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We find the greatest values p1, p2 and least values q1, q2 such that the double inequalities Sp1(a, b) <
M(a, b) < Sq1(a, b) and Sp2(a, b) < T(a, b) < Sq2(a, b) hold for all a, b > 0 with a/= b and present
some new bounds for the complete elliptic integrals. Here M(a, b), T(a, b), and Sp(a, b) are the
arithmetic-geometric, Toader, and pth Gini means of two positive numbers a and b, respectively.

1. Introduction

For p ∈ R the pth Gini mean Sp(a, b) and power mean Mp(a, b) of two positive real numbers
a and b are defined by

Sp(a, b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
ap−1 + bp−1

a + b

)1/(p−2)
, p /= 2,

(
aabb

)1/(a+b)
, p = 2,

(1.1)

Mp(a, b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ap + bp

2

)1/p

, p /= 0,

√
ab, p = 0,

(1.2)

respectively.
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It is well known that Sp(a, b) andMp(a, b) are continuous and strictly increasing with
respect to p ∈ R for fixed a, b > 0 with a/= b. Many means are special case of these means, for
example,

S1(a, b) = M1(a, b) =
a + b

2
= A(a, b) is the arithmetic mean,

S0(a, b) = M0(a, b) =
√
ab = G(a, b) is the geometric mean,

M−1(a, b) =
2ab
a + b

= H(a, b) is the harmonic mean.

(1.3)

Recently, the Gini and power means have been the subject of intensive research. In
particular, many remarkable inequalities for these means can be found in the literature [1–7].

In [8], Toader introduced the Toader mean T(a, b) of two positive numbers a and b as
follows:

T(a, b) =
2
π

∫π/2

0

√

a2cos2θ + b2sin2θ dθ

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2aE
(√

1 − (b/a)2
)

π
, a > b,

2bE
(√

1 − (a/b)2
)

π
, a < b,

a, a = b,

(1.4)

where E(r) = ∫π/20 (1 − r2sin2t)1/2dt, r ∈ [0, 1], is the complete elliptic integrals of the second
kind.

The classical arithmetic-geometric mean M(a, b) of two positive number a and b is
defined as the common limit of sequences {an} and {bn}, which are given by

a0 = a, b0 = b,

an+1 =
an + bn

2
= A(an, bn), bn+1 =

√
anbn = G(an, bn).

(1.5)

The Gauss identity [9] shows that

M(1, r)K
(√

1 − r2
)
=

π

2
(1.6)

for r ∈ (0, 1), whereK(r) =
∫π/2
0 (1 − r2sin2t)

−1/2
dt, r ∈ [0, 1), is the complete elliptic integrals

of the first kind.
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Vuorinen [10] conjectured that

M3/2(a, b) < T(a, b) (1.7)

for all a, b > 0 with a/= b. This conjecture was proved by Qiu and Shen in [11] and Barnard
et al. in [12], respectively.

In [13], Alzer and Qiu presented a best possible upper power mean bound for the
Toader mean as follows:

T(a, b) < Mlog 2/ log(π/2)(a, b) (1.8)

for all a, b > 0 with a/= b.
In [14–17], the authors proved that

M0(a, b) = G(a, b) < M(a, b) < M1/2(a, b), (1.9)

L(a, b) < M(a, b) <
π

2
L(a, b) (1.10)

for all a, b > 0 with a/= b, where

L(a, b) =

⎧
⎪⎨

⎪⎩

a − b

loga − log b
, a /= b,

a, a = b,
(1.11)

denotes the classical logarithmic mean of two positive numbers a and b.
Very recently, Chu and Wang [18] and Guo and Qi [19] proved that

L0(a, b) < T(a, b) < L1/4(a, b) (1.12)

for all a, b > 0 with a/= b, and L0(a, b) and L1/4(a, b) are the best possible lower and upper
Lehmer mean bounds for the Toader mean T(a, b), respectively. Here, the pth Lehmer mean
Lp(a, b) of two positive numbers a and b is defined by Lp(a, b) = (ap+1 + bp+1)/(ap + bp).

The main purpose of this paper is to find the greatest values p1, p2 and least values q1,
q2 such that the double inequalities Sp1(a, b) < M(a, b) < Sq1(a, b) and Sp2(a, b) < T(a, b) <
Sq2(a, b) hold for all a, b > 0 with a/= b and present some new bounds for the complete elliptic
integrals.

2. Preliminary Knowledge

Throughout this paper, we denote r ′ =
√
1 − r2 for r ∈ [0, 1].
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For 0 < r < 1, the following derivative formulas were presented in [9, Appendix E,
pages 474–475]:

dK(r)
dr

=
E(r) − r ′2K(r)

rr ′2
,

dE(r)
dr

=
E(r) −K(r)

r
,

d
[
E(r) − r ′2K(r)

]

dr
= rK(r),

d[K(r) − E(r)]
dr

=
rE(r)
r ′2

.

(2.1)

K
(
2
√
r

1 + r

)

= (1 + r)K(r), (2.2)

E
(
2
√
r

1 + r

)

=
2E(r) − r ′2K(r)

1 + r
. (2.3)

Lemma 2.1 can be found in [9, Theorem 3.21(7), (8), and (10), and Exercise 3.43(13)
and (46)].

Lemma 2.1. (1) r ′cK(r) is strictly decreasing from [0, 1) onto (0, π/2] for c ∈ [1/2,∞);
(2) r ′cE(r) is strictly increasing on (0, 1) if and only if c ≤ −1/2 and strictly decreasing if and

only if c > 0;
(3)K(r)/ log(4/r ′) is strictly decreasing from (0, 1) onto (1, π/ log 16);
(4) 2E(r) − r ′2K(r) is strictly increasing from (0, 1) onto (π/2, 2);
(5) [E(r) − r ′2K(r)]/[r2K(r)] is strictly decreasing from (0, 1) onto (0, 1/2).

3. Main Results

Theorem 3.1. Inequality S1/2(a, b) < M(a, b) < S1(a, b) holds for all a, b > 0 with a/= b, and
S1/2(a, b) and S1(a, b) are the best possible lower and upper Gini mean bounds for the arithmetic-
geometric mean M(a, b).

Proof. From (1.1) and (1.5) we clearly see that both Sp(a, b) and M(a, b) are symmetric and
homogenous of degree 1. Without loss of generality, we assume that a = 1 > b. Let t = b and
r = (1 − t)/(1 + t). Then from (1.1) and (1.6) together with (2.2) we clearly see that

M(a, b) − S1/2(a, b) =
π

2K
(√

1 − t2
) −
[
(1 + t)

√
t

1 +
√
t

]2/3

=
π

2(1 + r)K(r)
−

⎡

⎢
⎣

2
√
1 − r

(1 + r)
(√

1 + r +
√
1 − r

)

⎤

⎥
⎦

2/3

=
1

1 + r

[
π

2K(r)
−
(

2r ′√
1 + r +

√
1 − r

)2/3
]

.

(3.1)
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Let

F(r) =
[

π

2K(r)

]3

−
(

2r ′√
1 + r +

√
1 − r

)2

. (3.2)

Then F(r) can be rewritten as

F(r) =
[

π

2K(r)

]3

− 2r ′2

1 + r ′
=

2r ′2

1 + r ′
F1(r), (3.3)

where

F1(r) =
(π

2

)3 1 + r ′

2r ′2K(r)3
− 1. (3.4)

It is well known that the function r → √
r + 1/

√
r is positive and strictly decreasing

in (0, 1). Then (3.4) and Lemma 2.1(1) lead to the conclusion that F1(r) is strictly increasing in
(0, 1), so that F1(r) > F1(0) = 0 for r ∈ (0, 1).

Therefore, M(a, b) > S1/2(a, b) follows from (3.1)–(3.3).
On the other hand, M(a, b) < S1(a, b) = A(a, b) follows directly from (1.9).
Next, we prove that S1/2(a, b) and S1(a, b) are the best possible lower and upper Gini

mean bounds for the arithmetic-geometric mean M(a, b).
For any 0 < ε < 1/2 and 0 < x < 1, from (1.1), (1.6), and Lemma 2.1(3)we have

[M(1, 1 − x)]3−2ε − [S1/2+ε(1, 1 − x)]3−2ε =

⎡

⎢
⎣

π

2
∫π/2
0

[
1 − (2x − x2)sin2t

]−1/2
dt

⎤

⎥
⎦

3−2ε

−
[
(2 − x)(1 − x)1/2−ε

1 + (1 − x)1/2−ε

]2

,

(3.5)

lim
x→ 0

M(1, x)
S1−ε(1, x)

= lim
x→ 0

⎡

⎢
⎣

2

πxε/(1+ε)K
(√

1 − x2
)

(
1 + xε

1 + x

)1/(1+ε)

⎤

⎥
⎦

= lim
x→ 0

2

πxε/(1+ε)K
(√

1 − x2
) = lim

x→ 0

2
πxε/(1+ε) log(4/x)

log(4/x)

K
(√

1 − x2
)

= lim
x→ 0

2
πxε/(1+ε) log(4/x)

= +∞.

(3.6)
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Letting x → 0 and making use of the Taylor expansion, one has

⎡

⎢
⎣

π

2
∫π/2
0

[
1 − (2x − x2)sin2t

]−1/2
dt

⎤

⎥
⎦

3−2ε

−
[
(2 − x)(1 − x)1/2−ε

1 + (1 − x)1/2−ε

]2

= 1 +
(

−3
2
+ ε

)

x +
(2ε − 3)(4ε − 3)

16
x2 + o

(
x2
)

−
[

1 +
(

−3
2
+ ε

)

x +
(2ε − 3)2

16
x2 + o

(
x2
)
]

= −ε(3 − 2ε)
8

x2 + o
(
x2
)
.

(3.7)

Equations (3.5)–(3.7) imply that for any 1 < ε < 1/2 there exist δ1 = δ1(ε) ∈ (0, 1)
and δ2 = δ2(ε) ∈ (0, 1), such that M(1, 1 − x) < S1/2+ε(1, 1 − x) for x ∈ (0, δ1) and M(1, x) >
S1−ε(1, x) for x ∈ (0, δ2).

Theorem 3.2. Inequality S1(a, b) < T(a, b) < S3/2(a, b) holds for all a, b > 0 with a/= b, and
S1(a, b) and S3/2(a, b) are the best possible lower and upper Gini mean bounds for the Toader mean
T(a, b).

Proof. From (1.1) and (1.4) we clearly see that both Sp(a, b) and T(a, b) are symmetric and
homogenous of degree 1. Without loss of generality, we assume that a = 1 > b. Let t = b and
r = (1 − t)/(1 + t). Then from (1.1), (1.4), and (2.3) we have

T(a, b)
S3/2(a, b)

=
2
π
E
(√

1 − t2
)
·
(

1 +
√
t

1 + t

)2

=
2
π
E
(
2
√
r

1 + r

)

· (1 + r) ·
(√

1 + r +
√
1 − r

2

)2

=
2
π

[
2E(r) − r ′2K(r)

]
·
(√

1 + r +
√
1 − r

2

)2

=
1
π

(
1 + r ′

)[
2E(r) − r ′2K(r)

]
.

(3.8)

Let

G(r) =
1
π

(
1 + r ′

)[
2E(r) − r ′2K(r)

]
. (3.9)
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Then simple computations lead to

G(0) = 1, (3.10)

G′(r) =
1
π

[(

− r

r ′

)(
2E(r) − r ′2K(r)

)
+
(
1 + r ′

)
(

E(r) − r ′2K(r)
r

)]

=
r ′(1 + r ′)

[
E(r) − r ′2K(r)

]
− r2
[
2E(r) − r ′2K(r)

]

πrr ′

=
r

πr ′
G1(r),

(3.11)

where

G1(r) =
(
1 + r ′

)
r ′K(r)

[
E(r) − r ′2K(r)

r2K(r)

]

−
[
2E(r) − r ′2K(r)

]
. (3.12)

It follows from (3.12) and Lemma 2.1(1), (4), and (5) that G1(r) is strictly decreasing
from (0, 1) onto (−2, 0). Then (3.11) leads to the conclusion that G′(r) < 0 for r ∈ (0, 1). Hence
G(r) is strictly decreasing in (0, 1).

Therefore, T(a, b) < S3/2(a, b) follows from (3.8)–(3.10) together with themonotonicity
of G(r).

On the other hand, T(a, b) > S1(a, b) = A(a, b) follows directly from (1.7).
Next, we prove that S1(a, b) and S3/2(a, b) are the best possible lower and upper Gini

mean bounds for the Toader mean T(a, b).
For any 0 < ε < 1/2 and 0 < x < 1, from (1.1) and (1.4) one has

[T(1, 1 − x)]1+2ε − [S3/2−ε(1, 1 − x)]1+2ε =

[
2
π

∫π/2

0

[
1 −
(
2x − x2

)
sin2t

]1/2
dt

]1+2ε

−
[

2 − x

1 + (1 − x)1/2−ε

]2

,

(3.13)

lim
x→ 0

T(1, x)
S1+ε(1, x)

= lim
x→ 0

[
2
π
E
(√

1 − x2
)(1 + xε

1 + x

)1/(1−ε)]

=
2
π

< 1. (3.14)
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Letting x → 0 and making use of the Taylor expansion, we get

[
2
π

∫π/2

0

[
1 −
(
2x − x2

)
sin2t

]1/2
dt

]1+2ε

−
[

2 − x

1 + (1 − x)1/2−ε

]2

= 1 −
(
1
2
+ ε

)

x +
(2ε + 1)(4ε + 1)

16
x2 + o

(
x2
)

−
[

1 −
(
1
2
+ ε

)

x +
(2ε + 1)2

16
x2 + o

(
x2
)
]

=
ε(2ε + 1)

8
x2 + o

(
x2
)
.

(3.15)

Equations (3.13)–(3.15) imply that for any 0 < ε < 1/2 there exist δ3 = δ3(ε) ∈ (0, 1)
and δ4 = δ4(ε) ∈ (0, 1), such that T(1, 1 − x) > S3/2−ε(1, 1 − x) for x ∈ (0, δ3) and T(1, x) <
S1+ε(1, x) for x ∈ (0, δ4).

4. Remarks and Corollaries

Remark 4.1. From (3.9) and Lemma 2.1(4) we clearly see that G(1−) = 2/π . Then (3.8) and
(3.9) together with the monotonicity of G(r) lead to the conclusion that

2
π
S3/2(a, b) < T(a, b) (4.1)

for all a, b > 0 with a/= b.

Remark 4.2. We find that the lower bound L(a, b) in (1.10) and the best possible lower Gini
mean bound S1/2(a, b) in Theorem 3.1 are not comparable. In fact, from (1.1) and (1.11) we
have

lim
x→+∞

S1/2(1, x)
L(1, x)

= lim
x→+∞

[
1 + x−1

1 + x−1/2

]2/3
x2/3 logx
x − 1

= lim
x→+∞

logx
x1/3 − x−2/3 = 0,

S1/2(1, 1 + x) − L(1, 1 + x) = 1 +
1
2
x − 1

16
x2 + o

(
x2
)
−
[

1 +
1
2
x − 1

12
x2 + o

(
x2
)]

=
1
48

x2 + o
(
x2
)

(x −→ 0).

(4.2)
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Table 1: Comparison of K(r)with H(r) for some r ∈ (0, 1).

r K(r) H(r)
0.1 1.574745561517· · · 1.574745561518· · ·
0.2 1.586867847· · · 1.586867848· · ·
0.3 1.608048620· · · 1.608048634· · ·
0.4 1.639999866· · · 1.640000021· · ·
0.5 1.685750355· · · 1.685751528· · ·
0.6 1.750753803· · · 1.750760840· · ·
0.7 1.845693998· · · 1.845732233· · ·
0.8 1.995302778· · · 1.995519211· · ·

Remark 4.3. The following two equations show that the best possible upper power mean
bound Mlog 2/ log(π/2)(a, b) in (1.8) and the best possible upper Gini mean bound S3/2(a, b)
in Theorem 3.2 are not comparable:

lim
x→+∞

S3/2(1, x)
Mlog 2/ log(π/2)(1, x)

= 2log(π/2)/ log 2 =
π

2
,

Mlog 2/ log(π/2)(1, 1 + x) − S3/2(1, 1 + x) = 1 +
1
2
x +

1
8

[
log 2

log(π/2)
− 1
]

x2

+ o
(
x2
)
−
[

1 +
1
2
x +

1
16

x2 + o
(
x2
)]

=
1
16

[
2 log 2

log(π/2)
− 3
]

x2 + o
(
x2
)

= 0.00436 · · · × x2 + o
(
x2
)

(x −→ 0).

(4.3)

From Theorem 3.1 we get an upper bound for the complete elliptic integrals of the first
kind K(r) as follows.

Corollary 4.4. Inequality

K(r) <
π

2

⎡

⎢
⎣

1 +
(
1 − r2

)1/4

(
1 +

√
1 − r2

)
(1 − r2)1/4

⎤

⎥
⎦

2/3

(4.4)

holds for all r ∈ (0, 1).

Remark 4.5. Computational and numerical experiments show that the upper bound in (4.4)

for K(r) is very accurate for some r ∈ (0, 1). In fact, if we let H(r) = π[1 + (1 − r2)1/4]
2/3

/

{2[(1 +
√
1 − r2)(1 − r2)1/4]

2/3}, then we have Table 1 via elementary computation.
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Table 2: Comparison of E(r) with J(r) for some r ∈ (0, 1).

r E(r) J(r)
0.1 1.566861942021· · · 1.566861942028· · ·
0.2 1.554968546· · · 1.554968548· · ·
0.3 1.534833465· · · 1.534833516· · ·
0.4 1.505941612· · · 1.505942206· · ·
0.5 1.467462209· · · 1.467466484· · ·
0.6 1.418083394· · · 1.418107161· · ·
0.7 1.355661136· · · 1.355777213· · ·
0.8 1.276349943· · · 1.276910677· · ·

The following bounds for the complete elliptic integrals of the second kind E(r) follow
from Theorem 3.2 and Remark 4.1.

Corollary 4.6. Inequality

[
1 +

√
1 − r2

1 + (1 − r2)1/4

]2

< E(r) <
π

2

[
1 +

√
1 − r2

1 + (1 − r2)1/4

]2

(4.5)

holds for all r ∈ (0, 1).

Remark 4.7. Computational and numerical experiments show that the upper bound in (4.5)

for E(r) is very accurate for some r ∈ (0, 1). In fact, if we let J(r) = π[1 +
√
1 − r2]

2
/

{2[1 + (1 − r2)1/4]
2}, then we have Table 2 via elementary computation.
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