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We consider the practical stability of impulsive differential equations with infinite delay in terms
of two measures. New stability criteria are established by employing Lyapunov functions and
Razumikhin technique. Moreover, an example is given to illustrate the advantage of the obtained
result.

1. Introduction

One of the trends in the stability theory of the solutions of differential equations is the so-
called practical stability, which was introduced by LaSalle and Lefschetz [1]. This is very
useful in estimating the worst-case transient and steady-state responses and in verifying
pointwise in time constraints imposed on the state trajectories. Fundamental results in this
direction were obtained in [2]. In recent years the theory of practical stability and stability
has been developed very intensively [3–7].

The theory of impulsive differential equations is now being recognized to be not
only richer than the corresponding theory of differential equations without impulses, but
also represents a more natural framework for mathematical modelling of many real world
phenomena. Impulsive differential equations and impulsive functional differential equations
have been intensively researched [8–20].

By employing the Razumikhin technique and Lyapunov functions, several stability
criteria are established for general impulsive differential equations with finite delay [5–
7, 14, 21]. Systems with infinite delay deserve study because they describe a kind of system
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present in the real world. For example, it is very useful in a predator-prey system. Therefore,
it is an interesting and complicated problem to study the stability of impulsive functional
differential systemswith infinite delay. Usually, the Lyapunov functions are defined onwhole
components of system’s state x [12–22]. In this paper, we divided the components of x into
several groups and correspondingly, we employ several Lyapunov functions Vj(t, x(j)) (j =

1, 2, . . . , m), where x = (x(1), . . . , x(m))
T
for each x(j). In this way, Lyapunov, functions are

easier constructed, and the conditions ensuring the required stability are less restrictive.
Furthermore, the stability results on impulsive finite delay differential equations considered
in [4, 5] are generalized into the results on impulsive infinite delay differential equations in
terms of two measures.

The work is organized as follows. In Section 2, we introduce some preliminary
definitions which will be employed throughout the paper. In Section 3, based on Lyapunov
functions and Razumikhin method, sufficient conditions for the uniformly practical stability
in terms of two measures are given; an example is presented to illustrate the effectiveness of
the approach.

2. Preliminaries

Consider the following impulsive infinite delay differential equations:

ẋ(t) = f(t, x(s);α ≤ s ≤ t), t ≥ t∗, t /= τk,

Δx(t) � x(t) − x
(
t−
)
= Ik

(
x
(
t−
))
, t = τk, k = 1, 2, . . . ,

(2.1)

where −∞ ≤ α < t∗, α could be −∞, t ∈ R+, f ∈ C[R+ × PC([α, t], Rn), Rn] is a Volterra-
type function. PC([α, t], Rn) denotes the space of piecewise right continuous functions ϕ =
(ϕ1, . . . , ϕn) : [α, t] → Rn with the sup-norm ||ϕ|| = supα≤s≤t|ϕ(s)|, |ϕ(s)| = max1≤j≤n|ϕj(s)|,
f(t, 0) ≡ 0, Ik(0) = 0, 0 = τ0 < τ1 < τ2 < · · · < τk < · · · , τk → ∞ for k → ∞, and
x(t−) = lims→ t− x(s). The functions Ik : Rn → Rn, k = 1, 2, . . ., are such that if ||x|| < H and
Ik(x)/= 0, then ||x + Ik(x)|| < H, where H = const. > 0.

The initial condition for system (2.1) is given by

x(t) = ϕ(t), t ∈ [α, t0], (2.2)

where ϕ ∈ PC([α, t0], Rn), for t0 ≥ t∗.
We assume that a solution for the initial problem (2.1) and (2.2) does exist and is

unique. Since f(t, 0) = 0, then x(t) = 0 is a solution of (2.1), which is called the zero
solution. Let PCρ(t) = {ϕ ∈ PC([α, t], Rn) | ||ϕ|| < ρ}. For convenience, we define |x| :=
max1≤i≤n|xi|, x ∈ Rn;Rα := [α,∞); S(ρ) = {x ∈ Rn : ||x|| < ρ}; S(j)(ρ) = {x ∈ Rnj | ||x|| <
ρ}, K := {W ∈ C[R+, R+],W(0) = 0; W(s) > 0, s > 0}, Γn := {h ∈ C[R+ × Rn, R+] | ∀ t ∈
R+, infx h(t, x) = 0}, Γnα := {h ∈ C[Rα × Rn, R+] | ∀ t ∈ Rα, infx h(t, x) = 0}.

Definition 2.1. A continuous functionw : R+ → R+ is called a wedge function ifw(0) = 0 and
w(s) is (strictly) increasing.
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Definition 2.2. For h0 ∈ Γnα, xt(s) := x(s), s ∈ [α, t] and xt ∈ PC{[α, t], Rn}, for any t ∈ R+, we
define

h̃0(t, xt) = sup
α≤θ≤t

h0(θ, x(θ)). (2.3)

Definition 2.3 (see[22]). Let h0 ∈ Γnα, h ∈ Γn. The impulsive functional differential 1 (2.1), (2.2)
is said to be

(S1) (h̃0, h) practically stable, if given (u, v) with 0 < u < v, we have h̃0(t0, xt0) < u
implies h(t, x) < v, t ≥ t0 for some t0 ∈ R+;

(S2) (h̃0, h) uniformly practically stable if (S1) holds for every t0 ∈ R+.

In what follows, we will split ϕ =∈ PC(ρ) into several vectors, such that Σm
i=1ni =

n and ϕ = (ϕ(1)
1 , . . . , ϕ

(1)
n1 , ϕ

(2)
1 , . . . , ϕ

(2)
n2 , . . . , ϕ

(m)
1 , . . . , ϕ

(m)
nm

)
T
. For convenience, we define ϕ(j) =

(ϕ(j)
1 , ϕ

(j)
2 , . . . , ϕ

(j)
nj
), j = 1, 2, . . . , m, and ϕ = (ϕ(1), ϕ(2), . . . , ϕ(m))

T
. For x = (x1, x2, . . . , xn)

T ∈
Rn, we adopt notation as for ϕ. Similarly, let ||ϕ(j)|| = ‖ϕ(j)‖[α,t] = supα≤s≤t|ϕ(j)|, PC(j)(t) =
{ϕ(j) : [α, t] → Rnj | ϕ(j) is piecewise continuous and bounded} , and S(j)(ρ) = {x ∈ Rnj |
||x|| < ρ}, PC(j)

ρ (t) = {ϕ(j) ∈ PC(j)(t) | ||ϕ(j)|| < ρ}.

3. Main Results

In the sequence, we assume that f is defined on Rα × PCH(t) for some H > 0. For simplicity,
denote Vi(t, x(i)), h(i)(t, x(i)), h(i)

0 (t, x(i)) by Vi(t), h(i)(t), h(i)
0 (t), respectively, 1 ≤ i ≤ m. Now

we start with the case of m = 2. V ′(t) be the right-hand derivative of V (t).

Theorem 3.1. For j = 1, 2, let Φj : R+ → R+ be continuous, Φj ∈ L1[0,∞), Φj(t) ≤ Kj for t ≥ 0
with some constants Kj > 0, and let Wij (i = 1, 2, 3, 4) be wedge functions. If there exist Lyapunov
functions Vj : Rα × S(j)(H) → R+ (j = 1, 2) such that

(i) W1j(h(j)(t)) ≤ Vj(t) ≤ W2j(h
(j)
0 (t)) + W3j[

∫ t
α Φj(t − s)W4j(h

(j)
0 (t))ds], where h

(j)
0 ∈

Γ
nj

α , h(j) ∈ Γnj ;

(ii) when V1(t) ≥ V2(t), there holds V ′
1(t) ≤ 0 if V1(s) < V1(t) for s ∈ [α, t]; when V2(t) ≥

V1(t), there holds V ′
2(t) ≤ 0 if V2(s) < V2(t) for s ∈ [α, t];

(iii) Vj(τk) ≤ (1 + bk)Vj(τ−k ), k = 1, 2, . . . , bk ≥ 0, and
∑∞

k=1 bk < ∞;

(iv) 0 < u < v are given, φ(j)(u) < v; when h̃
(j)
0 (t, x(j)

t ) < u, there holds h(j)(t) ≤
φ(j)(h̃(j)

0 (t, x(j)
t )), where φ(j) are wedge functions, and x(t) = (x(1)(t), x(2)(t)) is a solution

of (2.1) and (2.2).

Then the zero solution of (2.1) and (2.2) is (h̃0, h) uniformly practically stable with respect to (u, v).

Proof. Since bk ≥ 0, and
∑∞

k=1 bk < ∞, it follows that there exists some M > 0, such that∏∞
k=1(1 + bk) = M and 1 ≤ M < ∞. Define a function V (t) for all t ≥ α

V (t) = V1(t) if V1(t) ≥ V2(t); V (t) = V2(t) if V2(t) ≥ V1(t). (3.1)
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We claim first that for any t ≥ α

[
W11

(
h(1)(t)

)
+W12

(
h(2)(t)

)]

2
≤ V (t) ≤ W21

(
h
(1)
0 (t)

)
+W22

(
h
(2)
0 (t)

)

+W31

∫ t

α

Φ1(t − s)W41

(
h
(1)
0 (t)

)
ds

+W32

∫ t

α

Φ2(t − s)W42

(
h
(2)
0 (t)

)
ds.

(3.2)

In fact, if V1(t) ≥ V2(t), then by (3.1) and condition (i), V (t) = V1(t) ≥ [V1(t) + V2(t)]/2 ≥
[W11(h(1)(t)) +W12(h(2)(t))]/2; whereas, if V2(t) ≥ V1(t), it also holds. On the other hand, the
right-hand inequality in (3.2) is trivially valid.

Step 1. we aim to show that for each t ≥ t0,

V ′(t) ≤ 0, if V (s) ≤ V (t), s ∈ [α, t], t /= τk,

V (τk) ≤ (1 + bk)V
(
τ−k

)
, k = 1, 2, . . .

(3.3)

Indeed, suppose V1(t0) ≥ V2(t0) and there exists some t1 > t0 such that for t ∈ [t0, t1], V1(t) ≥
V2(t). Then by (3.1), V (t) = V1(t), t ∈ [t0, t1].

Case 1. If t = τj for some j ∈ Z+, then By (iii) V (τj) = V1(τj) ≤ (1 + bj)V1(τ−j ) = (1 + bj)V (τ−j ).

Case 2. t /= τj for any j ∈ Z+, and V (s) ≤ V (t), s ∈ [α, t]. Then if V1(s) ≤ V2(s) we have
V (s) = V2(s). Clearly, V (s) ≤ V (t) implies V1(s) ≤ V2(s) = V (s) ≤ V (t) = V1(t). If V1(s) ≥
V2(s) we have V (s) = V1(s). Obviously, V (s) ≤ V (t) implies V1(s) = V (s) ≤ V (t) = V1(t). In
conclusion, V (s) ≤ V (t), s ∈ [α, t], t /= τk, implies V1(s) ≤ V1(t), s ∈ [α, t], t /= τk. So by (ii)
we have V ′(t) = V ′

1(t) ≤ 0.
If t1 = ∞ we arrive at the assertion that (3.3) is true for all t ≥ t0. Otherwise, there

exists a t2 > t1 such that V1(t) ≤ V2(t), t ∈ [t1, t2]. When t1 = τi for some i ∈ Z+ we have
V1(τ−i ) ≥ V2(τ−i ) and V1(τi) ≤ V2(τi). In this case, by (iii) we have V (τi) = V2(τi) ≤ (1 +
bi)V2(τ−i ) ≤ (1 + bi)V (τ−i ). When t1 /= τi for any i ∈ Z+, we set V (t) = V2(t) for t ∈ [t1, t2].

By the similar analysis to Cases 1 and 2, we also have (3.3) when t, τk ∈ [t1, t2].
If t2 = ∞ then (3.3) holds for all t ≥ t0. Otherwise, repeat the above argument to arrive

at the assertion that (3.3) is valid for all t ≥ t0. As for the case of V1(t) ≤ V2(t) for t ∈ [t0, t1],
the process is similar and thus omitted.

For any t0 ∈ R+, we assume there is a unique solution of (2.1), (2.2) through (t0, ϕ).
Furthermore, we denote

h(t, x(t)) := max
{
h(j)(t), j = 1, 2

}
; h̃0(t) := max

{
h̃
(j)
0

(
t, x

(j)
t

)
, j = 1, 2

}
. (3.4)
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If (t0, xt0) ∈ R+ × PC([α, t0], Rn), such that h̃0(t0, xt0) < u. By condition (iv),

h(j)(t0) ≤ φ(j)
(
h̃
(j)
0 (t0)

)
< φ(j)(u) < v. (3.5)

From the definition of h(t, x(t)), we have h(t0, x(t0)) < v.
Let v∗ = (1/M)min{W11(v),W12(v)}, we assume W2j(u) < v∗/8 and W3j(Jj ×

W4j(u)) < v∗/8, where Jj =
∫∞
0 Φj(s)ds, j = 1, 2.

Step 2. We aim to prove that V (t) ≤ Mv∗/2, for all t ≥ t0.
First, for any t ∈ [α, t0], fromDefinition 2.2 and condition (iv), we know h

(j)
0 (t, x(j)(t)) ≤

h̃
(j)
0 (t0, x

(j)
t0
) < u. Then by (3.2), Vj(t) ≤ W21(u) +W22(u) +W31(J1W41(u)) +W32(J2W42(u)) <

v∗/2 for t ∈ [α, t0]. Hence, V (t) ≤ v∗/2, t ∈ [α, t0].
Assume τl is the first impulse of all τi, i ∈ Z+ such that t0 < τi. Now we claim that

V (t) ≤ v∗

2
for t0 ≤ t < τl. (3.6)

If it does not hold, then there is a t̂ ∈ (t0, τl) such that V (t̂) > v∗/2 and V ′(t̂) > 0, V (t) ≤
V (t̂) for t ∈ [α, t̂]. From (3.3) we have V ′(t̂) ≤ 0. It is a contradiction, so (3.6) holds.

Without loss of generality, we assume V1(τl) ≤ V2(τl), then V (τl) = V2(τl); from
inequality (3.6) and condition (iii) we have V (τl) = V2(τl) ≤ (1 + bl)V2(τ−l ) ≤ (1 + bl)v∗/2.
Thus,

V (τl) ≤ (1 + bl)
v∗

2
. (3.7)

Similarly, with the process in proving (3.6) and (3.7), we have

V (t) ≤ (1 + bl)
v∗

2
for τl ≤ t < τl+1; V (τl+1) ≤ (1 + bl+1)(1 + bl)

v∗

2
. (3.8)

By simple induction, we can prove that, in general

V (t) ≤ (1 + bl+i+1) · · · (1 + bl)
v∗

2
for τl+i ≤ t ≤ τl+i+1. (3.9)

Taking this together with (3.2) and
∏∞

k=1(1 + bk) = M, we have

[
w11

(
h(1)(t)

)
+w12

(
h(2)(t)

)]

2
≤ V (t) ≤ M

v∗

2
, ∀t ≥ t0. (3.10)

Since Mv∗ = min{w11(v), w12(v)}, we have

w1j

(
h(j)(t)

)
≤ w1j(v), that is, h(j)(t) ≤ v, j = 1, 2, ∀t ≥ t0. (3.11)

Therefore, by the definition of h(t, x), we have h(t, x) ≤ v. Thus the zero solution of (2.1),
(2.2) with respect to (u, v) is (h̃0, h)-uniformly practically stable.
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Remark 3.2. Since in our result αmay be −∞ and the upper bound of the Lyapunov functions
in our paper is improved by w3j , j = 1, 2, the result we have obtained is more general than
that in [4–7, 14]with or without finite delay; furthermore, we have divided the components of
x into several groups, correspondingly, several Lyapunov functions Vj(t, x(j)) (j = 1, 2, . . . , m)

are employed, where x = (x(1), . . . , x(m))
T
for each x(j). In this way, construction of the

suitable Lyapunov functions is much easier than for x as [4, 6, 7, 10]. In additional, compared
with [9, 12] where the infinite delay was considered in the Lyapunov stability of differential
equations, we obtain the uniformly practical stability in terms of two measures.

Now, we may develop the ideas behind Theorem 3.1 to obtain the following more
general results.

Theorem 3.3. For j = 1, 2, . . . , m, let Φj : R+ → R+ be continuous, Φj ∈ L1[0,∞), Φj(t) ≤ Kj for
t ≥ 0 with some constants Kj > 0, and let Wij (i = 1, 2, 3, 4) be wedge functions. If there also exist
Lyapunov functions Vj : Rα × S(j)(H) → R+ such that

(i) W1j(h(j)(t)) ≤ Vj(t) ≤ W2j(h
(j)
0 (t)) + W3j[

∫ t
α Φj(t − s)W4j(h

(j)
0 (t))ds], where h

(j)
0 ∈

Γ
nj

α , h(j) ∈ Γnj ;

(ii) when Vl(t) = max{Vj(t) | j = 1, 2, . . . , m}, there holds V ′
l (t) ≤ 0 if Vl(s) < Vl(t) for

s ∈ [α, t]; l = 1, 2, . . . , m;

(iii) Vj(τk) ≤ (1 + bk)Vj(τ−k ), k = 1, 2, . . . , bk ≥ 0, and
∑∞

k=1 bk < ∞;

(iv) 0 < u < v are given, φ(j)(u) < v; when h̃
(j)
0 (t, x(j)

t ) < u, h(j)(t) ≤ φ(j)(h̃(j)
0 (t, x(j)

t )) where
φ(j) are wedge functions, and x(t) = (x(1)(t), . . . , x(m)(t)) is a solution of (2.1) and(2.2).

Then the zero solution of (2.1) and (2.2) is (h̃0, h)-uniformly practically stable.

It suffices to mention a few points in the proofs of Theorem 3.3, the rest are the same
as in the proofing of Theorem 3.1, thus, are omitted.

First, for x(t) = (x(1)(t), . . . , x(m)(t)), we define

V (t) = Vl(t), Vl(t) = max
{
Vj(t) | j = 1, 2, . . . , m

}
; (3.12)

Second, instead of (3.2)we can claim that for any t ≥ α

∑m
j=1 W1j

(
h(j)(t)

)

m
≤ V (t) ≤

m∑

j=1

W2j

(
h
(j)
0 (t)

)
+

m∑

j=1

W3j

∫ t

α

Φj(t − s)W4j

(
h
(j)
0 (t)

)
ds. (3.13)

Example 3.4. Consider the equation

x′
1(t) = −a1(t)x1(t) + a2(t)x2(t) + b1(t)x1(t − r1(t)) +

∫0

−∞
g1(t, u, x1(t + u))du, t /= tk,

x′
2(t) = c1(t)x1(t) − c2(t)x2(t) + b2(t)x2(t − r2(t)) +

∫0

−∞
g2(t, u, x2(t + u))du, t /= tk,

xi(tk) − xi

(
t−k
)
= Ik

(
xi

(
t−k
))
, k ∈ Z+, i = 1, 2,

(3.14)
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where |x + Ik(x)|2 ≤ (1 + bk)
2x2, with bk ≥ 0,

∑∞
k=1 bk < ∞. Let M =

∏∞
k=1(1 + bk) < ∞.

ai, bi, ci, ri and gi (i = 1, 2) are all continuous functions.

We first assume that ri(t) ≥ 0 and |gi(t, u, x)| ≤ mi(u)|x|, t ≥ 0, i = 1, 2, with
∫0
−∞ m1(u)du ≤ a1(t)− |a2(t)| − |b1(t)|, and

∫0
−∞ m2(u)du ≤ c2(t)− |c1(t)| − |b2(t)|. Without loss of

generality, we may assume that the right-hand sides of (3.14) are defined on R × PC1(t), then
set α = −∞ and t∗ = 0.

Let Vj(t, xj(t)) = x2
j (t), h

(j)
0 (t, xj) = x2

j (t), w1j(s) = (1/2)s, w2j(s) = 2s, then from the

definition h̃
(j)
0 (t, xjt) = sup−∞<θ≤t x

2
j (θ) = ||x2

jt
||, j = 1, 2. For given 0 < u < v, we assume

||x2
jt
|| < u implies that there exists a K ∈ R+ such that x2

j (t) < Kx2
j (θ) for any θ ∈ (−∞, t]. Let

h(j)(t, xj) = x2
j (t)/(K + 1), φ(i)(t) = (K/(K + 1))t, then φ(i)(u) < u < v; furthermore, when

h̃
(j)
0 (t, xjt) = ||x2

jt
|| < u, then for θ ∈ (−∞, t],

h(j)(t, xj

)
=

x2
j (t)

K + 1
≤ K

K + 1
x2
j (θ) ≤

K

K + 1

∣∣∣
∣∣∣x2

jt

∣∣∣
∣∣∣ = φ(j)

(
h̃
(j)
0

(
t, xjt

))
, (3.15)

so conditions (i) and (iv) in Theorem 3.1 are verified.
Moreover, when V1(t) ≥ V2(t), that is, |x1(t)| ≥ |x2(t)|, and for s ∈ (−∞, t], V1(s) ≤

V1(t), we have

V ′
1(t) = − 2a1(t)x2

1(t) + 2a2(t)x1(t)x2(t) + 2b1(t)x1(t)x1(t − r1(t))

+ 2x1(t)
∫0

−∞
g1(t, u, x1(t + u))du

≤ − 2

[

a1(t) − |a2(t)| − |b1(t)| −
∫0

−∞
m1(u)du

]

x2
1(t) ≤ 0,

(3.16)

similarly, when V1(t) ≤ V2(t) and for s ∈ (−∞, t], V2(s) ≤ V2(t), we also have V ′
2(t) ≤ 0. Thus,

condition (ii) in Theorem 3.1 is satisfied and the zero solution of system (3.14) is (h̃0, h)-
uniformly practically stable.

It is easy to see that if we put two variables x1, x2 in one Lyapunov function, then
the arguments to get the desired stability conclusions would be much more complicated and
the imposed conditions would be more restrictive. Furthermore, we extend the uniformly
practically stable results to the infinite delay systems, and it is easy to see that the criteria in
[3–10] are limited to judge the practical stability of Example 3.4.
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