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We present a numerical method to solve the linear Fredholm integro-differential equation in
reproducing kernel space. A simple algorithm is given to obtain the approximate solutions of
the equation. Through the comparison of approximate and true solution, we can find that the
method can effectively solve the linear Fredholm integro-differential equation. At the same time
the numerical solution of the equation is stable.

1. Introduction

In this paper, we consider the following first-order Fredholm type integro-differential equa-
tion:

u′(t) = q(t)u(t) +
∫1

0
h(t, s)u(s)ds + f(t), t ∈ [0, 1], (1.1)

with the initial condition

u(0) = 0. (1.2)

The equation is discussed by Yusufoğlu in [1], where q(t), h(t, s), and f(t) are suf-
ficiently regular given functions. Integro-differential system is an important tool in solving
real-world problems. A wide variety of natural phenomena are modelled by Fredholm type
integro-differential equations. The ordinary integro-differential system has been applied to
many problems in fluid dynamics, engineering, chemical reactions, and so on.
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In the recent years, there are some methods to solve the Fredholm type integro-
differential equations [2–8]. At this point, a new method is presented to solve the integro-
differential equations. The method is established in reproducing kernel space; the problem
of solving the integro-differential problem with a perturbation can be converted into the
simple problem of solving the equation. The representation of all the solutions for Fredholm
type integro-differential equation is given if it has solutions. The stability is important
and references are there in [9, 10]. There are many discussions about the solutions in
reproducing kernel space in [11–15]. In this paper, we discuss the Fredholm type integro-
differential equation. In the last section, CASwavelet approximatingmethods [5], differential
transformation methods [6], HPM [1], and reproducing kernel space method are compared,
then we can get some effective data. The numerical experiments show that this kind of
method is stable in the reproducing kernel space.

2. Two Reproducing Kernel Spaces

2.1. The Reproducing Kernel Space W2
2 [0, 1]

The reproducing kernel spaceW2
2 [0, 1] is defined as follows:

W2
2 [0, 1] =

{
u(t) | u′(t) is absolutely continuous function in [0, 1], u′′(t) ∈ L2[0, 1]

}
.
(2.1)

The inner product and norm inW2
2 [0, 1] are defined respectively by

〈u(t), v(t)〉 =
1∑
i=0

u(i)(0)v(i)(0) +
∫1

0
u′′(t)v′′(t)dt, u, v ∈W2

2 [0, 1],

‖u‖W2
2 [0,1]

= 〈u(t), u(t)〉1/2, u ∈W2
2 [0, 1].

(2.2)

Then W2
2 [0, 1] is a complete reproducing kernel space. That is, there exists a function

Rt(s), for each fixed t ∈ [0, 1], Rt(s) ∈ W2
2 [0, 1], and for any u(s) ∈ W2

2 [0, 1] and s ∈ [0, 1],
satisfying

〈u(s), Rt(s)〉W2
2
= u(t). (2.3)

By using Mathematica, Rt(s) is given by

Rt(s) =

⎧⎪⎪⎨
⎪⎪⎩

−1
6
s
[
s2 − 3t(2 + s)

]
, t ≤ s,

−1
6
t3 +

1
2
t(2 + t)s, t > s.

(2.4)
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2.2. The Reproducing Kernel Space W1
2 [0, 1]

The construction of reproducing kernel spaceW1
2 [0, 1] can be found in [14] and its reproduc-

ing kernel function is

Qs(t) =

⎧⎨
⎩
1 + t, t ≤ s,
1 + s, t > s.

(2.5)

3. Analysis of the Solution of (1.1)

Let L :W2
2 [0, 1] → W1

2 [0, 1], such that

Lu(t) = u′(t) − q(t)u(t) −
∫1

0
h(t, s)u(s)ds, (3.1)

where u(t) ∈W2
2 [0, 1], it is easy to know that L is a linear bounded operator and (1.1) can be

converted into the equivalent form

Lu(t) = f(t), t ∈ [0, 1]. (3.2)

In order to obtain the representation of all the solutions of (1.1), let ϕi(t) = Qti(t),
ψi(t) = L∗ϕi(t), where {ti}∞i=1 is dense in [0, 1].

From the definition of the reproducing kernel, we have

〈
u(t), ϕi(t)

〉
W1

2
= u(ti) ,

ψi(t) =
(L∗ϕi(s)

)
(t)

= 〈(L∗Qti(s))(a), Rt(a)〉W2
2

= 〈Qti(s), (LRt(a))(s)〉W1
2

= (LRt(a))(ti), i = 1, 2, . . . ,

(3.3)

where L∗ is a conjugate operator of L. Practise Gram-Schmidt orthonormalization for
{ψi(t)}∞i=1

ψi(t) =
i∑

k=1

βikψk(t), (3.4)

where βik are coefficients of Gram-Schmidt orthonormalization and {ψi(t)}∞i=1 is orthonormal
system inW2

2 [0, 1].
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Theorem 3.1. If (3.2) has solutions, the results are proved by the following formula:

u(t) =
∞∑
i=1

i∑
k=1

βikf(tk)ψi(t). (3.5)

Proof. The results are proved by the following formula:

u(t) =
∞∑
i=1

〈
u(t), ψi(t)

〉
W2

2
ψi(t) =

∞∑
i=1

〈
u(t),

i∑
k=1

βikψk(t)

〉

W2
2

ψi(t)

=
∞∑
i=1

i∑
k=1

βik
〈
u(t), ψk(t)

〉
W2

2
ψi(t) =

∞∑
i=1

i∑
k=1

βik
〈
u(t),L∗ϕk(t)

〉
W2

2
ψi(t)

=
∞∑
i=1

i∑
k=1

βik
〈Lu(t), ϕk(t)〉W1

2
ψi(t) =

∞∑
i=1

i∑
k=1

βikLu(tk)ψi(t)

=
∞∑
i=1

i∑
k=1

βikf(tk)ψi(t).

(3.6)

Now, the approximate solution un(t) can be obtained by the n-term truncation of (3.5),
that is

un(t) =
n∑
i=1

i∑
k=1

βikf(tk)ψi(t). (3.7)

Theorem 3.2. Assume u(t) is the solution of (3.2) and rn(t) is the error between the approximate
solution un(t) and the exact solution u(t). Then ‖rn(t)‖W2

2
→ 0.

Proof. In the following we prove the sequence rn(t) is monotone decreasing in the sense of
‖ · ‖W2

2
.

From (3.5) and (3.7), we have

‖rn‖W2
2
=

∥∥∥∥∥
∞∑

i=n+1

i∑
k=1

βikf(tk)ψi(t)

∥∥∥∥∥
W2

2

=
∞∑

i=n+1

(
i∑

k=1

βikf(tk)

)2

,

‖rn−1‖W2
2
=

∥∥∥∥∥
∞∑
i=n

i∑
k=1

βikf(tk)ψi(t)

∥∥∥∥∥
W2

2

=
∞∑
i=n

(
i∑

k=1

βikf(tk)

)2

.

(3.8)

By (3.8), we know that ‖rn‖W2
2
≤ ‖rn−1‖W2

2
. Then {rn(t)}∞n=1 is monotone decreasing in ‖ · ‖W2

2
.

Since the series
∑∞

i=1〈u(t), ψi(t)〉W2
2
ψi(t) is convergent in W2

2 [0, 1], we obtain ‖rn(t)‖W2
2

→
0.
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4. The Stability of the Approximate Solution

In order to consider the stability of the approximate solution, we add a perturbation ε(t) in
the right-hand side, then (3.2) becomes

Lu(t) = f(t) + ε(t), t ∈ [0, 1]. (4.1)

Now, we discuss the representation of the solution for (4.1).

4.1. Representation of All the Solutions of (4.1)

In order to study the stability of (4.1), let A be a projection operator fromW2
2 [0, 1] to Ψ,

Ψ =

{
u | u =

∞∑
i=1

ciψi, for {ci}∞i=1 ∈ l2
}
, (4.2)

where {ψi}∞i=1 is given in (3.4), andA satisfies A∗ = A. Moreover

Aψi(s) =
∞∑
k=1

〈
ψi(s), ψk(s)

〉
ψk(s) = ψi(s). (4.3)

We have

Au(t) =
∞∑
i=1

〈
u(t), ψi(t)

〉
ψi(t), (4.4)

where u(t) is a solution of (3.2) inW2
2 [0, 1].

Define

uA(t) = Au(t), (4.5)

then we have

uA(t) =
∞∑
i=1

〈
u(t), ψi(t)

〉
ψi(t) =

∞∑
i=1

i∑
k=1

βikf(tk)ψi(t). (4.6)

Theorem 4.1. If {ti}∞i=1 is dense in [0, 1], then the form (4.6) is the solution of (3.2) in Ψ.
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Proof. We have

LuA(ti) =
〈LuA(t), ϕi(t)〉 = 〈uA(t),L∗ϕi(t)

〉
=
〈Au(t), ψi(t)

〉
=
〈
u(t),A∗ψi(t)

〉
=
〈
u(t),Aψi(t)

〉
=
〈
u(t), ψi(t)

〉
=
〈
u(t),L∗ϕi(t)

〉
=
〈Lu(t), ϕi(t)〉 = 〈f(t), ϕi(t)〉 = f(ti),

(4.7)

since {ti}∞i=1 is dense in [0, 1], then LuA(t) = f(t).
It is easy to know that the solution of (3.2) is unique in Ψ (see [16]).

The following lemma holds.

Lemma 4.2. Ψ⊥ = N(L), where Ψ⊥ = {u(t) | 〈u(t), v(t)〉 = 0, for any v(t) ∈ Ψ} and N(L) is a
null space of L, that isN(L) = {u | Lu = 0}.

Proof. For any u(t) ∈ Ψ⊥,

0 =
〈
u(t), ψk(t)

〉
=
〈
u(t),L∗ϕk(t)

〉
=
〈Lu(t), ϕk(t)〉 = Lu(tk). (4.8)

Since {ti}∞i=1 is dense in [0, 1], then Lu(t) ≡ 0. We can obtain u(t) ∈ N(L). Obviously,N(L) ⊂
Ψ⊥.

Then Ψ⊥ =N(L).
The following theorem is obvious.

Theorem 4.3. Let {ti}∞i=1 be any dense subset of [0, 1], if (4.1) has solutions, then its solution ũ(t)
can be represented as follows:

ũ(t) =
∞∑
i=1

i∑
k=1

βikf(tk)ψi(t) + τ(t), (4.9)

where τ(t) ∈N(L).

Assume that {σi}∞i=1 is a basis of N(L). Orthonormalzing {ψ1, ψ2, . . . , σ1, σ2, . . .}, we
obtain

σi =
∞∑
k=1

βikψk(t) +
i∑
j=1

βijσj , i = 1, 2, . . . . (4.10)

Hence, {ψ1, ψ2, . . . , σ1, σ2, . . .} is a normal orthogonal basis inW2
2 [0, 1].

According to Theorem 4.3, we can obtain the solution of (4.1). Hence, through the
Gram-Schmidt process, we have {ψi}∞i=1 ∪ {σi}∞i=1 are the complete orthonormal system in
W2

2 [0, 1], and {σi}∞i=1 is a complete orthonormal system inN(L).
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4.2. The Stability of the Solution for (3.2) in Reproducing Kernel Space

Let the space Ψ be complete. LΨ be a restricted operator of L in Ψ, we have the converse
operator L−1

Ψ :W2
2 [0, 1] → Ψ exists and is bounded.

Lemma 4.4. If uA(t) is given by (4.6), then uA(t) is the minimal norm solution.

Proof. Let u(t) be a solution of (3.2). We have

u(t) = uA(t) + v(t), (4.11)

where uA(t) ∈ Ψ and v(t) ∈ Ψ⊥. The following

‖u‖2 = 〈uA + v, uA + v〉 = ‖uA‖2 + 〈uA, v〉 + 〈v, uA〉 + ‖v‖2 = ‖uA‖2 + ‖v‖2 ≥ ‖uA‖2
(4.12)

holds.
It is pointed that uA is the minimal norm solution of (3.2).

Theorem 4.5. If the (4.1) has solutions and let uA(t) be the minimal norm solution, then

‖uA(t) − uA,n(t)‖ −→ 0 (n −→ ∞), (4.13)

where uA,n(t) is a truncation of uA(t). Hence, uA(t) is stable inW2
2 [0, 1].

Proof. LetLΨuA,n(t) = fn(t) and f(t) = fn(t)+εn(t), where εn(t) is a perturbation and εn(t) →
0 (n → ∞) in ‖ · ‖W2

2
.

On the one hand, since L−1
Ψ εn(t) ∈ Ψ, L∗

Ψϕk = ψk, it follows that

L−1
Ψ εn(t) =

∞∑
i=1

〈
L−1

Ψ εn(t), ψi(t)
〉
ψi(t) =

∞∑
i=1

〈
L−1

Ψ εn(t),
i∑

k=1

βikψk(t)

〉
ψi(t)

=
∞∑
i=1

i∑
k=1

βik
〈
L−1

Ψ εn(t), ψk(t)
〉
ψi(t) =

∞∑
i=1

i∑
k=1

βik
〈
εn(t),L−1∗

Ψ ψk(t)
〉
ψi(t)

=
∞∑
i=1

i∑
k=1

βik
〈
εn(t),L−1∗

Ψ L∗
Ψϕk(t)

〉
ψi(t) =

∞∑
i=1

i∑
k=1

βik
〈
εn(t), ϕk(t)

〉
ψi(t)

=
∞∑
i=1

i∑
k=1

βikεn(tk)ψi(t).

(4.14)

On the other hand, f, fn ∈W1
2 [0, 1], from the form (4.6), we have

uA(t) − uA,n(t) =
∞∑
i=1

i∑
k=1

βik
[
f(t) − fn(t)

]
ψi(t) =

∞∑
i=1

i∑
k=1

βikεn(tk)ψi(t), (4.15)
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Table 1: Comparison of absolute errors of approximate solutions, for example, obtained by reproducing
kernel space methods, CAS wavelet approximating [5], differential transformation [6]methods and HPM
[1].

Node Method in [5] Method in [6] Method in [1] Reproducing kernel methods

0.1 1.34917637e − 03 1.00118319e − 02 2.304814815e − 04 4.77378e − 05
0.2 1.15960044e − 03 2.78651355e − 02 9.259259259e − 04 4.80048e − 05
0.3 5.67152531e − 03 5.08730892e − 02 2.083333333e − 03 4.97945e − 05
0.4 5.93405645e − 02 7.55356316e − 02 3.703703704e − 03 5.31631e − 05
0.5 1.32330751e − 02 9.71888592e − 02 5.787037037e − 03 5.81740e − 05
0.6 4.39287720e − 02 1.09551714e − 01 8.333333333e − 03 6.48985e − 05
0.7 1.41201624e − 02 1.04133232e − 01 1.134259259e − 02 7.34170e − 05
0.8 1.34514117e − 02 6.94512700e − 02 1.481481481e − 02 8.38198e − 05
0.9 1.32045209e − 02 1.00034260e − 02 1.875000000e − 02 9.62085e − 05

where

uA,n(t) =
n∑
i=1

i∑
k=1

βikfn(tk)ψi(t), (4.16)

and then

uA(t) − uA,n(t) = L−1
Ψ εn(t). (4.17)

From the continuity of L−1
Ψ and εn(t) → 0 (n → ∞) in ‖ · ‖W2

2
, we have

lim
n→∞

‖uA(t) − uAn(t)‖W2
2
≤
∥∥∥L−1

Ψ

∥∥∥
W2

2

lim
n→∞

‖εn(t)‖W2
2
= 0. (4.18)

5. Numerical Experiments

To illustrate the effectiveness of the above method, we give an example as follows:

Example 5.1. Consider the following first-order Fredholm type integro-differential equation
(see [1]):

u′(t) = (t + 1)et − t +
∫1

0
tu(s)ds, t ∈ [0, 1],

u(0) = 0.

(5.1)

The analytic solution of this equation is u(t) = tet.
From Tables 1, 2, and 3, we can see that the absolute error, relative error and the root-

mean-square are small.
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Table 2: Relative error of approximate solutions with ε = 0.0001.

Node Approximate solution u100(t) True solution u(t) Relative error

0.1 0.110575 0.110517 5.25129e − 4
0.2 0.244350 0.244281 2.83292e − 4
0.3 0.405040 0.404958 2.03706e − 4
0.4 0.596828 0.596730 1.64163e − 4
0.5 0.824476 0.824361 1.40317e − 4
0.6 1.093410 1.093270 1.24119e − 4
0.7 1.409790 1.409630 1.12167e − 4
0.8 1.780620 1.780430 1.02793e − 4
0.9 2.213850 2.213640 9.50945e − 5
1 2.718520 2.718280 8.85463e − 5

Table 3: The root-mean-square, for example, with ε = 0.0001.
√
∑100

i=1
[ũ(0.01i) − ũn(0.01i)]2

100
1.38171e − 04

√
∑100

i=1
[ũ′(0.01i) − ũ′n(0.01i)]2

100
1.67175e − 04

6. Conclusions

From the previous numerical results, we can see that the error is quite small and the numerical
solution is stable when the right-hand side with a small perturbation. It illustrates that the
method is given in the paper is valid.
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