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We study Genocchi, Euler, and tangent numbers. From those numbers we derive some identities
on Eulerian polynomials in connection with Genocchi and tangent numbers.

1. Introduction

As is well known, the Eulerian polynomials, An(t), are defined by generating function as
follows:

1 − t

exp(x(t − 1)) − t
= eA(t)x =

∞∑

n=0

An(t)
xn

n!
, (1.1)

with the usual convention about replacing An(t) by An(t) (see [1–18]). From (1.1), we note
that

(A(t) + (t − 1))n − tAn(t) = (1 − t)δ0,n, (1.2)

where δn,k is the Kronecker symbol (see [3]).
Thus, by (1.2), we get

A0(t) = 1, An(t) =
1

t − 1

n−1∑

l=0

(
n
l

)
Al(t)(t − 1)n−l, (n ≥ 1). (1.3)



2 Abstract and Applied Analysis

By (1.1), (1.2), and (1.3), we see that

m∑

i=1

inti =
n∑

l=1

(−1)n+l
(
n
l

)
tm+1An−l(t)

(t − 1)n−l+1
ml + (−1)n t(t

m − 1)

(t − 1)n+1
An(t), (1.4)

where m ≥ 1 and n ≥ 0 (see [1]).
The Genocchi polynomials are defined by

2t
et + 1

ext = eG(x)t =
∞∑

n=0

Gn(x)
tn

n!
, (1.5)

(see [6–18]). In the special case, x = 0, Gn(0) = Gn are called the nth Genocchi numbers (see
[14, 17, 18]).

It is well known that the Euler polynomials are also defined by

2
et + 1

ext = eE(x)t =
∞∑

n=0

En(x)
tn

n!
, (1.6)

(see [1–5, 19–24]). Here x = 0, then En(0) = En is called the nth Euler number. From (1.6), we
have

E0 = 1, (E + 1)n + En = 2δ0,n, (1.7)

(see [3–5, 19–23]).
As is well known, the Bernoulli numbers are defined by

B0 = 1, (B + 1)n − Bn = δ0,n, (1.8)

(see [5, 18, 19]), with the usual convention about replacing Bn by Bn.
From (1.8), we note that the Bernoulli polynomials are also defined as

Bn(x) =
n∑

l=0

(
n
l

)
Blx

n−l = (B + x)n, (1.9)

(see [5, 18, 19]).
The tangent numbers T2n−1 (n ≥ 1) are defined as the coefficients of the Taylor

expansion of tan x:

tan x =
∞∑

n=1

T2n−1
(2n − 1)!

x2n−1 =
x

1!
+
x3

3!
2 +

x5

5!
16 + · · · , (1.10)

(see [1–3, 5]).
In this paper, we give some identities on the Eulerian polynomials at t = −1 associated

with Genocchi, Euler, and tangent numbers.
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2. Witt’s Formula for Eulerian Polynomials

In this section, we assume that Zp, Qp, and Cp will, respectively, denote the ring of p-adic
integers, the field of p-adic numbers, and the completion of algebraic closure of Qp. The p-
adic norm is normalized so that |p|p = 1/p.

Let q be an indeterminate with |1 − q|p < 1. Then the q-number is defined by

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

, (2.1)

(see [6–18]).
Let C(Zp) be the space of continuous functions on Zp. For f ∈ C(Zp), the fermionic

p-adic q-integral on Zp is defined by

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN

]
−q

pN−1∑

x=0

f(x)
(−q)x, (2.2)

(see [7, 10–13]). From (2.2), we can derive the following:

q−1I−q−1
(
f1
)
+ I−q−1

(
f
)
= [2]q−1f(0), (2.3)

where f1(x) = f(x + 1).
Let us take f(x) = e−x(1+q)t. Then, by (2.3), we get

(
q + e−(1+q)t

q

)∫

Zp

e−x(1+q)tdμ−q−1(x) = [2]q−1 . (2.4)

Thus, from (2.4), we have

∫

Zp

e−x(1+q)tdμ−q−1(x) =
1 + q

e−(1+q)t + q
=

∞∑

n=0

An

(−q) t
n

n!
. (2.5)

By Taylor expansion on the left-hand side of (2.5), we get

∞∑

n=0
(−1)n

∫

Zp

xndμ−q−1(x)
(
1 + q

)n tn

n!
=

∞∑

n=0

An

(−q) t
n

n!
. (2.6)

Comparing coefficients on the both sides of (2.6), we have

∫

Zp

xndμ−q−1(x) =
(−1)n

(
1 + q

)nAn

(−q). (2.7)

Therefore, by (2.7), we obtain the following theorem.



4 Abstract and Applied Analysis

Theorem 2.1. For n ∈ Z+, one has

∫

Zp

xndμ−q−1(x) =
(−1)n

(
1 + q

)nAn

(−q), (2.8)

where An(−q) is an Eulerian polynomials.

It seems interesting to study Theorem 2.1 at q = 1. By (2.3), we get

I−1
(
f1
)
+ I−1

(
f
)
= 2f(0), (2.9)

where f1(x) = f(x + 1). From (2.9), we can derive the following equation:

∫

Zp

f(x + n)dμ−1(x) + (−1)n−1
∫

Zp

f(x)dμ−1(x) = 2
n−1∑

l=0

(−1)n−l+1f(l), (2.10)

where n ∈ Z+ (see [5–13]).
From (2.9), we can derive the following:

0 =
∫

Zp

sin a(x + 1)dμ−1(x) +
∫

Zp

sin axdμ−1(x)

= (cos a + 1)
∫

Zp

sin axdμ−1(x) + sin a

∫

Zp

cosaxdμ−1(x),

2 =
∫

Zp

cos a(x + 1)dμ−1(x) +
∫

Zp

cos axdμ−1(x)

= (cos a + 1)
∫

Zp

cos axdμ−1(x) − sin a

∫

Zp

sin axdμ−1(x).

(2.11)

By (2.11), we get

∫

Zp

sin axdμ−1(x) = − sin a

cos a + 1
= − tan

a

2
. (2.12)

From (1.10) and (2.12), we have

∞∑

n=1

T2n−1
(2n − 1)!

(a
2

)2n−1
= −

∫

Zp

sinaxdμ−1(x) =
∞∑

n=1

(−1)na2n−1

(2n − 1)!

∫

Zp

x2n−1dμ−1(x). (2.13)
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By comparing coefficients on the both sides of (2.13), we get

∫

Zp

x2n−1dμ−1(x) = (−1)n T2n−1
22n−1

, for n ∈ N, (2.14)

where T2n−1 is the (2n − 1)th tangent number.
Therefore, by (2.14), we obtain the following theorem.

Theorem 2.2. For n ∈ N, one has

∫

Zp

x2n−1dμ−1(x) = (−1)n T2n−1
22n−1

, (2.15)

where T2n−1 is the (2n − 1)th tangent numbers.

From Theorem 2.1, one has

∫

Zp

xndμ−1(x) =
(−1)n
2n

An(−1). (2.16)

Therefore, by Theorem 2.2 and (2.16), we obtain the following corollary.

Corollary 2.3. For n ∈ N, one has

A2n−1(−1) = (−1)n−1T2n−1. (2.17)

From (1.6) and (2.9), we have

∫

Zp

extdμ−1(x) =
2

et + 1
=

∞∑

n=0

En
tn

n!
, (2.18)

(see [5]). Thus, by (2.16) and (2.18), we get

∫

Zp

x2n−1dμ−1(x) = E2n−1 = (−1)n T2n−1
22n−1

. (2.19)

Therefore, by Corollary 2.3 and (2.19), we obtain the following corollary.

Corollary 2.4. For n ∈ N, one has

E2n−1 = (−1)n T2n−1
22n−1

= −A2n−1(−1)
22n−1

. (2.20)
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By (1.5) and (2.9), we get

t

∫

Zp

extdμ−1(x) =
2t

e2t − 1
et − 2t

e2t − 1

=
∞∑

n=0

Bn

(
1
2

)
2n

tn

n!
−

∞∑

n=0

2nBn

n!
tn

=
∞∑

n=0

(
Bn

(
1
2

)
− Bn

)
2n

tn

n!
.

(2.21)

By (2.21), we get

∫

Zp

xndμ−1(x) =
(Bn+1(1/2) − Bn+1)

n + 1
2n+1. (2.22)

Thus, from (2.19), Theorem 2.2 and Corollary 2.3, we have

(B2n(1/2) − B2n)22n

2n
= (−1)n T2n−1

22n−1
= −A2n−1(−1)

22n−1
. (2.23)

Therefore, by (2.23), we obtain the following theorem.

Theorem 2.5. For n ∈ N, one has

(B2n(1/2) − B2n)22n

n
= (−1)n T2n−1

22n−2
= −A2n−1(−1)

22n−2
. (2.24)

From (1.5), we note that

t

∫

Zp

extdμ−1(x) =
2t

et + 1
=

∞∑

n=0

Gn
tn

n!
(2.25)

(see [13, 14]). Thus, by (2.25), we get

G0 = 0, (G + 1)n +Gn = 2δ1,n, (2.26)

(see [13, 14]), with the usual convention about replacing Gn by Gn.
From (1.5) and (2.9), one has

t

∫

Zp

extdμ−1(x) = 2
(

t

et − 1
− 2t
e2t − 1

)

= 2
∞∑

n=0
(Bn − 2nBn)

tn

n!
.

(2.27)
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Thus, by (2.27), we get

∫

Zp

xndμ−1(x) = 2

(
Bn+1 − 2n+1Bn+1

n + 1

)
. (2.28)

From (2.28), we have

G2n

2n
=
∫

Zp

x2n−1dμ−1(x) =
B2n − 22nB2n

n
, for ∈ N. (2.29)

Therefore, by (2.19), Corollary 2.3 and (2.29), we obtain the following theorem.

Theorem 2.6. For n ∈ N, we have

G2n = 2
(
B2n − 22nB2n

)
. (2.30)

In particular,

−1
22n−1

(A2n−1(−1)) =
(
(−1)nT2n−1

) 1
22n−1

=
G2n

2n
. (2.31)

3. Further Remark

In complex plane, we note that

tan x =
1
i

(
eix − e−ix

eix + e−ix

)
=

1
i

(
1 − 2e−ix

eix + e−ix

)

=
1
i

(
1 −

∞∑

n=0

En

n!
2ninxn

)
=

1
i

(
−

∞∑

n=1

En

n!
2ninxn

)

=
∞∑

n=1

(−1)n
(2n − 1)!

E2n−122n−1x2n−1.

(3.1)

By (1.10) and (3.1), we also get

T2n−1 = (−1)nE2n−122n−1, for n ∈ N. (3.2)
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From (1.5), we have

∞∑

n=1

t2n

(2n)!
G2n =

∞∑

n=1

(it)2n

(2n)!
(−1)nG2n =

2it
1 + eit

− it

=
it
(
1 − eit

)

1 + eit
=

it
(
e−it/2 − eit/2

)

eit/2 + e−it/2
= t

((
eit/2 − e−it/2

)
/2i

(
eit/2 + e−it/2

)
/2

)

= t tan
(
t

2

)
.

(3.3)

Thus, by (1.10) and (3.3), we get

∞∑

n=1

t2n

(2n)!
G2n = t tan

(
t

2

)
= t

∞∑

n=1

(t/2)2n−1

(2n − 1)!
T2n−1 =

∞∑

n=1

t2n

(2n − 1)!22n−1
T2n−1. (3.4)

From (3.4), we have

nT2n−1 = 22n−2G2n = 22n−1
(
1 − 22n

)
B2n. (3.5)

By (1.1), we see that

2
1 + e−2it

=
∞∑

n=0

An(−1) i
ntn

n!
. (3.6)

Thus, we note that

∞∑

n=1

in−1An(−1) t
n

n!
=

1
i

(
2

1 + e−2it
− 1

)
=

1 − e−2it

(1 + e−2it)i
=

((
eit − e−it

)
/2

)

((eit + e−it)/2)i

= tan t =
∞∑

n=1

T2n−1
t2n−1

(2n − 1)!
.

(3.7)

From (3.7), we have

A2n(−1) = 0, A2n−1(−1) = (−1)n−1T2n−1, (n ≥ 1). (3.8)

It is easy to show that

m∑

k=1

kn(−1)k = (−1)m
n∑

k=0

(
n
k

)
Ak(−1)
2k+1

mn−k −
{
(−1)m − 1

}

2n+1
An(−1). (3.9)
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For simple calculation, we can derive the following equation:

i tan x =
eix − e−ix

eix + e−ix
= 1 − 2

e2ix − 1
+

4
e4ix − 1

. (3.10)

By (3.10), we get

x tan x = −ix +
2ix

e2ix − 1
− 4ix
e4ix − 1

=
∞∑

n=1

(−1)nB2n4n(1 − 4n)
(2n)!

x2n. (3.11)

Thus, from (3.11),we have

tan x =
∞∑

n=1

(−1)nB2n4n(1 − 4n)
(2n)!

x2n−1. (3.12)

By (1.10) and (3.12), we get

T2n−1 =
(−1)nB2n4n(1 − 4n)

2n
, for n ∈ N. (3.13)

From Corollary 2.3 and (3.13), we can derive the following identity:

A2n−1(−1) = −B2n22n−1(1 − 4n)
n

. (3.14)
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