p(x) ∈ P(Ω), we denote
p+ = supx∈Ωp(x), p

− = infx∈Ωp(x), p
∗+
s = supx∈Ωp

∗
s(x), p

∗−
s = infx∈Ωp

∗
s(x) and denote by

p1(x) � p2(x) the fact that inf{p2(x) − p1(x)} > 0. Denote by ci, C, and ki the generic positive
constants. Denote by |Ω| the Lebesgue measure of Ω.

When p(x) ≡ p is a constant function, the p-Laplacian problem related to Sobolev-
Hardy inequality had been studied by many authors, either is the bounded domain or in
the whole space R

N , see, for example, [1–4]. In recent years, along with variable Sobolev
spaces Lp(x)(Ω) and Wm,p(x)(Ω) being used, there are a lot of studies on p(x)-Laplacian
problems, see [5–8], and the theory on problems with p(x)-growth conditions has important
applications in nonlinear elastic mechanics and electrorheological fluids, see [9–12]. In [13],
Fu discussed the existence of solutions for a class of p(x)-Laplacian equation with critical
growth by establishing a principle of concentration compactness. The method employed in
this paper is a extension of the argument in [13, 14].

This paper is organized as follows: in Section 2 we deal with some preliminary
materials and technical results; in Section 3 we give the proof of a principle of concentration
compactness; in Section 4 we study the problem of p(x)-Laplacian equation with the critical
Sobolev-Hardy exponent.

2. Preliminaries

In this section we first recall some facts on variable exponent Lebesgue space Lp(x)(Ω) and
variable exponent Sobolev spaceW1,p(x)(Ω), whereΩ ⊂ R

N is an open set, see [15–19] for the
details.

Let p(x) ∈ P(Ω) and

‖u‖p = inf
{
λ > 0 :

∫

Ω

∣∣∣u
λ

∣∣∣
p(x)

dx ≤ 1
}
. (2.1)

The variable exponent Lebesgue space Lp(x)(Ω) is the class of functions u such that∫
Ω |u(x)|p(x) dx < ∞. Lp(x)(Ω) is a Banach space endowed with the norm (2.1).

For a given p(x) ∈ P(Ω), we define the conjugate function p′(x) as:

p′ =
p(x)

p(x) − 1
. (2.2)

Theorem 2.1. Let p(x) ∈ P(Ω). Then the inequality
∫

Ω

∣∣f(x) · g(x)∣∣dx ≤ 2
∥∥f∥∥p

∥∥g∥∥p′ (2.3)

holds for every f ∈ Lp(x)(Ω) and g ∈ Lp′(x)(Ω).
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Theorem 2.2. Suppose that p(x) satisfies

1 < p− ≤ p+ < ∞. (2.4)

Let meas Ω < ∞, p1(x), p2(x) ∈ P(Ω), then the necessary and sufficient condition for Lp2(x)(Ω) ⊂
Lp1(x)(Ω) is that for almost all x ∈ Ω we have p1(x) ≤ p2(x), and in this case, the imbedding is
continuous.

Theorem 2.3. Suppose that p(x) satisfies (2.4). Let ρ(u) =
∫
Ω |u(x)|p(x)dx. If u, uk ∈ Lp(x)(Ω),

then

(1) ‖u‖p < 1(= 1;> 1) if and only if ρ(u) < 1(= 1;> 1).

(2) If ‖u‖p > 1, then ‖u‖p−p ≤ ρ(u) ≤ ‖u‖p+p .

(3) If ‖u‖p < 1, then ‖u‖p+p ≤ ρ(u) ≤ ‖u‖p−p .

(4) limk→∞‖uk‖p = 0 if and only if limk→∞ρ(uk) = 0.

(5) ‖uk‖p → ∞ if and only if ρ(uk) → ∞.

We assume that k is a given positive integer.
Given a multi-index α = (α1, . . . , αn) ∈ Nn, we set |α| = α1+ · · ·+αn andDα = Dα1

1 · · ·Dαn
n ,

where Di = ∂/∂xi is the generalized derivative operator.
The generalized Sobolev space Wk,p(x)(Ω) is the class of functions f on Ω such that

Dαf ∈ Lp(x) for every multi-index αwith |α| ≤ k. Wk,p(x)(Ω) is endowed with the norm

∥∥f∥∥k,p =
∑
|α|≤k

∥∥Dαf
∥∥
p. (2.5)

By W
k,p(x)
0 (Ω) we denote the subspace of Wk,p(x)(Ω) which is the closure of C∞

0 (Ω) with
respect to the norm (2.5).

In this paper we use the following equivalent norm of W1,p(x)(Ω):

‖u‖1,p = inf

{
λ > 0 :

∫

Ω

∣∣∣∣
∇u

λ

∣∣∣∣
p(x)

+
∣∣∣u
λ

∣∣∣
p(x)

dx ≤ 1

}
. (2.6)

Then we have the inequality (1/2)(‖∇u‖p + ‖u‖p) ≤ ‖u‖1,p ≤ 2(‖∇u‖p + ‖u‖p).

Theorem 2.4. The spaces Wk,p(x)(Ω) and W
k,p(x)
0 (Ω) are separable reflexive Banach spaces if p(x)

satisfies (2.4).

Theorem 2.5. Suppose that p(x) satisfies (2.4). Let ϕ(u) =
∫
Ω |∇u(x)|p(x) + |u(x)|p(x)dx. If u, uk ∈

W1,p(x)(Ω), then

(1) ‖u‖1,p < 1(= 1;> 1) if and only if ϕ(u) < 1(= 1;> 1).

(2) If ‖u‖1,p > 1, then ‖u‖p−1,p ≤ ϕ(u) ≤ ‖u‖p+1,p.

(3) If ‖u‖1,p < 1, then ‖u‖p+1,p ≤ ϕ(u) ≤ ‖u‖p−1,p.
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(4) limk→∞‖uk‖1,p = 0 if and only if limk→∞ϕ(uk) = 0.

(5) ‖uk‖1,p → ∞ if and only if ϕ(uk) → ∞.

Theorem 2.6. Let Ω be a bounded in R
N , p ∈ C(Ω) and satisfies (2.4). Then for any measurable

function q(x) with 1 ≤ q(x) � p∗(x), there is a compact embeddingW1,p(x)(Ω) ↪→ Lq(x)(Ω).

Theorem 2.7. If p : Ω → R is Lipschitz continuous and satisfies (2.4), then for any measurable
function q(x) with p(x) ≤ q(x) ≤ p∗(x), there is a continuous embeddingW1,p(x)(Ω) ↪→ Lq(x)(Ω).

Next let us consider the weighted variable exponent Lebesgue space. Let a(x) ∈ P(Ω) and
a(x) > 0 for x ∈ Ω. Define

L
p(x)
a(x)(Ω) =

{
u ∈ P(Ω) :

∫

Ω
a(x)|u(x)|p(x)dx < ∞

}
(2.7)

with the norm

|u|
L
p(x)
a(x)(Ω) = ‖u‖p,a = inf

{
λ > 0 :

∫

Ω
a(x)

∣∣∣∣
u(x)
λ

∣∣∣∣
p(x)

dx ≤ 1

}
, (2.8)

then L
p(x)
a(x)(Ω) is a Banach space.

Theorem 2.8. Suppose that p(x) satisfies (2.4). Let ρ(u) =
∫
Ω a(x)|u(x)|p(x)dx. If u,uk ∈ L

p(x)
a(x)(Ω),

then

(1) For u/= 0, ‖u‖p,a = λ if and only if ρ(u/λ) = 1.

(2) ‖u‖p,a < 1(= 1;> 1) if and only if ρ(u) < 1(= 1;> 1).

(3) If ‖u‖p,a > 1, then ‖u‖p−p,a ≤ ρ(u) ≤ ‖u‖p+p,a.
(4) If ‖u‖p,a < 1, then ‖u‖p+p,a ≤ ρ(u) ≤ ‖u‖p−p,a.
(5) limk→∞‖uk‖p,a = 0 if and only if limk→∞ρ(uk) = 0.

(6) ‖uk‖p,a → ∞ if and only if ρ(uk) → ∞.

Theorem 2.9. Let Ω ⊂ R
n be a measurable subset. Suppose that g : Ω × R → R is a Caracheodory

function and satisfies

∣∣g(x, u)∣∣ ≤ α(x) + β|u|(p1(x))/(p2(x)) for any x ∈ Ω, t ∈ R, (2.9)

where pi(x) ≥ 1, i = 1, 2, α(x) ∈ Lp2(x)(Ω), α(x) ≥ 0, β ≥ 0 is a constant, then the Nemytsky
operator from Lp1(x)(Ω) to Lp2(x)(Ω) defined by (Ngu)(x) = g(x, u(x)) is a continuous and bounded
operator.

Theorem 2.10. Assume that 0 ∈ Ω and the boundary of Ω possesses the cone property. Suppose that
p(x), s(x), q(x) ∈ C(Ω), 0 ≤ s(x) < N for x ∈ Ω. If q(x) satisfies 1 ≤ q(x) < p∗s(x) for x ∈ Ω,
there is a compact embeddingW1,p(x)(Ω) ↪→ L

q(x)
|x|−s(x) (Ω).
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Theorem 2.11. Assume that 0 ∈ Ω and the boundary of Ω possesses the cone property. Suppose
that p(x), s(x), q(x) ∈ C(Ω), 0 ≤ s(x) � p(x) for x ∈ Ω. There is a continuous embedding
W1,p(x)(Ω) ↪→ L

p∗s(x)
|x|−s(x) (Ω).

Proof. Let u ∈ W1,p(x)(Ω). Note that

∫

Ω

|u|p∗s(x)
|x|s(x)

dx =
∫

Ω

|u|s(x)|u|p∗s(x)−s(x)
|x|s(x)

dx

≤ C1

∥∥∥∥
∣∣∣u
x

∣∣∣
s(x)

∥∥∥∥
p/s

∥∥∥|u|N(p(x)−s(x))/(N−p(x))
∥∥∥
p/(p−s)

.

(2.10)

By Theorems 2.7 and 2.10, we have ‖u‖p,|x|−p ≤ C2‖u‖1,p < ∞ and ‖u‖p∗ ≤ C3‖u‖1,p < ∞. So we
get

∫

Ω

(∣∣∣u
x

∣∣∣
s(x)

)p(x)/s(x)

dx =
∫

Ω

∣∣∣u
x

∣∣∣
p(x)

dx < ∞,

∫

Ω
|u|(N(p(x)−s(x))/(N−p(x)))·(p(x)/(p(x)−s(x)))dx =

∫

Ω
|u|p∗(x)dx < ∞.

(2.11)

Furthermore, we obtain
∫
Ω |u|p∗s(x)/|x|s(x)dx < ∞. This shows W1,p(x)(Ω) ⊂ L

p∗s(x)
|x|−s(x) (Ω), then by

the closed graph theorem in Banach space, we get the continuous embedding W1,p(x)(Ω) ↪→
L
p∗s(x)
|x|−s(x) (Ω).

3. The Principle of Concentration Compactness

In this section, we will establish the principle of concentration compactness inW
1,p(x)
0 (Ω).

We denote by M(Ω) the space of finite nonnegative Borel measures on Ω. A sequence
μn → μ weakly-∗ inM(Ω) is defined by (μn, u) → (μ, u), for any u ∈ C(Ω)

⋂
C∞(Ω).

We first give two lemmas. From [13]we can obtain the proof of the following lemmas.
Assume that p(x) is Lipschitz continuous satisfying (2.4) and s(x) is continuous on Ω.

Lemma 3.1. Let {un} ⊂ L
p(x)
|x|−s(x) (Ω) be bounded, and un → u ∈ L

p(x)
|x|−s(x) (Ω) a.e. on Ω, then

lim
n→∞

∫

Ω

|un|p(x)
|x|s(x)

− |un − u|p(x)
|x|s(x)

dx =
∫

Ω

|u|p(x)
|x|s(x)

dx. (3.1)

Lemma 3.2. Let δ > 0, 0 < r < R < 1, and r/R ≤ k(δ) = min{exp(−(δ/(2C̃))n/p− (1−n)),

e−|s
n−1|1/(n−1)}, where C̃ = ((1/((1 + (δ/2))1/(p

+−1) − 1)) + 1)
p+−1

max{2Cp+ , 2Cp−}|sn−1|p−/n, |sn−1|
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denotes the surface area of the unit sphere in R
n and C satisfies the inequality ‖u‖p∗(x) ≤ C‖∇u‖p(x).

Then for every u ∈ W
1,p(x)
0 (Ω),

∫

Br(x0)

|u|p∗s(x)
|x|s(x)

dx ≤ C∗ max

⎧
⎨
⎩

(∫

BR(x0)
|∇u|p(x) + |u|p(x)dx + δmax

{
‖u‖p+1,p, ‖u‖

p−

1,p

})p∗−s /p+

,

(∫

BR(x0)
|∇u|p(x) + |u|p(x)dx + δmax

{
‖u‖p+1,p, ‖u‖

p−

1,p

})p∗+s /p−
⎫
⎬
⎭,

(3.2)

where C∗ = sup{∫Ω |u|p∗s(x)/|x|s(x)dx : ‖u‖1,p ≤ 1, u ∈ W
1,p(x)
0 (Ω)}.

Theorem 3.3. Let {un} ⊂ W
1,p(x)
0 (Ω) with ‖un‖1,p ≤ 1 such that

un ⇀ u weakly in W
1,p(x)
0 (Ω),

|∇un|p(x) + |un|p(x) −→ μ weakly- ∗ in M
(
Ω
)
,

|un|p
∗
s(x)

|x|s(x)
−→ ν weakly- ∗ in M

(
Ω
)
,

(3.3)

as n → ∞. Then the limit measures are of the form

μ = |∇u|p(x) + |u|p(x) +
∑
j∈J

μjδxj + μ0δ0 + μ̃, μ
(
Ω
)
≤ 1,

ν =
|u|p∗s(x)
|x|s(x)

+
∑
j∈J

νjδxj + ν0δ0, ν
(
Ω
)
≤ C∗,

(3.4)

where J is a countable set, {μj} ⊂ [0,∞), {νj} ⊂ [0,∞), μ0 ≥ 0, ν0 ≥ 0, {xj} ∈ Ω, μ̃ ∈ M(Ω)
is a nonatomic positive measure. δxj and δ0 are atomic measures which concentrate on xj and 0,
respectively. C∗ is as defined in Lemma 3.2. The atoms and the regular part satisfy the generalized
Sobolev inequalities

ν
(
Ω
)
≤ C∗ max

{
μ
(
Ω
)p∗+s /p−

, μ
(
Ω
)p∗−s /p+

}
,

νj ≤ C∗ max
{
μ
p∗+s /p−

j , μ
p∗−s /p+

j

}
,

ν0 ≤ C∗ max
{
μ
p∗+s /p−

0 , μ
p∗−s /p+

0

}
.

(3.5)
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Proof. By Lemma 3.2, for every δ > 0, there exists k(δ) > 0 such that for 0 < r < R with
r/R ≤ k(δ),

∫

Br(0)

|un|p
∗
s(x)

|x|s(x)
dx

≤ C∗ max

⎧
⎨
⎩

(∫

BR(0)
|∇un|p(x) + |un|p(x)dx + δmax

{
‖un‖p

+

1,p, ‖un‖p
−

1,p

})p∗−s /p+

(∫

BR(0)
|∇un|p(x) + |un|p(x)dx + δmax

{
‖un‖p

+

1,p, ‖un‖p
−

1,p

})p∗+s /p−
⎫
⎬
⎭.

(3.6)

Let η1 ∈ C∞
0 (Br(0)) and η2 ∈ C∞

0 (B2R(0)) such that 0 ≤ η1, η2 ≤ 1, η1 ≡ 1 in Br/2(0) and η2 ≡ 1
in BR(0). Then we have

∫

Br(0)

|un|p
∗
s(x)

|x|s(x)
η1dx −→

∫

Br(0)
η1dν,

∫

B2R(0)

(
|∇un|p(x) + |un|p(x)

)
η2dx −→

∫

B2R(0)
η2dμ.

(3.7)

Thus,

∫

Br(0)
η1dν ≤ C∗ max

⎧
⎨
⎩

(∫

B2R(0)
η2dμ + δ

)p∗−s /p+

,

(∫

B2R(0)
η2dμ + δ

)p∗+s /p−
⎫
⎬
⎭. (3.8)

Furthermore,

ν({0}) ≤ ν(Br/2(0)) ≤ C∗ max
{(

μ(B2R(0)) + δ
)p∗−s /p+

,
(
μ(B2R(0)) + δ

)p∗+s /p−
}
. (3.9)

Let δ → 0 and R → 0, then we get

ν({0}) ≤ C∗ max
{
μ({0})p∗−s /p+ , μ({0})p∗+s /p−

}
, (3.10)

that is,

ν0 ≤ C∗ max
{
μ
p∗−s /p+

0 , μ
p∗+s /p−

0

}
. (3.11)

By Theorem 2.11 and the definition of C∗, we have

∫

Ω

|u|p∗s(x)
|x|s(x)

dx ≤ C∗ max

{(∫

Ω
|∇u|p(x) + |u|p(x)dx

)p∗−s /p+

,

(∫

Ω
|∇u|p(x) + |u|p(x)dx

)p∗+s /p−
}
.

(3.12)
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Similar to the proof of Theorem 3.1 in [13], we get

ν =
|u|p∗s(x)
|x|s(x)

+
∑
j∈J

νjδxj + ν0δ0 (3.13)

and the other results.

4. Existence of Solutions

Let O(N) be the group of orthogonal linear transformations in R
N , and G is a subgroup

of O(N). For x /= 0, we denote the cardinality of Gx = {gx : g ∈ G} by |Gx| and set |G| =
infx∈RN,x /= 0|Gx|. An open subset Ω ⊂ R

N is G-invariant if gΩ = Ω for any g ∈ G.

Definition 4.1. Let Ω be a G-invariant open subset of R
N . The action of G on W

1,p(x)
0 (Ω) is

defined by gu(x) = u(g−1x) for any u ∈ W
1,p(x)
0 (Ω). The subspace of invariant functions is

defined by

W
1,p(x)
0,G (Ω) =

{
u ∈ W

1,p(x)
0 (Ω) : gu = u, ∀g ∈ G

}
. (4.1)

A functional I : W1,p(x)
0 (Ω) → R

N is G-invariant if I ◦ g = I for any g ∈ G.
Set

I(u) =
∫

Ω

1
p(x)

(
|∇u|p(x) + |u|p(x)

)
− h(x)
p∗s(x)

|u|p∗s(x)
|x|s(x)

− F(x, u)dx,

F(x, t) =
∫ t

0
f(x, s)ds.

(4.2)

The critical points of I(u), that is,

0 = I ′(u)ϕ =
∫

Ω
|∇u|p(x)−2∇u∇ϕ + |u|p(x)−2uϕ − h(x)

|u|p∗s(x)−2u
|x|s(x)

ϕ − f(x, u)ϕdx (4.3)

for all ϕ ∈ W
1,p(x)
0 (Ω), are weak solutions of the problem (1.1). So next we need only to

consider the existence of nontrivial critical points of I(u).
In this paper, assume that G = O(N) and Ω is O(N)-invariant. By (F-3) and (F-5),

we get that I is O(N)-invariant. By the principle of symmetric criticality of Krawcewicz and
Marzantowicz [20], u is a critical point of I if and only if u is a critical point of Ĩ = I|

W
1,p(x)
0,O(N)(Ω).

So we only need to prove the existence of critical points of Ĩ on W
1,p(x)
0,O(N)(Ω).

Lemma 4.2. Any (PS)c sequence {un} ⊂ W
1,p(x)
0,O(N)(Ω) possesses a convergent subsequence.
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Proof. Suppose that Ĩ(un) → c, c ∈ R, and Ĩ ′(un) → 0 in (W1,p(x)
0,O(N)(Ω))∗. Let l(x) =

(p(x) + p∗s (x))/2 and |∇(1/l(x))| ≤ C. Denote a = infx∈Ω((1/p(x)) − (1/l(x))) > 0 and
b = infx∈Ω((1/(l(x))) − (1/(p∗s(x)))) > 0. Then we have

Ĩ(un)−
〈
Ĩ ′(un),

un

l(x)

〉

=
∫

Ω

(
1

p(x)
− 1
l(x)

)(
|∇un|p(x) + |un|p(x)

)
+ h(x)

(
1

l(x)
− 1
p∗s(x)

) |un|p
∗
s(x)

|x|s(x)

+
1

l(x)
f(x, un)un − F(x, un)dx −

∫

Ω
|∇un|p(x)−2∇un∇

(
1

l(x)

)
undx

≥
∫

Ω
a
(
|∇un|p(x) + |un|p(x)

)
+ bh(x)

|un|p
∗
s(x)

|x|s(x)
+

1
l(x)

f(x, un)un − F(x, un)dx

−
∫

Ω
|∇un|p(x)−2∇un∇

(
1

l(x)

)
undx.

(4.4)

By Young’s inequality, for ε1 ∈ (0, 1), we get

∣∣∣|∇un|p(x)−2∇un · un

∣∣∣ ≤ ε1|∇un|p(x) + ε1|un|p
∗
s(x) + C(ε1). (4.5)

By (F-2), |(1/l(x))f(x, un)un − F(x, un)| ≤ C(|un| + |un|q(x)), then we have for ε2 ∈ (0, 1)

|un| + |un|q(x) ≤ ε2|un|p
∗
s(x) + C(ε2). (4.6)

From h(x)/|x|s(x) → ∞ as x → 0, we get that there exists H > 0 such that h(x)/|x|s(x) > H
for any x ∈ Ω, so we have

Ĩ(un) −
〈
Ĩ ′(un),

un

l(x)

〉

≥
∫

Ω
a
(
|∇un|p(x) + |un|p(x)

)
dx +

∫

Ω
bH|un|p

∗
s(x)dx − Cε1

∫

Ω
|∇un|p(x)dx

− C(ε1 + ε2)
∫

Ω
|un|p

∗
s(x)dx − C(ε1) − C(ε2).

(4.7)

Take ε1 and ε2 sufficiently small such that Cε1 < a/2 and C(ε1 + ε2) ≤ bH, thus,

c + 1 > I(un) ≥
∫

Ω

a

2

(
|∇un|p(x) + |un|p(x)

)
dx − C, (4.8)

if n is sufficiently large. Furthermore, we obtain ‖un‖1,p < ∞.
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Note that

∫

Ω

(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
(∇un − ∇u)dx

≤
∣∣∣
〈
Ĩ ′(un), un − u

〉∣∣∣ +
∫

Ω

∣∣∣
(
|un|p(x)−2un − |u|p(x)−2u

)
(un − u)

∣∣∣dx

+
∣∣∣
〈
Ĩ ′(u), un − u

〉∣∣∣ +
∫

Ω

∣∣∣∣∣h(x)
(

|un|p
∗
s(x)−2un

|x|s(x)
− |u|p∗s(x)−2u

|x|s(x)
)
(un − u)

∣∣∣∣∣dx

+
∫

Ω

∣∣(f(x, un) − f(x, u)
)
(un − u)

∣∣dx

�
5∑
i=1

Ii.

(4.9)

Because {un} is bounded inW
1,p(x)
0,O(N)(Ω), there exists a subsequence (still denoted by un) such

that un ⇀ uweakly inW
1,p(x)
0,O(N)(Ω). Then we have un → u in Lq(x)(Ω). It is easy to get I1 → 0,

I2 → 0, and I3 → 0. By (F-2)

∫

Ω

∣∣f(x, un)
∣∣q′(x)dx

≤
∫

Ω

(
c1 + c2|un|q(x)−1

)q′(x)
dx

≤ C

∫

Ω
(1 + |un|)(q(x)−1)q

′(x)dx

≤ C

(
|Ω| +

∫

Ω
|un|q(x)dx

)
.

(4.10)

Then we have that ‖f(x, un)‖q′ is bounded. By

I5 ≤ 2
∥∥f(x, un)

∥∥
q′ ‖un − u‖q + 2

∥∥f(x, u)∥∥q′ ‖un − u‖q, (4.11)

we get I5 → 0.
Next we show that I4 → 0. Note that

I4 ≤ h0

(∫

Ω

|un|p
∗
s(x)−1

|x|s(x)
|un − u|dx +

∫

Ω

|u|p∗s(x)−1
|x|s(x)

|un − u|dx
)

≤ 2h0

⎛
⎝
∥∥∥∥∥

|un|p
∗
s(x)−1

|x|s(x)/p∗s ′(x)

∥∥∥∥∥
p∗s

′

∥∥∥∥∥
un − u

|x|s(x)/p∗s(x)

∥∥∥∥∥
p∗s

+

∥∥∥∥∥
|u|p∗s(x)−1

|x|s(x)/p∗s ′(x)

∥∥∥∥∥
p∗s

′

∥∥∥∥∥
un − u

|x|s(x)/p∗s(x)

∥∥∥∥∥
p∗s

⎞
⎠,

(4.12)
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where h0 = maxx∈Ωh(x). By Theorem 2.11, ‖|un|p∗s(x)−1/|x|s(x)/p∗s ′(x)‖p∗s ′ is bounded. If we show
that there exists a subsequence (still denoted by {un}) such that

∫
Ω |un − u|p∗s(x)/|x|s(x)dx → 0

as n → ∞, then I4 → 0.
As un ⇀ u weakly in W

1,p(x)
0,O(N)(Ω), passing to a subsequence, still denoted by {un}, by

Theorem 3.3 we assume that there exist μ, ν ∈ M(Ω) and {xj}j∈J in Ω such that |∇un|p(x) +
|un|p(x) → μweakly-∗ inM(Ω) and |un|p∗s(x)/|x|s(x) → ν weakly-∗ inM(Ω), where

μ = |∇u|p(x) + |u|p(x) +
∑
j∈J

μjδxj + μ0δ0 + μ̃,

ν =
|u|p∗s(x)
|x|s(x)

+
∑
j∈J

νjδxj + ν0δ0.

(4.13)

J is a countable set, {μj} ⊂ [0,∞), {νj} ⊂ [0,∞), μ0 ≥ 0, ν0 ≥ 0, μ̃ ∈ M(Ω) is a nonatomic
positive measure. Take η ≡ 1, then

lim
n→∞

∫

Ω

|un|p
∗
s(x)

|x|s(x)
η dx =

∫

Ω
η dν =

∫

Ω

|u|p∗s(x)
|x|s(x)

dx +
∑
j∈J

νj + ν0. (4.14)

We claim ν0 = 0 and νj = 0 for any j ∈ J . First we consider ν0.
For any ε > 0, choose ϕ0 ∈ C∞

0 (B2ε(0)) such that 0 ≤ ϕ0 ≤ 1, ϕ0 = 1 on Bε(0) and
|∇ϕ0| ≤ 2/ε. Then

〈
Ĩ ′(un), unϕ0

〉
=
∫

Ω

(
|∇un|p(x) + |un|p(x)

)
ϕ0dx −

∫

Ω
h(x)

|un|p
∗
s(x)ϕ0

|x|s(x)
dx

−
∫

Ω
f(x, un)unϕ0dx +

∫

Ω
|∇un|p(x)−2∇un∇ϕ0undx.

(4.15)

We have

lim
n→∞

∫

B2ε(0)

(
|∇un|p(x) + |un|p(x)

)
ϕ0dx =

∫

B2ε(0)
ϕ0dμ,

lim
n→∞

∫

B2ε(0)

|un|p
∗
s(x)ϕ0

|x|s(x)
dx =

∫

B2ε(0)
ϕ0dν.

(4.16)

By Theorem 2.1,

∫

B2ε(0)

∣∣∣|∇un|p(x)−2∇un∇ϕ0un

∣∣∣dx

≤ 2
∥∥un∇ϕ0

∥∥
p,B2ε(0)

∥∥∥|∇un|p(x)−1
∥∥∥
p′,B2ε(0)

≤ C
∥∥un∇ϕ0

∥∥
p,B2ε(0)

.

(4.17)
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By Theorem 2.6, we have un → u in Lp(x)(Ω), then

lim
n→∞

∫

B2ε(0)

∣∣un∇ϕ0
∣∣p(x)dx =

∫

B2ε(0)

∣∣u∇ϕ0
∣∣p(x)dx. (4.18)

Furthermore,

∫

B2ε(0)

∣∣u∇ϕ0
∣∣p(x)dx ≤ 2

∥∥∥
∣∣∇ϕ0

∣∣p(x)∥∥∥
N/p,B2ε(0)

∥∥∥|u|p(x)
∥∥∥
N/(N−p),B2ε(0)

,

∫

B2ε(0)

∣∣∇ϕ0
∣∣Ndx ≤ 4NωN,

(4.19)

where ωN is the volume of the unit boll. By limε→ 0
∫
B2ε(0)

|u|p∗(x)dx = 0, then we have

lim
ε→ 0

lim
n→∞

∫

Ω

∣∣∣|∇un|p(x)−2∇un∇ϕ0un

∣∣∣dx = 0. (4.20)

Since ‖f(x, un)‖q′ is bounded and by Theorem 2.9 we have

lim
n→∞

∫

B2ε(0)

∣∣f(x, un) − f(x, u)
∣∣q′(x)dx = 0. (4.21)

From
∫

B2ε(0)

∣∣f(x, un)un − f(x, u)u
∣∣dx

≤ 2
∥∥f(x, un)

∥∥
q′ ‖un − u‖q + 2

∥∥f(x, un) − f(x, u)
∥∥
q′ ‖u‖q,

(4.22)

we have

lim
n→∞

∫

B2ε(0)
f(x, un)unϕ0dx =

∫

B2ε(0)
f(x, u)uϕ0dx. (4.23)

Therefore,

lim
ε→ 0

lim
n→∞

∫

B2ε(0)
f(x, un)unϕ0dx = lim

ε→ 0

∫

B2ε(0)
f(x, u)uϕ0dx = 0. (4.24)

Thus, we have

0 = lim
n→∞

〈
Ĩ ′(un), unϕ0

〉
=
∫

B2ε(0)
ϕ0dμ −

∫

B2ε(0)
h(x)ϕ0dν −

∫

B2ε(0)
f(x, u)uϕ0dx

+ lim
n→∞

∫

B2ε(0)
|∇un|p(x)−2∇un∇ϕ0 · undx.

(4.25)
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Furthermore, we obtain

0 = lim
ε→ 0

lim
n→∞

〈
Ĩ ′(un), unϕ0

〉
= μ0 − h(0)ν0. (4.26)

As h(0) = 0, μ0 = 0, thus, ν0 = 0.
Next we consider νj for any j ∈ J . Suppose ∃j0 ∈ J such that νj0 > 0. Note that un ∈

W
1,p(x)
0,O(N)(Ω), then for any g ∈ O(N), ν(gxj0) = ν(xj0) > 0. By |O(N)| = ∞, we get ν({gxj0 : g ∈

O(N)}) = ∞. As the measure ν is finite, that is a contradiction. So we obtain that ν0 = 0 and
νj = 0 for any j ∈ J . Thus,

lim
n→∞

∫

Ω

|un|p
∗
s(x)

|x|s(x)
dx =

∫

Ω

|u|p∗s(x)
|x|s(x)

dx. (4.27)

By Lemma 3.1, we obtain limn→∞
∫
Ω |un − u|p∗s(x)/|x|s(x)dx = 0, that is, un → u strongly in

L
p∗s(x)
|x|−s(x) (Ω).

We obtain that {un} possesses a subsequence (still denoted by {un}), such that Ii → 0,
i = 1, . . . , 5, as n → ∞. Thus,

∫
Ω(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)dx → 0, as n → ∞.

As in the proof of Theorem 3.1 in [5], we divide Ω into two parts:

Ω1 =
{
x ∈ Ω : p(x) ≥ 2

}
, Ω2 =

{
x ∈ Ω : p(x) < 2

}
. (4.28)

We have

∫

Ω1

|∇un − ∇u|p(x)dx +
∫

Ω2

|∇un − ∇u|p(x)dx −→ 0, (4.29)

that is,
∫
Ω |∇un − ∇u|p(x)dx → 0. Then un → u inW

1,p(x)
0,O(N)(Ω).

Since W
1,p(x)
0 (Ω) is a separable and reflexive Banach space, W

1,p(x)
0,O(N)(Ω) is also a

separable and reflexive Banach space. So there exist {en}∞n=1 ⊂ W
1,p(x)
0,O(N)(Ω) and {e∗n}∞n=1 ⊂

(W1,p(x)
0,O(N)(Ω))∗ such that

〈
e∗j , ei

〉
=

{
1, i = j,

0, i /= j,

W
1,p(x)
0,O(N)(Ω) = span{en : n = 1, 2, . . .},

(
W

1,p(x)
0,O(N)(Ω)

)∗
= span{e∗n : n = 1, 2, . . .}.

(4.30)

For k = 1, 2, . . ., denote Xk = span{ek}, Yk = ⊕k
j=1Xj

, Zk = ⊕∞
j=kXj .
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Theorem 4.3. Under assumptions (F-1)–(F-5), the problem (1.1) admits a sequence of solutions
{un} ⊂ W

1,p(x)
0,O(N)(Ω) such that I(un) → ∞.

Proof. Set ϕ(u) =
∫
Ω F(x, u) dx. We first show that ϕ(u) is weakly strongly continuous. Let

un ⇀ uweakly in W
1,p(x)
0,O(N)(Ω). So we have un → u in Lq(x)(Ω). Note that

|F(x, u)| ≤ C
(
|u| + |u|q(x)

)
≤ C

(
1 + |u|q(x)

)
, (4.31)

then by Theorem 2.9 we obtain F(x, un) → F(x, u) in L1(Ω). By Proposition 3.5 in [18],

βk = βk(r) = sup
u∈Zk,‖u‖1,p≤r

∫

Ω
|F(x, u)|dx −→ 0, (4.32)

as k → ∞ for r > 0.
Set

θk = θk(r) = sup
u∈Zk,‖u‖1,p≤r

∫

Ω

|u|p∗s(x)
|x|s(x)

dx. (4.33)

Next we show θk → ∑
j∈J νj + ν0 as k → ∞. Note that 0 ≤ θk+1 ≤ θk, then θk → θ ≥ 0, as

k → ∞. There exists uk ∈ Zk with ‖uk‖1,p ≤ r such that 0 ≤ θk −
∫
Ω(|uk|p∗s(x)/|x|s(x))dx < 1/k,

for each k = 1, 2, . . .. As W
1,p(x)
0,O(N)(Ω) is reflexive, passing to a subsequence, still denoted by

{uk}, we assume uk ⇀ u weakly in W
1,p(x)
0,O(N)(Ω). We claim u = 0. In fact, for any e∗m, we have

e∗m(uk) = 0, when k > m, then e∗m(uk) → 0 as k → ∞. It is immediate to get e∗m(u) = 0 for any
m ∈ N. Then we have u = 0. By Theorem 3.3, there exist a finite measure ν and a sequence
{xj} ⊂ Ω such that

|uk|p
∗
s(x)

|x|s(x)
⇀ ν =

|u|p∗s(x)
|x|s(x)

+
∑
j∈J

νjδxj + ν0δ0, (4.34)

where J is countable. Set η ≡ 1, we obtain
∫
Ω(|uk|p∗s(x)/|x|s(x))ηdx → ∑

j∈J νj + ν0. So we have

limk→∞θk =
∑

j∈J νj + ν0 ≤ ν(Ω) < ∞.
For any n ∈ N, there exists a positive integer kn such that βk(n) ≤ 1 and θk(n) ≤∑

j∈J νj + ν0 + 1 for all k ≥ kn. Assume that kn < kn+1 for each n. Define {rk : k = 1, 2, . . .} in the
following way:

rk =

{
n, kn ≤ k < kn + 1,
1, 1 ≤ k < k1.

(4.35)
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Then we get rk → ∞ as k → ∞. Hence, for u ∈ Zk with ‖u‖1,p = rk, we get

Ĩ(u) ≥ 1
p+

‖u‖p−1,p −
h0

p∗−s
θk(rk) − βk(rk)

≥ 1
p+

‖u‖p−1,p −
h0

p∗−s

⎛
⎝∑

j∈J
vj + v0 + 1

⎞
⎠ − 1,

(4.36)

where h0 is as defined in Lemma 4.2. So

inf
u∈Zk,‖u‖1,p=rk

Ĩ(u) −→ ∞ as k −→ ∞. (4.37)

Note that for ε ∈ (0, 1), |F(x, u)| ≤ Cε|u|p∗s(x) + C(ε), then

∫

Ω
F(x, u)dx ≤ Cε

∫

Ω
|u|p∗s(x)dx + C(ε)|Ω|. (4.38)

We have

Ĩ(u) ≤
∫

Ω

|∇u|p(x) + |u|p(x)
p(x)

dx −
∫

Ω

H|u|p∗s(x)
p∗+s

dx + Cε

∫

Ω
|u|p∗s(x)dx + C(ε)|Ω|. (4.39)

Take ε sufficiently small so that Cε ≤ H/2p∗+s , then

Ĩ(u) ≤
∫

Ω
|∇u|p(x) + |u|p(x)dx −m

∫

Ω
|u|p∗s(x)dx + C, (4.40)

where m = H/2p∗+s . Since the dimension of Yk is finite, any two norms on Yk are equivalent,
then k1‖u‖1,p ≤ ‖u‖p∗s ≤ k2‖u‖1,p, k1, k2 > 0. As in the proof of Theorem 4.2 in [13], we can
find hypercubes {Qi}Qi=1 which mutually have no common points such that Ω ⊆ ⋃Q

i=1 Qi and
p+i = supy∈Ωi

p(y) < infy∈Ωip
∗
s(y) = p∗−si , where Ωi = Qi

⋂
Ω. Then we have

Ĩ(u) ≤
∑

‖u‖1,p,Ωi
>1

(
‖u‖p

+
i

1,p,Ωi
−mk

p∗−si
2 ‖u‖p

∗−
si

1,p,Ωi

)

+
∑

‖u‖1,p,Ωi
≤1

(
‖u‖p

−
i

1,p,Ωi
−mk

p∗+si
2 ‖u‖p

∗+
si

1,p,Ωi

)
+ C

≤
∑

‖u‖1,p,Ωi
>1

(
‖u‖p

+
i

1,p,Ωi
−mk

p∗−si
2 ‖u‖p

∗−
si

1,p,Ωi

)
+Q + C.

(4.41)

Let fi(t) = tp
+
i −mk

p∗−si
2 tp

∗−
si , for i = 1, . . . , Q. Take si > 0 such that fi(si) = maxt≥0fi(t) ≥ fi(0) = 0.

Denote gi(t) = tp
+
i −mk

p∗−si
2 tp

∗−
si +

∑Q
j=1 fj(sj)+Q+C, for i = 1, . . . , Q. By limt→∞gi(t) = −∞, there
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exists t0 > 0 such that gi(t) ≤ 0 for t ∈ [t0,+∞), for all i = 1, . . . , Q. For any k = 1, 2, . . ., take
‖u‖1,p = ρk = max{Qt0, rk + 1}. Note that ∃i0 such that

‖u‖1,p,Ωi0
≥ 1

Q

Q∑
i=1

‖u‖1,p,Ωi
≥ ρk

Q
≥ t0. (4.42)

Then we have gi0(‖u‖1,p,Ωi0
) ≤ 0. Thus,

Ĩ(u) ≤ gi0

(
‖u‖1,p,Ωi0

)
=

Q∑
i=1

fi(si) + fi0

(
‖u‖1,p,Ωi0

)
+Q + C ≤ 0. (4.43)

Therefore, Ĩ(u) ≤ 0 for u ∈ YK
⋂
Sρk , where Sρk = {u : ‖u‖1,p = ρk}. From Lemma 4.2 we have

that Ĩ(u) satisfies (PS)c condition. In view of (F-4), by Fountain Theorem [21], we conclude
the result.
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[11] M. Mihăilescu and V. Rădulescu, “A multiplicity result for a nonlinear degenerate problem arising in
the theory of electrorheological fluids,” Proceedings of The Royal Society of London A, vol. 462, no. 2073,
pp. 2625–2641, 2006.

[12] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, Germany,
2000.



Abstract and Applied Analysis 17

[13] Y. Q. Fu, “The principle of concentration compactness in Lp(x) spaces and its application,” Nonlinear
Analysis, vol. 71, no. 5-6, pp. 1876–1892, 2009.

[14] P. L. Lions, “The concentration-compactness principle in the calculus of variations. The limit case. II,”
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