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By using critical point theory, some new sufficient conditions for the existence of solutions of
impulsive Duffing dynamic equations on time scales with Dirichlet boundary conditions are
obtained. Some examples are also given to illustrate our results.

1. Introduction

Consider the following Duffing dynamic equations on time scales with impulsive effects

uΔΔ(t) + CuΔ(σ(t)) − r(t)u(σ(t)) + f(σ(t), u(σ(t))) = h(t), a.e. t ∈ [0, σ(T)]κ
2

T
,

ΔuΔ
(
tj
)
= uΔ
(
t+j

)
− uΔ
(
t−j
)
= Ij
(
u
(
tj
))
, j = 1, 2, . . . , p,

u(0) = 0 = u(σ(T)),

(1.1)

where T > 0, C is a regressive constant, t0 = 0 < t1 < t2 < · · · < tp < tp+1 = σ(T), r ∈
L∞[0, σ(T)]

T
, h ∈ L2[0, σ(T)]

T
, f : [0, σ(σ(T))]

T
× R → R is continuous, and Ij : × R → R,

j = 1, 2, . . . , p are continuous.
Obviously, system (1.1) covers Duffing equations (when T = R)

u′′(t) + g(u(t)) = h(t),

u′′(t) + Cu′(t) + g(t, u(t)) = h(t).
(1.2)
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The Duffing equation has been used to model the nonlinear dynamics of special types
of mechanical and electrical systems. This differential equation has been named after
the studies of Duffing in 1918 [1], has a cubic nonlinearity, and describes an oscillator.
The main applications have been in electronics, but it can also have applications in
mechanics and in biology. For example, the brain is full of oscillators at micro- and
macrolevel [2]. There are applications in neurology, ecology, secure communications, chaotic
synchronization, and so on. Due to the rich behaviour of these equations, the most
general forced forms of the Duffing equation (1.2) have been studied by many researchers
[3–12].

The study of dynamic equations on time scales goes back to its founder Stefan Hilger
[13], and is a new area of still fairly theoretical exploration in mathematics. Motivating
the subject is the notion that dynamic equations on time scales can build bridges between
continuous and discrete equations. Further, the study of time scales has led to several
important applications, for example, in the study of insect population models, neural
networks, heat transfer, and epidemic models [14–16].

Impulsive effects exist widely in many evolution processes in which their states
are changed abruptly at certain moments of time. The theory of impulsive differential
systems has been developed by numerous mathematicians (see [17–24]). Applications
of impulsive differential equations with or without delays occur in biology, medicine,
mechanics, engineering, chaos theory, and so on (see [25–32]).

In addition, system (1.1) also includes

uΔΔ(t) + f(σ(t), u(σ(t))) = 0, a. e. t ∈ [0, σ(T)]κ
2

T
,

u(0) = 0 = u(σ(T)),

u′′(t) + r(t)u(t) = f(t, u(t)), a.e. t ∈ [0, T],

Δu′
(
tj
)
= u′
(
t+j

)
− u′
(
t−j
)
= Ij
(
tj
)
, j = 1, 2, . . . , p,

u(0) = 0 = u(T),

(1.3)

which were studied by papers [33, 34], and some existence results were obtained by using
some critical point theorems.

Our purpose in this paper is to study the variational structure of problem (1.1) in an
appropriate space of functions and the existence of solutions for problem (1.1) by means of
some critical point theorems. The organization of this paper is as follows. In Section 2, we
make some preparations. In Section 3, we will study the variational structure of problem
(1.1) and give some important lemmas which will be used in later section. In Section 4, by
applying some critical point theorems, we establish sufficient conditions for the existence of
solutions to problem (1.1). Some illustrative examples are also given in Section 4.

2. Preliminaries

In this section, we will first recall some basic definitions and lemmas which are used in what
follows.
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Definition 2.1 (see [13]). A time scale T is an arbitrary nonempty closed subset of the real set R

with the topology and ordering inherited from R. The forward and backward jump operators
σ, ρ : T → T, and the graininess μ, ν : T → R

+ are defined, respectively, by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},
μ(t) := σ(t) − t, ν(t) := t − ρ(t).

(2.1)

The point t ∈ T is called left dense, left scattered, right dense, or right scattered if ρ(t) = t,
ρ(t) < t, σ(t) = t, or σ(t) > t, respectively. Points that are right dense and left dense at the same
time are called dense. If T has a left-scattered maximumm1, defined T

κ = T−{m1}; otherwise,
set T

κ = T. If T has a right-scattered minimum m2, defined Tκ = T − {m2}; otherwise, set
Tκ = T.

Definition 2.2 (see [13]). For f : T → R and t ∈ T
κ, then the delta derivative of f at the point

t is defined to be the number fΔ(t) (provided it exists) with the property that for each ε > 0,
there is a neighborhoodU of t such that

∣∣∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)
∣∣∣ ≤ ε|σ(t) − s|, ∀s ∈ U. (2.2)

Definition 2.3 (see [13]). A function f is rd continuous provided it is continuous at each
right-dense point in T and has a left-sided limit at each left-dense point in T. The set of rd-
continuous functions f will be denoted by Crd(T).

Definition 2.4 (see [13]). Assume that T is an arbitrary time scale. We say that a function
p : T → R is regressive provided

1 + μ(t)p(t)/= 0, ∀t ∈ T
κ. (2.3)

Definition 2.5 (see [13]). Assume that T is an arbitrary time scale and a function p : T → R is
regressive, then we define the exponential function on T by

ep(t, s) = exp

(∫ t

s

ξμ(τ)
(
p(τ)
)
Δτ

)

, for s, t ∈ T, (2.4)

in which

ξh(z) =
1
h
Log(1 + zh) for h > 0, (2.5)

ξh(z) = ξ0(z) = z for h = 0, here Log is the principal logarithm function.

A function f : T → R is called rd continuous provided it is continuous at each right-
dense point and its left-sided limit exists (finite) at each left-dense point in T. We write
f ∈ Crd(T) = Crd(T,R). If f is differentiable with fΔ ∈ Crd(Tκ), we write f ∈ C1

rd
(T). If

fΔ is differentiable on T
κ2 = (Tκ)κ with fΔ2

= (fΔ)Δ ∈ Crd(Tκ2), we write f ∈ C2
rd
(T).



4 Abstract and Applied Analysis

Similar to the classical Riemann’s definition of integrability, the concept of the Riemann delta
integral on time scales is given in [35]. We know that many familiar functions, including
monotone continuous, piecewise continuous, right-dense continuous functions, are Riemann
delta integrable. In the following lemma, we present some properties of the integral that will
be needed later.

Lemma 2.6 (see [35]). Let f, g : T → R be two functions and a, b ∈ T. Then one has the following.

(1) Let f and g be Riemann delta integrable functions on [a, b], and α, β ∈ R. Then αf + βg
is Riemann delta integrable and

∫b

a

(
αf(s) + βg(s)

)
Δs = α

∫b

a

f(s)Δs + β
∫b

a

g(s)Δs. (2.6)

(2) Fundamental Theorem of Calculus. Let f be a continuous function on [a, b]
T
such that f

is delta differentiable on [a, b). If fΔ is Riemann delta integrable from a to b, then

∫b

a

fΔ(s)Δs = f(b) − f(a). (2.7)

(3) Integration by Parts. Let f and g be continuous functions on [a, b] that are differentiable
on [a, b). If fΔ and gΔ are Riemann delta integrable from a to b, then

∫b

a

f(s)gΔ(s)Δs =
[
f(s)g(s)

]∣∣b
a −
∫b

a

fΔ(s)g(σ(s))Δs. (2.8)

(4) If f is Riemann delta integrable on [a, b], then so is |f |, and

∣∣∣∣∣

∫b

a

fΔ(s)Δs

∣∣∣∣∣
=
∫b

a

∣∣∣fΔ(s)
∣∣∣Δs. (2.9)

The construction of the Δ-measure on T and the following concepts can be found in
[35].

(1) For each t0 ∈ T\{maxT}, the single-point set t0 isΔ-measurable, and itsΔ-measure
is given by

μΔ({t0}) = σ(t0) − t0 = μ(t0). (2.10)
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(2) If a, b ∈ T and a ≤ b, then

μΔ([a, b)) = b − a, μΔ((a, b)) = b − σ(a). (2.11)

(3) If a, b ∈ T \ {maxT} and a ≤ b, then

μΔ((a, b]) = σ(b) − σ(a), μΔ([a, b]) = σ(b) − a. (2.12)

The Lebesgue integral associated with the measure μΔ on T is called the Lebesgue
delta integral. For a (measurable) set E ⊂ T and a function f : E → R, the corresponding
integral of f on E is denoted by

∫
E f(s)Δs. All theorems of the general Lebesgue integration

theory hold also for the Lebesgue delta integral on T. Moreover, comparing the Lebesgue
delta integral with the Riemann delta integral, we have the following.

Lemma 2.7 (see [35]). Let [a, b] be a closed bounded interval in T and let f be a bounded real-
valued function defined on [a, b]. If f is Riemann delta integrable from a to b, then f is Lebesgue
delta integrable on [a, b) and

(R)
∫b

a

f(s)Δs = (L)
∫

[a,b)
f(s)Δs, (2.13)

where R and L indicate the Riemann delta integral and Lebesgue delta integral, respectively.

Assume that p ∈ R and p > 1. Let LpLS[a, b] be the set of

{

f : [a, b] −→ R :
∫b

a

∣∣f(s)
∣∣pΔs < +∞

}

. (2.14)

By Lemma 3.6 in [36], LpLS[a, b] is a complete linear space with the norm ‖ · ‖p defined by

∥∥f
∥∥
p =

(∫b

a

∣∣f(s)
∣∣pΔs

)1/p

. (2.15)

Let CTS[a, b] denote the linear space of all continuous functions f : [a, b] → R with
the maximum norm ‖f‖C = maxt∈[a,b]|f(t)|.

Lemma 2.8 (Hölder inequality [37]). Let f, g ∈ Crd([a, b]), p > 1 and q the conjugate number of
p. Then

∫b

a

∣∣f(s)g(s)
∣∣Δs ≤

(∫b

a

∣∣f(s)
∣∣pΔs

)1/p

·
(∫b

a

∣∣g(s)
∣∣qΔs

)1/q

. (2.16)



6 Abstract and Applied Analysis

At the end of this section, we recall some notation and known results from critical
point theory.

Let X be a real normed space and let ϕ be a functional from X to R.

(1) ϕ is called weakly continuous if

xk ⇀ x =⇒ ϕ(xk) −→ ϕ(x). (2.17)

(2) ϕ is called lower semicontinuous if

xk −→ x =⇒ lim
k→∞

infϕ(xk) ≥ ϕ(x). (2.18)

(3) ϕ is called weakly lower semicontinuous if

xk ⇀ x =⇒ lim
k→∞

infϕ(xk) ≥ ϕ(x). (2.19)

Let X be a real Hilbert space, ϕ ∈ C1(X,R), which means that ϕ is a continuously
Fréchet-differentiable functional defined on X. ϕ is said to satisfy the Palais-Smale condition
(P.S. condition) if any sequence {xn} ⊂ X for which {ϕ(xn)} is bounded and ϕ′(xn) → 0 as
n → ∞ possesses a convergent subsequence in X.

Let Br be the open ball in X with radius r and centered at 0 and let ∂Br denote its
boundary. The following lemma is taken from [38, 39] and will play an important role in the
proof of our main results.

Lemma 2.9 (see [38]). If X is a real normed space and ϕ : X → R is lower semicontinuous and
convex, then ϕ is weakly lower semicontinuous.

Lemma 2.10 (see [39]). Let X be a real Banach space, ϕ ∈ C1(X,R) be weakly lower(upper)
semicontinuous, and

lim
‖x‖→∞

ϕ(x) = +∞
(

lim
‖x‖→∞

ϕ(x) = −∞
)
. (2.20)

Then, there exists x0 ∈ X such that

ϕ(x0) = inf
x∈X

ϕ(x)

(

ϕ(x0) = sup
x∈X

ϕ(x)

)

. (2.21)

Lemma 2.11 (Mountain Pass Theorem [40]). Let X be a real Hilbert space and let ϕ ∈ C1(X,R)
satisfy P.S. condition, and ϕ satisfies

(J1) There are constants ρ, α > 0 such that ϕ(x) ≥ α for all x ∈ ∂Bρ, where Bρ = {x ∈ X :
‖x‖ < ρ}.

(J2) ϕ(0) ≤ 0 and there exists x0 ∈Bρ such that ϕ(x0) ≤ 0.
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Then ϕ possesses a critical value c ≥ α. Moreover, c can be characterized as

c = inf
g∈Γ

max
s∈[0,1]

ϕ
(
g(s)
)
, (2.22)

where

Γ =
{
g ∈ C([0, 1],X) | g(0) = 0, g(1) = x0

}
. (2.23)

3. Variational Structure

In this section, we will establish the corresponding variational framework for problem (1.1).
Let P be the function space of the form

P =
{
u | u ∈ C1

rd[0, σ(T)]
κ
T
, u ∈ CTS[0, σ(T)]T

, u(0) = 0 = u(σ(T))
}
. (3.1)

P can be equipped with the inner product

(u, v)
P
=
∫σ(T)

0
uΔ(t)vΔ(t)Δt, ∀u, v ∈ P, (3.2)

inducing the norm

‖u‖
P
=
√
(u, u)

P
=

(∫σ(T)

0

∣∣∣uΔ(t)
∣∣∣
2
Δt

)1/2

, ∀u ∈ P. (3.3)

Let {uk} ∈ P be a Cauchy sequence in P, that is, ‖uΔ
k
− uΔ

l
‖2 = ‖uk − ul‖P

→ 0 as
k, l → ∞. Since L2

LS[0, σ(T)]T
is a complete space, there exists a v ∈ L2

LS[0, σ(T)]T
such that

‖uΔ
k
− v‖2 → 0 as k → ∞. Define a function u by

u(t) =
∫ t

0
v(s)Δs. (3.4)

The function v is called a weak derivative of u and is also denoted by uΔ.

Remark 3.1. If u has a weak derivative, then this weak derivative is unique in L2
LS[0, σ(T)]T

,
that is, if v1, v2 ∈ L2

LS[0, σ(T)]T
are both weak derivatives of u, then ‖v1 − v2‖2 = 0. If u is

(delta) differential on [0, σ(T)]
T
, then its weak derivative is its (delta) derivative.
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From (3.4), it is clear that u(0) = 0 and

|u(σ(T))| =
∣
∣
∣
∣
∣

∫σ(T)

0
v(s)Δs

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫σ(T)

0

(
v(s) − uΔk (s)

)
Δs

∣
∣
∣
∣
∣

≤
∫σ(T)

0

∣
∣
∣v(s) − uΔk (s)

∣
∣
∣Δs

≤
(∫σ(T)

0
12Δs

)1/2(∫σ(T)

0

∣
∣
∣v(s) − uΔk (s)

∣
∣
∣
2
Δs

)1/2

=
√
σ(T)
∥
∥∥v − uΔk

∥
∥∥
2
−→ 0, as k −→ ∞.

(3.5)

Thus, u(σ(T)) = 0.
Define the space H as

H =

{

u(t) =
∫ t

0
v(s)Δs | ∃{uk} ∈ P satisfying

∥∥∥uΔk − v
∥∥∥
2
−→ 0 as k −→ ∞

}

. (3.6)

It is clear that P ⊂ H, and we define the inner product (·, ·)
H
in H as

(u, v)
H
=
∫σ(T)

0
uΔ(t)vΔ(t)Δt, ∀u, v ∈ H, (3.7)

inducing the norm

‖u‖
H
=
√
(u, u)

H
=

(∫σ(T)

0

∣∣∣uΔ(t)
∣∣∣
2
Δt

)1/2

, ∀u ∈ H, (3.8)

where uΔ represents the weak derivative of u. Moreover, we have the following result.

Lemma 3.2 (see [33]). H is a complete space in the norm ‖ · ‖
H
and inequality

∫σ(T)

0
|uσ(t)|2Δt ≤ σ(T)2

∫σ(T)

0

∣∣∣uΔ(t)
∣∣∣
2
Δt, ∀u ∈ H (3.9)

holds, that is, ‖uσ‖2 ≤ σ(T)‖u‖H
.

Also, we consider the inner product

(u, v) =
∫σ(T)

0
eC(t, 0)r(t)uσ(t)vσ(t)Δt +

∫σ(T)

0
eC(t, 0)uΔ(t)vΔ(t)Δt, ∀u, v ∈ H, (3.10)
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inducing the norm

‖u‖ =

(∫σ(T)

0
eC(t, 0)r(t)|uσ(t)|2Δt +

∫σ(T)

0
eC(t, 0)

∣
∣
∣uΔ(t)

∣
∣
∣
2
Δt

)1/2

, ∀u ∈ H. (3.11)

Throughout this paper, it will be assumed that ess inft∈[0,σ(T)]
T
r(t) = r0 > −λ0, where λ0

is the smallest eigenvalue of the problem

uΔΔ(t) + λuσ(t) = 0, t ∈ [0, σ(T)]κ
2

T
,

u(0) = 0 = u(σ(T)).
(3.12)

From [41], λ0 may be defined as

λ0 = min
u/= 0

u(0)=0=u(σ(T))

−
∫σ(T)
0 uΔΔ(t)uσ(t)Δt

‖uσ‖22
. (3.13)

Applying the integration by parts in Lemma 2.6, we have

λ0 = min
u/= 0

u(0)=0=u(σ(T))

‖u‖2
H

‖uσ‖22
> 0, (3.14)

which implies that

‖uσ‖22 ≤
1
λ0

‖u‖2
H
, ∀u ∈ H. (3.15)

For convenience, we introduce the following notations:

el = min
t∈[0,σ(T)]

T

eC(t, 0), eL = max
t∈[0,σ(T)]

T

eC(t, 0), h0 =
∫σ(T)

0
|h(t)|Δt. (3.16)

Lemma 3.3. Suppose that

(H1) r0eL + λ0el > 0, for all r0 ∈ (−λ0, 0).
Then one has

ω‖u‖2
H
≤ ‖u‖2 ≤ eL

(
‖r‖∞σ2(T) + 1

)
‖u‖2

H
, (3.17)

which implies that the norm ‖ · ‖ and the norm ‖ · ‖
H
are equivalent, where

ω =

⎧
⎪⎨

⎪⎩

r0e
L

λ0
+ el, −λ0 < r0 < 0,

el, r0 ≥ 0.
(3.18)
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Proof

Case 1 (r0 ≥ 0). For every u ∈ H, we have

‖u‖2 =
∫σ(T)

0
eC(t, 0)r(t)|uσ(t)|2Δt +

∫σ(T)

0
eC(t, 0)

∣
∣
∣uΔ(t)

∣
∣
∣
2
Δt

≥
∫σ(T)

0
eC(t, 0)

∣
∣
∣uΔ(t)

∣
∣
∣
2
Δt

≥ el
∫σ(T)

0

∣
∣
∣uΔ(t)

∣
∣
∣
2
Δt

= el‖u‖2
H
.

(3.19)

On the other hand, by Lemma 2.6, one has

‖u‖2 =
∫σ(T)

0
eC(t, 0)r(t)|uσ(t)|2Δt +

∫σ(T)

0
eC(t, 0)

∣∣∣uΔ(t)
∣∣∣
2
Δt

≤ eL
(∫σ(T)

0
|r(t)||uσ(t)|2Δt +

∫σ(T)

0

∣∣∣uΔ(t)
∣∣∣
2
Δt

)

≤ eL
(
‖r‖∞σ2(T) + 1

)∫σ(T)

0

∣∣∣uΔ(t)
∣∣∣
2
Δt

= eL
(
‖r‖∞σ2(T) + 1

)
‖u‖2

H
.

(3.20)

Therefore, the norm ‖ · ‖ and the norm ‖ · ‖
H
are equivalent.

Case 2 (−λ0 < r0 < 0). For every u ∈ H, we have from (3.15) that

‖u‖2 =
∫σ(T)

0
eC(t, 0)r(t)|uσ(t)|2Δt +

∫σ(T)

0
eC(t, 0)

∣∣∣uΔ(t)
∣∣∣
2
Δt

≥ eLr0
∫σ(T)

0
|uσ(t)|2Δt + el

∫σ(T)

0

∣∣∣uΔ(t)
∣∣∣
2
Δt

≥ r0e
L

λ0

∫σ(T)

0

∣∣∣uΔ(t)
∣∣∣
2
Δt + el

∫σ(T)

0

∣∣∣uΔ(t)
∣∣∣
2
Δt

=

(
r0e

L

λ0
+ el
)∫σ(T)

0

∣∣∣uΔ(t)
∣∣∣
2
Δt

=

(
r0e

L

λ0
+ el
)

‖u‖2
H
.

(3.21)

Similar to Case 1, it is easy to obtain the desired results. This completes the proof.
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Together with (3.15) and Lemma 3.3, it is not difficult to obtain the following.

Lemma 3.4 (Poincaré inequality). For all u ∈ H, one has

∫σ(T)

0
|uσ(t)|2Δt ≤ 1

λ0ω

(∫σ(T)

0
eC(t, 0)r(t)|uσ(t)|2Δt +

∫σ(T)

0
eC(t, 0)

∣
∣∣uΔ(t)

∣
∣∣
2
Δt

)

, (3.22)

that is, ‖uσ‖2 ≤ (1/
√
λ0ω)‖u‖.

Lemma 3.5. ‖u‖∞ ≤ a0‖u‖ for all u ∈ H, where a0 =
√
σ(T)/ω.

Proof. For every u ∈ H, we have

|u(t)| = |u(t) − u(0)|

=

∣∣∣∣∣

∫ t

0
uΔ(s)Δs

∣∣∣∣∣

≤
∫ t

0

∣∣∣uΔ(s)
∣∣∣Δs

≤ t1/2
(∫ t

0

∣∣∣uΔ(s)
∣∣∣
2
Δs

)1/2

≤ t1/2‖u‖
H
.

(3.23)

Therefore,

‖u‖∞ ≤
√
σ(T)‖u‖

H
≤
√
σ(T)
ω

‖u‖. (3.24)

This completes the proof.

For u ∈ H
⋂
C2
rd[0, σ(T)]

κ2

T
, we have that u and uΔ are both absolutely continuous.

Hence, ΔuΔ(t) = uΔ(t+) − uΔ(t−) = 0 for any t ∈ [0, σ(T)]κ
T
.

If u ∈ H, then u is absolutely continuous and uΔ ∈ L2
TS[0, σ(T)]T

. In this case, ΔuΔ(t) =
uΔ(t+) − uΔ(t−) = 0 may not hold for some t ∈ [0, σ(T)]κ

T
. It leads to the impulsive effects.

Take v ∈ H and multiply the two sides of the equality

uΔΔ(t) + CuΔ(σ(t)) − r(t)u(σ(t)) + f(σ(t), u(σ(t))) = h(t) (3.25)
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by eC(t, 0), vσ(t) and integrate from 0 to σ(T); we have

∫σ(T)

0

(
eC(t, 0)uΔ(t)

)Δ
vσ(t)Δt =

∫σ(T)

0
eC(t, 0)h(t)vσ(t)Δt

−
∫σ(T)

0
eC(t, 0)r(t)u(σ(t))vσ(t)Δt

−
∫σ(T)

0
eC(t, 0)f(σ(t), u(σ(t)))vσ(t)Δt.

(3.26)

Furthermore,

∫σ(T)

0

(
eC(t, 0)uΔ(t)

)Δ
vσ(t)Δt

=
j=p∑

j=0

∫ tj+1

tj

(
eC(t, 0)uΔ(t)

)Δ
vσ(t)Δt

=
j=p∑

j=0

(

eC
(
t−j+1, 0

)
uΔ
(
t−j+1
)
v
(
t−j+1
)
− eC
(
t+j , 0
)
uΔ
(
t+j

)
v
(
t+j

)
−
∫ tj+1

tj

eC(t, 0)uΔ(t)vΔ(t)Δt

)

= −
j=p∑

j=1

eC
(
tj , 0
)
ΔuΔ
(
tj
)
v
(
tj
)
+ eC(σ(T), 0)uΔ(σ(T))v(σ(T)) − eC(0, 0)uΔ(0)v(0)

−
∫σ(T)

0
eC(t, 0)uΔ(t)vΔ(t)Δt

= −
j=p∑

j=1

eC
(
tj , 0
)
Ij
(
u
(
tj
))
v
(
tj
) −
∫σ(T)

0
eC(t, 0)uΔ(t)vΔ(t)Δt.

(3.27)

Combining (3.26), we have

∫σ(T)

0
eC(t, 0)uΔ(t)vΔ(t)Δt +

∫σ(T)

0
eC(t, 0)r(t)u(σ(t))vσ(t)Δt +

j=p∑

j=1

eC
(
tj , 0
)
Ij
(
u
(
tj
))
v
(
tj
)

=
∫σ(T)

0
eC(t, 0)f(σ(t), u(σ(t)))vσ(t)Δt −

∫σ(T)

0
eC(t, 0)h(t)vσ(t)Δt.

(3.28)

Considering the above, we introduce the following concept solution for problem (1.1).
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Definition 3.6. We say that a function u ∈ H is a weak solution of problem (1.1) if the identity

∫σ(T)

0
eC(t, 0)uΔ(t)vΔ(t)Δt +

∫σ(T)

0
eC(t, 0)r(t)u(σ(t))vσ(t)Δt +

p∑

j=1

eC
(
tj , 0
)
Ij
(
u
(
tj
))
v
(
tj
)

=
∫σ(T)

0
eC(t, 0)f(σ(t), u(σ(t)))vσ(t)Δt −

∫σ(T)

0
eC(t, 0)h(t)vσ(t)Δt

(3.29)

holds for any v ∈ H.

Consider the functional ϕ : H → R defined by

ϕ(u) =
1
2
‖u‖2 +

∫σ(T)

0
eC(t, 0)[h(t)uσ(t) − F(σ(t), uσ(t))]Δt +

p∑

j=1

eC
(
tj , 0
)
∫u(tj )

0
Ij(s) ds,

(3.30)

where F(t, u) =
∫u
0 f(t, s)ds. Using the continuity of f and Ij , j = 1, 2, . . . , p, one has that

ϕ ∈ C1(H,R). For any v ∈ H, we have

ϕ′(u)v =
∫σ(T)

0
eC(t, 0)uΔ(t)vΔ(t)Δt +

∫σ(T)

0
eC(t, 0)r(t)uσ(t)vσ(t)Δt

−
∫σ(T)

0
eC(t, 0)f(σ(t), uσ(t))vσ(t)Δt +

∫σ(T)

0
eC(t, 0)h(t)vσ(t)Δt

+
p∑

j=1

eC
(
tj , 0
)
Ij
(
u
(
tj
))
v
(
tj
)
.

(3.31)

Therefore, the solutions of problem (1.1) are the corresponding critical points of ϕ.

Lemma 3.7 (see [33]). The functionals ψ1, ψ2, ψ3 : H → R defined by

ψ1(u) =
∫σ(T)

0
F(σ(t), uσ(t))Δt, ψ2(u) =

∫σ(T)

0
h(t)uσ(t)Δt, ψ3(u) =

p∑

j=1

∫u(tj )

0
Ij(s)ds

(3.32)

are weakly continuous on H.
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4. Main Results

Theorem 4.1. Assume that (H1) holds. Suppose further the following.

(H2) There exist a, b > 0 and θ ∈ [0, 1) such that

∣
∣f(t, u)

∣
∣ ≤ a + b|u|θ, ∀(t, u) ∈ [0, σ(T)]

T
× R. (4.1)

(H3) There exist aj , bj > 0 and θj ∈ [0, 1) (j = 1, 2, . . . , p) such that

∣
∣Ij(u)

∣
∣ ≤ aj + bj |u|θj , ∀u ∈ R

(
j = 1, 2, . . . , p

)
. (4.2)

Then problem (1.1) has at least one weak solution.

Proof. According to Lemma 3.7, ψ1(u), ψ2(u), ψ3(u) are weakly continuous on H. On the other
hand, it is clear that ‖u‖2 is continuous and convex on H. By Lemma 2.9, ‖u‖2 is weakly lower
semicontinuous. So ϕ(u) is weakly lower semicontinuous on H.

From (H2)-(H3), we have

ϕ(u) =
1
2
‖u‖2 +

∫σ(T)

0
eC(t, 0)[h(t)uσ(t) − F(σ(t), uσ(t))]Δt +

p∑

j=1

eC
(
tj , 0
)
∫u(tj )

0
Ij(s)ds

≥ 1
2
‖u‖2 − eL

∫σ(T)

0
|h(t)uσ(t)|Δt − eL

∫σ(T)

0

(
a|uσ(t)| + b|uσ(t)|θ+1

)
Δt

− eL
p∑

j=1

∫u(tj )

0

(
aj + bj |s|θj

)
ds

≥ 1
2
‖u‖2 − eLh0‖u‖∞ − eLσ(T)

(
a‖u‖∞ + b‖u‖θ+1∞

)
− eL

p∑

j=1

(
aj‖u‖∞ + bj‖u‖θj+1∞

)

≥ 1
2
‖u‖2 − eLh0a0‖u‖ − eLσ(T)

(
aa0‖u‖ + baθ+10 ‖u‖θ+1

)

− eL
p∑

j=1

(
aja0‖u‖ + bjaθj+10 ‖u‖θj+1

)

(4.3)
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for all u ∈ H. This implies that lim‖u‖→∞ϕ(u) = ∞, and ϕ is coercive. By Lemma 2.10, ϕ has a
minimum point on H, which is a critical point of ϕ. Therefore, problem (1.1) has at least one
weak solution. This completes the proof.

Example 4.2. Consider the following impulsive Duffing equations on time scales

uΔΔ(t) + 2uΔ(t) − 3u(t) +
√
|u(t)| = 1

10e
sin t, a.e. t ∈ [0, 1]

T
,

ΔuΔ
(
1
2

)
= uΔ
(
1
2

+)
− uΔ
(
1
2

−)
= 3

√

u

(
1
2

)
,

u(0) = 0 = u(σ(1)).

(4.4)

Then, problem (4.4) has at least one solution.

Proof. The result is easy to obtain from Theorem 4.1 and we should omit it. This completes
the proof.

Theorem 4.3. Assume that (H1) holds. Suppose further the following.

(H4) There exist a, b, c > 0 and θ ∈ [0, 1) such that

∣∣f(t, u)
∣∣ ≤ a|u| + b|u|θ + c, ∀(t, u) ∈ [0, σ(T)]

T
× R. (4.5)

(H5) There exist aj , bj , cj > 0 and θj ∈ [0, 1) (j = 1, 2, . . . , p) such that

∣∣Ij(u)
∣∣ ≤ aj |u| + bj |u|θj + cj , ∀u ∈ R

(
j = 1, 2, . . . , p

)
. (4.6)

(H6) 1/2 − aσ(T)eLa20 −
∑p

j=1 aje
La20 > 0.

Then problem (1.1) has at least one weak solution.

Proof. According to Theorem 4.1, we know that ϕ(u) is weakly lower semicontinuous on H.
From (H4)−(H6), we have

ϕ(u) =
1
2
‖u‖2 +

∫σ(T)

0
eC(t, 0)[h(t)uσ(t) − F(σ(t), uσ(t))]Δt +

p∑

j=1

eC
(
tj , 0
)
∫u(tj )

0
Ij(s)ds

≥ 1
2
‖u‖2 − eL

∫σ(T)

0
|h(t)uσ(t)|Δt − eL

∫σ(T)

0

(
a|uσ(t)|2 + b|uσ(t)|θ+1 + c|uσ(t)|

)
Δt

− eL
p∑

j=1

∫u(tj )

0

(
aj |s| + bj |s|θj + cj

)
ds
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≥ 1
2
‖u‖2 − eLh0‖u‖∞ − eLσ(T)

(
a‖u‖2∞ + b‖u‖θ+1∞ + c‖u‖∞

)

− eL
p∑

j=1

(
aj‖u‖2∞ + bj‖u‖θj+1∞ + cj‖u‖∞

)

≥ 1
2
‖u‖2 − eLh0a0‖u‖ − eLσ(T)

(
aa20‖u‖2 + baθ+10 ‖u‖θ+1 + ca0‖u‖

)

− eL
p∑

j=1

(
aja

2
0‖u‖2 + bja

θj+1
0 ‖u‖θj+1 + cja0‖u‖

)

=

⎛

⎝1
2
− aσ(T)eLa20 −

p∑

j=1

aje
La20

⎞

⎠‖u‖2 − eLh0a0‖u‖

− eLσ(T)
(
baθ+10 ‖u‖θ+1 + ca0‖u‖

)
− eL

p∑

j=1

(
bja

θj+1
0 ‖u‖θj+1 + cja0‖u‖

)

(4.7)

for all u ∈ H. This implies that lim‖u‖→∞ϕ(u) = ∞, and ϕ is coercive. By Lemma 2.10, ϕ has a
minimum point on H, which is a critical point of ϕ. Therefore, problem (1.1) has at least one
weak solution. This completes the proof.

Example 4.4. Consider the following impulsive Duffing equations on time scales:

uΔΔ(t) + 2uΔ(t) − 3u(t) +
1

5σ3(1)ν0
u(t) +

√
|u(t)| = sin t, a.e. t ∈ [0, 1]

T
,

ΔuΔ
(
1
2

)
= uΔ
(
1
2

+)
− uΔ
(
1
2

−)
=

1
5σ2(1)ν0

u

(
1
2

)
,

u(0) = 0 = u(σ(1)),

(4.8)

where

ν0 = exp

(∫σ(1)

0
log
(
1 + 3μ(s)

)1/μ(s)Δs

)

. (4.9)

Then problem (4.8) has at least one solution.

Proof. By an easy calculation, we obtain

eL = exp

(∫σ(1)

0
log
(
1 + 3μ(s)

)1/μ(s)Δs

)

, el = 1. (4.10)

It is easy to verify that all the conditions of Theorem 4.3 are satisfied. From Theorem 4.3,
problem (4.8) has at least one solution. This completes the proof.
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Lemma 4.5. Assume that (H1) and (H3) hold. Suppose further the following.

(H7) There exist constants μ > 2 and R > 0, such that

0 < μF(t, u) ≤ uf(t, u), ∀|u| ≥ R, t ∈ [0, σ(T)]
T
, (4.11)

where F(t, u) =
∫u
0 f(t, s)ds.

Then ϕ satisfies the P.S. condition in H.

Proof. Let {un} be a sequence in H satisfying that {ϕ(un)} is bounded and ϕ′(un) → 0 as
n → +∞. Let Ωn = {t ∈ [0, σ(T)]

T
| |un(t)| ≥ R} for all n ∈ N. By the continuity of f and

(H7), there exists a constant c1 > 0 such that

βϕ(un) −
(
ϕ′(un), un

)
=
(
β

2
− 1
)
‖un‖2 +

∫σ(T)

0
eC(t, 0)

[
uσnf(σ(t), u

σ
n) − βF(σ(t), uσn)

]
Δt

+ β
p∑

j=1

eC
(
tj , 0
)
∫un(tj )

0
Ij(s)ds −

p∑

j=1

eC
(
tj , 0
)
Ij
(
un
(
tj
))
un
(
tj
)

+
∫σ(T)

0

(
β − 1
)
eC(t, 0)h(t)uσnΔt

≥
(
β

2
− 1
)
‖un‖2 +

∫

Ωn

eC(t, 0)
[
uσnf(σ(t), u

σ
n) − βF(σ(t), uσn)

]
Δt

− (β + 1
)
eL

p∑

j=1

(
aja0‖u‖ + bjaθj+10 ‖u‖θj+1

)

− (β − 1
)
eLh0a0‖un‖ − c1

≥
(
β

2
− 1
)
‖un‖2 −

(
β + 1
)
eL

p∑

j=1

(
aja0‖u‖ + bjaθj+10 ‖u‖θj+1

)

− (β − 1
)
eLh0a0‖un‖ − c1,

(4.12)

which implies that {un} is bounded in H. Taking into account {un} ⊂ H ⊂ CTS[0, σ(T)]T

and employing Lemma 3.5, we know that {un} is relatively compact in CTS[0, σ(T)]T
. Thus

{un} possesses a convergent subsequence {unk} in CTS[0, σ(T)]T
, that is, ‖uni − unj‖∞ → 0 as

i, j → +∞. since un ∈ H, we know that uσn(T) = 0 for all n ∈ N. From the above inequality,
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it is easy to see that

sup
t∈[0,σ(T)]κ

T

∣
∣
∣uni(t) − unj (t)

∣
∣
∣ −→ 0, as i, j −→ +∞. (4.13)

From the continuity of f and Ij , j = 1, 2, . . . , p, we have

∣
∣
∣f
(
σ(t), uσni(t)

) − f
(
σ(t), uσnj (t)

)∣∣
∣ −→ 0,

∣
∣
∣Ij(uni(t)) − Ij

(
unj (t)

)∣∣
∣ −→ 0 (4.14)

hold uniformly for t ∈ [0, σ(T)]κ
T
as i, j → +∞. Set

∥∥∥f
(
σ(t), uσni(t)

) − f
(
σ(t), uσnj (t)

)∥∥∥
∞
= sup

t∈[0,σ(T)]κ
T

∣∣∣f
(
σ(t), uσni(t)

) − f
(
σ(t), uσnj (t)

)
,

∥∥∥Ij(uni(t)) − Ij
(
unj (t)

)∥∥∥
∞

= sup
t∈[0,σ(T)]κ

T

∣∣∣Ij(uni(t)) − Ij
(
unj (t)

)∣∣∣.
(4.15)

Clearly,

∥∥∥f
(
σ(t), uσni(t)

) − f
(
σ(t), uσnj (t)

)∥∥∥
∞
−→ 0,

∥∥∥Ij(uni(t)) − Ij
(
unj (t)

)∥∥∥
∞
−→ 0, (4.16)

as i, j → +∞. We rewrite (3.31) as

(
ϕ′(u), v

)
= (u, v) −

∫σ(T)

0
eC(t, 0)f(σ(t), u(σ(t)))vσ(t)Δt

+
∫σ(T)

0
eC(t, 0)h(t)vσ(t)Δt +

p∑

j=1

eC
(
tj , 0
)
Ij
(
u
(
tj
))
v
(
tj
)

(4.17)

for any u, v ∈ H. Therefore,

(
uni − unj , v

)
=
(
ϕ′(uni) − ϕ′

(
unj

)
, v
)
−

p∑

j=1

eC
(
tj , 0
)[
Ij
(
uni
(
tj
)) − Ij

(
unj
(
tj
))]

v
(
tj
)

+
∫σ(T)

0
eC(t, 0)

[
f(σ(t), uni(σ(t))) − f

(
σ(t), unj (σ(t))

)]
vσ(t)Δt.

(4.18)
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Thus, for any v ∈ H, it follows that

∣
∣
∣
(
uni − unj , v

)∣∣
∣ ≤
∥
∥
∥ϕ′(uni) − ϕ′

(
unj

)∥∥
∥‖v‖ + eL

p∑

j=1

∥
∥
∥Ij
(
uni
(
tj
)) − Ij

(
unj
(
tj
))∥∥
∥
∞
∥
∥v(tj)

∥
∥
∞

+ eL
∥
∥
∥f(σ(t), uni(σ(t))) − f

(
σ(t), unj (σ(t))

)∥∥
∥
∞

∫σ(T)

0
|vσ(t)|Δt

≤
∥
∥
∥ϕ′(uni) − ϕ′

(
unj

)∥∥
∥‖v‖ + eLa0

p∑

j=1

∥
∥
∥Ij
(
uni
(
tj
)) − Ij

(
unj
(
tj
))∥∥
∥
∞
‖v‖

+ eL
√
σ(T)
∥
∥
∥f(σ(t), uni(σ(t))) − f

(
σ(t), unj (σ(t))

)∥∥
∥
∞
‖vσ‖2

≤
∥∥∥ϕ′(uni) − ϕ′

(
unj

)∥∥∥‖v‖ + eLa0
p∑

j=1

∥∥∥Ij
(
uni
(
tj
)) − Ij

(
unj
(
tj
))∥∥∥

∞
‖v‖

+ eL
√
σ(T)
√
λ0ω

∥∥∥f(σ(t), uni(σ(t))) − f
(
σ(t), unj (σ(t))

)∥∥∥
∞
‖v‖.

(4.19)

Hence,

∥∥∥uni − unj
∥∥∥ = sup

‖v‖≤1

∣∣∣
(
uni − unj , v

)∣∣∣

≤
∥∥∥ϕ′(uni) − ϕ′

(
unj

)∥∥∥ + eLa0
p∑

j=1

∥∥∥Ij
(
uni
(
tj
)) − Ij

(
unj
(
tj
))∥∥∥

∞

+ eL
√
σ(T)
√
λ0ω

∥∥∥f(σ(t), uni(σ(t))) − f
(
σ(t), unj (σ(t))

)∥∥∥
∞
.

(4.20)

Observing that ϕ′(un) → 0 as n → +∞, it is easy to see that

∥∥∥ϕ′(uni) − ϕ′
(
unj

)∥∥∥ −→ 0, as i, j −→ +∞. (4.21)

Together with (4.16)−(4.21), we get

∥∥∥uni − unj
∥∥∥ −→ 0, as i, j −→ +∞. (4.22)

In other words, {un} possesses a convergent subsequence {unk} in H. The P.S. condition is
now satisfied. This completes the proof.
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Theorem 4.6. Assume that (H1), (H3), and (H7) hold. Suppose further the following.

(H8) There exists constant ν ≥ 2 such that

0 < νF(t, u) ≤ uf(t, u), ∀u ∈ [−1, 0)
⋃

(0, 1], t ∈ [0, σ(T)]
T
, (4.23)

(H9) a20/2 − eLMσ(T) − eL
√
σ(T)‖h‖2 − eL

∑p

j=1 aj − eL
∑p

j=1 bj > 0, where

M := sup{F(t, u) : t ∈ [0, σ(T)]
T
, |u| = 1}. (4.24)

Then problem (1.1) has at least one weak solution.

Proof. It suffices to show that ϕ possesses a nonzero critical point. Now, we need to verify
that all assumptions of the Mountain Pass Theorem hold. The P.S. condition follows from
Lemma 4.5. Next, we will check conditions (J1) and (J2) of Lemma 2.11. Assume that 0 <
‖u‖∞ ≤ 1. In view of (H8), for ξ ∈ (0, 1], we get that

d
dξ

[
F
(
t, ξ−1u

)
ξν
]
=

d
dξ

[∫ ξ−1u

0
f(t, s)ds ξν

]

=
(
νF
(
t, ξ−1u

)
− ξ−1uf

(
t, ξ−1u

))
ξν−1 ≤ 0.

(4.25)

Hence,

F(t, u) ≤ F
(
t,
u

|u|
)
|u|ν, for 0 < |u| ≤ 1, t ∈ [0, σ(T)]

T
, (4.26)

which implies that

∫σ(T)

0
eC(t, 0)|F(σ(t), uσ(t))|Δt ≤

∫σ(T)

0
eC(t, 0)

∣∣∣∣F
(
σ(t),

uσ(t)
|uσ(t)|

)∣∣∣∣|uσ(t)|νΔt

≤ eLM
∫σ(T)

0
|uσ(t)|2Δt

≤ eLMσ2(T)
ω

‖u‖2.

(4.27)
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At the same time, we can obtain that

∫σ(T)

0
eC(t, 0)|h(t)uσ(t)|Δt ≤ eL‖h‖2‖uσ‖2 ≤ eL

σ(T)√
ω

‖h‖2‖u‖,

p∑

j=1

eC
(
tj , 0
)
∫u(tj )

0

∣
∣Ij(s)

∣
∣ds ≤ eL

p∑

j=1

∫u(tj )

0

(
aj + bj |s|θj

)
ds

≤ eL
p∑

j=1

(
aj‖u‖∞ + bj‖u‖θj+1∞

)

≤ eL
p∑

j=1

(
aja0‖u‖ + bjaθj+10 ‖u‖θj+1

)
.

(4.28)

Together (4.27)-(4.28) and the expression of functional ϕ, it follows that

ϕ(u) ≥ 1
2
‖u‖2 − eLMσ(T)a20‖u‖2 − eL

√
ωa20‖h‖2‖u‖

− eL
p∑

j=1

(
aja0‖u‖ + bjaθj+10 ‖u‖θj+1

)

=
(
1
2
− eLMσ(T)a20

)
‖u‖2 − eL

p∑

j=1

bja
θj+1
0 ‖u‖θj+1

−
⎛

⎝eL
√
ωa20‖h‖2 + eL

p∑

j=1

aja0

⎞

⎠‖u‖

=

⎛

⎝1
2
− eLMσ(T)a20 − eL

√
σ(T)a20‖h‖2 − eL

p∑

j=1

aja
2
0

⎞

⎠‖u‖2

+

⎛

⎝eL
√
σ(T)a20‖h‖2 + eL

p∑

j=1

aja
2
0

⎞

⎠‖u‖2

−
⎛

⎝eL
√
ωa20‖h‖2 + eL

p∑

j=1

aja0

⎞

⎠‖u‖

− eL
p∑

j=1

bja
θj+1
0 ‖u‖θj+1.

(4.29)

Setting

‖u‖ = ρ :=
1
a0

=

√
ω

σ(T)
. (4.30)
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Then we have

⎛

⎝eL
√
σ(T)a20‖h‖2 + eL

p∑

j=1

aja
2
0

⎞

⎠ρ2 −
⎛

⎝eL
√
ωa20‖h‖2 + eL

p∑

j=1

aja0

⎞

⎠ρ = 0, (4.31)

which implies from (H9) that

ϕ(u) ≥
⎛

⎝1
2
− eLMσ(T)a20 − eL

√
σ(T)a20‖h‖2 − eL

p∑

j=1

aja
2
0

⎞

⎠ρ2 − eL
p∑

j=1

bja
θj+1
0 ρθj+1

=
a20
2

− eLMσ(T) − eL
√
σ(T)‖h‖2 − eL

p∑

j=1

aj − eL
p∑

j=1

bj

= α > 0.

(4.32)

By Lemma 3.5, if ‖u‖ = ρ, then 0 < ‖u‖∞ ≤ 1. Set Bρ = {u ∈ H | ‖u‖ < ρ = 1/a0}, then
ϕ(u) ≥ α > 0 for all u ∈ ∂Bρ. Condition (J1) is satisfied.

Secondly, we verify the condition (J2) of Lemma 2.11. In view of assumption (H7), we
have

μ

u
≤ f(t, u)
F(t, u)

, u ≥ R, (4.33)

μ

u
≥ f(t, u)
F(t, u)

, u ≤ −R. (4.34)

Integrating (4.33) and (4.34) for u on [R, u] and [u,−R], respectively, we get

μ ln
u

R
≤ ln

F(t, u)
F(t, u)

, u ≥ R,

μ ln
R

−u ≥ ln
F(t,−R)
F(t, u)

, u ≤ −R,
(4.35)

that is,

F(t, u) ≥ F(t, R)
(u
R

)μ
, u ≥ R, (4.36)

F(t, u) ≥ F(t,−R)
(−u
R

)μ
, u ≤ −R. (4.37)

Combining (4.36) and (4.37), one has

F(t, u) ≥ α1|u|μ, |u| ≥ R, (4.38)
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where

α1 = R−μmin
{

min
t∈[0,σ(T)]

T

F(t, R), min
t∈[0,σ(T)]

T

F(t,−R)
}
> 0. (4.39)

On the other hand, by the continuity of F(t, u), F(t, u) is bounded on [0, σ(T)]
T
× [−R,R],

there exists K > 0 such that

F(t, u) ≥ −K ≥ α1|u|μ − α1Rμ −K, |u| ≤ R. (4.40)

Combining (4.38) and (4.40), we have

F(t, u) ≥ α1|u|μ − α2, ∀(t, u) ∈ [0, σ(T)]
T
× R, (4.41)

where α2 = α1Rμ +K.
According to the Hölder inequality, we get

∫σ(T)

0
|uσ(t)|2Δt ≤ σ(T)1−2/μ

(∫σ(T)

0
|uσ(t)|μΔt

)2/μ

. (4.42)

Thus,

∫σ(T)

0
|uσ(t)|μΔt ≥ σ(T)(2−μ)/2

(∫σ(T)

0
|uσ(t)|2Δt

)μ/2

= σ(T)(2−μ)/2‖uσ‖μ2 . (4.43)

Together (4.41) and (4.43), we know that

∫σ(T)

0
eC(t, 0)F(σ(t), uσ(t))Δt ≥

∫σ(T)

0
eC(t, 0)α1|uσ(t)|μΔt −

∫σ(T)

0
α2eC(t, 0)Δt

≥ α1elσ(T)(2−μ)/2‖uσ‖μ2 − α2eLσ(T)

≥ α3‖uσ‖μ2 − α4,

(4.44)

where α3 = α1elσ(T)
(2−μ)/2, and α4 = α2eLσ(T).
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Obviously, ϕ(0) = 0. Let v0 ∈ H satisfy ‖v0‖ = 1. For any ς > 0, it follows from (4.44)
and (4.28) that

ϕ(ςv0) =
ς2

2
‖v0‖2 −

∫σ(T)

0
eC(t, 0)F

(
σ(t), ςvσ0 (t)

)
Δt

+ ς
∫σ(T)

0
eC(t, 0)h(t)vσ0 (t)Δt +

p∑

j=1

eC
(
tj , 0
)
∫ ςv0(tj )

0
Ij(s)ds

≤ ς2

2
‖v0‖2 − α3ςμ

∥
∥vσ0
∥
∥μ
2 + ςe

L σ(T)√
ω

‖h‖2‖v0‖

+ eL
p∑

j=1

(
ςaja0‖v0‖ + bjςθj+1aθj+10 ‖v0‖θj+1

)
+ α4.

(4.45)

Since μ > 2, we see that ϕ(ςv0) → −∞ as ς → +∞. we can choose sufficiently large ς0 such
that u0 = ς0v0 ∈ H satisfying u0∈∂Bρ and ϕ(u0) < 0. Condition (J2) is satisfied.

According to Lemma 2.11, ϕ possesses a critical value c ≥ α > 0 given by

c = inf
g∈Γ

max
s∈[0,1]

ϕ
(
g(s)
)
, (4.46)

where

Γ =
{
g ∈ C([0, 1],E) | g(0) = 0, g(1) = u0

}
. (4.47)

Therefore, problem (1.1) has at least one weak solution. This completes the proof.

Example 4.7. Let T = R. Consider the following impulsive Duffing equations with Dirichlet
boundary condition

u′′(t) +
1
2
u′(t) − u(t) + f(t, u(t)) = 1

10e
sin t, a.e. t ∈ [0, 1],

Δu′
(
1
2

)
= u′
(
1
2

+)
− u′
(
1
2

−)
=

1
10e

5

√

u

(
1
2

)
,

u(0) = 0 = u(1),

(4.48)

where

f(t, u) =

⎧
⎪⎨

⎪⎩

u

10et+1
, ∀(t, u) ∈ ([0, 1] × [−1, 1]),

u3

10et+1
, ∀(t, u) ∈

(
[0, 1] × (−∞,−1)

⋃
(1,+∞)

)
.

(4.49)

Then problem (4.48) has at least one solution.
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Proof. By an easy calculation, eL = e, el = 1, ‖h‖2 ≤ 1/10e, a0 = 1, a1 = 0, b1 = 1/10e, and
M = 1/20e. It is easy to verify that all the conditions of Theorem 4.6 are satisfied. From
Theorem 4.6, problem (4.48) has at least one solution. This completes the proof.

Corollary 4.8. Assume that (H1), (H3), (H7), and (H8) hold. Suppose further the following.

(H10) Ij(t) ≥ 0 for all t ∈ [0, σ(T)]
T
, j = 1, 2, . . . , p.

(H11) a20/2 − eLMσ(T) − eL
√
σ(T)‖h‖2 > 0, where

M := sup{F(t, u) : t ∈ [0, σ(T)]
T
, |u| = 1}. (4.50)

Then problem (1.1) has at least one weak solution.

Corollary 4.9. Assume that (H1), (H3), (H7), (H8), and (H10) hold. Suppose further the following.

(H12) h(t) ≡ 0 for all t ∈ [0, σ(T)]
T
.

(H13) a20/2 > e
LMσ(T), whereM := sup{F(t, u) : t ∈ [0, σ(T)]

T
, |u| = 1}.

Then problem (1.1) has at least one weak solution.

Corollary 4.10. Assume that (H1), (H3), (H7), (H10), and (H12) hold. Suppose further the
following.

(H14) supt∈[0,σ(T)]
T

lims→ 0(f(t, s)/s) = 0.

Then problem (1.1) has at least one weak solution.

Proof. From the proof of Theorem 4.6, it is easy to see that ϕ ∈ C1(E,R) and the condition (J2)
of Lemma 2.11 is satisfied. We only need to verify the condition (J1) in Lemma 2.11.

In view of (H14), for ε = λ0ω/2eL > 0, there is a constant δ > 0 such that

∣∣f(t, s)
∣∣ ≤ ε|s|, ∀0 ≤ |s| ≤ δ, t ∈ [0, σ(T)]

T
. (4.51)

As a result, we have

|F(σ(t), uσ(t))| =
∫uσ(t)

0
f(σ(t), s)ds ≤

∫ |uσ(t)|

0
ε|s|ds = ε

2
|uσ(t)|2 (4.52)

which implies from Lemma 3.4 that

∫σ(T)

0
|F(σ(t), uσ(t))|Δt ≤ ε

2
‖uσ‖22 ≤

ε

2λ0ω
‖u‖2, ∀0 ≤ |s| ≤ δ. (4.53)

From the above inequality, (H10) and (H12), it follows that

ϕ(u) ≥ 1
2
‖u‖2 − εeL

2λ0ω
‖u‖2 = 1

4
‖u‖2. (4.54)
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Take ρ = δ/a0, α = δ2/4a20. By Lemma 3.5, if ‖u‖ = ρ, then 0 < ‖u‖∞ ≤ δ. Set Bρ = {u ∈ H |
‖u‖ < ρ = δ/a0} , then ϕ(u) ≥ α > 0 for all u ∈ ∂Bρ. Condition (J1) is satisfied. Therefore,
problem (1.1) has at least one weak solution. This completes the proof.

Remark 4.11. Let C = 0, r(t) ≡ 0 and let Ij(t) ≡ 0 for all t ∈ [0, σ(T)]
T
, j = 1, 2, . . . , p, then

Corollary 4.10 reduces to Theorem 4.2 in [33].
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