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We establish here that under some simple restrictions on the functional coefficient a(t) the
fractional differential equation 0D

α
t [tx

′ − x + x(0)] + a(t)x = 0, t > 0, has a solution expressible
as ct + d + o(1) for t → +∞, where 0D

α
t designates the Riemann-Liouville derivative of order

α ∈ (0, 1) and c, d ∈ R.

1. Introduction

Consider the ordinary differential equation

x′′ + f(t, x) = 0, t ≥ 1, (1.1)

where the function f : [1,+∞) × R → R is continuous such that

∣
∣f(t, x)

∣
∣ ≤ h(t) · g

( |x|
t

)

, t ≥ 1, x ∈ R. (1.2)

Here, the functions h : [1,+∞) → [0,+∞) and g : [0,+∞) → [0,+∞) are continuous, and
there exists ε ∈ [0, 1] with

∫+∞

1
tεh(t)dt < +∞. (1.3)
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Then, given c, d ∈ R, (1.1) has a solution x(t), defined in a neighborhood of +∞, which
is expressible as ct+o(t) for ε = 0, as ct+o(t1−ε) for ε ∈ (0, 1) and, finally, as ct+d+o(1) for ε = 1
when t → +∞. Such a solution is called asymptotically linear in the literature. In particular,
these developments apply to the homogeneous linear differential equation x′′ + a(t)x = 0.

A unifying technique of proof for such estimates can be read in [1] and is based on the
next reformulation of the differential equation (1.1)

y(t) = t−ε
[

d −
∫+∞

t

τεf(τ, x(τ))dτ
]

,

x(t) =
[

c − d
(

sgn ε − 1
)]

t + εt

∫+∞

t

y(τ)
τ

dτ − (1 − ε)
∫ t

t0

y(τ)dτ

(1.4)

for some t0 ≥ 1 large enough. For a different approach, the so-called Riccatian method, in the
case of intermediate asymptotic (ε ∈ (0, 1), c = 0), see the technique from [2, 3].

The study of asymptotically linear solutions to linear and nonlinear ordinary
differential equations is of importance in fluidmechanics, differential geometry (Jacobi fields,
e.g., [4, page 239]), bidimensional gravity (the geodesics of the Euclidean planar spray x′′ = 0
being the asymptotically linear solutions x(t) = ct + d), and others.

In this note, we are interested in the existence of a fractional variant for the problem
of asymptotically linear solutions which can be formulated as follows: are there any nontrivial
fractional differential equations which have only asymptotically linear solutions and also their solution
sets contain solutions (asymptotically linear) for all the prescribed values of numbers c, d, and ε? To
the best of our knowledge, this is an open problem in the theory of fractional differential
equations.

Fractional differential equations have been of great interest during the last few years.
This follows from the intensive development of the theory of fractional calculus [5, 6]
followed by the applications of its methods in various sciences and engineering [7]. We
can mention that the fractional differential equations are playing an important role in fluid
dynamics, traffic model with fractional derivative, measurement of viscoelastic material
properties, modeling of viscoplasticity, control theory, economy, nuclear magnetic resonance,
mechanics, optics, signal processing, and so on. Basically, the fractional differential equations
are used to investigate the dynamics of the complex systems; the models based on these
derivatives have given superior results as those based on the classical derivatives, see
[8, page 305], [9–11].

To introduce a fractional differential operator of order 1 + α, there are three
options. The first two consist of a mixed ordinary differential-Caputo fractional differential
operator, namely, ( C

0D
α

t x)
′
(t) = 0D

α
t (x

′)(t), and, respectively, a Riemann-Liouville fractional
differential operator ( 0D

α
t x)

′(t) = ( 0D
1+α
t x)(t).

We recall that ( 0D
α
t f)(t) = (1/Γ(1 − α)) · (d/dt)[∫ t0(f(s)/(t − s)α)ds] represents the

Riemann-Liouville derivative of order α of some function f , cf. [8, page 68], and Γ stands
for Euler’s function Gamma. Remark as well that, in general, 0D

α+β
t x /= 0D

α
t ( 0D

β
t x) for α, β ∈

(0, 1), see [8, page 74]. To deal with iterations, Miller and Ross [12] coined the term sequential
fractional differential operator of order α+β for the quantity 0D

α
t (0D

β
t x), cf. [8, pages 108, 122].

Also, the quantity ( C
0D

α

t f)(t) = (1/Γ(1 − α))
∫ t

0(f
′(s)/(t − s)α)ds has been called the

Caputo derivative in physics, see [8, page 79], and it is often preferred due to its sound
explanation of what the initial data signify.
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The first variant of differential operator was used in [13] to study the existence of
solutions x(t) of nonlinear fractional differential equations that obey the restrictions

x(t) −→ 1 when t −→ +∞, x′ ∈
(

L1 ∩ L∞
)

((0,+∞),R). (1.5)

The second variant of differential operator, see [14], was employed to prove that, for
any real numbers x0, x1, the linear fractional differential equation

0D
1+α
t x + a(t)x = 0, t > 0, (1.6)

possesses a solution x(t) with the asymptotic development

x(t) = [x0 +O(1)]tα−1 + x1t
α when t −→ +∞. (1.7)

A recent application of the Caputo derivative can be found in [15].
All of these fractional differential operators are based upon the natural splitting of

the second-order operator d2/dt2, namely, x′′ = (x′)′. Here, we shall introduce a different
fractionalizing of x′′ which is based on the identities

tx′′ =
(

tx′ − x
)′ =

[

tx′ − x + x(0)
]′
, t > 0, (1.8)

stemming from the integration technique in the Lie algebra L2, cf. [16, page 23].
In the following section, we give a positive (partial) answer to the preceding open

question. In fact, we produce some simple conditions regarding the continuous function a :
[0,+∞) → R such that, given c ∈ R − {0}, the fractional differential equation (FDE) below

0D
α
t

[

tx′ − x + x(0)
]

+ a(t)x = 0, t > 0, (1.9)

possesses a solution with the asymptotic development x(t) = ct + x(0) + o(1) when t → +∞.

2. Asymptotically Linear Solutions

Let us start with a result regarding the case of intermediate asymptotic.

Proposition 2.1. Set the numbers ε ∈ (0, 1), c /= 0, and c1 ∈ (0, 1), A > 0, such that

max
{

|c|, 1
1 − ε

}

· Γ(1 − α)A ≤ c1. (2.1)

Assume also that a ∈ C([0,+∞),R) is confined to

(

1 + t1−ε
)

|a(t)| ≤ A

tα
, t > 0. (2.2)
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Then, the FDE

0D
α
t

(

tx′ − x
)

+ a(t)x = 0, t > 0, (2.3)

has a solution x ∈ C([0,+∞),R) ∩ C1((0,+∞),R), with limt↘0[t2−αx′(t)] = 0, which verifies the
asymptotic formula x(t) = ct +O(tε) when t → +∞.

Proof. Introduce the complete metric space M = (D, δ), where D = {y ∈ C((0,+∞),R) :
supt>0[t

−ε|y(t)|] ≤ c1, t > 0} and the metric δ is given by the usual formula

δ
(

y1, y2
)

= sup
t>0

∣
∣y1(t) − y2(t)

∣
∣

tε
, y1, y2 ∈ D. (2.4)

In particular, limt↘0y(t) = 0 for all y ∈ D.
Introduce the function x : (0,+∞) → R via the formulas

y = tx′ − x, x(t) = ct − t

∫+∞

t

y(s)
s2

ds, t > 0. (2.5)

Since limt↘0x(t) = 0, we deduce that x can be continued backward to 0; so, its extension x
belongs to C([0,+∞),R) ∩ C1((0,+∞),R). Also, limt↘0[t1−αy(t)] = limt↘0[t2−αx′(t)] = 0.

Define further the integral operator T : M → M by the formula

(T)
(

y
)

(t) = − 1
Γ(α)

∫ t

0

a(s)

(t − s)1−α

[

cs − s

∫+∞

s

y(τ)
τ2

dτ

]

ds, t > 0. (2.6)

The estimate

∣
∣(T)

(

y
)

(t)
∣
∣ ≤ 1

Γ(α)

∫ t

0

|a(s)|
(t − s)1−α

(

|c|s + c1
1 − ε

sε
)

ds

≤ tε
1

Γ(α)

∫ t

0

|a(s)|
(t − s)1−α

(
c1

1 − ε
+ |c|s1−ε

)

ds

≤ tε
1

Γ(α)

∫ t

0

|a(s)|
(t − s)1−α

(

1 + s1−ε
)

ds ·max
{

|c|, c1
1 − ε

}

≤ tε
1

Γ(α)

∫ t

0

ds

(t − s)1−αsα
·A max

{

|c|, c1
1 − ε

}

≤ Γ(1 − α) ·A max
{

|c|, 1
1 − ε

}

· tε

≤ c1t
ε, t > 0,

(2.7)

shows that T is well defined by taking into account (2.1), (2.2).
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Now, given y1, y2 ∈ D, we have

∣
∣(T)

(

y1
)

(t) − (T)
(

y2
)

(t)
∣
∣

≤ 1
Γ(α)

∫ t

0

|a(s)|
(t − s)1−α

· s
∫+∞

s

dτ

τ2−ε
ds · δ(y1, y2

)

≤ 1
Γ(α)(1 − ε)

∫ t

0

sε|a(s)|
(t − s)1−α

ds · δ(y1, y2
)

≤ 1
Γ(α)

·max
{

|c|, 1
1 − ε

}

·
∫ t

0

|a(s)|
(t − s)1−α

ds · tε · δ(y1, y2
)

≤ 1
Γ(α)

max
{

|c|, 1
1 − ε

}

·
∫ t

0

(

1 + s1−ε
)|a(s)|

(t − s)1−α
ds · tεδ(y1, y2

)

≤ Γ(1 − α) ·A max
{

|c|, 1
1 − ε

}

· tεδ(y1, y2
)

≤ tε · c1δ
(

y1, y2
)

, t > 0,

(2.8)

and so δ(T(y1), T(y2)) ≤ c1δ(y1, y2).
The operator T being a contraction, it has a unique fixed point y0 ∈ D. Since

t
∫+∞
t (y0(s)/s2)ds = O(tε)when t → +∞, the proof is complete.

Theorem 2.2. Assume that (2.1) holds true and a ∈ C([0,+∞),R) verifies the sharper restriction

(

1 + t1−ε
)

|a(t)| ≤ A min
{

1
tα
,
1
tβ

}

, t > 0, (2.9)

where 1 > β > α + ε. Then, the solution x of FDE (2.3) from Proposition 2.1 has the asymptotic
development x(t) = ct + o(1) when t → +∞.

Proof. Notice that

∫ t

0

ds

(t − s)1−αsβ
= tα−β

∫1

0

du

(1 − u)1−αuβ
= tα−βB

(

α, 1 − β
)

, (2.10)

where B is the Beta function, cf. [8, page 6].
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Via (2.9), we have the estimate

∣
∣y0(t)

∣
∣ =

∣
∣T

(

y0
)

(t)
∣
∣

≤ tε
1

Γ(α)

∫ t

0

(

1 + s1−ε
)|a(s)|

(t − s)1−α
ds ·max

{

|c|, c1
1 − ε

}

≤ tε
1

Γ(α)

∫ t

0

ds

(t − s)1−αsβ
·A max

{

|c|, c1
1 − ε

}

≤ tε+α−β · Γ
(

1 − β
)

Γ
(

α + 1 − β
)A max

{

|c|, 1
1 − ε

}

= o(1) when t −→ +∞.

(2.11)

By means of L’Hôpital’s rule, we conclude that (recall (2.5))

lim
t→+∞

[

−t
∫+∞

t

y0(s)
s2

ds

]

= lim
t→+∞

y0(t) = 0. (2.12)

The proof is complete.

Our main contribution is given next.

Theorem 2.3. Set the numbers ε ∈ (0, 1 − α), β ∈ (α + ε, 1), c, d with c2 + d2 > 0, and c1 ∈ (0, 1),
A > 0, such that

max
{

|c|, |d|, 1
1 − ε

}

· Γ(1 − α)A ≤ c1. (2.13)

Assume also that a ∈ C([0,+∞),R) satisfies the inequality

(
1
tε

+ 1 + t1−ε
)

|a(t)| ≤ A min
{

1
tα
,
1
tβ

}

, t > 0. (2.14)

Then the FDE (1.9) has a solution x ∈ C([0,+∞),R) ∩ C1((0,+∞),R), with x(0) = d and
limt↘0[t2−αx′(t)] = 0, which has the asymptotic development

x(t) = ct + d + o(1) when t −→ +∞. (2.15)

Proof. Keeping the notations from Proposition 2.1, introduce the change of variables

y = tx′ − x + d, x(t) = ct + d − t

∫+∞

t

y(s)
s2

ds, t > 0, y ∈ D, (2.16)



Abstract and Applied Analysis 7

and the integral operator T : M → M with the formula

(T)
(

y
)

(t) = − 1
Γ(α)

∫ t

0

a(s)

(t − s)1−α

[

cs + d − s

∫+∞

s

y(τ)
τ2

dτ

]

ds, t > 0. (2.17)

As before, we have the estimates

∣
∣T

(

y
)

(t)
∣
∣ ≤ tε

1
Γ(α)

∫ t

0

|a(s)|
(t − s)1−α

(
1
sε

+ 1 + s1−ε
)

ds ·max
{

|c|, |d|, c1
1 − ε

}

≤ c1t
ε, t > 0,

∣
∣(T)

(

y1
)

(t) − (T)
(

y2
)

(t)
∣
∣ ≤ tε

Γ(α)
max

{

|c|, |d|, 1
1 − ε

}∫ t

0

(

1/sε + 1 + s1−ε
)|a(s)|

(t − s)1−α
ds · δ(y1, y2

)

≤ tε · c1δ
(

y1, y2
)

, t > 0,
(2.18)

for all y, y1, y2 ∈ D.
Finally, for the fixed point y0 of the operator T , we have that

∣
∣y0(t)

∣
∣ =

∣
∣T

(

y0
)

(t)
∣
∣

≤ tε+α−β · Γ
(

1 − β
)

Γ
(

α + 1 − β
)A max

{

|c|, |d|, 1
1 − ε

}

= o(1) when t −→ +∞.

(2.19)

The proof is complete.

3. Conclusion

A particular case of Theorem 2.3 is when c = 0, d = 1, that is, when the solution of (1.9)
reads as x(t) = 1 + o(1) for t → +∞. Notice from (2.14) that the behavior of the functional
coefficient a(t) is confined to limt→+∞a(t) = 0. However, there is no restriction with respect to
the (eventual) zeros of a(t). On the other hand, in the recent contribution [13, Section 3], we
were forced to request that the functional coefficient of the FDE has a unique zero in (0,+∞). In
conclusion, the fractional differential operators proposed in (1.9), (2.3) allow more freedom
for the functional coefficient.
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