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This paper is concerned with strictly cyclic functionals of operator algebras on Banach spaces. It is
shown that if X is a reflexive Banach space andA is a norm-closed semisimple abelian subalgebra
of B(X) with a strictly cyclic functional f ∈ X∗, then A is reflexive and hereditarily reflexive.
Moreover, we construct a semisimple abelian operator algebra having a strictly cyclic functional
but having no strictly cyclic vectors. The hereditary reflexivity of an algbra of this type can follow
from theorems in this paper, but does not follow directly from the known theorems that, if a strictly
cyclic operator algebra on Banach spaces is semisimple and abelian, then it is a hereditarily refle-
xive algebra.

1. Introduction

Throughout this paper, X is a complex Banach space, BX stands for the closed unit ball of X
and X∗ is the dual space of X, the space of all continuous linear functionals on X. For a
bounded operator A on X, denote by LatA the lattice of all closed invariant subspaces of A
and A∗ the adjoint operator of A. For a subalgebra A of B(X), the Banach algebra of all
bounded linear operators on X, denote by Lat(A) the lattice of all closed subspaces invariant
under every operator in A. For a set L of subspaces of X, denote by AlgL the algebra of all
operators in B(X)which leave all subspaces in L invariant. An operator algebraA is reflexive
if

A = AlgLatA, where AlgLat A = {T ∈ B(X) : LatA ⊂ LatT}. (1.1)

In [1, 2], Loginov and Sulman introduced the following notion of a reflexive sub-
space of B(X). If S is a subspace (linear manifold) of B(X), we denote by RefS the set
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{A : A ∈ B(X) and A(x) ∈ S(x) for all x ∈ X}, where the bar denotes norm closure. The ope-
rator subspace S is reflexive if RefS = S. If S is a subalgebra of B(X) containing the identity
operator I, then RefS = AlgLatS, and S is reflexive as an operator subspace if and only if S
is reflexive as an operator algebra.

In general theory of operator algebras, reflexive algebras seem to play a role somewhat
analogous to the role of von Neumann algebras in the study of ∗-algebras. The problem of
finding the conditions under which a (weakly) closed operator algebra is reflexive has an
obvious connection with the problem of existence of invariant subspaces for a bounded
linear operator or for an operator algebra. A concrete operator algebra of B(X) is reflexive if
and only if it is equivalent to AlgL for some subspace lattice L of X. The reflexivity of an
abstract operator algebra has also been studied extensively. Finding conditions for an abstract
operator algebra to be reflexive has been the important concern of many scholars and there
have been many papers written on the topic. See [1–14] and references therein. In this paper,
we are interested in the hereditary reflexivity of operator algebras having strictly cyclic
functionals.

Let A be a subalgebra of B(X). If there is a vector x0 ∈ X such that the map α of A to
Ax0 by α(A) = Ax0 is injective onA, then the vector x0 is called a separating vector forA. Let
f0 ∈ X∗. If the map βf0 of A to X∗ by βf0(A) = A∗(f0) is injective on A, then the functional f0
is called a separating functional for A. Furthermore, if the subset {A∗(f0) : A ∈ A} is norm-
closed in X∗, then the functional f0 is called a strictly separating functional for A.

A is called cyclic ifAx0 = {Ax0 : A ∈ A} is norm-dense inX for some vector x0 inX.A
is called strictly cyclic ifAx0 = X for some vector x0 in X. The vector x0 is called cyclic vector
forA in the former case and strictly cyclic vector in the latter. Alan Lambert proved [10] that
a commutative semisimple strictly cyclic Banach algebra of operators on a Hilbert space is
reflexive, and that every strictly cyclic vector for an abelian algebra is a separating vector.
Later, Hadwin [7] gave a simple proof that a commutative semisimple strictly cyclic algebra
of operators on a Banach space is reflexive. Meanwhile, Hadwin and Nordgren [6] proved
that a reflexive operator algebra on a Banach space with a relative strictly separating vector is
hereditarily reflexive (a concept initiated and studied by Loginov and Sulman [12]). In [13],
Costel Peligrad explicitly stated and proved differently that if a strictly cyclic operator algebra
on a Banach space is semisimple and abelian, then it is reflexive and hereditarily reflexive. In
the present paper, a similar result is obtainedwithout the hypothesis that the operator algebra
A is strictly cyclic, provided that A has a strictly cyclic functional. Moreover, we construct
a semisimple single-generated algebra A having a strictly cyclic functional but having no
strictly cyclic vectors. An algebra of this type is reflexive by Theorem 3.8 and hereditarily
reflexive by Theorem 3.12. However, the (hereditary) reflexivity of an algebra of this type
does not follow directly from the results above.

The paper is organized as follows. In Section 2, we introduce the notion of a (strictly)
cyclic functional for operator algebras on a Banach space and develop some properties of
strictly cyclic functionals. In Section 3, we clarify the role of the strictly cyclic functional in
the reflexivity of operator algebra. The main results of Section 3 are Theorems 3.8 and 3.12. It
is shown that a semisimple abelian subalgebra of B(X) with a strictly cyclic functional f0 is
reflexive and hereditarily reflexive whenX is a reflexive Banach space. The reflexivity of some
operator algebras on Banach spaces can follow from Theorem 3.8. In Section 4, we construct
a semisimple single-generated algebra A having a strictly cyclic functional but having no
strictly cyclic vectors. An algebra of this type is reflexive by Theorem 3.8 and hereditarily
reflexive by Theorem 3.12. However, the (hereditary) reflexivity of an algebra of this type
does not follow directly from the theorems of Costel Peligrad.
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2. Strict Cyclic Functionals

Definition 2.1. Let X be a Banach space and let S be a subalgebra or a subspace of B(X). Let
X∗ be the dual space of X. If there is a functional f0 ∈ X∗ such that

S∗f0 =
{
A∗(f0

)
: A ∈ S} =

{(
f0 ◦A

)
: A ∈ S} (2.1)

is norm-dense in X∗, then f0 is called a cyclic functional for S. If there is a functional f0 ∈ X∗

such that

S∗f0 =
{
A∗(f0

)
: A ∈ S} =

{(
f0 ◦A

)
: A ∈ S} = X∗, (2.2)

then f0 is called a strictly cyclic functional for S.

Lemma 2.2 (Open Mapping Lemma). Suppose that X is a Banach space and Y is a normed linear
space, and εf0 : X → Y is a bounded operator. Assume that there exist k > 0 and 0 < η < 1 such that

BY ⊆ k · εf0(BX) + ηBY . (2.3)

Then, εf0 is a surjective open map, and Y is complete.

Proposition 2.3. LetA be a norm-closed subalgebra of B(X) and f0 ∈ X∗ with f0 /= 0. Then, the fol-
lowing are equivalent:

(1) f0 is a strictly cyclic functional forA;

(2) there exists a constant C > 0 such that for all g ∈ BX∗ there is an operator A ∈ A with
‖A‖ � C such that A∗(f0) = g;

(3) there are C > 0 and 0 < η < 1 such that for all g ∈ BX∗ there is an operatorA ∈ A with
‖A‖ � C such that ‖g −A∗(f0)‖ < η.

Proof. Define εf0 : A → X∗ by εf0(A) = A∗(f0) for A ∈ A, then εf0 is a bounded linear
operator fromA to X∗. SinceA is norm-closed, it can be viewed as a Banach space. Thus, the
implication (1)⇒ (2) follows immediately fromOpenMapping Theorem. The implication (2)
⇒ (3) is trivial. Finally, the implication (3) ⇒ (1) follows from Open Mapping Lemma.

The following proposition is similar to Theorem 2 in [15].

Proposition 2.4. LetA be a norm-closed subalgebra ofB(X)with a strictly cyclic functional f0 ∈ X∗.

(1) Then, every cyclic functional f forA is actually a strictly cyclic functional for A.

(2) Moreover, the set of all (strictly) cyclic functionals for A is norm-open in X∗ and coin-
cides with

CA =
{
A∗(f0

)
: A ∈ A and A∗ has a left inverse

(
mod ker

(
εf0

))
in A∗}, (2.4)

where εf0 is the map fromA onto X∗ by εf0(A) = A∗(f0) for everyA ∈ A, and ker(εf0) is
the kernel of the map εf0 .
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Proof. (1) If f is a cyclic functional for A, then N = A∗f = {A∗(f) : A ∈ A} is a norm-
dense linear manifold of X∗ and N is A∗-invariant. We will show that f0 ∈ N and thus
X∗ = A∗(f0) = {A∗(f0) : A ∈ A} ⊆ A∗N ⊆ N.

Let fn be a sequence inN such that {fn} converges uniformly to f0. By Proposition 2.3
(3), we may assume the existence of sequence An such that An

∗(f0) = f0 − fn and
limn→∞‖An‖ = 0. Thus, for n sufficiently large, ‖An

∗‖ < 1 and (I −An
∗)−1 =

∑∞
k=0(An

∗)k =
∑∞

k=0(An
k)∗. Therefore, (I −An

∗)−1 ∈ A∗ and since (I −An
∗)f0 = fn, we have f0 = (I −An

∗)−1

fn ∈ N.
(2) Choose C as in Proposition 2.3 (2). Let 0 < δ < 1/C and suppose that f ∈ X∗ with

‖f − f0‖ < δ. Now if g ∈ BX∗ , we choose A ∈ A with ‖A‖ � C and A∗(f0) = g. But then,
‖A∗(f)−g‖ = ‖A∗(f)−A∗(f0)‖ � Cδ < 1. Hence, f is a strictly cyclic functional for the algebra
A by Proposition 2.3 (3). Thus, the set of all (strictly) cyclic functionals for A is uniformly
open in X∗.

Clearly, if g = A∗(f0) ∈ CA, then there exists B ∈ A such that B∗A∗ = I + L for some
L ∈ ker(εf0). Therefore, f0 = B∗A∗(f0) ∈ A∗(f0). Hence, X∗ = A∗f0 ⊆ A∗g, which implies that
g is a strictly cyclic functional for A.

Conversely, if g = A∗(f0) is a cyclic (and, therefore, it is strictly cyclic) functional for
A, then f0 ∈ X∗ = {B∗A∗(f0) : B ∈ A}. Therefore, there exists B ∈ A such that B∗A∗(f0) = f0,
that is, (B∗A∗ − I)f0 = 0. Hence, B∗A∗ − I = L ∈ ker(εf0) and B∗A∗ = I − L. Therefore, B∗ is a
left inverse of A∗ module ker(εf0). Hence, g = A∗(f0) ∈ CA.

Remark 2.5. If A is a norm-closed commutative subalgebra of B(X) with a strictly cyclic
functional f0 ∈ X∗, then I ∈ A. Indeed, let A0 ∈ A such that A∗

0(f0) = f0. Then, A∗A∗
0(f0) =

A∗(f0) for every A ∈ A. Hence, by commutativity of A, A∗
0A

∗(f0) = A∗(f0) for every A ∈ A.
Therefore, A∗

0 is the identity operator on X∗ and A0 = I ∈ A.

3. Hereditary Reflexivity and Strictly Cyclic Functional

Remark 3.1. Let X be a Banach space and let S be a subalgebra or a subspace of B(X). Then,
(1) f0 ∈ X∗ is a strictly cyclic functional for S if and only if f0 is a strictly cyclic vector for
S∗ = {T ∗ : T ∈ S}.

(2) f0 ∈ X∗ is a cyclic functional for S if and only if f0 is a cyclic vector for S∗ = {T ∗ :
T ∈ S}.

Lemma 3.2. (1) Suppose that X is a Banach space which is not a Hilbert space. If T ∈ B(X), then
σ(T ∗) = σ(T).

(2) Suppose that X is a Hilbert space. If T ∈ B(X), then σ(T ∗) = {λ : λ ∈ σ(T)}.

Lemma 3.3. Suppose that X is a Banach space and A is an abelian subalgebra of B(X). Set A∗ =
{A∗ : A ∈ A}. Then, the Banach algebra A∗ is semisimple if and only if the Banach algebra A is
semisimple.

Proof. We may assume that A is unital for convenience. Let A∗ be semisimple and T ∈
A (T /= 0). Then, T ∗ /= 0 and there is a multiplicative linear functional F on A∗ such that
F(T ∗)/= 0. Since σ(T ∗) = {F(T ∗) : F is a multiplicative linear functional on A∗} by Gelfand
transformation, σ(T ∗) contains a nonzero scalar and σ(T) contains a nonzero scalar by
Lemma 3.2. Since σ(T) = {G(T) : G is a multiplicative linear functional on A}, it follows
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that there is a multiplicative linear functional G on A such that G(T)/= 0. Hence, A is also
semisimple. Similarly, ifA is semisimple, thenA∗ is also semisimple.

Let X be a Banach space, and let M be a nonempty subset of X and N be a nonempty
subset ofX∗. The annihilatorM⊥ ofM and the preannihilator ⊥N ofN are defined as follows
[16]: M⊥ = {f ∈ X∗ : f(x) = 0 for all x ∈ M}, ⊥N = {x ∈ X : f(x) = 0 for all f ∈ N}. It
is obvious that M⊥ is a weak∗-closed subspace of X∗ and ⊥N is a norm-closed subspace of
X. ⊥(M⊥) is the norm-closure of M in X and (⊥N)⊥ is the weak∗-closure of N in X∗.

Lemma 3.4. Suppose that X is a Banach space and M is a closed subspace of X and N is a norm-
closed subspace of X∗. Then,

(1) ⊥(M⊥) = M;

(2) furthermore, if X is a reflexive Banach space, then (⊥N)⊥ = N.

Proof. (1) It is clear.
(2) Let X be a reflexive Banach space and let J be the natural imbedding map from X

intoX∗∗. First, we observe that (⊥N)⊥ is the weak∗-closure ofN inX∗ that includesN, that is,
N ⊆ (⊥N)⊥.

Now, we suppose that there exists x∗
0 ∈ (⊥N)⊥ but x∗

0 /∈ N. Then, there exists x∗∗ ∈ X∗∗

such that x∗∗(x∗
0) = 1 and x∗∗(f) = 0 for any f ∈ N. Since there exists x ∈ X such that Jx = x∗∗

by the reflexivity of the Banach space X, we have that x∗
0(x) = 1 and f(x) = 0 for any f ∈ N.

It follows that x∗
0(x) = 1 and x∗

0 /∈ (⊥N)⊥, which is a contradiction to x∗
0 ∈ (⊥N)⊥. The proof is

complete.

Lemma 3.5. Let A be a bounded linear operator on a reflexive Banach space X. Then, N ∈ LatA∗ if
and only if ⊥N ∈ LatA.

Proof. If ⊥N ∈ LatA, then, for any f in N and x in ⊥N, we have that Ax ∈ ( ⊥N) and
(A∗f)(x) = f(Ax) = 0. Thus, A∗(f) ∈ (⊥N)⊥ = N by Lemma 3.4. Hence, N ∈ Lat(A∗).

Conversely, if N ∈ Lat(A∗), then for any x in ⊥N and f in N, we have A∗f ∈ N and
f(Ax) = (A∗f)(x) = 0. Thus Ax ∈ (⊥N). So ⊥N ∈ LatA.

Lemma 3.6. Let X be a reflexive Banach space and let A be a subalgebra of B(X). Let A∗ = {A∗ :
A ∈ A}. IfA∗ is reflexive, thenA is a reflexive subalgebra.

Proof. Let A∗ be reflexive. Suppose that T is a bounded operator leaving invariant all the
closed invariant subspaces of A, that is, LatA ⊂ LatT . For each norm-closed invariant
subspace N (N ⊆ X∗) of A∗, that is, N ∈ LatA∗, we have that ⊥N ∈ LatA. Since LatA ⊂
LatT , ⊥N ∈ LatT . It follows that N ∈ Lat(T ∗) by Lemma 3.5. Thus, LatA∗ ⊂ LatT ∗. Since A∗

is reflexive, T ∗ ∈ A∗. It follows that T ∈ A and A is reflexive.

Lemma 3.7 ([7, Theorem 8] and [1, 2, Theorem 6]). Suppose that X is a Banach space and A is
an abelian subalgebra of B(X). If A is a norm-closed, semisimple, strictly cyclic algebra, then A is
reflexive.

Theorem 3.8. Let X be a reflexive Banach space and let A be an abelian subalgebra of B(X) with a
strictly cyclic functional f ∈ X∗. IfA is a norm-closed semisimple algebra, thenA is reflexive.
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Proof. If f is a strictly cyclic functional for A, then f is a strictly cyclic vector for A∗ by
Remark 3.1. SinceA is semisimple,A∗ is also semisimple by Lemma 3.3. It follows thatA∗ is
reflexive by Lemma 3.7. Thus, A is reflexive by Lemma 3.6.

Definition 3.9 ([1, 2, 12]). A norm-closed subalgebraA of B(X) is called hereditarily reflexive
if, for every weakly closed subspace L ⊆ A, every x ∈ X and T ∈ B(X), Tx ∈ Lx implies
T ∈ L. Here, Lx denotes the norm closure of {Lx|L ∈ L} in X.

Lemma 3.10. Let X be a reflexive Banach space and letA be a unital abelian subalgebra of B(X). Let
A∗ = {A∗ : A ∈ A}. Then, A is hereditarily reflexive if and only ifA∗ is hereditarily reflexive.

Proof. If X is a reflexive Banach space, then we only need to show that the hereditary reflex-
ivity of A implies the hereditary reflexivity of A∗.

LetA be hereditarily reflexive. Let L∗ ⊆ A∗ be a norm closed subspace ofA∗ and T ∗ ∈
B(X∗). We suppose that T ∗(f) ∈ L∗(f) for every continuous functional f ∈ X∗. Then, for any
given x ∈ X, T ∗f(x) ∈ L∗(f)(x). Here, L∗(f) denotes the norm closure of {L∗(f)|L ∈ L} in
X∗. Let g ∈ (Lx)⊥. Then, (T ∗g)(x) ∈ L∗g(x) for any x ∈ X. Since (L∗g)(x) = g(Lx) = 0 for any
L ∈ L, we have that g(Tx) = (T ∗g)(x) = 0. It follows that Tx∈⊥((Lx)⊥) = Lx by Lemma 3.4.
Thus, T ∈ L by the hereditary reflexivity ofA. It follows that T ∗ ∈ L∗ andA∗ are hereditarily
reflexive.

Lemma 3.11 ([10, Theorem 10], and [1, 2, Corollary 2.5]). Suppose that X is a Banach space and
A is an abelian subalgebra of B(X). IfA is a norm-closed, semisimple, strictly cyclic subalgebra, then
A is hereditarily reflexive.

Theorem 3.12. Let X be a reflexive Banach space and let A be an abelian subalgebra of B(X) with
a strictly cyclic functional f ∈ X∗. If A is a norm-closed semisimple algebra, then A is hereditarily
reflexive.

Proof. The proof is similar to the proof of Theorem 3.8.

The following proposition is similar to Theorem 2.3 in [1, 2].

Proposition 3.13. LetX be a Banach space. A subspace S ⊆ B(X) is hereditarily reflexive if and only
if it is reflexive and every weakly continuous functional on S is of the form A �→ f(A(x))(A ∈ S),
where x ∈ X and f ∈ X∗.

Proof. If S is hereditarily reflexive, then S is reflexive by definition. Let F be a weakly contin-
uous functional on S and let KF = kerF, then KF is a reflexive subspace. Choose B ∈ S
such that F(B) = 1. Since B /∈ KF = RefKF , there exists a vector x ∈ X such that
‖(B −A0)(x)‖ > 1 = F(B) for all A0 ∈ KF . Since F(B) = F(B −A0) for any A0 ∈ KF , by linea-
rity we have the inequality ‖Ax‖ � F(A) for all A ∈ S. Define the linear functional φ on Sx
by φ(Ax) = F(A) (A ∈ S). Then, |φ(Ax)| � ‖Ax‖, that is, φ is well defined and is continuous;
thus there exists f ∈ X∗ such that F(A) = φ(Ax) = f(A(x)) for all A ∈ S.

We now prove sufficiency. Let F be a weakly continuous functional on S such that
F(A) = f(A(x)) for all A ∈ S. Clearly, KF = kerF is a reflexive operator subspace. By Hahn-
Banach Theorem, every weakly closed subspace of S is the intersection of the kernels of
weakly continuous functionals. Since the intersection of any family of reflexive subspaces
is reflexive, we have that S is hereditarily reflexive.
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Lemma 3.14. Let X be a Banach space and let A be an abelian subalgebra of B(X) with a strictly
cyclic functional f0 ∈ X∗. Then, the dual space of A consists entirely of the maps A �→ F(A∗f0)(A ∈
A), where F ∈ X∗∗.

Proof. For any F ∈ X∗∗, the map A �→ F(A∗f0)(A ∈ A) defines a continuous linear functional
on A.

Conversely, suppose that g is a continuous linear functional on A. Define the map
C : A → A∗ by C(A) = A∗(A ∈ A) and define map ρ : A∗ → X∗ by ρ(A∗) = A∗f0(A ∈ A)
(see the graph below). Notice that both map C and map ρ are inverse:

A C−→ A∗ ρ−→ X∗, A
C−→ A∗ ρ−→ A∗f0. (3.1)

Then (g ◦C−1◦ρ−1) is a continuous linear functional onX∗∗. It follows that there exists F ∈ X∗∗

such that g(A) = (g ◦C−1 ◦ ρ−1)(f) = F(f), whereA ∈ A and f = ρ(A∗) = A∗f0. Thus, g(A) =
F(A∗f0).

Theorem 3.15. Let X be a Banach space and let A be a semisimple abelian subalgebra of B(X) with
a strictly cyclic functional f0 ∈ X∗. Then, A is hereditarily reflexive if and only if X is a reflexive
Banach space.

Proof. If X is a reflexive Banach space, then A is hereditarily reflexive by Theorem 3.12.
Conversely, if A is hereditarily reflexive, then by Proposition 3.13, it is reflexive and every
weakly continuous functional on A is of the form A �→ f(A(x))(A ∈ A), where x ∈ X and
f ∈ X∗. Notice thatA∗ is a strictly cyclic commutative subalgebra. For any f ∈ X∗, there exists
Af ∈ A such that A∗

f
f0 = f . Then,

f(A(x)) = A∗f(x) = A∗
(
A∗

ff0
)
(x)

=
(
AfA

)∗(
f0
)
(x) = f0

(
A
(
Afx

))

= f0(Ax1),

(3.2)

where x1 = Afx ∈ X. It follows that every weakly continuous functional on A is of the form
A �→ f0(A(x1))(A ∈ A), where x1 ∈ X. A∗ and A are norm-closed. Then, A∗ and X∗ are
isomorphic as Banach spaces. Thus, A and X∗ are isomorphic as Banach spaces. It follows
that the set of all weakly continuous linear functionals onA is the set of all norm-continuous
linear functionals on A, and by Lemma 3.14, they are of the form A �→ F(A∗f0)(A ∈ A),
where F ∈ X∗∗.

By Proposition 3.13, AS is hereditarily reflexive if and only if it is reflexive and every
weakly continuous functional on A is of the form A �→ f(A(x))(A ∈ A), where x ∈ X and
f ∈ X∗. It follows that X is reflexive.

4. An Operator Algebra Having a Strictly Cyclic Functional with
No Strictly Cyclic Vectors

Throughout this section, we assume that 1 < p < ∞ and 1/p + 1/q = 1. Let lp be the
Banach space of all absolutely p-summable sequences x = {ξn}∞n=0 of complex numbers with



8 Abstract and Applied Analysis

‖x‖ = (
∑∞

n=0 |ξn|p)1/p. Let c0 be the space of sequences x = (ξn)
∞
n=0 such that limn→∞ξn = 0

with the norm ‖x‖ = supn{|ξn|}. {en}∞n=0 is the natural basis for lp or c0, that is, en = (0,
0, . . . , 0, 1, 0, . . .) with 1 as the nth component (beginning the indexing at 0). For a sequence
{wn}∞n=1 of nonzero complex numbers, let T be the linear transformation on lp defined by

Te0 = 0, Ten = wnen−1, for n ≥ 1. (4.1)

Obviously T is a unilateral weighted backward shift with weight sequence {wn}∞n=1.
Let {fm}∞m=0 be the natural basis for lq, that is, fm = (0, 0, . . . , 0, 1, 0, . . .) with 1 as the

mth component (beginning the indexing at 0). A short computation shows that the adjoint
operator T ∗ of T is defined by T ∗(fm) = wm+1fm+1 for all m = 0, 1, 2, . . .. Obviously T ∗ is a
unilateral weighted forward shift with weight sequence {wn}∞n=1.

For an operator T on a Banach space X, denote by AT the weakly closed subalgebra
generated by T and the identity operator I. An operator T on a Banach space is called strictly
cyclic if the weakly closed subalgebra AT is strictly cyclic.

Lemma 4.1. Let X be a Banach space and letA be a subspace of B(X). IfA has a strictly cyclic sepa-
rating vector x, then there exist k1 > 0 and k2 > 0 such that

k1‖A‖ � ‖Ax‖� k2‖A‖ (4.2)

for any A ∈ A.

Proof. Let x be a strictly cyclic separating vector for A. The evaluation map εx : A �→ Ax is
bounded below and has dense range (as a mapping from the algebra A onto X). It follows
that εx and ε−1x are both continuous. The result follows.

Remark 4.2. If T is strictly cyclic, then the norm topology and the strong topology on AT

coincide. If T has a strictly cyclic functional, then the norm topology and the strong topology
on A∗

T coincide. Since I ∈ A∗
T , A∗

T is also the strongly closed subalgebra generated by T ∗ and
I.

It is easy to check the following statement.

Proposition 4.3. Any unilateral weighted backward shift T on lp (1 < p < ∞) or c0 with nonzero
weights is not strictly cyclic.

Example 4.4. Let T be a unilateral weighted backward shift on lp (1 < p < ∞) with weight
sequence {wn}∞n=1: wn = (n + 1)/n for all n � 1. Then,

(1) T is not strictly cyclic;

(2) T ∗ is strictly cyclic on lq;

(3) The weakly closed algebra AT∗ generated by T ∗ is semisimple. Therefore, AT is
also semisimple by Lemma 3.3;

(4)AT∗ is hereditarily reflexive, and it follows thatAT is hereditarily reflexive from
Theorem 3.12.
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Proof. (2) Set β0 = 1, βn =
∏n

k=1wk = (2/1) · (3/2) · · · (n + 1)/n = n + 1

n∑

m=0

∣
∣
∣
∣

βn
βmβn−m

∣
∣
∣
∣

p

= 1 +
n∑

m=0

∣
∣
∣
∣

n + 1
(m + 1) · (n −m + 1)

∣
∣
∣
∣

p

= 1 +
(n + 1)p

(n + 2)p
n∑

m=1

∣
∣
∣
∣

1
m + 1

+
1

n −m + 1

∣
∣
∣
∣

p

≤ 1 +
n∑

m=1

∣
∣
∣
∣

1
m + 1

+
1

n −m + 1

∣
∣
∣
∣

p

≤ 1 +
n∑

m=1

2p
(

1
(m + 1)p

+
1

(n −m + 1)p

)

≤ 1 + 2p−1
∞∑

m=1

1
mp

= C.

(4.3)

It follows that supn

∑n
m=0 |βn/βmβn−m|p < ∞. Since {|wn|} is monotonically decreasing, T ∗ is

strictly cyclic on lq by [17, Theorem 3.2].
(3) It is easy to see that ‖Tn‖ = ‖(T ∗)n‖ = supk∈N

|∏n−1
i=0 wk+i| = supk∈N

(1 + n/k) = 1 + n.
Then, ‖T‖ = ‖T ∗‖ = 2 and the spectral radius r(T) = r(T ∗) = limn→∞‖Tn‖1/n = limn→∞(1 +
n)1/n = 1. Since T ∗ is unilateral forward shift on lq, the spectra σ(T)(= σ(T ∗)) of T contains
infinite complex numbers. Notice that the elements ofA∗

T consist of all P(T ∗)s and their norm
limits [18], where P(·) are all polynomials. Then, the elements of AT consist of all P(T)s and
their norm limits, where P(·) are all polynomials. Then, we have that the Jacobson radical
rad(AT ) = {0}.

In fact, since AT is unital,

rad(AT ) =
{
A ∈ AT : AB is quasinilpotent for any B ∈ AT

}
. (4.4)

For any A ∈ AT , there exists a sequence of polynomials Qn(λ) such that ‖Qn(T) − A‖ → 0.
Let A1 = P1(T), A2 = P2(T) ∈ AT , where P1(·), P2(·) are polynomials. It is obvious that
σ(A1A2) = σ(A1)σ(A2) = P1(σ(T)) · P2(σ(T)) by Spectral Theorem. IfA1A2 is quasinilpotent,
then {0} = σ(A1A2) = σ(A1)σ(A2). It follows that, ifA ∈ rad(AT ), then σ(A) · P2(σ(T)) = {0}
for any polynomial P2(λ), and σ(A) = {0} since σ(T) contains infinite complex numbers.
Thus, Qn(σ(T)) → 0 and Qn(T) → 0, that is, A = 0. SoAT is semisimple.

Remark 4.5. Let T be a unilateral weighted backward shift on the reflexive Banach space
lp as in Example 4.4. Then, the weakly closed algebra AT , generated by T and I, is norm-
closed, semisimple, and abelian. And AT has a strictly cyclic functional but has no strictly
cyclic vectors. An algebra of this type is reflexive (hereditarily reflexive) by Theorem 3.8
(Theorem 3.12). However, the reflexivity of an algebra of this type does not follow directly
from the theorem of Costel Peligrad.

Remark 4.6. If the Banach space X is not reflexive, then the algebra A described as in
Theorem 3.12 is not hereditarily reflexive. We do not know whether the reflexivity of an
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operator algebra A ⊆ B(X) described as in Theorem 3.8 is independent of the reflexivity
of the Banach space X. Here, is a relevant example.

Example 4.7. Let S be the unilateral backward shift on c0. That is,

S : c0 −→ c0, (ξ0, ξ1, ξ2, ξ3, . . .) �→ (ξ1, ξ2, ξ3, . . .), where x = (ξ0, ξ1, ξ2, ξ3, . . .) ∈ c0. (4.5)

It is obvious that

S∗ : l1 −→ l1,
(
η0, η1, η2, η3, . . .

) �→ (
0, η0, η1, η2, . . .

)
, where f =

(
η0, η1, η2, η3, . . .

) ∈ l1,

S∗∗ : l∞ −→ l∞, (ζ0, ζ1, ζ2, ζ3, . . .) �→ (ζ1, ζ2, ζ3, . . .), where z = (ζ0, ζ1, ζ2, ζ3, . . .) ∈ l∞.
(4.6)

Then, (1) Both S and S∗∗ are not strictly cyclic. (2) S∗ is strictly cyclic on l1. (3) The weakly
closed algebraAS∗ generated by S∗ is semisimple. Therefore,AS andAS∗∗ are also semisimple
by Lemma 3.3. (4) AS∗ is a reflexive algebra, and AS∗ is hereditarily reflexive. (5) AS is a
reflexive algebra. (6) AS is not hereditarily reflexive. (7) AS∗∗ is a reflexive algebra, but AS∗∗

is not hereditarily reflexive.

Proof. (2) Set β0 = 1, βn =
∏n

k=1wk = 1. For any positive integers m,n, we have that
|βn/βmβn−m| = 1. It follows that supn,m|βn/βmβn−m| < ∞. Since {|wn|} is monotonically dec-
reasing, S∗ is strictly cyclic on l1 by [19] and f0 = (1, 0, 0, 0, . . .) is a strictly cyclic vector for
AS∗ .

(3)Using the proof similar to the proof of (Example 4.4(3)), we have that ‖S‖ = ‖S∗‖ =
‖S∗∗‖ = 1 and r(S) = r(S∗) = r(S∗∗) = 1. Since S∗ is unilateral forward shift on l1, the spectra
σ(S)(= σ(S∗) = σ(S∗∗)) of S contains infinite complex numbers. Then, we have that the
Jacobson radical rad(AS) = {0}. Therefore, AS,AS∗ and AS∗∗ are semisimple.

(4)AS∗ is reflexive by Lemma 3.7. AS∗ is hereditarily reflexive by Lemma 3.11.
(5) Suppose that T ∈ B(c0) and Lat(S) ⊆ Lat(T). Since T ∗ ∈ B(c∗0) and S∗ has a strictly

cyclic vector f0, then there exists T0 ∈ AS such that T ∗f0 = T ∗
0f0. For any fixed A ∈ AS, let

T ∗A∗f0 = B∗f0.
For each x ∈ c0, letMx = span{x, Sx, S2x, . . .}, where the bar denotes the norm closure.

Then, Mx ∈ Lat(S) and Mx ∈ Lat(T). We have that Lat(S|Mx) ⊆ Lat(T |Mx) for every x ∈ c0.
It is obvious that S is not locally algebraic, and there is x ∈ c0 such that {x, Sx, S2x, . . .} is
linearly independent. Let x0 ∈ c0 such that {x0, Sx0, S

2x0, . . .} is linearly independent. Then,
the algebra AS|Mx0 = {A|Mx0 : A ∈ AS} has a separating vector x0.

Let ϕ be an arbitrary homomorphism from AS to the complex field C and let Kϕ =
{A ∈ AS : ϕ(A) = 0} be the corresponding maximal ideal of AS. Define ϕ∗ : A∗

S → C by
ϕ∗(A∗) = ϕ(A)(A ∈ AS). Then, K∗

ϕ = {A∗ ∈ A∗
S : ϕ(A) = 0} be the corresponding maximal

ideal of A∗
S. For any x ∈ c0, let Nx = Kϕx = {A(x) : A ∈ Kϕ}. Then, Nx ⊆ Mx and Nx ∈

Lat(S) ⊆ Lat(T). So T(Nx) ⊆ Nx.
It is obvious that ϕ(A)I−A ∈ Kϕ and ϕ(A)x−Ax ∈ Nx. It follows that ϕ(A)Tx−TAx ∈

Nx ⊆ Mx. In particular, ϕ(A)Tx0 − TAx0 ∈ Mx0 . Since x0 is a separating vector for Kϕ, we
have that ϕ(A)T − TA ∈ Kϕ. Then, ϕ∗(A∗)T ∗ − T ∗A∗ ∈ K∗

ϕ and ϕ∗(A∗)T ∗(f0) − T ∗A∗(f0) ∈
K∗

ϕ(f0), that is, ϕ
∗(A∗)T ∗

0 (f0)−B∗(f0) ∈ K∗
ϕ(f0). So, ϕ

∗(A∗)T ∗
0 −B∗ ∈ K∗

ϕ and ϕ(A)T0 −B ∈ Kϕ.
Thus, ϕ(ϕ(A)T0−B) = ϕ(A)ϕ(T0)−ϕ(B) = ϕ(T0A−B) = ϕ(AT0−B) = 0. Since f0 is a separating
vector for K∗

ϕ, T0A − B ∈ Kϕ and AT0 − B ∈ Kϕ. Since ϕ is arbitrary and AS is semisimple,
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it follows that B = T0A = AT0, that is, T ∗A∗f0 = (AT0)
∗f0 = T ∗

0A
∗f0 for any A ∈ AS. Since

A∗
Sf0 = X∗, T ∗ = T ∗

0 , and T = T0 ∈ AS. It follows that AS is a reflexive algebra.
(6) By Lemma 3.14, the dual space of AS consists entirely of the maps A �→ F(A∗f0)

(A ∈ AS), where F ∈ l∞.
SinceAS∗ is strictly cyclic,AS∗ andAS are norm-closed, thenAS∗ and l1 are isomorphic

as Banach spaces. Thus, AS and l1 are isomorphic as Banach spaces. It follows that the set
of all weakly continuous linear functionals on AS is the set of all norm-continuous linear
functionals on AS.

Similar to Proposition 3.13, AS is hereditarily reflexive if and only if it is reflexive and
everyweakly continuous functional onAS is of the formA �→ f(A(x))(A ∈ AS), where x ∈ c0
and f ∈ l1. Since the Banach space l1 is not reflexive, there exists F ∈ l∞ such that F /∈ J(c0). It
follows that AS is not hereditarily reflexive by the assertion.

(7) Using the proof similar to the proof of (5), we can prove that AS∗∗ is a reflexive
algebra. Using the proof similar to the proof of (6), we can prove that AS∗∗ is not hereditarily
reflexive.
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