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We consider a class of nonautonomous stochastic evolution equations in real separable Hilbert
spaces. We establish a new composition theorem for square-mean almost automorphic functions
under non-Lipschitz conditions. We apply this new composition theorem as well as intermediate
space techniques, Krasnoselskii fixed point theorem, and Banach fixed point theorem to investigate
the existence of square-mean almost automorphic mild solutions. Some known results are
generalized and improved.

1. Introduction

The concept of almost periodicity is of great importance in probability for investigating
stochastic processes [1–3]. The basic results on the almost periodic functions and their
applications to deterministic differential equations may refer to [4, 5] and references therein.
The concept of almost automorphy introduced initially by Bochner [6] is an important
generalization of the classical almost periodicity. Since then, there has been an intense interest
in studying several extensions of this concept such as asymptotic almost automorphy, p-
almost automorphy, and Stepanov-like almost automorphy (see [5, 7–9] and references
therein). Much of the motivation has come frommathematical physics, mathematical biology,
and various fields of science and engineering [10–12].

Besides, it should be pointed out that noise or stochastic perturbation is unavoidable
and omnipresent in nature as well as that in man-made systems. Therefore, we must import
the stochastic effects into the investigation of differential systems. In fact, the existence of
almost periodic solutions for stochastic differential systems has been thoroughly investigated
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(see [13–17] and reference therein) while the existence of almost automorphic solutions for
stochastic version has been in growing state. More precisely, in [18], the concept of square-
mean almost automorphic process was introduced and investigated. Particularly, such a
concept was utilized to study the existence and stability of square-mean almost automorphic
mild solutions for a class of stochastic differential equations of the form

dx(t) = Ax(t) + f(t, x(t))dt + g(t, x(t))dW(t), t ∈ R, (1.1)

in a Hilbert space; Chang et al. [19] extended the results in [18] to nonautonomous stochastic
differential equations in Hilbert spaces; in [20], the square-mean pseudo almost automorphic
process and its application to (1.2) were investigated; in [21], existence and exponential
stability of almost automorphic mild solutions were considered to a class of stochastic
differential equations with finite delay of the form

dx(t) = Ax(t) + f(t, x(t), xt)dt + g(t, x(t), xt)dW(t), t ∈ R; (1.2)

one can also see [22, 23] for the existence of square-mean almost automorphic mild solutions
of stochastic differential equations.

In this paper, we consider a general setting; that is, we make extensive use
of intermediate space techniques to investigate the existence of square-mean almost
automorphic mild solutions to the class of abstract nonautonomous neutral stochastic
evolution equations of the form

d
[
x(t) + g(t, B1x(t))

]
= [A(t)x(t) + b(t, B2x(t))]dt + σ(t, B3x(t))dW(t), t ∈ R, (1.3)

where A(t) : D(A(t)) ⊂ L2(P,H) → L2(P,H) is a family of closed linear operators whose
corresponding analytic semigroup is exponential dichotomy, Bi, i = 1, 2, 3, are bounded
operators, W(t) is a Q-Brownian motion defined on a probability space (Ω,F, P) with a
filtration Ft = σ{(W(u) − W(v)) : u, v ≤ t}, and g : L2(P,H) → L2(P,Hβ), b : L2(P,H) →
L2(P,H), and σ : L2(P,H) → L2(P,L0

2(K,H)) are jointly continuous functions to be specified
later.

The rest of this paper is organized as follows. In Section 2 we present some basic
notations and preliminary results. Section 3 is devoted to the study of existence of almost
automorphic mild solutions for systems (1.3).

2. Preliminaries

For more details on this section, we refer to Da Prato et al. [24], Diagana [8], and Fu-
Liu [18]. Throughout this paper, we assume that (H, ‖ · ‖), (K, ‖ · ‖K) are real separable
Hilbert spaces and (Ω,F, {Ft}t≥0, P) is supposed to be a filtered complete probability space.
Denote by L2(P,H) the Banach space of all H-valued random variables x such that E‖x‖2 =∫
Ω ‖x‖2dP < +∞ endowed with the norm ‖x‖2 = (E‖x‖2)1/2. If K1, K2 are Banach spaces, we
denote by L(K1, K2) the Banach spaces of bounded linear operators fromK1 toK2 equipped
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with natural operator norm; when K1 = K2, this is simply denoted by L(K1). Furthermore,
L0

2(K,H) denotes the space of all Q-Hilbert-Schmidt operators from K toH with the norm

|ξ|2L0
2
:= tr(ξQξ∗) < ∞, ξ ∈ L(K,H). (2.1)

For t ∈ R, A(t) : D(A(t)) ⊂ L2(P,H) → L2(P,H) is a family of closed linear
operators (not necessarily densely defined) satisfying the so-called Acquistapace-Terreni
conditions (ATCs for short; see Lemma 2.3). If L is a linear operator on H, then the symbols
D(L), ρ(L), σ(L),N(L), R(L) stand, respectively, for the domain, resolvent set, spectrum,
kernel, and range of L. We also set R(λ, L) := (λI − L)−1 for all λ ∈ ρ(A) and Q = I − P
for a projection P .

Definition 2.1. A family of bounded linear operators {U(t, s) : t ≥ s, t, s ∈ R} on L2(P,H)
associated with A(t) is said to be an evolution family of operators if the following conditions
hold:

(i) U(t, s)U(s, r) = U(t, r) for all t, s, r ∈ R, such that t ≥ s ≥ r;

(ii) U(t, t) = I, for t ∈ R;

(iii) (t, s) → U(t, s) ∈ L(L2(P,H)) is strongly continuous, for t > s;

(iv) U(·, s) ∈ C′((s,∞),L(H)) and

∂

∂t
U(t, s) = A(t)U(t, s). (2.2)

Definition 2.2 (see [8]). One says that an evolution family {U(t, s) : t ≥ s, t, s ∈ R} is
exponential dichotomy (or hyperbolic) if there are projections P(t), t ∈ R, being uniformly
bounded and strongly continuous in t and constants δ > 0 and N ≥ 1 such that

(1) U(t, s)P(s) = P(t)U(t, s);

(2) the restriction UQ(t, s) : Q(s)H → Q(t)H of U(t, s) is invertible, and we set
UQ(s, t) := UQ(t, s)

−1;

(3) ‖U(t, s)P(s)‖ ≤ Ne−δ(t−s)‖ and ‖UQ(s, t)Q(t)‖ ≤ Ne−δ(t−s), for t ≥ s, t, s ∈ R.

IfU has an exponential dichotomy, then the operator family

Γ(t, s) :=

{
U(t, s)P(s), t ≥ s, t, s ∈ R;
−UQ(t, s)Q(s), t < s, t, s ∈ R

(2.3)

is called Green’s function corresponding to U and P(·). If P(t) = I for t ∈ R, then U is
exponentially stable.

The following lemma holds by [25].
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Lemma 2.3. IfA(t) satisfy the ATCs; that is, there exists a positive constant λ0 such that the operator
A(t), t ∈ R, satisfying

Σθ ∪ {0} ⊆ ρ(A(t) − λ0), ‖R(λ,A(t) − λ0)‖ ≤ K

1 + |λ| ,

‖(A(t) − λ0)R(λ0, A(t) − λ0)[R(λ0, A(t)) − R(λ0, A(s))]‖ ≤ L|t − s|μ|λ|−ν
(2.4)

for t, s ∈ R, λ ∈ Σθ := {λ ∈ C − {0} : | argλ| ≤ θ} and constants θ ∈ (π/2, π), L,K ≥ 0,
μ, ν ∈ (0, 1] with μ + ν > 1, then there exists a unique evolution family {U(t, s) : t ≥ s, t, s ∈ R} on
L2(P,H).

Definition 2.4 (see [26]). A linear operator A : D(A) ⊂ H → H (not necessarily densely
defined) is said to be sectorial if the following hold.

There exist constants ζ ∈ R, θ ∈ (π/2, π) and M > 0 such that

ρ(A) ⊃ Sθ,ζ :=
{
λ ∈ C : λ/= ζ,

∣∣arg(λ − ζ)
∣∣ < θ

}
,

‖R(λ,A)‖ ≤ M

|λ − ζ| , λ ∈ Sθ,ζ.
(2.5)

Let A be a sectorial operator onH and α ∈ (0, 1). Define the real interpolation space

HA
α :=

{
x ∈ H : ‖x‖Aα := sup‖rα(A − λ0)R(r,A − λ0)x‖ < ∞

}
; (2.6)

it is a Banach space endowed with the norm ‖ · ‖Aα . Given a family of linear operators A(t),
t ∈ R, for α ∈ [0, 1], we set Ht

α := H
A(t)
α with the corresponding norms.

The following estimates for the evolution family U appeared in [8] are useful.

Lemma 2.5. For x ∈ H, 0 ≤ α ≤ 1 and t > s, there exist some constants c(α),m(α) such that

‖U(t, s)P(s)x‖tα ≤ c(α)e−(δ/2)(t−s)‖x‖, (2.7)
∥∥∥ŨQ(s, t)Q(t)x

∥∥∥
s

α
≤ m(α)e−δ(t−s)‖x‖. (2.8)

Throughout the rest of this paper, we assume that the following conditions on A(·)
and U hold:

(C1) ATCs are satisfied and the evolution familyU generated byA(·) has an exponential
dichotomy with constantsN,δ and dichotomy projections P(t) for t ∈ R. Moreover,
0 ∈ ρ(A(t)) for each t ∈ R and the following holds:

sup
t,s∈R

∥∥∥A(s)A−1(t)
∥∥∥
L(H,Hα)

≤ c0 (2.9)
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(C2) there exists 0 < α < β < 1 with 2β > α + 1 such that

Ht
α = Hα, Ht

β = Hβ, (2.10)

for all t ∈ R, with uniform equivalent norms. And there exist constants k(α), k1 such
that

E‖x‖2 ≤ k1E‖x‖2α, x ∈ L2(P,Hα),

E‖x‖2α ≤ k(α)E‖x‖2β, x ∈ L2(P,Hβ

)
.

(2.11)

Lemma 2.6 (see [8]). Under the above assumptions, there exist constants m(α, β), n(α, β) > 0 such
that

‖A(s)U(t, s)P(s)x‖α ≤ n
(
α, β
)
(t − s)−αe−(δ/2)(t−s)‖x‖β, t > s,

∥∥∥A(s)ŨQ(t, s)Q(s)x
∥∥∥
α
≤ m
(
α, β
)
e−δ(s−t)‖x‖β, t ≤ s.

(2.12)

We recall some basic definitions and results of square-mean almost automorphic
processes (see [18, 19]).

Let (B, ‖ · ‖B) be a Banach space and L2(P,B) its L2-space.

Definition 2.7. A stochastic process x : R → L2(P,B) is said to be stochastically continuous if

lim
t→ s

E‖x(t) − x(s)‖2
B
= 0. (2.13)

Definition 2.8 (see [18, 21]). A stochastically continuous stochastic process x : R → L2(P,B)
is said to be square-mean almost automorphic if for every sequence of real numbers {s′n}n∈N

there exists a subsequence {sn}n∈N
such that

lim
m,n→∞

E‖x(t + sn − sm) − x(t)‖2
B
= 0. (2.14)

This is equivalent to that there exists a stochastic process y : R → L2(P,B) such that,
for each t ∈ R,

lim
n→∞

E
∥∥x(t + sn) − y(t)

∥∥2
B
= 0, lim

n→∞
E
∥∥y(t − sn) − x(t)

∥∥2
B
= 0. (2.15)

Denote by SAA(R, L2(P,B)) the collection of all the square-mean almost automorphic
processes x(t) : R → L2(P,B). It is a Banach space equipped with the usual sup-norm

‖x‖∞ := sup
t∈R

(
E‖x(t)‖2

B

)1/2
. (2.16)
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Lemma 2.9 (see [18]). If x, y are square-mean almost automorphic processes, one has

(i) x + y is square-mean almost automorphic;

(ii) λx is square-mean almost automorphic for every scalar λ;

(iii) there exists a positive constant M such that ‖x‖2∞ ≤ M.

Let (Bi, ‖ · ‖Bi), i = 1, 2 be Banach spaces, and L2(P,Bi), i = 1, 2, their corresponding
L2-spaces, respectively.

Definition 2.10 (compare with [18, 21]). A function f : R × L2(P,B1) → L2(P,B2), (t, x) →
f(t, x), which is jointly continuous, is said to be square-mean almost automorphic in t ∈ R for
each x ∈ L2(P,B1), if, for every sequence of real numbers {s′n}n∈N

, there exists a subsequence
{sn}n∈N

such that

lim
m,n→∞

E
∥∥f(t + sn − sm, x) − f(t, x)

∥∥2
B2

= 0, (2.17)

for each t ∈ R and x ∈ L2(P,B1).

This is equivalent to that there exists a function f̃ : R × L2(P,B1) → L2(P,B2) such
that, for each t ∈ R and x ∈ L2(P,B1),

lim
n→∞

E
∥∥∥f(t + sn, x) − f̃(t, x)

∥∥∥
2

B2
= 0, lim

n→∞
E
∥∥∥f̃(t − sn, x) − f(t, x)

∥∥∥
2

B2
= 0. (2.18)

We need the following composition of square-mean almost automorphic processes.

Lemma 2.11. Suppose that f : R × L2(P,B1) → L2(P,B2) is square-mean almost automorphic in t,
and assume that f(t, x) satisfies

∥∥f(t, x) − f
(
t, y
)∥∥2

B2
≤ κ
(∥∥x − y

∥∥2
B1

)
, for any x, y ∈ L2(P,B1), t ∈ R, (2.19)

where κ is a concave nondecreasing function from R+ to R+ such that κ(0) = 0, κ(u) > 0 and∫
0+(du/κ(u)) = +∞. Then for any square-mean almost automorphic process φ : R → L2(P,B1),
the stochastic process F : R → L2(P,B2) given by F(s) := f(s, φ(s)) is square-mean almost
automorphic.

Proof. Since f and φ are square-mean almost automorphic processes, for every sequence of
real numbers {s′n}n∈N

, there exist a subsequence {sn}n∈N
⊂ {s′n}n∈N

and some functions f̃ , φ̃
such that, for each t ∈ R, x ∈ L2(P,B1),

lim
n→∞

E
∥∥∥f(t + sn, x) − f̃(t, x)

∥∥∥
2

B2
= 0, lim

n→∞
E
∥∥∥φ(t + sn) − φ̃(t)

∥∥∥
2

B1
= 0. (2.20)
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Let F̃(t) := f(t, φ̃(t)). Then we have

E
∥∥∥F(t + sn) − F̃(t)

∥∥∥
2

B2
≤ 2E

∥∥∥f
(
t + sn, φ(t + sn)

) − f
(
t + sn, φ̃(t)

)∥∥∥
2

B2

+ 2E
∥∥∥f
(
t + sn, φ̃(t)

)
− f̃
(
t, φ̃(t)

)∥∥∥
2

B2

≤ 2Eκ
(∥∥∥φ(t + sn) − φ̃(t)

∥∥∥
2

B1

)

+ 2E
∥∥∥f
(
t + sn, φ̃(t)

)
− f̃
(
t, φ̃(t)

)∥∥∥
2

B2
;

(2.21)

by Jensen’s inequality, it follows that

E
∥∥∥F(t + sn) − F̃(t)

∥∥∥
2

B2
≤ 2κ

(
E
∥∥∥φ(t + sn) − φ̃(t)

∥∥∥
2

B1

)

+ 2E
∥∥∥f
(
t + sn, φ̃(t)

)
− f̃
(
t, φ̃(t)

)∥∥∥
2

B2
;

(2.22)

noting that κ is concave and κ(0) = 0, we deduce that

lim
n→∞

E‖F(t + sn) − F̃(t)‖2
B2

= 0, for each t ∈ R. (2.23)

Similarly, we can prove that limn→∞E‖F̃(t − sn) − F(t)‖2
B2

= 0; this completes the proof.

Lemma 2.12 (see [22]). Let L ∈ L(L2(P,B1), L2(P,B2)) and assume f ∈ SAA(R, L2(P,B1)). Then
Lf ∈ SAA(R, L2(P,B2)).

The consideration is mainly based on the following fixed point theorem of
Krasnoselskii (see [27]).

Lemma 2.13. Let C be a closed, bounded, and convex subset of a Banach space X. Let A and B be
operators, defined on C satisfying the conditions:

(a) Aφ + Bϕ ∈ C when φ, ϕ ∈ C;

(b) the operator A is a contraction;

(c) the operator B is continuous and B(C) is contained in a compact set.

Then the equation x = Ax + Bx has a solution in C.

3. Existence of Square-Mean Almost Automorphic Mild Solutions

Firstly, we present the definition of mild solution for system (1.3).
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Definition 3.1. An continuous stochastic function x : R × L2(P,Hα) is called a mild solution of
(1.3) provided that the function

s −→ E
∥∥A(s)U(t, s)P(s)g(s, B1x(s))

∥∥2 (3.1)

is integrable on (−∞, t),

s −→ E
∥∥A(s)U(t, s)Q(s)g(s, B1x(s))

∥∥2 (3.2)

is integrable on (t,∞) for each t ∈ R, and x(t) satisfies the following stochastic integral
equation:

x(t) = − g(t, B1x(t)) −
∫ t

−∞
A(s)U(t, s)P(s)g(s, B1x(s))ds

+
∫∞

t

A(s)U(t, s)Q(s)g(s, B1x(s))ds +
∫ t

−∞
U(t, s)P(s)b(s, B2x(s))ds

−
∫∞

t

U(t, s)Q(s)b(s, B2x(s))ds +
∫ t

−∞
U(t, s)P(s)σ(s, B3x(s))dW(s)

−
∫∞

t

U(t, s)Q(s)σ(s, B3x(s))dW(s).

(3.3)

In order to obtain our main results, we need the following assumptions.

(A1) Bi : L2(P,Hα) → L2(P,H), i = 1, 2, 3, are bounded linear operators, and we set

η :=
{
‖Bi‖L(L2(P,Hα), L2(P,H)), i = 1, 2, 3

}
. (3.4)

(A2) R(λ0, A(·)) ∈ L(SAA(R, L2(P,Hα))). For any sequence of real numbers {s′n}n∈N
,

there exists a subsequence {sn}n∈N
such that, for each ε > 0, one can find N0 ∈ N

such that

‖A(s + sn − sm)U(t + sn − sm, s + sn − sm)P(s + sn − sm) −A(s)U(t, s)P(s)‖α ≤ εH(t − s)
(3.5)

whenever n,m > N0, t, s ∈ R, t > s, where H : [0,∞) → [0,∞) is integrable.

(A3) Let 0 ≤ α < 1/2 < β < 1. g : R × L2(P,H) → L2(P,Hβ) is square-mean almost
automorphic in t ∈ R, and there exists a small Kg > 0 such that

E
∥∥g(t, x) − g

(
t, y
)∥∥2

β ≤ KgE
∥∥x − y

∥∥2, (3.6)

for all t ∈ R and x, y ∈ L2(P,H).
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(A4) b : R × L2(P,H) → L2(P,H), σ : R × L2(P,H) → L2(P,L0
2(K,H)) are square-mean

almost automorphic in t ∈ R, and, for each t ∈ R, φ, ϕ ∈ L2(P,H),

∥∥b
(
t, φ
) − b

(
t, ϕ
)∥∥2 ∨ ∥∥σ(t, φ) − σ

(
t, ϕ
)∥∥2

L0
2
≤ κ
(∥∥φ − ϕ

∥∥2
)
, (3.7)

where κ(·) : R+ → R+ is a concave nondecreasing function such that κ(0) = 0,
κ(u) > 0 for u > 0 and

∫
0+(du/κ(u)) = +∞.

(A5) For any ε > 0, there exist a constant ω > 0 and nondecreasing continuous functions
Λ : R+ → R+ such that, for all t ∈ R and x ∈ L2(P,H) with E‖x‖2 > ω,

E‖b(t, x)‖2 ∨ E‖σ(t, x)‖2L0
2
≤ εΛ

(
E‖x‖2

)
. (3.8)

Remark 3.2. Functions such as κ1(u) = u and

κ2(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u ·
(
log

1
u

)
, 0 ≤ u ≤ b < 1,

b ·
(
log

1
u

)
+ κ2(b−)′(u − b), u ≥ b

(3.9)

satisfy assumption (A4); in particular, we see that the Lipschitz condition is a special case of
the proposed assumptions.

Throughout the rest of this paper, we denote by

‖x‖α,∞ := sup
t∈R

(
E‖x(t)‖2α

)1/2
(3.10)

the sup-norm of the space SAA(R, L2(P,Hα)). LetΠi, i = 1, . . . , 6, be the operators defined by

Π1x(t) =
∫ t

−∞
A(s)U(t, s)P(s)g(s, B1x(s))ds,

Π2x(t) =
∫∞

t

A(s)U(t, s)Q(s)g(s, B1x(s))ds,

Π3x(t) =
∫ t

−∞
U(t, s)P(s)b(s, B2x(s))ds,

Π4x(t) =
∫∞

t

U(t, s)Q(s)b(s, B2x(s))ds,

Π5x(t) =
∫ t

−∞
U(t, s)P(s)σ(s, B3x(s))dW(s),

Π6x(t) =
∫∞

t

U(t, s)Q(s)σ(s, B3x(s))dW(s).

(3.11)
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Lemma 3.3. Under assumptions (A1)–(A3), the operators Πi, i = 1, 2, defined above map
SAA(R, L2(P,Hα)) into itself.

Proof. Let x ∈ SAA(R, L2(P,Hα)). By Lemma 2.12, s → Bix(s) ∈ SAA(R, L2(P,H)) as Bi ∈
L(L2(P,Hα), L2(P,H)), i = 1, 2, 3. And hence, G(s) := g(s, B1x(s)) ∈ SAA(R, L2(P,Hβ)) by
Lemma 2.11. In particular, supt∈R

E‖G(t)‖2
β
< ∞. Let us show that Π1x ∈ SAA(R, L2(P,Hα)).

Indeed, since G(s) ∈ SAA(R, L2(P,Hβ)), for every sequence of real numbers {s′n}n∈N
, there

exists a subsequence {sn}n∈N
such that, for each t ∈ R,

lim
m,n→∞

E‖G(t + sn − sm) −G(t)‖2β = 0. (3.12)

From (A2), for any ε > 0, one can find N0 ∈ N such that

‖A(s + sn − sm)U(t + sn − sm, s + sn − sm)P(s + sn − sm) −A(s)U(t, s)P(s)‖α ≤ εH(t − s),
(3.13)

whenever n,m > N0, t, s ∈ R, t > s. Thus,

E‖(Π1x)(t + sn − sm) − (Π1x)(t)‖2α

= E

∥∥∥∥∥

∫ t+sn−sm

−∞
A(s)U(t + sn − sm, s)P(s)G(s)ds −

∫ t

−∞
A(s)U(t, s)P(s)G(s)ds

∥∥∥∥∥

2

α

= E

∥∥∥∥∥

∫ t

−∞
A(s + sn − sm)U(t + sn − sm, s + sn − sm)P(s + sn − sm)

·G(s + sn − sm)ds −
∫ t

−∞
A(s)U(t, s)P(s)G(s)ds

∥∥∥∥∥

2

α

≤ 2E

∥∥∥∥∥

∫ t

−∞
[A(s + sn − sm)U(t + sn − sm, s + sn − sm)

·P(s + sn − sm) −A(s)U(t, s)P(s)]G(s)ds

∥∥∥∥∥

2

α

+ 2E

∥∥∥∥∥

∫ t

−∞
A(s + sn − sm)U(t + sn − sm, s + sn − sm)

·P(s + sn − sm)[G(s + sn − sm) −G(s)]ds

∥∥∥∥∥

2

α

= 2(L1 + L2).

(3.14)
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Using (3.13) and condition (C1), one has

L1 ≤ E

(∫ t

−∞
‖(A(s + sn − sm)U(t + sn − sm, s + sn − sm)

·P(s + sn − sm) −A(s)U(t, s)P(s))G(s)‖αds
)2

≤ ε2
∫ t

−∞
H(t − s)ds

∫ t

−∞
H(t − s)E‖G(s)‖2αds

≤
(∫ t

−∞
H(t − s)ds

)2

k(α)sup
t∈R

E‖G(t)‖2β

≤ ε2k(α)‖H‖2L1sup
t∈R

E‖G(t)‖2β.

(3.15)

For L2, we use Lemma 2.6 to get

L2 ≤ E

(∫ t

−∞
‖A(s + sn − sm)U(t + sn − sm, s + sn − sm)

·P(s + sn − sm)[G(s + sn − sm) −G(s)]‖αds
)2

≤ n2(α, β
)
E

[∫ t

−∞
(t − s)−αe−(δ/2)(t−s)‖G(s + sn − sm) −G(s)‖βds

]2

≤ n2(α, β
)
Γ2(1 − α)sup

t∈R

E‖G(s + sn − sm) −G(s)‖2β.

(3.16)

Combing this estimates with (3.12), one obtains

lim
m,n→∞

E‖(Π1x)(t + sn − sm) − (Π1x)(t)‖2α = 0, (3.17)

which implies thatΠ1x ∈ SAA(R, L2(P,Hα)). By a similar argument, we can show thatΠ2x ∈
SAA(R, L2(P,Hα)).

Lemma 3.4. Under assumptions (A1), (A2), and (A4), the operators Πi, i = 3, 4, defined above map
SAA(R, L2(P,Hα)) into itself.

Proof . Let x ∈ SAA(R, L2(P,Hα)). By Lemmas 2.11 and 2.12 it follows that Ξ(s) :=
b(s, B2x(s)) ∈ SAA(R, L2(P,H)). Particularly, supt∈R

E‖Ξ(t)‖2 < ∞. We now show that
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Π3x ∈ SAA(R, L2(P,Hα)). Since Ξ(s) := b(s, B2x(s)) ∈ SAA(R, L2(P,H)), for every sequence
of real numbers {s′n}n∈N

, there exists a subsequence {sn}n∈N
such that, for each t ∈ R,

lim
m,n→∞

E‖Ξ(t + sn − sm) − Ξ(t)‖2 = 0. (3.18)

For any ε > 0, by making changes of variables we have

E‖(Π3x)(t + sn − sm) − (Π3x)(t)‖2α

= E

∥∥∥∥∥

∫ t+sn−sm

−∞
U(t + sn − sm, s)P(s)Ξ(s)ds −

∫ t

−∞
U(t, s)P(s)Ξ(s)ds

∥∥∥∥∥

2

α

= E

∥∥∥∥∥

∫ t

−∞
U(t + sn − sm, s + sn − sm)P(s + sn − sm)Ξ(s + sn − sm)ds

−
∫ t

−∞
U(t, s)P(s)Ξ(s)ds

∥∥∥∥∥

2

α

= E

∥∥∥∥

∫∞

0
U(t + sn − sm, t − s + sn − sm)P(t − s + sn − sm)Ξ(t − s + sn − sm)ds

−
∫ t

−∞
U(t, t − s)P(t − s)Ξ(t − s)ds

∥∥∥∥∥

2

α

;

(3.19)

an elementary inequality shows that

E‖(Π3x)(t + sn − sm) − (Π3x)(t)‖2α

≤ 3E
∥∥∥∥

∫∞

0
U(t + sn − sm, t − s + sn − sm)P(t − s + sn − sm)

×[Ξ(t − s + sn − sm) − Ξ(t − s)]ds
∥∥∥∥

2

α

+ 3E
∥∥∥∥

∫ε

0
[U(t + sn − sm, t − s + sn − sm)P(t − s + sn − sm)

−U(t, t − s)P(t − s)]Ξ(t − s)ds
∥∥∥∥

2

α

+ 3E
∥∥∥∥

∫∞

ε

[U(t + sn − sm, t − s + sn − sm)P(t − s + sn − sm)

−U(t, t − s)P(t − s)]Ξ(t − s)ds
∥∥∥∥

2

α

= 3(I1 + I2 + I3).

(3.20)
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Using Lemma 2.5, one has

I1 ≤ c2(α)E

[∫ t

0
s−αe−(δ/2)s‖Ξ(t − s + sn − sm) − Ξ(t − s)‖ds

]2

≤ c2(α)
(
δ

2

)α−1
Γ2(1 − α)sup

t∈R

E‖Ξ(t + sn − sm) − Ξ(t)‖2;
(3.21)

a straightforward computation yields

I2 ≤ E

[∫ε

0
‖[U(t + sn − sm, t − s + sn − sm)P(t − s + sn − sm) −U(t, t − s)P(t − s)]Ξ(t − s)‖αds

]2

≤ 4ε2M2sup
t∈R

E‖Ξ(t)‖2,
(3.22)

where M is a constant satisfying supt,s‖U(t, s)P(s)‖ ≤ M.
For I3, applying Proposition 4.4 in [4], we have

I3 ≤ E

[∫∞

ε

‖[U(t + sn − sm, t − s + sn − sm)P(t − s + sn − sm)

−U(t, t − s)P(t − s)]Ξ(t − s)‖αds
]2

≤ ε2
∫∞

ε

e−(δ/2)sds
∫∞

ε

e−(δ/2)sE‖Ξ(t − s)‖2ds

≤ 4ε2δ−2sup
t∈R

E‖Ξ(t)‖2.

(3.23)

Combing this estimates with (3.18), we get

lim
m,n→∞

E‖Π3(t + sn − sm) −Π3(t)‖2α = 0, (3.24)

which implies that Π3x ∈ SAA(R, L2(P,Hα)) whenever x ∈ SAA(R, L2(P,Hα)). Similarly, we
can verify that Π4x ∈ SAA(R, L2(P,Hα)).

Lemma 3.5. Under assumptions (A1), (A2) and (A4), the operators Πi, i = 5, 6, defined above map
SAA(R, L2(P,Hα)) into itself.

Proof. Let x ∈ SAA(R, L2(P,Hα)). Using Lemmas 2.11 and 2.12, we get Σ(s) := σ(s, B3x(s)) ∈
SAA(R, L2(P,L0

2(K,H))). Particularly, supt∈R
E‖Σ(t)‖2L0

2
< ∞. We now show that Π5x ∈
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SAA(R, L2(P,Hα)). Since Σ(s) := σ(s, B3x(s)) ∈ SAA(R, L2(P,H)), for every sequence of real
numbers {s′n}n∈N

, there exists a subsequence {sn}n∈N
such that, for each t ∈ R,

lim
m,n→∞

E‖Σ(t + sn − sm) − Σ(t)‖2L0
2
= 0. (3.25)

Note that the process W̃(τ) := W(t + τ) −W(t) for each τ ∈ R is also a Brownian motion and
has the same distribution as W . For any ε > 0, similar argument as above, we have

E‖(Π5x)(t + sn − sm) − (Π5x)(t)‖2α

= E

∥∥∥∥∥

∫ t

−∞
U(t + sn − sm, s + sn − sm)P(s + sn − sm)Σ(s + sn − sm)dW̃(s)

−
∫ t

−∞
U(t, s)P(s)Σ(s)dW(s)

∥∥∥∥∥

2

α

= E

∥∥∥∥

∫∞

0
U(t + sn − sm, t − s + sn − sm)P(t − s + sn − sm)

·Σ(t − s + sn − sm)dW(s) −
∫∞

0
U(t, t − s)P(t − s)Σ(t − s)dW(s)

∥∥∥∥

2

α

≤ 3c2(α)
∫∞

0
s−2αe−δsE‖Σ(t − s + sn − sm) − Σ(t − s)‖2L0

2
ds

+ 12εM2sup
t∈R

E‖Σ(t)‖2L0
2
+ 3ε2

∫∞

ε

e−δsE‖Σ(t − s)‖2L0
2
ds

≤ 3c2(α)δ2α−1Γ(2α − 1)sup
t∈R

E‖Σ(t + sn − sm) − Σ(t)‖2L0
2

+ 12εM2sup
t∈R

E‖Σ(t)‖2L0
2
+ 3δ−1ε2sup

t∈R

E‖Σ(t)‖2L0
2
.

(3.26)

From (3.25), we immediately get

lim
m,n→∞

E‖Π5(t + sn − sm) −Π5(t)‖2α = 0, (3.27)

which implies that Π5x ∈ SAA(R, L2(P,Hα)). Similarly, we can show that Π6x ∈
SAA(R, L2(P,Hα)) whenever x ∈ SAA(R, L2(P,Hα)).
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Consider the nonlinear operators Qi, i = 1, 2, on SAA(R, L2(P,Hα)) defined by

Q1x(t) = − g(t, B1x(t)) −
∫ t

−∞
A(s)U(t, s)P(s)g(s, B1x(s))ds

+
∫∞

t

A(s)U(t, s)Q(s)g(s, B1x(s))ds,

Q2x(t) =
∫ t

−∞
U(t, s)P(s)b(s, B2x(s))ds −

∫∞

t

U(t, s)Q(s)b(s, B2x(s))ds

+
∫ t

−∞
U(t, s)P(s)σ(s, B3x(s))dW(s) −

∫∞

t

U(t, s)Q(s)σ(s, B3x(s))dW(s),

(3.28)

for each t ∈ R. In view of Lemmas 3.3, 3.4, and 3.5, it follows that Qi, i = 1, 2, map
SAA(R, L2(P,Hα)) into itself. In what follows, we will prove that Qi, i = 1, 2, satisfy all the
conditions in Lemma 2.13.

Lemma 3.6. Under assumptions (A1)–(A3), the operator Q1 defined above is a contraction provided
that

Θ := 3Kgη

(

k(α) + n2(α)Γ2(1 − α)
(
2
δ

)2(1−α)
+m2(α, β

)
δ−2
)

< 1. (3.29)

Proof. Let x, y ∈ SAA(R, L2(P,Hα)). By using condition (C2) and assumptions (A1), (A3), we
have

E
∥∥g(t, B1x(t)) − g(t, B1y(t))

∥∥2
α

≤ k(α)E
∥∥g(t, B1x(t)) − g(t, B1y(t))

∥∥2
β

≤ k(α)KgE‖B1x(t) − B1y(t)‖2

≤ k(α)Kgη‖x − y‖2α,∞.

(3.30)

Now, using Lemma 2.6 together with Hölder’s inequality, we obtain
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E

∥∥∥∥∥

∫ t

−∞
A(s)U(t, s)P(s)

[
g(s, B1x(s)) − g

(
s, B1y(s)

)]
ds

∥∥∥∥∥

2

α

≤ E

[∫ t

−∞

∥∥A(s)U(t, s)P(s)
[
g(s, B1x(s)) − g

(
s, B1y(s)

)]∥∥
αds

]

≤ n2(α)
∫ t

−∞
(t − s)−αe−(δ/2)(t−s)ds

×
∫ t

−∞
(t − s)−αe−(δ/2)(t−s) · E∥∥g(s, B1x(s)) − g

(
s, B1y(s)

)∥∥2
βds

≤ n2(α)KgηΓ2(1 − α)
(
2
δ

)2(1−α)∥∥x − y
∥∥2
α,∞.

(3.31)

Similarly,

E

∥∥∥∥

∫∞

t

A(s)U(t, s)Q(s)
[
g(s, B1x(s)) − g

(
s, B1y(s)

)]
ds

∥∥∥∥

2

α

≤ E

[∫∞

t

∥∥A(s)U(t, s)Q(s)
[
g(s, B1x(s)) − g

(
s, B1y(s)

)]∥∥
αds

]

≤ m2(α, β
)
∫∞

t

eδ(t−s)ds
∫∞

t

eδ(t−s)E
∥∥g(s, B1x(s)) − g

(
s, B1y(s)

)∥∥2
βds

≤ m2(α, β
)
ηKgδ

−2∥∥x − y
∥∥2
α,∞.

(3.32)

Thus,

‖Q1x −Q1y‖2α,∞ ≤ Θ‖x − y‖2α,∞. (3.33)

The proof is completed.

Lemma 3.7. Under assumptions (A1) and (A4), the operator Q2 defined above is continuous;
moreover, its image is contained in a compact set.

Proof. Let Vr = {x ∈ SAA(R, L2(P,Hα)) : ‖x‖2α,∞ ≤ r}, for some r > 0. It is obvious that
Vr is a closed bounded convex subset of L2(P,Hα). We begin with the continuity of Q2. Let
{xn} ∈ SAA(R, L2(P,Hα)) be a sequence with xn → x; that is, limn→∞‖xn − x‖2α,∞ = 0. Using
the estimates in Lemma 2.5, we get

E

∥∥∥∥∥

∫ t

−∞
U(t, s)P(s)[b(s, B2x

n(s)) − b(s, B2x(s))]ds

∥∥∥∥∥

2

α

≤ c2(α)E

[∫ t

−∞
(t − s)−αe−(δ/2)(t−s)‖b(s, B2x

n(s)) − b(s, B2x(s))‖ds
]2
,

(3.34)
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by the continuity of b, B2, and Lebesgue’s dominated convergence theorem, it follows that

E

∥∥∥∥∥

∫ t

−∞
U(t, s)P(s)[b(s, B2x

n(s)) − b(s, B2x(s))]ds

∥∥∥∥∥

2

α

−→ 0 as n −→ ∞. (3.35)

Similarly, it is easy to show that

E

∥∥∥∥

∫∞

t

U(t, s)Q(s)[b(s, B2x
n(s)) − b(s, B2x(s))]ds

∥∥∥∥

2

α

−→ 0 as n −→ ∞. (3.36)

Applying the isometry inequality, we obtain

E

∥∥∥∥∥

∫ t

−∞
U(t, s)P(s)[σ(s, B3x

n(s)) − σ(s, B3x(s))]ds

∥∥∥∥∥

2

α

≤ c2(α)
∫ t

−∞
(t − s)−2αe−δ(t−s)E‖σ(s, B3x

n(s)) − σ(s, B3x(s))‖2L0
2
ds,

(3.37)

by the continuity of b, B2, and Lebesgue’s dominated convergence theorem yields

E

∥∥∥∥∥

∫ t

−∞
U(t, s)P(s)[σ(s, B3x

n(s)) − σ(s, B3x(s))]dW(s)

∥∥∥∥∥

2

α

−→ 0 as n −→ ∞. (3.38)

Similarly, it is easy to show that

E

∥∥∥∥

∫∞

t

U(t, s)Q(s)[σ(s, B3x
n(s)) − σ(s, B3x(s))]dW(s)

∥∥∥∥

2

α

−→ 0 as n −→ ∞. (3.39)

Thus,

E‖Q2x(t) −Q2x
n(t)‖2α −→ 0 as n −→ ∞, (3.40)

which implies that ‖Q2x −Q2x
n‖2α,∞ → 0 as n → ∞.

Next, we show that Q2(Vr) is contained in a compact set. In fact, by the Ascoli-Arzela
theorem, it suffices to show that Q2 maps Vr into a equicontinuous family. Let x ∈ Vr be
arbitrary and t1 < t2.

An analogue argument as Lemma 4.8 in [13], we have



18 Abstract and Applied Analysis

E‖Π3x(t2) −Π3x(t1)‖2α

≤ 2E

∥∥∥∥∥

∫ t1

−∞
(U(t2, s) −U(t1, s))P(s)b(s, B2x(s))ds

∥∥∥∥∥

2

α

+ 2E

∥∥∥∥∥

∫ t2

t1

U(t2, s)P(s)b(s, B2x(s))ds

∥∥∥∥∥

2

α

= 2E

∥∥∥∥∥

∫ t1

−∞

(∫ t2

t1

∂U(τ, s)
∂τ

dτ

)

P(s)b(s, B2x(s))ds

∥∥∥∥∥

2

α

+ 2E

∥∥∥∥∥

∫ t2

t1

U(t2, s)P(s)b(s, B2x(s))ds

∥∥∥∥∥

2

α

≤ 2E

[∫ t1

−∞

∫ t2

t1

‖A(τ)U(τ, s)P(s)b(s, B2x(s))‖αdτ ds
]2

+ 2E

[∫ t2

t1

‖U(t2, s)P(s)b(s, B2x(s))‖αds
]2
.

(3.41)

For the first term on the right-hand side of (3.41), we have

2E

[∫ t1

−∞

∫ t2

t1

‖A(τ)U(τ, s)P(s)b(s, B2x(s))‖αdτ ds
]2

= 2E

[∫ t1

−∞

∫ t2

t1

∥∥∥A(s)A−1(s)A(τ)U(τ, s)P(s)b(s, B2x(s))
∥∥∥
α
dτ ds

]2

≤ 2c20E

[∫ t1

−∞

∫ t2

t1

‖A(s)U(τ, s)P(s)b(s, B2x(s))‖αdτ ds
]2

≤ 2c20n
2(α, β

)
E

[∫ t1

−∞

∫ t2

t1

(τ − s)−αe−(δ/2)(τ−s)dτ‖b(s, B2x(s))‖ds
]2
,

(3.42)

and for the second term, we get

2E

[∫ t2

t1

‖U(t2, s)P(s)b(s, B2x(s))‖αds
]2

≤ 2c2(α)E

[∫ t2

t1

(t2 − s)−αe−(δ/2)(t2−s)‖b(s, B2x(s))‖ds
]2
.

(3.43)

Combing these estimates with (3.41), it follows that there exists a positive constant k1(α, δ)
such that
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E‖Π3x(t2) −Π3x(t1)‖2α ≤ k1(α, δ)(t2 − t1)2sup
t∈R

E‖b(s, B2x(s))‖2. (3.44)

Similar computation can show that there exists a positive constant k2(α, δ) such that

E‖Π4x(t2) −Π4x(t1)‖2α ≤ k2(α, δ)(t2 − t1)2sup
t∈R

E‖b(s, B2x(s))‖2. (3.45)

As to Π5x, we have

E‖Π5x(t2) −Π5x(t1)‖2α

≤ 2E

∥∥∥∥∥

∫ t1

−∞
(U(t2, s) −U(t1, s))P(s)σ(s, B2x(s))dW(s)

∥∥∥∥∥

2

α

+ 2E

∥∥∥∥∥

∫ t2

t1

U(t2, s)P(s)σ(s, B3x(s))dW(s)

∥∥∥∥∥

2

α

.

(3.46)

For the first term on the right-hand side of (3.46), we have

2E

∥∥∥∥∥

∫ t1

−∞
(U(t2, s) −U(t1, s))P(s)σ(s, B2x(s))dW(s)

∥∥∥∥∥

2

α

= 2E

∥∥∥∥∥

∫ t1

−∞

(∫ t2

t1

∂U(τ, s)
∂τ

dτ

)

P(s)σ(s, B2x(s))dW(s)

∥∥∥∥∥

2

α

= E

∥∥∥∥∥

∫ t2

t1

A(τ)U(τ, t1)

(∫ t1

−∞
U(t1, s)P(s)σ(s, B2x(s))dW(s)

)

dτ

∥∥∥∥∥

2

α

≤ 2E

[∫ t2

t1

∥∥∥∥∥
A(τ)U(τ, s)U(s, t1)

(∫ t1

−∞
U(t1, s)P(s)σ(s, B2x(s))dW(s)

)∥∥∥∥∥
α

dτ

]2
;

(3.47)

using condition (C1), Hölder’s inequality together with isometry inequality yields

2E

∥∥∥∥∥

∫ t1

−∞
(U(t2, s) −U(t1, s))P(s)σ(s, B3x(s))dW(s)

∥∥∥∥∥

2

α

≤ 2c20(t2 − t1)
∫ t2

t1

E

∥∥∥∥∥

∫ t1

−∞
A(s)U(τ, s)P(s)σ(s, B3x(s))dW(s)

∥∥∥∥∥

2

α

dτ

≤ 2c20(t2 − t1)n2(α, β
)
∫ t2

t1

∫ t1

−∞
(τ − s)−2αe−δ(τ−s)E‖σ(s, B3x(s))‖2L0

2
dsdτ

≤ k3(α, δ)(t2 − t1)2sup
t∈R

E‖σ(t, B3x(t))‖2L0
2
,

(3.48)

where k3(α, δ) is a positive constant depending on α, δ.
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The second term is straightforward; we have

2E

∥∥∥∥∥

∫ t2

t1

U(t2, s)P(s)σ(s, B3x(s))dW(s)

∥∥∥∥∥

2

α

≤ c2(α)
∫ t2

t1

(t2 − s)−αe−δ(t2−s)E‖σ(s, B3x(s))‖2L0
2
ds

≤ k4(α, δ)(t2 − t1)sup
t∈R

E‖σ(t, B3x(t))‖2L0
2
,

(3.49)

where k4(α, δ) > 0.
Therefore,

E‖Π5x(t2) −Π5x(t1)‖2α

≤
(
k3(α, δ)(t2 − t1)2 + k4(α, δ)(t2 − t1)

)
sup
t∈R

E‖σ(t, B3x(t))‖2L0
2
.

(3.50)

Similarly, we can deduce that there exist some constants k5(α, δ), k6(α, δ) > 0 such that

E‖Π6x(t2) −Π6x(t1)‖2α

≤
(
k5(α, δ)(t2 − t1)2 + k6(α, δ)(t2 − t1)

)
sup
t∈R

E‖σ(t, B3x(t))‖2L0
2
.

(3.51)

Since

E‖Q2x(t2) −Q2x(t1)‖2α ≤
6∑

i=3

E‖Π6x(t2) −Π6x(t1)‖2α, (3.52)

combing the evaluations above, we conclude that the right-hand side of (3.52) tends to zero
independent of x as t1 → t2. This completes the proof.

Theorem 3.8. Assume that assumptions (A1)–(A5) are satisfied, and one further assumes thatΘ < 1.
Then the system (1.3) has a square-mean almost automorphic mild solution which can be expressed as
x = Q1x +Q2x.

Proof. Define an operator Q on SAA(R, L2(P,Hα)) by

Qx = Q1x +Q2x, x ∈ SAA
(
R, L2(P,Hα)

)
. (3.53)

From Lemma 3.3 to Lemma 3.5, it is easy to see that Q maps SAA(R, L2(P,Hα)) into itself.
To complete the proof, it suffices to show that, for some closed bounded convex subset C of
SAA(R, L2(P,Hα)), we have

Q1x +Q2y ∈ C, x, y ∈ C. (3.54)
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Let ε > 0 be fixed. By (A5) it follows that there exist a positive constant ω and nondecreasing
continuous functions Λ : R+ → R+ such that, for all t ∈ R and x ∈ L2(P,H) with E‖x‖2 > ω,

E‖b(t, x)‖2 ∨ E‖σ(t, x)‖2L0
2
≤ εΛ

(
E‖x‖2

)
. (3.55)

Thus, for all t ∈ R, x ∈ SAA(R, L2(P,Hα)),

E‖b(t, B2x)‖2 ∨ E‖σ(t, B3x)‖2L0
2
≤ εΛ

(
ηE‖x‖2α

)
+

−
ω, (3.56)

where
−
ω:= supt∈R

{E‖b(t, x)‖2, E‖σ(t, x)‖2L0
2
: E‖x‖2 ≤ ω}.

Let x, y ∈ SAA(R, L2(P,Hα)). A standard computation involving assumptions (A1) −
−(A3), Lemma 2.5, and Hölder’s inequality, we can deduce that

E
∥∥Q1x(t) +Q2y(t)

∥∥2
α

≤ 7k(α)KgE‖B1x(t)‖2 + 7n2(α)Kg

∫ t

−∞
(t − s)−αe−(δ/2)(t−s)ds

×
∫ t

−∞
(t − s)−αe−(δ/2)(t−s)E‖B1x(s)‖2ds

+ 7m2(α, β
)
Kg

∫∞

t

eδ(t−s)ds
∫∞

t

eδ(t−s)dsE‖B1x(s)‖2ds

+ 7c2(α)
∫ t

−∞
(t − s)−αe−(δ/2)(t−s)ds

∫ t

−∞
(t − s)−αe−(δ/2)(t−s)E‖b(s, B2x(s))‖2ds

+ 7m2(α)
∫∞

t

eδ(t−s)ds
∫∞

t

eδ(t−s)E‖b(s, B2x(s))‖2ds

+ 7c2(α)
∫ t

−∞
(t − s)−2αe−δ(t−s)E‖σ(s, B3x(s))‖2L0

2
ds

+ 7m2(α)
∫∞

t

e2δ(t−s)E‖σ(s, B3x(s))‖2L0
2
ds,

(3.57)

using (A5) and (3.56), we further derive that

E
∥∥Q1x(t) +Q2y(t)

∥∥2
α

≤ 7Kgη

(

k(α) + n2(α)Γ2(1 − α)
(
2
δ

)2(1−α)
+m2(α, β

)
δ−2
)

‖x‖2α,∞

+ 7

[

c2(α)
(
2
δ

)2(1−α)
Γ2(1 − α) +m2(α)δ−2 + c2(α)δ2α−1Γ(1 − 2α)

+m2(α)(2δ)−1
](

εΛ
(
η‖x‖2α,∞

)
+

−
ω
)
.

(3.58)
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Note that, for ε,Kg sufficiently small, we can choose
−
r> 0 such that

7Kgη

(

k(α) + n2(α)Γ2(1 − α)
(
2
δ

)2(1−α)
+m2(α, β

)
δ−2
)

−
r

+ 7

[

c2(α)
(
2
δ

)2(1−α)
Γ2(1 − α) +m2(α)δ−2 + c2(α)δ2α−1Γ(1 − 2α)

+m2(α)(2δ)−1
](

εΛ
(
η

−
r
)
+

−
ω
)
≤ −
r .

(3.59)

Let

C =
{
x ∈ SAA

(
R, L2(P,Hα)

)
: ‖x‖2α,∞ ≤ −

r
}
. (3.60)

It is easy to see that C is a closed bounded convex subset of SAA(R, L2(P,Hα)). Moreover, for
all x, y ∈ C,

E
∥∥Q1x(t) +Q2y(t)

∥∥2
α ≤ −

r . (3.61)

Therefore, Q1x + Q2y ∈ C. By Lemmas 3.6 and 3.7 together with Krasnoselskii fixed point
theorem we conclude that there exists a square-mean almost automorphic mild solution to
(1.3). This completes the proof.

Now, we give another main result by Banach fixed point theorem. We require the
following assumptions.

(A6) b : R × L2(P,H) → L2(P,H), σ : R × L2(P,H) → L2(P,L0
2(K,H)) are square-mean

almost automorphic in t ∈ R and there exist some constants Kb,Kσ > 0 such that
for each t ∈ R, φ, ϕ ∈ L2(P,H),

‖b(t, φ) − b
(
t, ϕ
)‖2 ≤ Kb‖φ − ϕ‖2,

‖σ(t, φ) − σ
(
t, ϕ
)‖2L0

2
≤ Kσ‖φ − ϕ‖2.

(3.62)

Theorem 3.9. Under assumptions (A1)–(A3) and (A6), (1.3) has a unique square-mean almost
automorphic mild solution x(·) ∈ SAA(R, L2(P,Hα)) provided that

L := 7Kgη

(

k(α) + n2(α)Γ2(1 − α)
(
2
δ

)2(1−α)
+m2(α, β

)
δ−2
)

+ 7η

[

c2(α)
(
2
δ

)2(1−α)
Γ2(1 − α) +m2(α)δ−2 + c2(α)δ2α−1Γ(1 − 2α) +m2(α)(2δ)−1

]

< 1.

(3.63)
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Proof. LetQ be the operator defined by (3.53). From Lemma 3.3 to Lemma 3.5, it is easy to see
thatQ maps SAA(R, L2(P,Hα)) into itself. To complete the proof, it suffices to show thatQ is
a contractive map and has a unique fixed point. To this end, let x, y ∈ SAA(R, L2(P,Hα)). By
a similar argument as above we can deduce that

E
∥∥Qx(t) −Qy(t)

∥∥2
α

≤ 7k(α)KgE
∥∥B1x(t) − B1y(t)

∥∥2 + 7n2(α)Kg

∫ t

−∞
(t − s)−αe(−δ/2)(t−s)ds

×
∫ t

−∞
(t − s)−αe−(δ/2)(t−s)E

∥∥B1x(s) − B1y(s)
∥∥2ds

+ 7m2(α, β
)
Kg

∫∞

t

eδ(t−s)ds
∫∞

t

eδ(t−s)E
∥∥B1x(s) − B1y(s)

∥∥2ds

+ 7c2(α)
∫ t

−∞
(t − s)−αe−(δ/2)(t−s)ds

∫ t

−∞
(t − s)−αe−(δ/2)(t−s)

× E
∥∥b(s, B2x(s)) − b

(
s, B2y(s)

)∥∥2ds

+ 7m2(α)
∫∞

t

eδ(t−s)ds
∫∞

t

eδ(t−s)E
∥∥b(s, B2x(s)) − b

(
s, B2y(s)

)∥∥2ds

+ 7c2(α)
∫ t

−∞
(t − s)−2αe−δ(t−s)E

∥∥σ(s, B3x(s)) − σ
(
s, B3y(s)

)∥∥2
L0

2
ds

+ 7m2(α)
∫∞

t

e2δ(t−s)E
∥∥σ(s, B3x(s)) − σ

(
s, B3y(s)

)∥∥2
L0

2
ds

≤ L
∥∥x − y

∥∥2
α,∞,

(3.64)

which implies that

∥∥Qx −Qy
∥∥2
α,∞ ≤ L

∥∥x − y
∥∥2
α,∞. (3.65)

Hence, by the Banach fixed point principle,Q has a unique fixed point x(t)which is obviously
the square-mean almost automorphic mild solution to (1.3). The proof is completed.

Remark 3.10. The results of Theorem 3.9 can be applied to the existence of square-mean almost
automorphic mild solutions to the example in [14].

Remark 3.11. If h ≡ 0, A(t) is densely defined and the evolution family U(t, s) generated by
A(t) is exponentially stable (that is, P = I), the existence of square-mean almost automorphic
mild solutions has been studied in [23] by Banach fixed point theorem; if A(t) = A is the
infinitesimal generator of an analytic semigroup of linear operators, the existence of square-
mean almost automorphic mild solutions has been studied in [22] by Banach fixed point
theorem. In other words, the results in [22, 23] have been generalized and improved.
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