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This paper deals with the p(x)-Laplacian equation involving the critical Sobolev-Hardy exponent.

Firstly, a principle of concentration compactness in Wé’p (x)(Q) space is established, then by

applying it we obtain the existence of solutions for the following p(x)-Laplacian problem:
~div(|VuP®2Vu) + [uP®2y = (h(x)|u®=2u/|x|*®)) + f(x,u), x € Q, u = 0, x € 0Q, where
Q ¢ RN is a bounded domain, 0 € Q, 1 < p~ < p(x) < p* < N, and f(x,u) satisfies p(x)-growth
conditions.

1. Introduction

In this paper we are concerned with the following p(x)-Laplacian problem:

~div (|vu|f’<x)*2vu) +uP D2y
_ B -

| |s(x) +f(x’u)/ x€eQ, u=0, x €09,
X

where 0 € Q c RN is a bounded domain, p(x) is Lipschitz continuous, radially symmetric on
Q,and 1 < p~ < p(x) < p* < N. s(x) is Lipschitz continuous, radially symmetric on Q and
0 < s(x) < p(x). pi(x) = (N-s(x))/ (N —-p(x)))p(x) is the critical Sobolev-Hardy exponent,
and p;(x) = Np(x)/(N-p(x)) = p*(x) is the critical Sobolev exponent. Throughout this paper
we assume the following;:

(F-1) f(x,t) satisfies the Carathéodory condition.

(F-2) |f(x,B)] < c1 +[t1191, g : Q — R is measurable and satisfies p(x) < g(x) < p*(x)
orl<gqg <g(x) < p(x),forany x € Q.
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(F-3) f(x,t) = f(|x|,t), for any (x,t) € Q x R.
(F-4) f(x,t) = —f(x,—t), for any (x,t) € Q x R.
(F-5) h(x) € C(Q), h(x) = h(|x|) > 0 for any 0# x € Q and h(0) = 0.

In this paper, we mainly consider the singularity, that is, lim, _,oh(x) - (1/|x[*®) = co.
For example, let h(x) = 1/|In |x|| for x #0; h(x) = 0 for x = 0; 5o = inf, 55(x) > 0. It is easy to
get lim,_o(1/]In|x|)) - (1/]x|*®) = co.

Here we explain some notations employed in this paper: Let P(Q2) be the set of
all Lebesgue measurable functions p : Q — (1,00). For all p(x) € P(Q), we denote
p" = sup,qp(x), p- = inf,gp(x), ps* = sup,gps(x), p5- = inf,gps(x) and denote by
p1(x) < p2(x) the fact that inf{p,(x) — p1(x)} > 0. Denote by c;, C, and k; the generic positive
constants. Denote by |Q| the Lebesgue measure of Q.

When p(x) = p is a constant function, the p-Laplacian problem related to Sobolev-
Hardy inequality had been studied by many authors, either is the bounded domain or in
the whole space RY, see, for example, [1-4]. In recent years, along with variable Sobolev
spaces LP¥)(Q) and W™ (Q) being used, there are a lot of studies on p(x)-Laplacian
problems, see [5-8], and the theory on problems with p(x)-growth conditions has important
applications in nonlinear elastic mechanics and electrorheological fluids, see [9-12]. In [13],
Fu discussed the existence of solutions for a class of p(x)-Laplacian equation with critical
growth by establishing a principle of concentration compactness. The method employed in
this paper is a extension of the argument in [13, 14].

This paper is organized as follows: in Section 2 we deal with some preliminary
materials and technical results; in Section 3 we give the proof of a principle of concentration
compactness; in Section 4 we study the problem of p(x)-Laplacian equation with the critical
Sobolev-Hardy exponent.

2. Preliminaries

In this section we first recall some facts on variable exponent Lebesgue space LP*)(Q) and
variable exponent Sobolev space WP (Q), where Q C RV is an open set, see [15-19] for the
details.

Let p(x) € P(Q2) and

. u|p)
||u||p=1nf{/\>0.fg|1| dxg1}. 2.1)
The variable exponent Lebesgue space LP™¥)(Q) is the class of functions u such that

[u(x)|PY) dx < oo0. LP®)(Q) is a Banach space endowed with the norm (2.1).
Q p
For a given p(x) € P(Q), we define the conjugate function p’(x) as:

: p(x)
= 2.2
P -1 @2)
Theorem 2.1. Let p(x) € P(Q). Then the inequality
[ 1760~ slax <201l sl 23
Q

holds for every f € LP™(Q) and g € LV ¥ (Q).
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Theorem 2.2. Suppose that p(x) satisfies

1<p <p"<oo. (2.4)

Let meas Q < oo, p1(x), p2(x) € P(Q), then the necessary and sufficient condition for LP>)(Q)
LP*)(Q) is that for almost all x € Q we have py(x) < pa(x), and in this case, the imbedding is
continuous.

Theorem 2.3. Suppose that p(x) satisfies (2.4). Let p(u) = [o [u(x)P@dx. If u,ux € LF™(Q),
then

) [ull, < 1(= 1;> 1) if and only if p(u) < 1(= 1;> 1).
2) If llull, > 1, then lully < p(u) < |ull, .

)
)
3) If lull, < 1, then ||ull} < p(u) < |lull .
(4) limy_, oo [lullp = 0 if and only if limy _, oo p (1) = O.
)

(5) lukll, — oo if and only if p(ux) — oo.

We assume that k is a given positive integer.

Given a multi-index a = (a1, ..., a,) € N, weset |a| = ay+---+a,and D* = D" --- Dy",
where D; = 0/0x; is the generalized derivative operator.

The generalized Sobolev space W*?*)(Q) is the class of functions f on Q such that
D*f € LP®™ for every multi-index a with |a| < k. WFP*)(Q) is endowed with the norm

1, = 2D, (2.5)

a|<k

By Wg P (x)(Q) we denote the subspace of W*?*)(Q) which is the closure of CP(Q) with
respect to the norm (2.5).
In this paper we use the following equivalent norm of W™ (Q):

ey, = inf{x >0: J
Q

Then we have the inequality (1/2)([|Vull, + [lully) < 1l < 2 Vall, + [1ul,).

Vi [P

0

|5

p(x)
dx < 1}. (2.6)

Theorem 2.4. The spaces W*?®) (Q) and WP (Q) are separable reflexive Banach spaces if p(x)
satisfies (2.4).

Theorem 2.5. Suppose that p(x) satisfies (2.4). Let p(u) = [, [Vu(x) P& + |lu(x)|POdx. If u, uy, €
WP (Q), then

(1) ||u||1,p <1(=1;>1) ifand only if p(u) < 1(=1;> 1).
2) If”u”l,p > 1, then ||u||’17;) <o(u) < ”u”rlj;

) Ifllully, < 1, then ||u||§)p <o(u) < ”u”rlfp
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(4) limy— o5 ||ukll1,p = 0 if and only if limy _, oo ¢p(uy) = 0.
(5) llukllip — oo if and only if p(ux) — oo.

Theorem 2.6. Let Q be a bounded in RN, p € C(Q) and satisfies (2.4). Then for any measurable
function q(x) with 1 < g(x) < p*(x), there is a compact embedding W) (Q) — LI™(Q).

Theorem 2.7. If p : Q — R is Lipschitz continuous and satisfies (2.4), then for any measurable
function q(x) with p(x) < g(x) < p*(x), there is a continuous embedding W'?® (Q) — L1 (Q).

Next let us consider the weighted variable exponent Lebesgue space. Let a(x) € P(Q) and
a(x) > 0 for x € Q. Define

ﬁw@nz{uemgyf mmmuwﬂux<w} (2.7)
Q

a(x)

with the norm

u(x) p(x)

A

|ng@)=”mba=hﬁ{A>0:I a(x) dx51}, (2.8)
a(x, 4 Q

then LF (x; (Q) is a Banach space.

a(x

Theorem 2.8. Suppose that p(x) satisfies (2.4). Let p(u) = [ a(x)|u(x) PO dx. If uuy € Lig; (Q),
then

(1) For u#0, |lullp,a = A if and only if p(u/1) = 1.

(2) llull,,e <1(=1;>1) ifand only if p(u) <1(= 1;> 1).

@) If l[ully,o > 1, then ||ulla < p(u) < [|ull}a-

@) If lull, o <1, then ||ullyq < p(u) < llull)q.

(5) limy — o5 ||ukllp,a = 0 if and only if limg _, op (ux) = 0.

(6) llukllp,a — oo if and only if p(ux) — oo.

Theorem 2.9. Let Q C R" be a measurable subset. Suppose that g : Q x R — R is a Caracheodory
function and satisfies

|g(x,u)| < a(x) + Blu| PO P2 o any x € Q, tER, (2.9)

where pi(x) > 1,1 = 1,2, a(x) € LP™(Q), a(x) > 0, f > 0 is a constant, then the Nemytsky
operator from LP*™) (Q) to LP**)(Q) defined by (Ngu)(x) = g(x, u(x)) is a continuous and bounded
operator.

Theorem 2.10. Assume that 0 € Q and the boundary of Q possesses the cone property. Suppose that
p(x),s(x),q(x) € C(Q), 0 < s(x) < N for x € Q. If q(x) satisfies 1 < q(x) < pi(x) for x € Q,

there is a compact embedding WP (Q) — L‘q;ff Zu) Q).
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Theorem 2.11. Assume that 0 € Q and the boundary of Q possesses the cone property. Suppose
that p(x),s(x),q(x) € CQ), 0 < s(x) < p(x) for x € Q. There is a continuous embedding
WP (Q) s LF™) (Q),

|xc|~5(x)

Proof. Let u € W™ (Q). Note that
AP " £)-5()
f ™ 0 - J N L
o |x|5(x) o |x|s(x)

u 5(x)

(2.10)
|u|N(P(X)—S(X))/(N—P(X))

p/s p/(p-s) ’

By Theorems 2.7 and 2.10, we have [[ul|, x-» < Callull1, < o0 and ||u||+ < Cs|lull1p < 0. So we
get

p(x)
dx < oo,

u 15(x) p(x)/s(x) u
J(R) e[
o \!X Q'X

f | (NP5 (N-pE) () (=5 g =J' O dx < oo,
Q

(2.11)

20 /|x|*® dx < oo. This shows WP@(Q) ¢ LF*™ (Q), then by

x| =s()

Furthermore, we obtain fQ
the closed graph theorem in Banach space, we get the continuous embedding W'#®(Q) —
L (). O

500

3. The Principle of Concentration Compactness

In this section, we will establish the principle of concentration compactness in W’ 170 (Q).
We denote by (Q) the space of finite nonnegative Borel measures on Q. A sequence
Un — p weakly-x in M(Q) is defined by (pun, u) — (u,u), forany u € C(Q)NC=(Q).
We first give two lemmas. From [13] we can obtain the proof of the following lemmas.
Assume that p(x) is Lipschitz continuous satisfying (2.4) and s(x) is continuous on Q.

Lemma 3.1. Let {u,} C Lr<|xz(x) (Q2) be bounded, and u, — u € Llp(lxz(x) (Q) a.e. on Q, then

lu n|P(X) |1, _u|P(X) J‘ |u|P(X)
lim - dx =| ——=dx. (3.1)
n—ow | o |x|5(x) |x|5(x o |x|5(x)

Lemma 32 Let 5 > 0,0 < 7 < R < 1, and r/R < k(5) = min{exp(~(6/(2C))"" ),
e N where € = ((1/((1+(6/2)% ) = 1)) + 1)~ max{2CP",2CF }[sm P /n, |sn71]
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denotes the surface area of the unit sphere in R" and C satisfies the inequality |[ullpx) < ClIVullp).-
Then for every u € Wé'p @),

M N N
J‘ —dx < C*max f IVulP® + [P dx + 6 max{ lull} ||u||§’p} )
B Br(xo) ’ ’

H(x0) [x]
(x) * - e
f (V™ + ™ dac + & max{ Jull}, |l | ,
Br(xo) ’ ’

(3.2)

where C* = sup{ [, [u[P*® /|x|*®Vdx : ul1p <1, u e Wé’p(x)(Q)}.

Theorem 3.3. Let {u,} C Wé'pm(Q) with ||uy||1,, <1 such that

u, = u weakly in Wé’p ) (Q),

p(x) p(x) % i Ie)
[Vuu [P + [,/ — p weakly-* in Jﬂ(Q), (3.3)

ps(x)

|y

WS — v weakly-* in _/Il<§2>,

as n — oo. Then the limit measures are of the form

= (VP 4 P+ Y 6+ pobo + i, p(Q) <1,
jel

|u|PZ(X) (34)

~ +Z]vj5xj +wb, »(Q) <C,
JE

where | is a countable set, {p;} C [0,00), {v;} C [0,00), o > 0, v > 0, {x;} € Q jie MQ)
is a nonatomic positive measure. 6x]. and 6y are atomic measures which concentrate on x; and 0,
respectively. C* is as defined in Lemma 3.2. The atoms and the regular part satisfy the generalized
Sobolev inequalities

v<§> <C* max{#(ﬁywlg?/H(ﬁ)pr/w },
v; <C* max{‘u;’?/’f,ﬂfzf/p+ }, (3.5)

v < C* max{‘ugs /pi,ygsi/p }
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Proof. By Lemma 3.2, for every 6 > 0, there exists k(6) > 0 such that for 0 < r < R with
r/R<k(5),

u. [P
J‘ | 11| dx
B0 |x[*®
X BN
< C* max (j (V2P + O dc + 6 max{ [}, ||un||’;,,,}> (3.6)
Br(0)

pt/p”
<L o V24P + P e + 6 max{ funll}, ||un||’1’/p}> }
R

Let 71 € C°(B;(0)) and 1, € C§°(B2r(0)) such that 0 <#1,72 <1, ;1 =1in B, 2(0) and 72 =1
in Bg(0). Then we have

|un|P’s‘(X)
f o mdx — mdv,
B.(0) |x]| B, (0)

(3.7)

f (IVatn P 4 ' ) e — Modp.
Br(0) Byr(0)

Thus,

p/p 290
f mdv < C* max <J‘ dp + 6> , <J‘ Mdpu + 6> . (3.8)
B,(0) Bar(0) Bar(0)

Furthermore,
v({0)) £ ¥(B/2(0)) < C* max{ (u(Bar(0)) +6)" 7", (u(Bar(0)) +6)" " ). (39)
Let5 — 0and R — 0, then we get
v((0)) < € max{u({0) /P, ([0} 7}, (3.10)
that is,

v <C* max{yg;_/p+,yg;+/p_}. (3.11)

By Theorem 2.11 and the definition of C*, we have

.

|u|P: ™) p/pt PP
’[ dx < C* max (I |VuP™ + |u|p(x)dx> , (J |VuP™ + |u|p(x)dx> .
a |x'® Q Q
(3.12)
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Similar to the proof of Theorem 3.1 in [13], we get

|u|"’;(x)
= IxIT") + Zvjﬁxj + 160 (3.13)
jeT

and the other results. O

4. Existence of Solutions

Let O(N) be the group of orthogonal linear transformations in RV, and G is a subgroup
of O(N). For x #0, we denote the cardinality of G, = {gx : g € G} by |G| and set |G| =
infyery x £0/Gx|- An open subset Q ¢ RY is G-invariant if gQ = Q for any g € G.

Definition 4.1. Let Q be a G-invariant open subset of RN. The action of G on Wé’p (x)(Q) is

defined by gu(x) = u(g'x) for any u € Wg’p ) (). The subspace of invariant functions is
defined by

W) = {ue WiP() : gu=u, Vg€ G). (4.1)

A functional I : W;’p (x)(Q) — RN is G-invariant if I o g = I forany g € G.
Set

1 h(x) |u|PZ(x)
I(u ZI —_— Vup(x)+ up(x) -
. o p(x) (| | = > ps(x) x|

— F(x,u)dx,
(4.2)

t
F(x,t) = Jl)f(x, s)ds.

The critical points of I(u), that is,

|u|’”z ()-2,,

0=TI'(u)g= L IVuP®2VuvVe + [ulf©2ugp - h(x) ¢ - f(x,u)pdx (4.3)

£

for all ¢ € W;’p(x) (Q), are weak solutions of the problem (1.1). So next we need only to
consider the existence of nontrivial critical points of I(u).

In this paper, assume that G = O(IN) and Q is O(N)-invariant. By (F-3) and (F-5),
we get that I is O(N)-invariant. By the principle of symmetric criticality of Krawcewicz and

Marzantowicz [20], u is a critical point of I if and only if u is a critical point of T = T lwire )
0,0(N)
So we only need to prove the existence of critical points of I on Wg’g((’;\)]) (Q).

Lemma 4.2. Any (PS), sequence {u,} C W&’g(g\),) () possesses a convergent subsequence.
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Proof. Suppose that T(un) — ¢, ¢ € R, and f’(un) — 0 in (ng((’j@ (Q))*. Let I(x) =

(p(x) + p: (x))/2 and |V(1/1(x))| < C. Denote a = inf 5((1/p(x)) — (1/l(x))) > 0 and
b=inf 5((1/(l(x))) - (1/(pi(x)))) > 0. Then we have

T~ (T, 725 )

1 1 . . 1 1 Juaf"™
- L(W‘@)va'p()”” Pe) + hix )<l<x> pz<x>) Txf(’”

p(x)-2
l( )f(x,un)un F(x,u,)dx — f [V, Vu V(l( ))undx (4.4)

|un|ps x)
)

f |V, P2V V(l( ))undx.

By Young’s inequality, for ¢ € (0,1), we get

1
> a( |V, P9 + [, P9 + bh(x —— f(x, uy)u, — F(x,u,)dx
[ a9l +1u,p) + b o )t = Fx )

||Vun|p(x)_2Vun | < 1|V + e1]un|F P + Cley). (4.5)

By (F-2), [(1/1(x)) f (%, n)thn — F(x,t)| < C(|thn| + [14,]7™)), then we have for &, € (0,1)

|t + 117 < 21| + C(e2). (4.6)

From h(x)/|x|*™ — ooasx — 0, we get that there exists H > 0 such that h(x)/|x]*® > H
for any x € Q, so we have

Tun) = (T ) 125 )

> f a(qunl’”(")+|un|’”(x)>dx+j bﬁ|un|’”;(x)dx—cglj |V, [P dx (4.7)
Q Q Q

~Cle + &) f [unP*®dx - C(e1) - Cley).
Q

Take €7 and ¢, sufficiently small such that Ce; < a/2 and C(e; + &) < bH, thus,

c+1>I(uy) > j d <|Vun|”(") + |un|”(x)>dx -G (4.8)
02

if n is sufficiently large. Furthermore, we obtain ||u,||1, < co.
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Note that
f <|Vu,,|f'<x>*2wn - |Vu|f’<x>*2w) (Vit, — Vu)dx
Q

< (T () v =10 )| + fQ| (laal? 10 = 1S 10) (4 = )|

~ lu |PZ(X)—2u |u|P;‘(X)—2u
* |<Il(u)’un _u>| * J;‘h(x)( s s(x) - - |x|s(x) (un _u)

|x|

dx (4.9)

[ 10w = F ) - w)d
Q

5

231

i=1

Because {u,} is bounded in W;’g((f\)]) (Q), there exists a subsequence (still denoted by u,,) such

that u, — u weakly in Wg’g(g\)[) (Q). Then we have u,, — uin L1%(Q). Itis easy to get ; — 0,

I, — 0,and I — 0. By (F-2)

f | £ (x, 10) |7 dx
Q

1\ ™)
< f <c1 + C2|un|‘7(x) 1) dx
Q

(4.10)
< Cf (1+ |un|)(t1(x)—1)‘1'(x)dx
Q
< c<|gz| +f |un|‘7(x)dx>.
Q
Then we have that || f (x, u,)||; is bounded. By
Ts < 21| £ G )| Mt = el + 211 £ G, )|l = el (4.11)
we get Is — 0.
Next we show that I — 0. Note that
u |Ps0)-1 u|Ps0)-1
I, <H f Llun — u|dx +f Llun — u|dx
o |x|s(x) o |x|S(X)
(4.12)
<o |y pi(x)-1 Uy —u |u ps(x)-1 Uy — U
= @ | || e @ | e ]| )
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xeQ
that there exists a subsequence (still denoted by {u,}) such that [, [u, — u[P*® /|x[*®dx — 0
asn — oo, thenly — 0.

As u, — u weakly in Woll’g(&c\),) (Q), passing to a subsequence, still denoted by {u,}, by

Theorem 3.3 we assume that there exist y, v € M(Q) and {x;} jey In Q such that |V, P& +
|1y |P) — p weakly-* in M(Q) and [u,[*®) /|x[*®) — v weakly-* in M(Q), where

where h’ = max__sh(x). By Theorem 2.11, |||un|”§(")’1/|x|5(x)/”:'(")||p;r is bounded. If we show

po= VUl 4 P+ 3 6 + pobo + fi,

j€J
e (4.13)
= W + Z]v]‘(sxj + v060.
JE

J is a countable set, {y;} C [0,00), {v;} C [0,00), o > 0,v0 >0, ji € M(Q) is a nonatomic
positive measure. Take 7 = 1, then

|un|P§(x) |u|p§(x) Z
lim qu:J rldv:f dx+ » v+ vg. 4.14
n—ow J o |x|s(x) o o |x|S(x) g / ( )

We claim vy = 0 and v; = 0 for any j € J. First we consider vy.
For any £ > 0, choose ¢y € C§°(B2(0)) such that 0 < ¢ < 1, 9o = 1 on B.(0) and
Vol <2/¢. Then

i p(x) p(x) " po
<I (un),un(p0> = <|Vun| + [ug| >(p0dx - h(x)—/————
Q Q ||
(4.15)
- f F(x, ) tppodx + f |V, P2V 1,V pou,dx.
Q Q
We have
lim (IVan P+ Jun ™ ) odx = f pody,
BZE(O) BZE(O) (4 16)
. |un|P;‘(x)(P0 ~
lim ————dx = podv.
n=o Jp 0 |x*™) By, (0)
By Theorem 2.1,
f ||Vun|”(")*2VunV(poun dx
BZE(O)
< p(x)-1 (4.17)
= 2||unV(p0||p,BZ£(0) ” Vil ||p’,Bzg(0)
< ClluaVeoll, , -
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By Theorem 2.6, we have u, — uin LPY(Q), then

lim |unV(pO|p(x)dx = f |uV(p0|p(x)dx.

=% J By (0) B2 (0)

Furthermore,

f Vo ®elx < 2” Vo[
BZE(O)

||u|P(x)

N/p,Ba: (0) | N/(N-p),B2(0)’

j |V(po|Ndx <4Nwy,
BZE(O)
where wy is the volume of the unit boll. By lim, _,o fBz ©) lulP"®)dx = 0, then we have

dx =0.

e—-0n—oo

lim lim f '|Vun|P(x)"2VunV(poun
Q
Since || f (x, u,)|l4 is bounded and by Theorem 2.9 we have

lim Lf(x, 1) = £ (e, ) |7 P ddx = 0.
=% J B, (0)

From
f | f (2, tn)un — f (o, u)u|dx
BZE(O)
< 2||f(xr un) ”q/“un - u“q + 2||f(x/ un) - f(x, u) ”q/”u”ql
we have
lim f(x, up)unpodx = f f(x, u)upodx.
7% ) By (0) B2 (0)
Therefore,
lim lim f(x, up)unpodx = limJ‘ f(x, u)upodx = 0.
e=0n=c Jp, (0) ¢=0JB,.(0)
Thus, we have
0= lim <f’(un),un(pg> = j podp — h(x)podv —I f (o, w)upodx
" B2 (0) B2 (0) By (0)
+ lim |Vun|p(x)_2VunV(po cUydx.

= Bae (0)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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Furthermore, we obtain

0 = lim lim <f’(un),un(p0> = o — h(0)w. (4.26)

e—0n—oo

As h(0) =0, ug =0, thus, vy = 0.
Next we consider v; for any j € J. Suppose 3jo € | such that v;, > 0. Note that u, €

Olg(’;\, (€2), then for any g € O(N), v(gxj,) = v(xj,) > 0. By |[O(N)| = o0, we get v({gxj, : g €

O(N ) }) = oo. As the measure v is finite, that is a contradiction. So we obtain that vy = 0 and
v; =0 forany j € J. Thus,

lim
n—oo Jo |x|5(x)

Un ps(x) u|Pe®)
™ f up*®
Q

s(x)

(4.27)
||

By Lemma 3.1, we obtain lim,,_, fg |ty (0 /1x*®dx = 0, that is, u, — u strongly in

Lps (%) (Q)
o)

We obtain that {1, } possesses a subsequence (still denoted by {u,}), such that I; — 0,

i=1,...,5,asn — oo. Thus, [ (|Via|'D2Vu, - |[VulP©2Vu)(Vu, - Vu)dx — 0,asn — oo.

As in the proof of Theorem 3.1 in [5], we divide Q into two parts:

Qi ={xeQ:p(x)>2}, Q= {xeQ:px) <2} (4.28)
We have
f |V, — VuP@dx + f Vi, — VulPPdx — 0, (4.29)
Ql QZ
thatis, [, |V, — VuP™®dx — 0. Thenu, — uin ng(g\)])(g). O

Since Wé’p (x)(Q) is a separable and reflexive Banach space, WO1 g(g\)])(Q) is also a
separable and reflexive Banach space. So there exist {e,};.; C Wi (Q) and {e:};2, C

0,0(N)
(WS g((yf\)] (Q))* such that

. 1, i=i
<67'ei>: {0, z';éj],
1p(x

oo(N)(Q) = Span{en n=1,2,...},

(4.30)

1 *
( 05(53)(90 =span{e} :n=1,2,...}.

Fork =1,2,..., denote Xx = span{ex}, Yk = EB;.‘:lX]_, Zy = Ga}i‘ikX]-.
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Theorem 4.3. Under assumptions (F-1)-(F-5), the problem (1.1) admits a sequence of solutions

{1} € Wybw, () such that I(u,) — co.

Proof. Set ¢(u) = fQ F(x,u) dx. We first show that ¢(u) is weakly strongly continuous. Let
u, — u weakly in WP (Q). So we have u,, — u in L% (Q). Note that

0,0(N)

IF(x,u)| < c(|u| + |u|q<x>) < c(1 + |u|q<X>>, (4.31)

then by Theorem 2.9 we obtain F(x,u,) — F(x,u) in L'(Q). By Proposition 3.5 in [18],

po=p) = sup [ [FCouldx—o, @32)
ueZk,||u||1,p§r Q
ask — oo forr>0.
Set
|u|’”;(x)
O =0k (r) = sup ’[ dx. (4.33)
o |x|S(X)

ueZ |ully ,<r

Next we show 0 — Z]-e] vj +vpas k — oo. Note that 0 < Oky1 < Ok, then 6 — 60 >0, as
k — oo. There exists uy € Zy with |lukl||1, < r such that 0 < 6 - fQ(lukIP;(")/lxIS(x))dx <1/k,

foreach k = 1,2,.... As Wé:g((JIC\)T)(Q) is reflexive, passing to a subsequence, still denoted by

{ur}, we assume 1y — u weakly in W;’g(g\),) (Q). We claim u = 0. In fact, for any e},, we have
ey, (ux) =0, when k > m, then e}, (ux) — 0as k — oo. It is immediate to get e}, (1) = 0 for any
m € N. Then we have u = 0. By Theorem 3.3, there exist a finite measure v and a sequence

{xj} C Q such that

|uk|PZ(X) |u|p;(x)

V= + > V64 + 1960, 4.34
|x|s(x) |x|s(x) ]eZ] JYx; ( )

where ] is countable. Set 7 = 1, we obtain fg(|uk|”3(x>/|x|5(x))11dx — Z]-e] vj + . So we have
limg _, .0 = Zje] vj+vp < v(ﬁ) < oo.

For any n € N, there exists a positive integer k, such that fr(n) < 1 and 6k(n) <
Z]-GI vj+vy+1forall k > k,. Assume that k,, < k41 for each n. Define {ry : k =1,2,...} in the
following way:

(4.35)
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Then we get ry, — oo as k — oo. Hence, for u € Zy with [[uly, = rx, we get

=g 1 p’ ho
I(u) 2 ;F”u”LP - Fek(rk) = Pr(rk)

S

(4.36)
1 - H
> Fllqu,p - FF Zvj +90+1 ) -1,

S jeJ
where h? is as defined in Lemma 4.2. So

inf I(u) — oo as k — oo.
wezt 10 (4.37)

Note that for € € (0,1), |F(x,u)| < Celu[P*™® + C(e), then
f F(x,u)dx < CEI [ulP"®dx + C(e)|Q. (4.38)
Q Q

We have

~ p(x) p() HlulPs®) X
I(u) < f ™+l %dx + Cef [ul*Pdx + C(e)|Q|. (4.39)
p(x) Q Ps Q

Take ¢ sufficiently small so that Ce < H /2p:*, then

I(u) < j IVulP® + [ufPPdx - mj [ulP*®dx + C, (4.40)
Q Q

where m = H/ 2p;*. Since the dimension of Y is finite, any two norms on Yj are equivalent,
then ki||ull1, < |lullp: < kallullip, k1, k2 > 0. As in the proof of Theorem 4.2 in [13], we can

find hypercubes {Q; }I.Q:1 which mutually have no common points such that Qc Ugl Q; and
p; = supyegip(y) <infyeqp:(y) = pi;, where Q; = Q; N Q. Then we have

= P 20 20
T < > (Iulf,e - mk ullq)

||u||1,p,g2,~>1
p; p*.* p*.*
b 3 (Il g -kl ) +C (4.41)
Nl .0 <1
p.* p"‘T p*.‘
< > (Il g, - mi ullfs o) +Q + C.
llaally p,0;>1

Let fi(t) = i — mkgz;tpzf, fori=1,...,Q. Take s; > 0 such that f;(s;) = max;o fi(t) > fi(0) = 0.
Denote g;(t) = t/i —mkgsi tPs +Z?:1 fi(sp)+Q+C, fori=1,...,Q.Bylim; . ,g;(t) = —oo, there
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exists ty > 0 such that g;(t) < 0 for t € [ty,+o0), foralli=1,...,Q. Forany k = 1,2,..., take
lull1,p = pr = max{Qto, rx + 1}. Note that Jip such that

18 Pk
||”||1,,g,gi[J 2 GZHMHLP,Q,. 2 6 > to. (4.42)
i1

Then we have g, (|[u19,) < 0. Thus,

B Q
T) < g (el 0, ) = D fils0) + fio (Jully o, ) +Q+C 0. (4.43)
i=1

Therefore, f(u) <0foru € Yx Sy, where S, = {u : ||ul
that T (u) satisfies (PS), condition. In view of (F-4), by Fountain Theorem [21], we conclude
the result. O

1p = Pk} From Lemma 4.2 we have
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