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We investigate σ-approximate contractibility and σ-approximate amenability of Banach algebras,
which are extensions of usual notions of contractibility and amenability, respectively, where σ is a
dense range or an idempotent bounded endomorphism of the corresponding Banach algebra.

1. Introduction

For a Banach algebraA, anA-bimodule will always refer to a BanachA-bimoduleX, that is,
a Banach space which is algebraically anA-bimodule, and for which there is a constant c ≥ 0
such that for a ∈ A, x ∈ X, we have

‖a · x‖ ≤ c‖a‖‖x‖, ‖x · a‖ ≤ c‖a‖‖x‖. (1.1)

A derivation D : A → X is a linear map, always taken to be continuous, satisfying

D(ab) = D(a) · b + a ·D(b) (a, b ∈ A). (1.2)

A Banach algebra A is amenable if for any A-bimodule X, any derivation D : A → X∗ is
inner, that is, there exists x∗ ∈ X∗, with

D(a) = a · x∗ − x∗ · a = δx∗(a) (a ∈ A). (1.3)
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Let A be a Banach algebra and σ a bounded endomorphism of A, that is, a bounded Banach
algebra homomorphism fromA intoA. A σ-derivation fromA into a BanachA-bimoduleX
is a bounded linear map D : A → X satisfying

D(ab) = σ(a) ·D(b) +D(a) · σ(b) (a, b ∈ A). (1.4)

For each x ∈ X, the mapping

δσx : A −→ X (1.5)

defined by δσx(a) = σ(a) · x − x · σ(a), for all a ∈ A, is a σ-derivation called an inner σ-
derivation.

Remark 1.1. Throughout this paper, we will assume that A is a Banach algebra, and σ is
a bounded endomorphism of A unless otherwise specified. Also, we write (σ-a.i) for σ-
approximately inner, (σ-a.a) for σ-approximately amenable, and (σ-a.c) for σ-approximately
contractible.

The basic definition for the present paper is as follows.

Definition 1.2. A σ-derivation D : A → X is σ-a.i, if there exists a net (xα) ⊆ X such that for
every a ∈ A,D(a) = limασ(a) ·xα−xα ·σ(a), the limit being in norm and we writeD = lim δσxα .
Note that we do not suppose (xα) to be bounded.

Definition 1.3. ABanach algebraA is called σ-a.c if for anyA-bimoduleX, every σ-derivation
D : A → X is σ-a.i.

Definition 1.4. ABanach algebraA is called σ-a.a if for anyA-bimoduleX, every σ-derivation
D : A → X∗ is σ-a.i.

Definition 1.5. LetA be a Banach algebra, and letX andY be BanachA-bimodules. The linear
map T : X → Y is called a σ-A-bimodule homomorphism if

T(a · x) = σ(a) · T(x), T(x · a) = T(x) · σ(a) (a ∈ A, x ∈ X). (1.6)

2. Basic Properties

Proposition 2.1. Let A be a σ-a.c Banach algebra. Then σ(A) has a left and right approximate
identity.

Proof. Consider X = A as a Banach A-bimodule with the trivial right action, that is,

a · x = ax, x · a = 0 (a ∈ A, x ∈ X). (2.1)
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Then D : A → X defined by D(a) = σ(a) is a σ-derivation, and so there is a net {uα} ⊆ X(=
A) such that D = limαδ

σ
uα . Hence for each a ∈ A,

σ(a) = D(a) = lim
α
δσuα(a) = lim

α
σ(a) · uα − uα · σ(a) = lim

α
σ(a)uα, (2.2)

which shows that {uα} is a right approximate identity for σ(A). Similarly, one can find a left
approximate identity for σ(A).

Corollary 2.2. Let A be a σ-a.c Banach algebra and σ a continuous epimorphism of A. Then A has
a left and right approximate identity.

Proposition 2.3. Let ϕ be a bounded endomorphism of Banach algebra A. If A is σ-a.c, then A is
(ϕoσ)-a.c.

Proof. Let X be a Banach A-bimodule and let D : A → X be a (ϕoσ)-derivation. Then (X, ∗)
is an A-bimodule with the following module actions:

a ∗ x = ϕ(a) · x, x ∗ a = x · ϕ(a) (a ∈ A, x ∈ X). (2.3)

For each a, b ∈ A, we have

D(ab) =
(
ϕoσ(a)

) ·D(b) +D(a) · (ϕoσ(b)) = σ(a) ∗D(b) +D(a) ∗ σ(b). (2.4)

ThusD : A → (X, ∗) is a continuous σ-derivation. SinceA is σ-a.c, there exists a net {xα} ⊆ X
such that D = lim δσxα . In fact,

D(a) = lim
α
(σ(a) ∗ xα − xα ∗ σ(a))

= lim
α

(
ϕoσ(a) · xα − xα · ϕoσ(a)

)

= lim
α
δ
ϕoσ
xα (a) (a ∈ A).

(2.5)

Therefore, D is a (ϕoσ)-a.i and so A is (ϕoσ)-a.c.

Corollary 2.4. LetA be an a.c Banach algebra. ThenA is σ-a.c for each bounded endomorphism σ of
A.

Proposition 2.5. LetA be a σ-a.c Banach algebra, where σ is a bounded epimorphism ofA. ThenA
is a.c.

Proof. Let X be a Banach A-bimodule and let d : A → X be a continuous derivation. It is
easy to see that doσ is a σ-derivation. Since A is σ-a.c, there exists a net {xα} ⊆ X such that
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doσ(a) = limασ(a)xα − xασ(a). Now for b ∈ A there exists a ∈ A such that b = σ(a), and,
therefore,

d(b) = d(σ(a)) = lim
α
xασ(a) − σ(a)xα

= lim
α
xαb − bxα,

(2.6)

which shows that d is approximately inner and soA is a.c.

Corollary 2.6. Let ϕ be a bounded endomorphism of Banach algebraA. IfA is σ-a.a then it is (ϕoσ)-
a.a too.

Corollary 2.7. LetA be an a.a Banach algebra. For each bounded endomorphism σ, A is σ-a.a.

Corollary 2.8. Let A be a σ-a.a Banach algebra, where σ is a bounded epimorphism of A. Then A is
a.a.

Proposition 2.9. Suppose that B is a Banach algebra and ϕ : A → B is a continuous epimorphism.
IfA is a.c, then B is σ-a.c for each bounded endomorphism σ of B.

Proof. Let σ : B → B be a bounded endomorphism of B and X a Banach B-bimodule, then
(X, ∗) is an A-bimodule with the following module actions:

a ∗ x = σ
(
ϕ(a)

) · x, x ∗ a = x · σ(ϕ(a)) (a ∈ A, x ∈ X). (2.7)

Now let D : B → X be a continuous σ-derivation. It is easy to check that Doϕ : A → (X, ∗)
is a derivation. Since A is approximately contractible, there exists a net {xα} ⊆ X such that
Doϕ(a) = limαδxα(a). We have

D
(
ϕ(a)

)
= Doϕ(a) = lim

α
δxα(a) = lim

α
(a ∗ xα − xα ∗ a)

= lim
α
σ
(
ϕ(a)

)
xα − xασ

(
ϕ(a)

)
(a ∈ A).

(2.8)

Since ϕ is an epimorphism, so for each b ∈ B there exists a ∈ A such that b = ϕ(a), and we
have

D(b) = lim
α
σ(b)xα − xασ(b), (2.9)

which shows that D is σ-a.i and so B is σ-a.c.

Proposition 2.10. Suppose that A and B are Banach algebras, and let σ and τ be bounded
endomorphism of A and B, respectively. Let ϕ : A → B be a bounded epimorphism such that
ϕoσ = τoϕ. IfA is σ-a.c, then B is τ-a.c.



Abstract and Applied Analysis 5

Proof. Let X be a Banach B-bimodule and D : B → X a continuous τ-derivation. Then (X, ∗)
is an A-bimodule with the following actions:

a ∗ x = ϕ(a) · x, x ∗ a = x · ϕ(a) (a ∈ A, x ∈ X). (2.10)

It is easy to check that Doϕ : A → (X, ∗) is a σ-derivation. Since A is σ-a.c, there exists a net
{xα} ⊆ X such that Doϕ(a) = limαδ

σ
xα(a), so we have

D
(
ϕ(a)

)
= lim

α
σ(a) ∗ xα − xα ∗ σ(a)

= lim
α
ϕ(σ(a)) · xα − xα · ϕ(σ(a))

= lim
α
τ
(
ϕ(a)

) · xα − xα · τ
(
ϕ(a)

)
(a ∈ A).

(2.11)

Since ϕ is epimorphism, soD(b) = limατ(b)xα − xατ(b) for all b ∈ B, and hence B is τ-a.c.

3. σ-Approximate Contractibility for Unital Banach Algebras

In this section we state some properties of σ-approximate contractibility when A has an
identity. First we express the following proposition that one can see its proof in [1, Proposition
3.3], and bring some corollaries when σ(A) is dense inA.

Proposition 3.1. Let A be a unital Banach algebra with unit e, σ(A) dense in A, X a Banach A-
bimodule, and D : A → X a σ-derivation. Then, there is a σ-derivation D1 : A → e · X · e and
η ∈ X, such that D = D1 + δη.

The following definition extends the definition of the unital Banach A-module in the
classical sense.

Definition 3.2. Let A be a unital Banach algebra with identity e. Banach A-bimodule X is
called σ-unital if X = σ(e) · X · σ(e).

Corollary 3.3. LetA be a unital Banach algebra and σ(A) dense inA. Then,A is σ-a.c (resp.,σ-a.a)
if and only if for all σ-unital Banach A-bimodule X, every σ-derivation D : A → X (resp., D :
A → X∗) is σ-a.i.

Proof. Since σ(e) is a unit for σ(A), and σ(A) is dense in A, we see that σ(e) = e, so that
e · X · e is a σ-unital Banach A-bimodule. Now by Proposition 3.1, the proof is complete.

Corollary 3.4. Suppose thatA is a unital Banach algebra and σ(A) is dense inA. LetX be a Banach
A-bimodule and D : A → X∗ a σ-derivation. If A is σ-a.a, then there exists a net (ηα) ⊆ e · X∗ · e,
and η ∈ X∗, such that D = limαδ

σ
ηα + δη.

Proof. By Proposition 3.1, D = D1 + δη such that η ∈ X∗ and D1 : A → e · X∗ · e is a σ-
derivation. Since e · X∗ · e ∼= (e · X · e)∗ and A is σ-a.a, D1 : A → (e · X · e)∗ is σ-a.i. Hence
D1 = limαδ

σ
ηα for some net (ηα) ⊆ e · X∗ · e.
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In the following proposition we consider σ-approximate contractibility when σ is an
idempotent endomorphism of A. We can see the proof of the following proposition in [1,
Proposition 4.1].

Proposition 3.5. Assume that A has an element e which is a unit for σ(A) and X is a Banach A-
bimodule. If σ is a bounded idempotent endomorphism of A, then for each σ-derivation D : A → X
there exists a σ-derivation D1 : A → σ(e) · X · σ(e) and η ∈ X, such that D = D1 + δη.

Corollary 3.6. Assume that A has an element e which is a unit for σ(A) and σ is a bounded
idempotent endomorphism of A, then A is σ-a.c (resp., σ-a.a) if and only if for all σ-unital Banach
A-bimodule,X, every σ-derivation D : A → X (resp., D : A → X∗) is σ-a.i.

Lemma 3.7. Assume that A is a unital Banach algebra with the identity e, and (X, ∗) is a σ-unital
Banach A-bimodule with the following module actions:

a ∗ x = σ(a)x, x ∗ a = xσ(a) (a ∈ A, x ∈ X). (3.1)

If D : A → X∗ is a σ-derivation, then D(e) = 0.

Proof. We have D(e) = D(ee) = σ(e)D(e) +D(e)σ(e) and

〈e ∗ x,D(e)σ(e)〉 = 〈x,D(e)σ(e) ∗ e〉 = 〈x,D(e)σ(e)σ(e)〉
= 〈x,D(e)σ(e)〉 = 〈e ∗ x,D(e)〉 (x ∈ X).

(3.2)

Hence D(e)σ(e) = D(e) and so σ(e)D(e) = 0. Hence D(e) = 0.

Proposition 3.8. Let σ be a bounded idempotent endomorphism of Banach algebra A. If A is σ-a.a,
thenA# is σ̂-a.a, where σ̂ is the endomorphism ofA# induced by σ, that is, σ̂(a + α) = σ(a) + α.

Proof. Let X be a Banach A#-bimodule and D : A# → X∗ a continuous σ̂-derivation. By
Proposition 3.5, there exits η ∈ X∗ and D1 : A# → σ̂(e) · X∗ · σ̂(e) such that D = D1 + δη. Set
d : D1|A : A → σ̂(e)·X∗·σ̂(e). It is easy to check that d is a σ-derivation. SinceA is σ-a.a, there
exists a net (x∗

γ) ⊆ X∗ such that d = limγδ
σ
x∗γ
. Hence D1(a) = limγσ(a)x∗

γ − x∗
γσ(a), (a ∈ A).

Since σ̂(e) · X∗ · σ̂(e) is σ̂-unital, by Lemma 3.7, D1(e) = 0 and for each a + α ∈ A# we have

D1(a + α) = D1(a) + αD1(e) = D1(a) = lim
γ
σ(a)x∗

γ − x∗
γσ(a)

= lim
γ
(σ̂(a + α) − α)x∗

γ − x∗
γ(σ̂(a + α) − α)

= lim
γ
ϕ(a + α)x∗

γ − x∗
γϕ(a + α).

(3.3)

This shows that D1 is σ̂-a.i, and so A# is σ̂-a.a.

Proposition 3.9. Let σ be a bounded endomorphism of Banach algebra A. If A# is σ̂-a.a, then A is
σ-a.a.
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Proof. Let X be a Banach A-bimodule and D : A → X∗ a continuous σ-derivation. X is a
Banach A#-bimodule with the following module actions:

(a + α) · x = a · x + αx, x · (a + α) = x · a + αx, (3.4)

for all a ∈ A, x ∈ X, α ∈ C. Define D# : A# → X∗ with D#(a + α) = D(a). Clearly, D# is a
continuous σ̂-derivation. Hence, there is a net (x∗

γ) ⊆ X∗ such that D# = limσ̂
γ δx∗γ . Hence, for

each a ∈ A we have

D(a) = D#(a + α) = lim
γ
σ̂(a + α)x∗

γ − x∗
γ σ̂(a + α) = lim

γ
σ(a)x∗

γ − x∗
γσ(a) (3.5)

which shows that D is σ-a.i and soA is σ-a.a.

4. σ-Approximate Amenability When A Has
a Bounded Approximate Identity

Lemma 4.1. Let A be a Banach algebra with bounded approximate identity and X a Banach A-
bimodule with trivial left or right action, then every σ-derivation D : A → X∗ is σ-inner.

Proof. Let X be a Banach A-bimodule with trivial left action. Hence, X∗ is a Banach A-
bimodule with trivial right action, that is,

x∗ · a = 0, a · x∗ = ax∗ (x∗ ∈ X∗, a ∈ A). (4.1)

LetD : A → X∗ be a continuous σ-derivation and (eα) a bounded approximate identity ofA.

By Banach Alaoglu’s Theorem, (D(eα)) has a subnet (D(eβ)) such thatD(eβ)
w∗
→ x∗

0, for some

x∗
0 ∈ X∗. Since a · eβ ‖·‖→ a and D is continuous, D(a · eβ) ‖·‖→ D(a). Hence, D(a · eβ) w∗

→ D(a).

On the other hand, D(a · eβ) = σ(a)D(eβ)
w∗
→ σ(a)x∗

0 and so D(a) = σ(a)x∗
0. Hence,

D(a) = σ(a)x∗
0 − x∗

0σ(a) and D is σ-inner.

The following definitions extends the definition of the neo-unital and essential Banach
A-bimodule in the classical sense.

Definition 4.2. Let X be a Banach A-bimodule. Then X is called σ-neo-unital (σ-pseudo-
unital), if X = σ(A) · X · σ(A). Similarly, one defines σ-neo-unital left and right Banach
modules.

Definition 4.3. Let X be a Banach A-bimodule. Then X is called σ-essential if X =
σ(A)Xσ(A) = spanσ(A) · X · σ(A). Similarly, one defines σ-essential left and right Banach
modules.

We recall that a bounded approximate identity in Banach algebra A for Banach
A-bimodule X is a bounded net (eα) inA such that for each x ∈ X, eαx → x and xeα → x.

Proposition 4.4. Assume thatA has a left bounded approximate identity, σ is a bounded idempotent
endomorphism of A, and X is a left Banach A-module. Then X is σ-neo-unital if and only if X is
σ-essential.
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Proof. Let X be a σ-essential Banach A-bimodule. Since σ is idempotent, σ(A) is Banach
subalgebra of A. Let (eα) ⊆ A be left approximate identity with bound m. First suppose that
z ∈ spanσ(A) · X, so there exist a1, . . . , an ∈ A, x1, . . . , xn ∈ X such that z =

∑n
i=1 σ(ai)xi. For

1 ≤ i ≤ n, eαai → ai and, therefore, σ(eα)z → z.
Now suppose that z ∈ σ(A)X. There exists {zn} ⊆ spanσ(A) · X such that zn → z.

Thus,

∃n0 ∈ N s.t. ∀n
(
n ≥ n0; ‖zn − z‖ < ε

2(‖σ‖m + 1)

)
(4.2)

On the other hand, for each n ∈ N we have σ(eα)zn
α→ zn and so σ(eα)zn0

α→ zn0 .
Therefore,

∃α0; ∀α
(
α ≥ α0; ‖σ(eα)zn0 − zn0‖ <

ε

2

)
. (4.3)

Now we have

‖σ(eα)z − z‖ ≤ ‖σ(eα)z − σ(eα)zn0 + σ(eα)zn0 − zn0 + zn0 − z‖
≤ ‖σ‖‖eα‖‖z − zn0‖ + ‖σ(eα)zn0 − zn0‖ + ‖zn0 − z‖

< (‖σ‖‖eα‖ + 1)‖z − zn0‖ +
ε

2

< (‖σ‖m + 1)
ε

(‖σ‖m + 1)2
+
ε

2
= ε,

(4.4)

which shows that (σ(eα)) ⊆ σ(A) is a left bounded approximate identity for X. Now by
Cohen factorization Theorem,X = σ(A) ·X. SoX is σ-neo-unital. The other side is trivial.

Corollary 4.5. Every σ-neo-unital left BanachA-module is essential.

Proof. LetX be a σ-neo-unital left BanachA-module.We haveX = σ(A)·X ⊆ A·X ⊆ AX ⊆ X
soX = AX.

Proposition 4.6. LetA be a Banach algebra with a left bounded approximate identity, σ be a bounded
idempotent endomorphism of A, and X a left Banach A-module. Then σ(A) · X is closed weakly
complemented submodule of X.

Proof. Set Y = σ(A)X, since A has a left bounded approximate identity, by Cohen
factorization TheoremA2 = A, and we have σ(A)Y = σ(A)σ(A)X = σ(A2)X = σ(A)X = Y,
which shows that Y is σ-essential by Proposition 4.4, Y is σ-neo unital that is, Y = σ(A) · Y.
Hence, σ(A)X = Y = σ(A) · Y ⊆ σ(A) · X and so σ(A)X = σ(A) · X. Thus σ(A) · X is closed
submodule ofX.

Now we prove that σ(A) · X is weakly complemented in X. Let (eα) be a left
approximate identity in A with bound m, and define a net (Tα) in B(X∗) by setting Tα(x∗) =
x∗ · σ(eα) (x∗ ∈ X∗). We have ‖Tα‖ ≤ ‖σ‖m. Thus (Tα) is a bounded net in B(X∗) since
B(X∗) = (X∗ ⊗ X)∗ and ball B(X∗) is w∗-compact, so there exists T ∈ B(X∗) such that we
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may suppose that w∗ − limαTα = T and ‖T‖ ≤ ‖σ‖m. For each a ∈ A, x ∈ X, and x∗ ∈ X∗, we
have

〈σ(a) · x, T(x∗)〉 = lim
α
〈σ(a) · x, x∗ · σ(eα)〉

= lim
α
〈σ(eα)σ(a) · x, x∗〉

= 〈σ(a) · x, x∗〉,

(4.5)

and so x∗ − Tx∗ ∈ (σ(A) · X)⊥. On other hand, for each x∗ ∈ X∗,

T2x∗ = T(Tx∗) = lim
α
T(x∗)σ(eα) = lim

α
x∗σ(eα) = T(x∗). (4.6)

Thus T is projection, and IX∗ − T : X∗ → (σ(A) · X)⊥ is projection. So σ(A) · X is weakly
complemented inX and, we have X∗ = (σ(A) · X)⊥ ⊕ (σ(A) · X)∗.

Corollary 4.7. Let A have a bounded approximate identity, and let X be a Banach A-bimodule and
σ a bounded idempotent endomorphism ofA. Then

(i) σ(A) · X · σ(A) is a closed weakly complemented submodule ofX,

(ii) A is σ-a.a if and only if for every σ-neo-unital Banach A-bimodule X, every σ-derivation
D : A → X∗ is σ-approximately inner.

Proof. Set Y = σ(A) · X. By Proposition 4.6, Y is a closed and weakly complemented
submodule ofX, and T : X∗ → Y∗ and I−T : X∗ → Y⊥ are projection maps. LetD : A → X∗

be a σ-derivation, so ToD and (I − T)oD are σ-derivations and D = (ToD) + (I − T)oD.
Since A · (X/Y ) = {0} by Lemma 4.1, (I − T)oD is σ-inner. So there exists J0 ∈ Y⊥ such that
(I − T)oD = δσJ0 . Thus D = ToD + δσJ0 and so D is σ-a.i if and only if ToD : A → Y∗ is σ-a.i.

Now let Z = Y · σ(A). By Proposition 4.6, Z is a closed weakly complemented in Y,
and T ′ : Y∗ → Z∗ and I−T ′ : Y∗ → Z⊥ are projection maps. Assume thatD1 : A → Y∗ is a σ-
derivation, thus T ′oD and (I−T ′)oD are σ-derivations, and we haveD1 = T ′oD1+(I−T ′) ·D1.
Since (Y/Z) · A = {0}, by Lemma 4.1, (I − T ′) · D1 is σ-inner and so there exists z0 ∈ Z⊥

such that (I − T ′)oD1 = δσZ0
. Therefore, D1 = T ′oD1 + δσZ0

. Thus, D1 is σ.a.i if and only if
T ′oD1 is σ.a.i. Set DoT = D1. Thus, D = T ′oD1 + δσZ0

+ δσJ0 . Therefore, D is σ-a.i, if and only if
T ′oD1 : A → Z∗ = (σ(A) · X ·σ(A))∗ is σ.a.i. Recall that Z is σ-neo-unital. Thus,A is σ-a.a if
and only if for every σ-neo-unital Banach A-bimodul, X, every σ-derivation D : A → X∗ is
σ-a.i.

Corollary 4.8. LetA have a bounded approximate identity, and letX be a BanachA-bimodule and σ
a bounded idempotent endomorphism ofA. ThenA is σ-a.a if and only if for every σ-essential Banach
A-bimoduleX, every σ-derivation D : A → X∗ is σ-approximately inner.

Proposition 4.9. Suppose that σ is a bounded idempotent endomorphism of A and define σ̂ : A# →
A# with σ̂(a + α) = σ(a) + α. The following statements are equivalent.

(1) A is σ-a.a.

(2) There is a net (μα) ⊆ (A#⊗̂A#)∗∗ such that for each a ∈ A#, σ̂(a) ·μα −μα · σ̂(a) → 0 and
π∗∗(μα) → ê.
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(3) There is a net (μ′
α) ⊆ (A#⊗̂A#)∗∗ such that for each a ∈ A#, σ̂(a) ·μα −μα · σ̂(a) → 0 and

for every α, π∗∗(μ′
α) = ê.

Proof. (1⇒3) Suppose that A is σ-a.a, by Proposition 3.8, A# is σ̂-a.a. Let u = e ⊗ e ∈ A#⊗̂A#.
A#⊗̂A# is a Banach A#-bimodule with the following module actions:

a · (b ⊗ c) = σ̂(a)(b ⊗ c), (b ⊗ c) · a = (b ⊗ c)σ̂(a)
(
a, b, c ∈ A#

)
. (4.7)

Set δû : A# → kerπ∗∗ with definition δû(a) = σ̂(a) · û − û · σ̂(a) (a ∈ A#). δû is σ̂-derivation.
Recall that kerπ∗∗ = (kerπ)∗∗. Since A# is σ̂-a.a, thus there exists (eα) ⊆ kerπ∗∗ such that

δû(a) = lim
α
σ̂(a)eα − eασ̂(a)

(
a ∈ A#

)
. (4.8)

Set μ′
α = û − eα ∈ (A#⊗̂A#)∗∗. We have

σ̂(a)μ′
α − μ′

ασ̂(a) = σ̂(a)û − ûσ̂(a) − (σ̂(a)eα − eασ̂(a)) −→ 0, (4.9)

and for each α,

π∗∗(μ′
α

)
= π∗∗(û − eα) = π∗∗(û) − π∗∗(eα) = π(u) = e. (4.10)

(3⇒ 2) is clear.
(2⇒ 1) By Proposition 3.9, it is sufficient to show that A# is σ̂-a.a.
Let D : A# → X∗ be a derivation. By Corollary 4.7, we may take X to be σ-neo-unital.

We run the standard argument, so for each α ∈ I, set fα(x) = μα(ψx), where for a, b ∈ A#,
x ∈ X, we have ψx(a ⊗ b) = 〈x, σ̂(a)D(b)〉. Then, (mγ

α) ⊂ A#⊗̂A# converging ω∗ to μα (α ∈ I)
and noting that form ∈ A#⊗̂A#, a ∈ A#, x ∈ X, then

ψσ̂(a)x−xσ̂(a)(m) =
(
σ̂(a)ψx − ψxσ̂(a)

)
(m) − 〈x, σ̂(π(m))D(a)〉. (4.11)

Since X is σ̂-neo-unital, so X = Xσ̂(A#). So for each a ∈ A and x ∈ X, we have

〈
σ̂(a)x − xσ̂(a), fα

〉
=
〈
ψσ̂(a)x−xσ̂(a), μα

〉

= lim
γ

〈
m
γ
α, ψσ̂(a)x−xσ̂(a)

〉

=
〈
σ̂(a)ψx − ψxσ̂(a), μα

〉 − lim
γ

〈
x, σ̂

(
π
(
m
γ
α

)
D(a)

)〉

=
〈
ψx, μασ̂(a) − σ̂(a)μα

〉 − 〈
x, π∗∗(μα

)
D(a)

〉
.

(4.12)
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Thus,

∥
∥〈x, σ̂(a)fα − fασ̂(a)

〉 − 〈x,D(a)〉∥∥

≤ ∥
∥〈ψx, σ̂(a)μα − μασ̂(a)

〉∥∥ + ‖x‖∥∥π∗∗(μα
) − ê∥∥‖D(a)‖

≤ ‖D‖ · ‖x‖∥∥σ̂(a)μα − μασ̂(a)
∥
∥ + ‖x‖∥∥π∗(μα

) − ê∥∥‖D(a)‖,

(4.13)

and, therefore, D = limαδ
σ̂
fα
. It follows that A# is σ̂-a.a and soA is σ-a.a.

Proposition 4.10. Suppose that A is σ-a.a, and let

Σ : 0 −→ X∗ f−→ Y g−→ Z −→ 0, (4.14)

be an admissible short exact sequence of left A-module and left σ-A-module homomorphism. Then
Σ, σ-approximately split, that is, there is a net Gα : Z → Y of right inverse maps to g such that
limα(σ(a)Gα − Gασ(a)) = 0 for a ∈ A, and a net Fα : Y → X∗ of left inverse maps to f such that
limα(σ(a)fα − fασ(a)) = 0 for a ∈ A.

Proof. Following the proof of [2, Theorem 2.3], for a right inverse G for g, σ-approximate
amenability gives a net (ϕα) ⊆ B(Z,X∗) such that

σ(a) ·G −G · σ(a) = lim
α

(
σ(a) · fGα − fGα · σ(a)

)
(a ∈ A). (4.15)

Setting Gα = G − fϕα gives the required net. Applying the same argument as [2,
Proposition 1.1] provides (Fα).

We recall that if A is a Banach algebra with a weak left (right) approximate identity,
thenA has a left (right) approximate identity [1, Lemma 2.2].

Corollary 4.11. Suppose that Banach algebra A is σ-a.a, then σ(A) has left and right approximate
identities.

Corollary 4.12. Suppose that Banach algebraA is σ-a.a and σ is a bounded epimorphism ofA, then
A has left and right approximate identities.

Lemma 4.13. Let σ be a bounded idempotent endomorphism of Banach algebra A and X a σ-neo-
unital BanachA-module. If (eα)α is a bounded approximate identity inA, then (σ(eα))α is a bounded
approximate identity forX.

Proof. For every a ∈ A we have eασ(a) → σ(a). Since σ is idempotent, σ(eα)σ(a) → σ(a).
For each x ∈ X, there exists a ∈ A and y ∈ X such that x = σ(a) · y. Therefore,

σ(eα) · x = σ(eα)σ(a) · y −→ σ(a) · y = x, (4.16)

which shows that (σ(eα)) is a bounded approximate identity forX.
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It is often convenient to extend a derivation to a large algebra. If a Banach algebra I is
contained as a closed ideal in another Banach algebra A, then the strict topology on A with
respect to I is defined through the family of seminorms (Pi)i∈I , where

Pi(a) := ‖ai‖ + ‖ia‖ (a ∈ A). (4.17)

Note that the strict topology is Hausdorff only if {a ∈ A : a · I = I · a = {0}} = {0} [3].

Proposition 4.14. LetA be a Banach algebra and I a closed ideal inA. let σ be a bounded idempotent
endomorphism of A and I has a bounded approximate identity. Let X be a σ-neo-unital Banach I-
module andD : I → X∗ a σ-derivation. Then,X is a BanachA-bimodule in a canonical fashion, and
there is a unique σ-derivation D̃ : A → X∗ such that

(i) D̃|I = D,

(ii) D̃ is continuous with respect to the strict topology onA and the ω∗-topology onX∗.

Proof. Since X is a σ-neo-unital Banach I-module, so for each x ∈ X, there exists i ∈ I and
y ∈ X such that x = σ(i) · y. Define a · x = σ(ai) · y(a ∈ A).

We claim that a · x is well defined, that is, independent of the choices of i and y. Let
i′ ∈ I and y′ ∈ X be such that x = σ(i′) · y′, and let (eα)α be a bounded approximate identity
for I. For each a ∈ A and x ∈ Xwe have

a · x = σ(ai) · y = lim
α
σ(aeαi) · y

= lim
α
σ(aeα)σ(i) · y = lim

α
σ(aeα)x

= lim
α
σ(aeα)σ

(
i′
) · y′ = lim

α
σ
(
aeαi

′) · y′

= σ
(
ai′

) · y′.

(4.18)

It is obvious that this operation of A on X turns X into a left Banach A-module. Similarly,
one defines a right BanachA-module structure onX. So that, eventually,X becomes a Banach
A-bimodule. To extend D, let

D̃ : A −→ X∗, a −→ ω∗ − lim
α
(D(aeα) − σ(a) ·D(eα)). (4.19)

We claim that D̃ is well-defined, that is, the limit in (4.19) does exist. Let x ∈ X, and let i ∈ I
and y ∈ X such that x = y · σ(i). By Lemma 4.13, σ(eα) is bounded approximate identity for
X, and we have

〈x,D(aeα) − σ(a) ·D(eα)〉 =
〈
y · σ(i), D(aeα) − σ(a) ·D(eα)

〉

=
〈
y, σ(i)D(aeα) − σ(ia) ·D(eα)

〉
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=
〈
y,D(iaeα) −D(i)σ(aeα) −D(iaeα) +D(ia)σ(eα)

〉

=
〈
σ(eα) · y,D(ia)

〉 − 〈
σ(aeα) · y,D(i)

〉

α−→ 〈
y,D(ia)

〉 − 〈
σ(a) · y,D(i)

〉
(a ∈ A).

(4.20)

So the limit in (4.19) exists. Furthermore, for i ∈ I,

D̃(i) = ω∗ − lim
α
(D(ieα) − σ(i) ·D(eα))

= ω∗ − lim
α
D(ieα) −D(ieα) +D(i)σ(eα) = D(i),

(4.21)

so D̃ is an extension of D. Also for a ∈ A and i ∈ I we have

(
D̃a

)
· σ(i) = ω∗ − lim

α
(D(aeα) · σ(i) − σ(a) ·D(eα) · σ(i))

= ω∗ − lim
α
(D(aeαi) − σ(aeα) ·D(i) − σ(a) ·D(eαi) + σ(a)σ(eα) ·D(i))

= ω∗ − lim
α
(D(aeαi) − σ(a) ·D(eαi)) = D(ai) − σ(a) ·D(i).

(4.22)

We claim that D̃ is continuous with respect to the strict topology on A and the ω∗-topology
anX∗.

Let an
strict→ a inA.

∀i ∈ I, ‖ani‖ + ‖ian‖ −→ ‖ai‖ + ‖ia‖. (4.23)

For each x ∈ X,

∣∣∣
〈
x, D̃(an)

〉
−
〈
x, D̃(a)

〉∣∣∣

= lim
α
|〈x,D(aneα) − σ(an) ·D(eα)〉 − 〈x,D(aeα) − σ(a) ·D(eα)〉|

= lim
α
|〈x,D(aneα) −D(aeα) − σ(an)D(eα) + σ(a)D(eα)〉|

≤ lim
α
‖x‖‖(D(aneα) −D(aeα)) − (σ(a0) ·D(eα) − σ(an)D(eα))‖

≤ lim
α
‖x‖(‖D‖‖aneα − aeα‖ + ‖σ(an) − σ(a)‖‖D(eα)‖)

≤ lim
α
‖x‖(‖D‖‖an − a‖‖eα‖ + ‖σ‖‖an − a‖‖D(eα)‖) −→ 0,

(4.24)

so D̃ is continuous.
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It remains to show that D̃ is a σ-derivation. From the definition of the strict topology,
we have aeα → a in the strict topology for all a ∈ A because ‖aeαi‖+‖iaeα‖ α→ ‖ai‖+‖ia‖ (i ∈
I) and so D̃(aeα)

w∗
→ D̃(a). Therefore,

D̃(ab) = ω∗ − lim
α

lim
β
D̃
(
(aeα)

(
beβ

))

= ω∗ − lim
α

lim
β
D
(
(aeα)

(
beβ

))

= ω∗ − lim
α

lim
β

(
σ(aeα)D

(
beβ

)
+D(aeα) · σ

(
beβ

))

= ω∗ − lim
α

lim
β

(
σ(aeα)D̃

(
beβ

)
+ D̃(aeα) · σ

(
beβ

))

= σ(a)D̃(b) + D̃(a)σ(b),

(4.25)

that is, D̃ is σ-derivation.

Corollary 4.15. Suppose that A is σ-a.a, where σ is bounded idempotent endomorphism of A, I is a
closed ideal inA. If I has a bounded approximate identity, then I is σ-a.a.

Proof. Suppose that I has a bounded approximate identity, X is a σ-neo-unital Banach I-
bimodule, and D : I → X∗ is a σ-derivation. By Proposition 4.14, X becomes to a Banach
A-bimodule and D has a unique extension D̃ : A → X∗ which is a σ-derivation. Since A is
σ-a.a,

∃{x∗
α} ⊆ X∗ s.t. D̃(a) = lim

α
σ(a) · x∗

α − x∗
α · σ(a) (a ∈ A). (4.26)

So we have D(i) = D̃(i) = limασ(i) · x∗
α − x∗

α · σ(i), which shows that D = limαδ
σ
x∗α

is σ-a.i, and
I is σ-a.a.

Corollary 4.16. LetA be an a.a Banach algebra and I a closed ideal ofA. ThenA/I is σ-a.a for each
bounded endomorphism σ of A/I.

Proposition 4.17. Let I be a closed ideal of A such that σ(I) ⊆ I. If A is σ-a.a, then A/I is σ̂-a.c,
where σ̂ is an endomorphism ofA/I induced by σ (i.e., σ̂(a + I) = σ(a) + I for a ∈ A).

Proof. Let X be a Banach A/I-bimodule and D : A/I → X a σ̂-derivation. Then X becomes
anA-bimodule with the following module actions:

a · x = π(a) · x, x · a = x · π(a) (a ∈ A, x ∈ X), (4.27)
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where π is the canonical homomorphism π : A → A/I. It is easy to see that Doπ : A → X
becomes a σ-derivation. Since A is σ-a.c, there exists a net {xα} ⊆ X such that Doπ(a) =
limασ(a) · xα − xα · σ(a) (a ∈ A). Therefore, for each (a ∈ A),

D(a + I) = Doπ(a) = lim
α
σ(a) · xα − xα · σ(a)

= lim
α
π(σ(a)) · xα − xα · π(σ(a))

= lim
α
(σ(a) + I) · xα − xα · (σ(a) + I)

= lim
α
σ̂(a + I)xα − xασ̂(a + I).

(4.28)

Thus, A/I is σ̂-a.c.

Proposition 4.18. Suppose that I is a closed ideal inA. If I is σ-amenable and A/I is a.a, thenA is
σ-a.a.

Proof. Let X be a Banach A-bimodule and D : A → X∗ a σ-derivation. X is a Banach I-
bimodule too.

Clearly, d = D|I : I → X∗ is a σ-derivation, and by σ-amenability of I there exists
x∗
0 ∈ X∗ such that D = δσx∗0 , and, therefore, for each i ∈ I we have d(i) = σ(i) · x∗

0 − x∗
0 · σ(i). Set

D1 = D −δσx∗0 . Clearly,D1 is σ-derivation andD1|I = 0. Now letX0 = span(X·σ(I)∪σ(I) ·X) ·
(X/X0) is a Banach A/I-bimodule via the following module actions:

(a + I)(x +X0) = σ(a)x +X0, (x +X0)(a + I) = xσ(a) +X0 (x ∈ X, a ∈ A). (4.29)

Now we define

D̃ :
A
I

−→
( X
X0

)∗
;

〈
x +X0, D̃(a + I)

〉
= 〈x,D1(a)〉 (a ∈ A, x ∈ X). (4.30)

Let a + I = a′ + I and x +X0 = x′ +X0 for some a, a′ ∈ A and x, x′ ∈ X. So a − a′ ∈ I, and we
have D1(a − a′) = 0. Thus, D1(a) = D(a′). Now we have

〈
x +X0, D̃(a + I)

〉
=
〈
x′ +X0, D̃

(
a′ + I

)〉
. (4.31)

Thus, 〈x,D1(a)〉 = 〈x′, D1(a′)〉 = 〈x′, D1(a)〉, and, therefore,
〈
x − x′, D1(a)

〉
= 0. (4.32)

It is enough to show that D1(a) is zero on X0. Suppose that σ(i)x ∈ X0, we have

〈σ(i)x,D1(a)〉 = 〈x,D1(a)σ(i)〉 = 〈x,D1(ai) − σ(a)D1(i)〉 = 0,

〈xσ(i), D1(a)〉 = 〈x, σ(i)D1(a)〉 = 〈x,D1(ia) −D1(i)σ(a)〉 = 0.
(4.33)
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So for all a ∈ A, D1(a) = 0 on σ(I) · X ∪ X · σ(I) and so for all a ∈ A, D1(a) = 0 on X0. Since
x − x′ ∈ X0, therefore 〈x − x′, D1(a)〉 = 0 which shows that D1 is well defined. We claim that
D̃ is a derivation;

〈
x +X0, D̃((a + I)(b + I))

〉
= 〈x,D1(ab)〉

= 〈x, σ(a)D1(b) +D1(a)σ(b)〉
= 〈xσ(a), D1(b)〉 + 〈σ(b)x,D1(a)〉

=
〈
xσ(a) +X0, D̃(b + I)

〉

+
〈
σ(b)x +X0, D̃(a + I)

〉

=
〈
(x +X0)(a + I), D̃(b + I)

〉

+
〈
(b + I)(x +X0), D̃(a + I)

〉
.

(4.34)

So there exists a net (ϕα) ⊆ (X/X0)
∗ such that D̃ = limαδϕα . Let q : X → X/X0 be the

quotient map. For every α, (ϕαoq) ∈ X∗. Set (x∗
α) = (ϕαoq) ⊆ X∗. We have

〈x,D1(a)〉 =
〈
x +X0, D̃(a + I)

〉

=
〈
x +X0, lim

α
(a + I)ϕα − ϕα(a + I)

〉

= lim
α

〈
xσ(a) +X0, ϕα

〉 − 〈
σ(a)x +X0, ϕα

〉

= lim
α

〈
q(xσ(a)), ϕα

〉 − 〈
q(σ(a)x), ϕα

〉

= lim
α
ϕαoq(xσ(a) − σ(a)x) = 〈xσ(a) − σ(a)x, x∗

α〉

= lim
α
〈x, σ(a)x∗

α − x∗
ασ(a)〉

=
〈
x, lim

α
δσx∗α(a)

〉
.

(4.35)

So D1 = D − δσx∗ = limαδ
σ
x∗α
, and, therefore, D = limαδ

σ
(x∗α−x∗0)

. Which shows that D is σ-a.i and
soA is σ-a.a.

Example 4.19. Let A be a Banach algebra and let 0/=ϕ ∈ Ball(A∗). Then A with the product
a ·a′ = ϕ(a)a′ becomes a Banach algebra. We denote this algebra withAϕ. It is easy to see that
Aϕ has a left identity e, while it has not right approximate identity, so Aϕ is not contractible
and is not approximately contractible. Also Aϕ is biprojective. Now suppose that σ : Aϕ →
Aϕ be defined by σ(a) = ϕ(a)e. We have

σ2(a) = σ
(
ϕ(a)e

)
= ϕ(a)σ(e) = ϕ(a)ϕ(e)e = ϕ(a)e = σ(a). (4.36)
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Thus σ is idempotent. It is easy to see that e is identity for σ(Aϕ), and since A is biprojective
by [1, Corollary 5.3],Aϕ is σ-biprojective. Thus by [1, Theorem 4.3],Aϕ is σ-contractible and
soAϕ is σ-a.c.

It is easy to see that kerϕ and all subspaces of kerϕ are all ideals ofAϕ and σ(kerϕ) ⊆
kerϕ so σ(I) ⊆ I for each ideal of A. Therefore, by Proposition 4.17, Aϕ/I is σ̂-a.c for each
ideal I of Aϕ, where σ̂(a + I) = σ(a) + I = ϕ(a)e + I.

Corollary 4.20. Suppose that σ is a bounded idempotent endomorphism of Banach algebra A. Then
A is σ-a.a if and only if there are nets (μ′′

α) in (A⊗̂A)∗∗ and (Fα), (Gα) ⊆ A∗∗, such that for each
a ∈ A,

(1) σ(a) · μ′′
α − μ′′

α · σ(a) + Fα ⊗ σ(a) − σ(a) ⊗Gα → 0,

(2) σ(a) · Fα → σ(a), Gα · σ(a) → σ(a),

(3) π∗∗(μ′′
α) · σ(a) − Fα · σ(a) −Gα · σ(a) → 0.

Proof. Suppose that A is σ-a.a, take the net (μα) given in Proposition 4.9 and write

μα = μ′′
α − Fα ⊗ ê − ê ⊗Gα + cαê ⊗ ê, (4.37)

where (μ′′
α) ⊆ (A⊗̂A)∗∗, (Fα), (Gα) ⊆ A∗∗, and (cα) ⊆ C. Applying π∗∗, π∗∗(μ′′

α)−Fα−Gα+cαê →
ê, hence cα → 1, then

π∗∗(μ′′
α

) · σ(a) − Fα · σ(a) −Gα · σ(a) + ê · σ(a) −→ ê · σ(a) (a ∈ A). (4.38)

So we have (iii) further, by Proposition 4.9, for a ∈ A#,

σ̂(a) · μ′′
α − σ̂(a) · Fα ⊗ ê − σ̂(a) ⊗Gα + σ̂(a) ⊗ ê

+ μ′′
α · σ̂(a) + Fα ⊗ σ̂(a) + ê ⊗Gα · σ̂(a) − ê ⊗ σ̂(a) −→ 0.

(4.39)

Thus σ̂(a) ·μ′′
α −μ′′

α · σ̂(a)+Fα ⊗ σ̂(a)− σ̂(a)⊗Gα → 0, and σ̂(a) ·Fα → σ̂(a), Gα · σ̂(a) → σ̂(a).
So for a ∈ A,

σ(a) · μ′′
α − μ′′

α · σ(a) + Fα ⊗ σ(a) − σ(a) ⊗Gα −→ 0,

σ(a) · Fα −→ σ(a), Gα · σ(a) −→ σ(a).
(4.40)



18 Abstract and Applied Analysis

Conversely, set cα = 1 and μα = μ′′
α − Fα ⊗ ê − ê ⊗Gα + ê ⊗ ê. We have

σ̂(a + α) · μα − μα · σ̂(a + α) = (σ(a) + α) · μα − μα · (σ(a) + α)
= σ(a) · μα − μα · σ(a) + aμα − αμα
= σ(a) · μα − μα · σ(a)
= σ(a) · μ′′

α − σ(a)Fα ⊗ e − σ(a) ⊗Gα

+ σ(a) ⊗ e(−μ′′
α · σ(a)

+Fα ⊗ σ(a) + e ⊗Gασ(a) − e ⊗ σ(a))
= σ(a) · μ′′

α − μ′′
α · σ(a)

+ Fα ⊗ σ(a) − σ(a) ⊗Gα → 0 (a ∈ A).

(4.41)

So σ̂(a) · μα − μα · σ̂(a) → 0 (a ∈ A#). Also

π∗∗(μα
) · σ(a) = π∗∗(μ′′

α − Fα ⊗ ê − ê ⊗Gα + ê ⊗ ê
)
σ(a)

= π∗∗(μ′′
α

)
σ(a) − Fα · σ(a)

−Gα · σ(a) + σ(a) −→ σ(a) (a ∈ A),

(4.42)

and so π∗∗(μα) → ê. Now, by Proposition 4.9, A is σ-a.a.

For σ-approximate contractibility we have the following parallel result.

Proposition 4.21. A is σ-a.c if and only if any of the following equivalent conditions hold:

(1) there is a net (μα) ⊂ A#⊗̂A# such that for each a ∈ A#, σ(a) · μα − μα · σ(a) → 0 and
π(μα) → e;

(2) there is a net (μ′
α) ⊂ A#⊗̂A# such that for each a ∈ A#, σ(a) · μ′

α − μ′
α · σ(a) → 0 and

π(μ′
α) = e;

(3) there are nets (μ′′
α) ⊂ A⊗̂A, (Fα), (Gα) ⊂ A, such that for each a ∈ A,

(i) σ(a) · μ′′
α − μ′′

α · σ(a) + Fα ⊗ σ(a) − σ(a) ⊗Gα → 0;
(ii) σ(i) · Fα → σ(a), Gα · σ(a) → σ(a);
(iii) π(μ′′

α) · σ(a) − Fα · σ(a) −Gα · σ(a) → 0.

We know Banach algebra A is amenable if and only if A has bounded approximate
diagonal [3].

Proposition 4.22. Banach algebra A is σ-amenable if and only if A has bounded approximate σ-
diagonal, that is, there is a bounded net (μα) ⊆ A⊗̂A such that for each a ∈ A, σ(a) ·μα−μα ·σ(a) →
0 and π(μα) · σ(a) → σ(a).

Proposition 4.23. If Banach algebraA is σ-amenable, thenA is σ-a.c.
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Proof. Suppose thatA is σ-amenable. Then there exists a bounded net (μα) inA⊗A such that
for each a ∈ A,

σ(a) · μα − μα · σ(a) −→ 0, π
(
μα

) · σ(a) −→ σ(a). (4.43)

Set fα = π(μα). It is easy to see that (fα) is a bounded approximate identity. Then μ′′
α =

μα + fα ⊗ fα and Fα = Gα = fα satisfy (i)–(iii) of Proposition 4.21, because

(i) σ(a) · μ′′
α − μ′′

α · σ(a) + fα ⊗ σ(a) − σ(a) ⊗ fα = σ(a) · μα − μα · σ(a) + σ(a)fα ⊗ fα − fα ⊗
σ(a) + fα ⊗ σ(a) − σ(a) ⊗ fα → 0 (a ∈ A),

(ii) σ(a) · fα = σ(a) · π(μα) → σ(a), fα · σ(a) = π(μα) · σ(a) → σ(a),

(iii) π(μ′′
α) · σ(a) = π(μα + fα ⊗ fα) · σ(a) = fα · σ(a) + f2

α · σ(a).

So

π
(
μ′′
α

) · σ(a) − Fα · σ(a) −Gα · σ(a) = fα · σ(a) + f2
α · σ(a) − fα · σ(a) − fα · σ(a) −→ 0. (4.44)

Note that f2
α is a bounded approximate identity too, thus, by Proposition 4.21,A is σ-a.c.

Corollary 4.24. Suppose thatA is a σ-a.a Banach algebra where σ is an idempotent endomorphism of
A and I is a closed two-sided ideal ofA which σ(I) has a bounded approximate identity and σ(I) ⊆ I.
Then, I is σ-a.a.

Proof. Let {eα} be a bounded approximate identity in σ(I), so {êα} is bounded net in σ(I)∗∗,
and so by Banach-Alaoglu theorem there exists a subnet {êβ} ⊆ {êα} and E ∈ σ(I)∗∗ such that

êβ
w∗
→ E. E is a right identity in σ(I)∗∗ because for each F ∈ σ(I)∗∗ and f ∈ σ(I)∗,

〈
f, F�E

〉
=
〈
f · F, E〉 = lim

β

〈
eβ, fF

〉
= lim

β

〈
eβf, F

〉
=
〈
f, F

〉
. (4.45)

Also E acts as an identity on σ(I) itself. Let (μα), (Fα), (Gα) be the nets given by
Corollary 4.20 for A. Define μ′

α = E · μα · E ∈ (I⊗̂I)∗∗, F ′
α = E · Fα ∈ I∗∗, and G′

α = Gα · E ∈ I∗∗.
Then, for i ∈ I,

(i)we consider

σ(i) · μ′
α − μ′

α · σ(i) + F ′
α ⊗ σ(i) − σ(i) ⊗G′

α

= σ(i) · E · μα · E − E · μα · E · σ(i) + E · Fα ⊗ σ(i) − σ(i) ⊗Gα · E
= σ(i) · μα · E − E · μασ(i) + E · Fα ⊗ σ(i) − σ(i) ⊗Gα · E
= E · σ(i) · μα · E − E · μα · σ(i) · E
+ E · Fα ⊗ σ(i) · E − E · σ(i) ⊗Gα · E

= E
(
σ(i) · μα − μα · σ(i) + Fα ⊗ σ(i) − σ(i) ⊗Gα

) · E −→ 0,

(4.46)
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(ii)we consider

σ(i) · F ′
α = σ(i) · E · Fα = σ(i) · Fα −→ σ(i),

G′
α · σ(i) = Gα · E · σ(i) = Gα · σ(i) −→ σ(i)

(4.47)

(iii)we consider

π∗∗(μ′
α

) · σ̂(a) − F ′
α · σ̂(a) −G′

α − σ̂(a)
= π∗∗(E · μα · E

) · σ(a) − E · Fα · σ(a) −Gα · E · σ(a)
= E · π∗∗(μα

) · E · σ(a) − E · Fα · σ(a) −Gα · σ(a)
= E · π∗∗(μα

) · σ(a) − E · Fα · σ(a) −Gα · σ(a) − E ·Gασ(a) + E ·Gασ(a)

= E · (π∗∗(μα
) · σ(a) − Fα.σ(a) −Gασ(a)

)
+ (E − ê)Gασ(a) −→ 0.

(4.48)

An alternative proof would be to follow the standard argument stated in Corollary 4.15.
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