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1. Introduction

In this paper, we are interested in the study of probabilistic weak solutions of the 3D Navier-
Stokes-α(NS−α)model (also known as the Lagrangien averaged Navier-Stokes-alpha model
or the viscous Camassa-Holm equations) with homogeneous Dirichlet boundary conditions
in a bounded domains in the case in which random perturbations appear. To be more precise,
let D be a connected and bounded open subset of R3 with C2 boundary ∂D and a final time
T > 0. We denote by A the Stokes operator and consider the system

∂t(u − αΔu) + ν(Au − αΔ(Au)) + (u · ∇)(u − αΔu) − α∇u∗ ·Δu +∇p

= F(t, u) +G(t, u)
dW

dt
, in D × (0, T),

∇ · u = 0, in D × (0, T),

u = 0, Au = 0, on ∂D × (0,T),

u(0) = u0, in D,

(1.1)

where u = (u1, u2, u3) and p are unknown random fields on D × (0, T), representing,
respectively, the large-scale velocity and the pressure, in each point ofD×(0, T). The constant



2 Abstract and Applied Analysis

ν > 0 and α > 0 are given, and represent, respectively, the kinematic viscosity of the fluid,
and the square of the spatial scale at which fluid motion is filtered. The terms F(t, u) and
G(t, u)(dW/dt) are external forces depending on u, where W is an Rm-valued standard
Wiener process. Finally, u0 is a given nonrandom velocity field.

The deterministic version of (1.1), that is, when G = 0 has been the object of intense
investigations over the last years [1–5] and the initial motivation was to find a closure
model for the 3D turbulence-averaged Reynolds model. A key interest in the model is the
fact that it serves as a good approximation to the 3D Navier-Stokes equations. One of the
main reasons justifying its use is the high computational cost that the Navier-Stokes model
requires.Many important results have been obtained in the deterministic case.More precisely,
the global well posedness of weak solutions for the NS-α model on bounded domains has
been established in [6, 7] amongst others, and the asymptotic behavior can be found in
[6]. Similar results have been proved by Foias et al. [8] in the case of periodic boundary
conditions.

However, in order to consider a more realistic model our problem, it is sensible to
introduce some kind of noise in the equations. This may reflect, some environmental effects
on the phenomena, some external random forces, and so forth. To the best of our knowledge,
the existence and uniqueness of solutions of the stochastic version (1.1)which we consider in
this paper has only been analyzed in [9] (see also [10]) in the case of Lipschitz assumptions
on F and G. The case of non-Lipschitz assumptions on the coefficients F and G is the main
concern of the present paper. This question has been opened till now. The general motivation
for studying weak rather than strong solutions of stochastic equations is that existence of
weak solutions can be carried through under weaker regularity on the coefficients. This was
pointed out, for instance, in [11].

In this paper, we will establish the existence of probabilistic weak solutions for the
problem (1.1) under appropriate conditions on the data. Under the strong assumptions on
F and G, we prove the uniqueness of weak solutions. The method used for the proof of
our existence results is different from the method in [9]. To prove the existence, we use
the Galerkin approximation method employing special bases, combined with some famous
theorems of probabilistic nature due to Prokhorov [12] and Skorokhod [13].

The paper is organized as follows. In Section 2, we establish some properties of
nonlinear term appearing in our equations. The rigorous statement of our problem as well as
the main results are included in Section 3 andwe show how our problem can be reformulated
as an abstract stochastic model. Section 4 is devoted to the proof of our main results.

2. Properties of the Nonlinear Terms in (1.1)

Following [9], we establish some properties of the nonlinear term (u ·∇)(u−αΔu)−α∇u∗ ·Δu
appearing in (1.1).

We denote by (·, ·) and | · |, respectively, the scalar product and associated norm in
(L2(D))3, and by (∇u,∇v), the scalar product in ((L2(D))3)3 of the gradients of u and v. We
consider the scalar product in (H1

0(D))3 defined by

((u, v)) = (u, v) + α(∇u,∇v), u, v ∈
(
H1

0(D)
)3
, (2.1)
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where its associated norm ‖ · ‖ is, in fact, equivalent to the usual gradient norm. We denote
byH the closure in (L2(D))3 of the set

V =
{
v ∈ (D(D))3 : ∇ · v = 0 in D

}
, (2.2)

and by V the closure of V in (H1
0(D))3. Then H is a Hilbert space equipped with the inner

product of (L2(D))3, and V is a Hilbert subspace of (H1
0(D))3.

Denote by A the Stokes operator, with domain D(A) = (H2(D))3 ∩ V, defined by

Aw = −P(Δw), w ∈ D(A), (2.3)

whereP is the projection operator from (L2(D))3 ontoH. Recall that as ∂D isC2, |Aw| defines
in D(A) a norm which is equivalent to the (H2(D))3 norm, that is, there exists a constant
c1(D), depending only on D, such that

‖w‖(H2(D))3 ≤ c1(D)|Aw|, ∀w ∈ D(A), (2.4)

and so D(A) is a Hilbert space with respect to the scalar product

(v,w)D(A) = (Av,Aw). (2.5)

For u ∈ D(A) and v ∈ (L2(D))3,we define (u · ∇)v as the element of (H−1(D))3 given by

〈(u · ∇)v,w〉−1 =
3∑

i,j=1

〈
∂ivj , uiwj

〉
−1, ∀w ∈

(
H1

0(D)
)3
, (2.6)

where by 〈u, v〉−1,we denote either the duality product between (H−1(D))3 and (H1
0(D))3 or

between H−1(D) and H1
0(D).

Observe that (2.6) is meaningful, since H2(D) ⊂ L∞(D) and H1
0(D) ⊂ L6(D) with

continuous injections. This implies that uiwj ∈ H1
0(D), and there exists a constant c2(D) > 0,

depending only on D, such that

|〈(u · ∇)v,w〉−1| ≤ c2(D)|Au||v|‖w‖, ∀(u, v,w) ∈ D(A) ×
(
L2(D)

)3 ×
(
H1

0(D)
)3
. (2.7)
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Observe also that if v ∈ (H1(D))3, then the definition above coincides with the definition of
(u · ∇)v as the vector function whose components are

∑3
i=1 ui∂ivj , for j = 1, 2, 3. However, as

it not known whether the solutions of the stochastic problem (1.1) have the same regularity
as the deterministic case (we only can ensure H2 instead of H3), the present extension is
necessary.

Now, if u ∈ D(A), then ∇u∗ ∈ (H1(D))3×3 ⊂ (L6(D))3×3, and consequently, for v ∈
(L2(D))3, we have that ∇u∗ · v ∈ (L3/2(D))3 ⊂ (H−1(D))3, with

〈∇u∗ · v,w〉−1 =
3∑

i,j=1

∫

D

(
∂jui

)
viwj dx, ∀w ∈

(
H1

0(D)
)3
. (2.8)

It follows that there exists a constant c3(D), depending only on D, such that

|〈∇u∗ · v,w〉−1| ≤ c3(D)|Au||v|‖w‖, ∀(u, v,w) ∈ D(A) ×
(
L2(D)

)3 ×
(
H1

0(D)
)3
. (2.9)

We have the following results.

Proposition 2.1. For all (u,w) ∈ D(A) ×D(A) and for all v ∈ (L2(D))3, it follows that

〈(u · ∇)v,w〉−1 = −〈∇w∗ · v, u〉−1. (2.10)

Proof. If (u,w) ∈ D(A) × D(A), then for each i, j = 1, 2, 3, we have uiwj ∈ H1
0(D) and

consequently

〈
∂ivj , uiwj

〉
−1 = −

∫

D

vj∂i
(
uiwj

)
dx

= −
∫

D

vjwj∂iui dx −
∫

D

vjui∂iwj dx,

(2.11)

using ∇ · u = 0, we have (2.10).

Consider now the bilinear form defined by

b∗(u, v,w) = 〈(u · ∇)v,w〉−1 + 〈∇u∗ · v,w〉−1,

(u, v,w) ∈ D(A) ×
(
L2(D)

)3 ×
(
H1

0(D)
)3
.

(2.12)
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Proposition 2.2. The bilinear form b∗ satisfies

b∗(u, v,w) = −b∗(w,v, u), ∀(u, v,w) ∈ D(A) ×
(
L2(D)

)3 ×D(A), (2.13)

and consequently,

b∗(u, v, u) = 0, ∀(u, v) ∈ D(A) ×
(
L2(D)

)3
. (2.14)

Moreover, there exists a constant c(D) > 0, depending only on D, such that

|b∗(u, v,w)| ≤ c(D)|Au||v|‖w‖, ∀(u, v,w) ∈ D(A) ×
(
L2(D)

)3 ×
(
H1

0(D)
)3
,

|b∗(u, v,w)| ≤ c(D)‖u‖|v||Aw|, ∀(u, v,w) ∈ D(A) ×
(
L2(D)

)3 ×D(A).

(2.15)

Thus, in particular, b∗ is continuous on D(A) × (L2(D))3 × (H1
0(D))3.

Proof. The proof is straightforward consequences of (2.7), (2.9), and (2.10).

3. Statement of the Problem and the Main Results

We now introduce some probabilistic evolutions spaces.
Let (Ω, F, {Ft}0≤t≤T , P) be a filtered probability space and let X be a Banach space. For

r, q ≥ 1, we denote by

Lp(Ω, F, P ;Lr(0, T ;X)) (3.1)

the space of functions u = u(x, t, ω)with values in X defined on [0, T] ×Ω and such that

(1) u is measurable with respect to (t, ω) and for almost all t, u is Ft measurable,

(2)

‖u‖Lp(Ω,F,P ;Lr(0,T ;X)) =

⎡
⎣E
(∫T

0
‖u‖rXdt

)p/r
⎤
⎦

1/r

< ∞, (3.2)

where E denotes the mathematical expectation with respect to the probability
measure P .

The space Lp(Ω, F, P ;Lr(0, T ;X)) so defined is a Banach space.
When r = ∞, the norm in Lp(Ω, F, P ;L∞(0, T ;X)) is given by

‖u‖Lp(Ω,F,P ;L∞(0,T ;X)) =
(
E supess0≤t≤T‖u‖

p

X

)1/p
. (3.3)

We make precise our assumptions on (1.1).
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We start with the nonlinear function F and G. We assume that

F : (0, T) × V −→
(
H−1(D)

)3
, measurable

a.e. t, u � F(t, u) : continuous from V to
(
H−1(D)

)3

‖F(t, u)‖(H−1(D))3 ≤ c(1 + ‖u‖),

G : (0, T) × V −→
(
(L2(D))3

)m
, measurable

a.e. t, u � G(t, u) : continuous from V to
((

L2(D)
)3)m

|G(t, u)|((L2(D))3)m ≤ c(1 + ‖u‖).

(3.4)

We will define the concept of weak solution of the problem (1.1), namely, the following.

Definition 3.1. A weak solution of (1.1)means a system (Ω,F, {Ft}0≤t≤T ,P,W, u) such that

(1) (Ω,F,P) is a probability space, ({Ft}, 0 ≤ t ≤ T) is a filtration,

(2) W is an m-dimensional {Ft} standard Wiener process,

(3) u(t) is Ft adapted for all t ∈ [0, T] :

u ∈ Lp
(
Ω,F,P;L2(0, T,D(A))

)
∩ Lp(Ω,F,P;L∞(0, T, V )), ∀1 ≤ p < ∞, (3.5)

(4) for almost all t ∈ (0, T), the following equation holds P-a.s.

((u(t),Φ)) + ν

∫ t

0
(u(s) + αAu(s), AΦ)ds +

∫ t

0
b∗(u(s), u(s) − αΔu(s),Φ)ds

= ((u0,Φ)) +
∫ t

0
〈F(s, u(s)),Φ〉−1 ds +

(∫ t

0
G(s, u(s))dW(s),Φ

) (3.6)

for all Φ ∈ D(A).

Our two major results are as follows.

Theorem 3.2 (Existence). Assume (3.4) and u0 ∈ V . Then there exists a weak solution
(Ω,F, {Ft}0≤t≤T ,P,W, u) of (1.1) in the sense of Definition 3.1.
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Moreover u ∈ Lp(Ω,F,P;C([0, T];V )), and there exists a unique p̃ ∈ L2(Ω,Ft,P;
H−1(0, t;H−1(D)), for all t ∈ [0, T], such that P-a.s.

∂t(u − αΔu) + ν(Au − αΔ(Au)) + (u · ∇)(u − αΔu) − α∇u∗ ·Δu +∇p̃

= F(t, u) +G(t, u)
dW

dt
, in

(D′((0, T) ×D)
)3
,

∫

D

p̃ dx = 0, in D′(0, T),

(3.7)

where G(t, u)(dW/dt) denotes the time derivative of
∫ t
0G(s, u(s))dWs, that is, by definition

G(t, u)
dW

dt
= ∂t

(∫ .

0
G(s, u(s))dWs

)
, in D′

(
0, T ;

(
L2(D)

)3)
, P-a.s. (3.8)

Corollary 3.3 (Uniqueness). Assume that F and G are Lipschitz with respect to the second variable
u0 ∈ V . Then there exists a unique weak solution of problem (1.1) in the sense of Definition 3.1.

Moreover, two strong solutions on the same Brownian stochastic basis coincide a.s.

3.1. Formulation of Problem (1.1) as an Abstract Problem

We will rewrite our model as an abstract problem.
We identify V with its topological dual V ′ and we have the Gelfand tripleD(A) ⊂ V ⊂

D(A)′.
We denote by 〈·, ·〉 the duality product between D(A)′ and D(A). We define

〈Ãu, v〉 = ν(Au, v) + να(Au,Av), u, v ∈ D(A). (3.9)

It is clear that for all v ∈ D(A),

2〈Ãu, v〉 = 2ν(Av, v) + 2να(Av,Av) ≥ 2να|Av|2, (3.10)

and, if we denote by λk and wk, k ≥ 1, the eigenvalues, and their corresponding eigenvalues
associated to A, then

〈Ãwk, v〉 = νλk((wk, v)). (3.11)
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Thus, taking

α̃ = 2να, (3.12)

we have

(a) Ã is a linear continuous operator Ã ∈ L(D(A), D(A)′), such that

(a1) Ã is self-adjoint

(a2) there exists α̃ > 0, such that

2
〈
Ãv, v

〉
≥ α̃‖v‖2D(A), ∀v ∈ D(A).

(3.13)

On the other hand, denote

〈B̃(u, v), w〉 = b∗(u, v − αΔv,w), (u, v,w) ∈ D(A) ×D(A) ×D(A),
((

F̃(t, u), w
))

= 〈F(t, u), w〉−1, (u,w) ∈ V × V.
(3.14)

Thus it is straightforward to check that if we take

c1 = (1 + α)c1(D)c(D), (3.15)

then we obtain that

(b) B̃ : D(A) ×D(A) → D(A)′ is a bilinear mapping such that

(b1) 〈B̃(u, v), u〉 = 0, ∀u, v ∈ D(A), (3.16)

(b2)
∥∥∥B̃(u, v)

∥∥∥
D(A)′

≤ c1‖u‖‖v‖D(A), ∀u, v ∈ D(A) ×D(A), (3.17)

(b3)
∣∣∣〈B̃(u, v), w〉

∣∣∣ ≤ c1‖u‖D(A)‖v‖D(A)‖w‖, ∀u, v,w ∈ D(A). (3.18)

(c) F̃ : (0, T) × V → V, measurable such that

(c1) a.e. t, u � F̃(t, u) : continuous from V to V

(c2)
∥∥∥F̃(t, u)

∥∥∥ ≤ c(1 + ‖u‖).
(3.19)
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Now, let I denote the identity operator inH, and define G̃(t, u) as

G̃(t, u) = (I + αA)−1 ◦ P ◦G(t, u), u ∈ V. (3.20)

I + αA is bijective from D(A) onto H, and

((
(I + αA)−1f,w

))
=
(
f,w
)
, ∀f ∈ H, w ∈ V. (3.21)

Thus, for each f ∈ H,

∥∥∥(I + αA)−1f
∥∥∥
2
=
(
f, u
) ≤ ∣∣f∣∣|u|, (3.22)

where u = (I + αA)−1f, that is, (u,wk) + α(Au,wk) = (f,wk), for all k ≥ 1, so
(1 + αλk)(u,wk) = (f,wk),which implies

(u,wk) =
1

(1 + αλk)
(
f,wk

) ≤ 1
1 + αλ1

(
f,wk

)
,

|u|2 =
∞∑
k=1

(u,wk)2 ≤ 1

(1 + αλ1)
2

∞∑
k=1

(
f,wk

)2 = 1

(1 + αλ1)
2

∣∣f∣∣2.
(3.23)

Therefore,

∥∥∥(I + αA)−1f
∥∥∥
2 ≤ 1

1 + αλ1

∣∣f∣∣2, (3.24)

and, consequently, taking

c̃ =
c√

1 + αλ1
, (3.25)

we obtain that

(d) G̃ : (0, T) × V → V ⊗m,measurable such that

(d1) a.e. t, u � G̃(t, u) : continuous from V to V ⊗m

(d2)
∥∥∥G̃(t, u)

∥∥∥
V ⊗m

≤ c̃(1 + ‖u‖),
(3.26)
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where V ⊗m is the product of m copies of V . Next, for each j ≥ 1, and all (t, u,Φ) ∈ (0, T) ×
V ×D(A),we have

(G(t, u),Φ) =
(
(I + αA)G̃(t, u),Φ

)
=
((

G̃(t, u),Φ
))

, (3.27)

and, for all u ∈ L2(Ω,F,P;L∞(0, T ;V )), (t,Φ) ∈ (0, T) ×D(A), it follows that

(∫ t

0
G(s, u(s))dW(s),Φ

)
=

d∑
j=1

∫ t

0

(
Gj(s, u(s)),Φ

)
dWj(s)

=
d∑
j=1

∫ t

0

(
G̃j(s, u(s),Φ)

)
dWj(s)

=

((∫ t

0
G̃(s, u(s))dW(s),Φ

))
.

(3.28)

Consequently, in this abstract framework, a weak solution (Ω,F, {Ft}0≤t≤T ,P,W, u) of (1.1) is
equivalently as follows.

Definition 3.4. It holds that

(1) (Ω,F,P) is a probability space, ({Ft}, 0 ≤ t ≤ T) is a filtration,

(2) W is am-dimensional {Ft} standard Wiener process,

(3) u(t) is Ft adapted for all t ∈ [0, T]

u ∈ Lp
(
Ω,F,P;L2(0, T,D(A))

)
∩ Lp(Ω,F,P;L∞(0, T, V )), ∀1 ≤ p < ∞, (3.29)

(4) for almost all t ∈ (0, T), the following equation holds P-a.s.

u(t) +
∫ t

0
Ãu(s)ds +

∫ t

0
B̃(u(s), u(s))ds

= u0 +
∫ t

0
F̃(s, u(s))ds +

∫ t

0
G̃(s, u(s))dW(s),

(3.30)

as an equality in D(A)′.

Remark 3.5. However, (3.30) implies that u ∈ C(0, T ;D(A)′), then u is weakly continuous in
V [14, page 263] and the initial condition is meaningful.
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4. Proofs of the Main Results

4.1. Proof of Theorem 3.2

We make use of the Galerkin approximation combined with the method of compactness.
We will split the proof into six steps.

4.1.1. Step 1. Construction of an Approximating Sequence

As the injection D(A) ↪→ V is compact, consider an orthonormal basis {ej}j=1,2,...in D(A)
which is orthogonal in V such that ej are eigenfunctions of the spectral problem

(
ej , v
)
D(A) = λj

((
ej , v
))
, ∀v ∈ D(A), (4.1)

where (., .)D(A) denotes the scalar product in D(A). For each N ∈ N, let VN be the span of
{e1, . . . , eN}.

Consider the probabilistic system

(
Ω, F,

{
Ft

}
0≤t≤T

, P ,W

)
. (4.2)

We denote by E the mathematical expectation with respect to (Ω, F, P).
We look for a sequence of functions uN(t) in VN , that is,

uN(t) =
N∑
j=1

cNj(t, ω)ej(x), (4.3)

solutions of the following stochastic ordinary differential equations in VN :

d
((

uN, ej
))

+
(
〈ÃuN(t), ej〉 + 〈B̃

(
uN(t), uN(t)

)
, ej〉
)
dt

=
((

F̃
(
t, uN(t)

)
, ej
))

dt +
((

G̃
(
t, uN(t)

)
, ej
))

dW, j = 1, 2, . . . ,N

uN(0) = uN
0 ,

(4.4)

where uN
0 ∈ VN and is chosen with the requirements that

uN
0 −→ u0 in V as N −→ ∞. (4.5)
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There exists a a maximal solution to (4.4), that is, a stopping time TN ≤ T such that (4.4)
holds for t < TN [11]. Solvability over (0, T)will follow from a priori estimates for uN that we
derive in the following section.

We have the following Fourier expansion:

uN(t) =
N∑
j=1

(
uN(t), ej

)
D(A)

ej =
N∑
j=1

λj
((

uN(t), ej
))

ej ,

∥∥∥uN(t)
∥∥∥
2
=

N∑
j=1

λj
((

uN(t), ej
))2

.

(4.6)

4.1.2. Step 2. A Priori Estimates

Throughout C and Ci (i = 1, . . .) denotes a positive constant independent ofN.
We have the following Lemma.

Lemma 4.1. It holds that uN satisfies the following a priori estimates:

E sup
0≤t≤T

∥∥∥uN(s)
∥∥∥
2
+ 2α̃E

∫T

0

∥∥∥uN(s)
∥∥∥
2

D(A)
ds ≤ C1, (4.7)

where C1 is a constant independent ofN.

Proof. By Ito’s formula, we obtain from (3.16) and (4.4) that

d
∥∥∥uN(t)

∥∥∥
2
+2〈ÃuN(t), uN(t)〉dt =

⎡
⎣2
((

F̃
(
t, uN(t)

)
, uN(t)

))
+

N∑
j=1

λj
((

G̃
(
t, uN(t)

)
, ej
))2
⎤
⎦dt

+ 2
((

G̃
(
t, uN(t)

)
, uN(t)

))
dW.

(4.8)

Integrating (4.8) with respect to t, and using (3.13) and (3.19), we have

∥∥∥uN(t)
∥∥∥
2
+ α̃

∫ t

0

∥∥∥uN(s)
∥∥∥
2

D(A)
ds ≤

∥∥∥uN
0

∥∥∥
2
+ C + C

∫ t

0

∥∥∥uN(s)
∥∥∥
2
ds

+ 2
∫ t

0

((
G̃
(
s, uN(s)

)
, uN(s)

))
dW(s).

(4.9)
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Let us estimate the stochastic integral in this inequality. By Burkholder-Davis Gundy’s
inequality [15], we have

Esup
0≤s≤t

∣∣∣∣
∫s

0

((
G̃
(
s, uN(s)

)
, uN(s)

))
dW(s)

∣∣∣∣ ≤ CE

(∫ t

0

((
G̃
(
s, uN(s)

)
, uN(s)

))2
ds

)1/2

≤ εEsup
0≤s≤t

∥∥∥uN(s)
∥∥∥
2
+ Cε

∫ t

0

(
1 +
∥∥∥uN(s)

∥∥∥
2
)
ds,

(4.10)

here we have used Hölder ′s and Young’s inequalities; ε is an arbitrary positive number.
Using (4.10) and (4.9) together with appropriate choice of ε, we obtain

Esup
0≤s≤t

∥∥∥uN(s)
∥∥∥
2
+ 2α̃E

∫ t

0

∥∥∥uN(s)
∥∥∥
2

D(A)
ds ≤ C + CE

∫ t

0

∥∥∥uN(s)
∥∥∥
2
ds. (4.11)

By Gronwall’s lemma, we obtain the sought estimate (4.7).

The following result is related to the higher integrability of uN .

Lemma 4.2. It holds that

E sup
0≤s≤T

∥∥∥uN(s)
∥∥∥
p ≤ Cp ∀1 ≤ p < ∞. (4.12)

Proof. By Ito’s formula, it follows from (4.4) that for p ≥ 4, we have

d
∥∥∥uN(t)

∥∥∥
p/2

=
p

2

∥∥∥uN(t)
∥∥∥
p/2−2

⎡
⎢⎣ −
〈
ÃuN(t), uN(t)

〉
− 2
〈
B̃
(
uN(t), uN(t)

)
, uN(t)

〉

+ 2
((

F̃
(
t, uN(t)

)
, uN(t)

))
+
1
2

N∑
i=1

λi
((

G̃
(
t, uN(t)

)
, ei
))2

+
p − 4
4

((
G̃
(
uN(t), uN(t)

)))2
∥∥uN(t)

∥∥2

⎤
⎥⎦dt

+
p

2

∥∥∥uN(t)
∥∥∥
p/2−2((

G̃
(
t, uN(t)

)
, uN(t)

))
dW.

(4.13)
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Using the assumptions (3.16), (3.19), (3.26), it follows that

sup
0≤s≤t

∥∥∥uN(s)
∥∥∥
p/2 ≤

∥∥∥uN
0

∥∥∥
p/2

+ C

∫ t

0

(
1 +
∥∥∥uN(s)

∥∥∥
p/2
)
ds

+
p

2
sup
0≤s≤t

∣∣∣∣
∫s

0

∥∥∥uN(s)
∥∥∥
p/2−2((

G̃
(
s, uN(s)

)
, uN(s)

))
dW

∣∣∣∣.
(4.14)

Squaring the both sides of this inequality and passing to mathematical expectation, we
deduce from the Martingale inequality, that is,

Esup
0≤s≤t

∥∥∥uN(s)
∥∥∥
p ≤ C

(∥∥∥uN
0

∥∥∥
p
+ T + E

∫ t

0

∥∥∥uN(s)
∥∥∥
p
ds

)
. (4.15)

From Gronwall’s inequality, we deduce that

Esup
0≤s≤t

∥∥∥uN(s)
∥∥∥
p ≤ Cp (4.16)

for all 1 ≤ p < ∞.

We also have the following lemma.

Lemma 4.3. It holds that uN satisfies

E

(∫T

0

∥∥∥uN(s)
∥∥∥
2

D(A)
ds

)p

≤ Cp (4.17)

for all 1 ≤ p < ∞.

Proof. Using (4.9), we have

α̃p

(∫ t

0

∥∥∥uN(s)
∥∥∥
2

D(A)

)p

≤ C
∥∥∥uN

0

∥∥∥
2p

+ C + C

(∫ t

0

∥∥∥uN(s)
∥∥∥
2
ds

)p

+ C

∣∣∣∣∣
∫ t

0
((G̃(s, uN(s)), uN(s)))dW

∣∣∣∣∣
p

.

(4.18)

Taking the mathematical expectation and use the Burkholder-Gundy’s inequality, the proof
of the lemma follows from Lemma 4.2.
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Lemma 4.4. It holds that

E sup
0≤|θ|≤δ≤1

∫T

0

∥∥∥uN(t + θ) − uN(t)
∥∥∥
2

D(A)′
dt ≤ Cδ. (4.19)

Proof. We note that the functions {λjej}j=1,2,... form an orthonormal basis in the dual D(A)′ of
D(A). Let PN be the orthogonal projection of D(A)′ onto the span {λ1e1, . . . , λNeN}, that is,

PNh =
N∑
j=1

λj〈h, ej〉ej . (4.20)

Thus (4.4) can be rewritten in an integral form as the equality between random
variables with values in D(A)′ as

uN(t) +
∫ t

0
PN
(
ÃuN(s) + B̃

(
uN(s), uN(s)

)
− F̃
(
s, uN(s)

))
ds

= uN
0 +
∫ t

0
PNG̃

(
s, uN(s)

)
dW.

(4.21)

For any positive θ, we have

∥∥∥uN(t + θ) − uN(t)
∥∥∥
D(A)′

≤
∥∥∥∥∥
∫ t+θ

t

(
ÃuN(s)+B̃

(
uN(s), uN(s)

)
−F̃
(
s, uN(s)

))
ds

∥∥∥∥∥
D(A)′

+

∥∥∥∥∥
∫ t+θ

t

G̃
(
s, uN(s)

)
dW

∥∥∥∥∥
D(A)′

.

(4.22)

Taking the square and use the properties of Ã, B̃ and F̃, we have

∥∥∥uN(t + θ) − uN(t)
∥∥∥
2

D(A)′
≤ Cθ2 + C

(∫ t+θ

t

∥∥∥uN(s)
∥∥∥
2

D(A)
ds

)2

+ C sup
0≤t≤T

∥∥∥uN(s)
∥∥∥
2
(∫ t+θ

t

∥∥∥uN(s)
∥∥∥
D(A)

ds

)2

+ Cθ2 sup
0≤s≤T

∥∥∥uN(s)
∥∥∥
2
+

∥∥∥∥∥
∫ t+θ

t

G̃
(
s, uN(s)

)
dW

∥∥∥∥∥
2

.

(4.23)
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For fixed δ, taking the supremun over θ ≤ δ, integrating with respect to t, and taking the
mathematical expectation, we have

E sup
0≤θ≤δ

∫T

0

∥∥∥uN(t + θ) − uN(t)
∥∥∥
2

D(A)′
dt ≤ Cδ2 + CE

∫T

0

(∫ t+δ

t

∥∥∥uN(s)
∥∥∥
2

D(A)
ds

)2

dt

+ CE sup
0≤s≤T

∥∥∥uN(s)
∥∥∥
2
∫T

0

(∫ t+δ

t

∥∥∥uN(s)
∥∥∥
D(A)

ds

)2

dt

+ Cδ2E sup
0≤s≤T

∥∥∥uN(s)
∥∥∥
2

+ E

∫T

0
sup
0≤θ≤δ

∥∥∥∥∥
∫ t+θ

t

G̃
(
s, uN(s)

)
dW

∥∥∥∥∥
2

dt.

(4.24)

We estimate the integrals in this inequality.
We have byHölder ′s inequality

I1 = E sup
0≤s≤T

∥∥∥uN(s)
∥∥∥
2
∫T

0

(∫ t+δ

t

∥∥∥uN(s)
∥∥∥
D(A)

ds

)2

dt

≤ δ2E sup
0≤s≤T

∥∥∥uN(s)
∥∥∥
2
∫T

0

∥∥∥uN(s)
∥∥∥
2

D(A)
ds.

(4.25)

Using theHölder ′s inequality and the estimates of Lemmas 4.2 and 4.3, we have

I1 ≤ Cδ2. (4.26)

By Martingale’s inequality, we have

I2 = E

∫T

0
sup
0≤θ≤δ

∥∥∥∥∥
∫ t+θ

t

G̃
(
s, uN(s)

)
dW

∥∥∥∥∥
2

dt

≤ E

∫T

0

(∫ t+δ

t

∥∥∥G̃(s, uN(s))
∥∥∥
2
ds

)
dt.

(4.27)

Using the assumptions on G̃ and the estimate of Lemma 4.2, we have

I2 ≤ Cδ. (4.28)
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Collecting the results and making a similar reasoning with θ < 0, we obtain from (4.24) that

E sup
0≤|θ|≤δ

∫T

0

∥∥∥uN(t + θ) − uN(t)
∥∥∥
2

D(A)′
≤ Cδ (4.29)

The following lemma is from [16], and it is a compactness results which represents a
variation of the compactness theorems in [17, Chapter I, Section 5]. It will be useful for us to
prove the tightness property of Galerkin solution.

Proposition 4.5. For any sequences of positives reals number νm, μm which tend to 0 as m → ∞,
the injection of

Yμn,νn =

⎧
⎨
⎩y ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;V ) | sup

m

1
νm

sup
|θ|≤μm

(∫T

0

∥∥y(t+θ)−y(t)∥∥2D(A)′

)1/2

< ∞
⎫
⎬
⎭

(4.30)

in L2(0, T ;V ) is compact.

Furthermore Yμn,νn is a Banach space with the norm

∥∥y∥∥Yμn,νn
= sup

0≤t≤T

∥∥y(t)∥∥ +
(∫T

0

∥∥y(t)∥∥2D(A)dt

)1/2

+sup
n

1
νn

sup
|θ|≤μn

(∫T

0

∥∥y(t + θ) − y(t)
∥∥2
D(A)′dt

)1/2

.

(4.31)

Alongside with Yμn,νn , we also consider the space Xp,μn,νn(1 ≤ p < ∞) of random variables y
such that

E sup
0≤t≤T

∥∥y(t)∥∥p < ∞; E

(∫T

0

∥∥y(t)∥∥2D(A)dt

)p/2

< ∞;

E sup
n

1
νn

sup
|θ|≤μn

∫T

0

∥∥y(t + θ) − y(t)
∥∥2
D(A)′ dt < ∞.

(4.32)

Endowed with the norm

∥∥y∥∥Xp,νn,μn
=

(
E sup
0≤t≤T

∥∥y(t)∥∥p
)1/p

+

⎛
⎝E

(∫T

0

∥∥y(t)∥∥2D(A)dt

)p/2
⎞
⎠

p/2

+E sup
n

1
νn

(
sup
|θ|≤μn

∫T

0

∥∥y(t + θ) − y(t)
∥∥2
D(A)′ dt

)1/2

,

(4.33)
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Xp,μn,νn is a Banach space. The priori estimates of the preceding lemmas enable us to claim that
for any 1 ≤ p < ∞ and for μn, νn such that the series

∑∞
n=1(

√
μn/νn) converges, the sequence

of Galerkin solutions {uN : N ∈ N} is bounded in Xp,μn,νn .

4.1.3. Step 3. Tightness Property of Galerkin Solutions

Now, we consider the set

S = C(0, T ;Rm) × L2(0, T ;V ), (4.34)

and B(S) the σ-algebra of the Borel sets of S.
For each N, let φ be the map

φ : Ω −→ S : ω �−→
(
W(ω, ·), uN(ω, ·)

)
. (4.35)

For each N, we introduce a probability measure ΠN on (S, B(S)) by

ΠN(A) = P
(
φ−1(A)

)
(4.36)

for all A ∈ B(S). The main result of this subsection is the following.

Theorem 4.6. The family of probability measures {ΠN ;N ∈ N} is tight.

Proof. For ε > 0, we should find the compact subsets

Σε ⊂ C(0, T ;Rm), Yε ⊂ L2(0, T ;V ), (4.37)

such that

P
(
ω : W(ω, ·)/∈Σε

)
≤ ε

2
, (4.38)

P
(
ω : uN(ω, ·)/∈Yε

)
≤ ε

2
. (4.39)

The quest for Σε is made by taking account of some fact about the Wiener process such as the
formula

E
∣∣∣W(t2) −W(t1)

∣∣∣
2j
=
(
2j − 1

)
!(t2 − t1)j , j = 1, 2, . . . . (4.40)

For a constant Lε depending on ε to be chosen later and n ∈ N, we consider the set

Σε =

{
W(·) ∈ C(0, T ;Rm) : sup

t1,t2∈[0,T],|t2−t1|≤1/n6

n|W(t2) −W(t1)| ≤ Lε

}
(4.41)
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Making use of Markov’s inequality:

P(ω : ξ(ω) ≥ α) ≤ 1
αk

E
[
|ξ(ω)|k

]
(4.42)

for a random variable ξ on (Ω, F, P) and positives variables α and k, we get

P
(
ω : W(ω, ·)/∈Σε

)
≤ P

[⋃
n

{
ω : sup

t1,t2∈[0,T]:|t2−t1|<1/n6

∣∣∣W(t2) −W(t1)
∣∣∣ > Lε

n

}]

≤
∞∑
n=1

n6−1∑
i=0

(
n

Lε

)4

E sup
iT/n6≤t≤(i+1)T/n6

∣∣∣W(t) −W
(
iTn−6

)∣∣∣
4

≤ c
∞∑
n=1

(
n

Lε

)4(
Tn−6

)2
n6

=
c

L4
ε

∞∑
n=1

1
n2

,

(4.43)

we choose

L4
ε = 2Cε−1

∞∑
n=1

1
n2

(4.44)

to get (4.38).
Next we choose Yε as a ball of radius Mε in Yμn,νn centered at zero and with μn, νn,

independent of ε, converging to zero, and such that
∑

n(
√
μn/νn) converges.

From Proposition 4.5, Yε is a compact subset of L2(0, T ;V ).
We have further

P
(
ω : uN(ω, ·)/∈Yε

)
≤ P

(
ω :
∥∥∥uN
∥∥∥
Yμn,νn

> Mε

)
≤ 1

Mε
E
∥∥∥uN
∥∥∥
Yμn,νn

≤ c

Mε
, (4.45)

choosing Mε = 2cε−1, we get (4.39).
From (4.38) and (4.39), we have

P
(
ω : W(ω, ·) ∈ Σε;uN(ω, ·) ∈ Yε

)
≥ 1 − ε, (4.46)

this proves that

ΠN(Σε × Yε) ≥ 1 − ε, ∀N ∈ N. (4.47)
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4.1.4. Step 4. Applications of Prokhorov and Skorokhod Results

From the tightness property of {ΠN} and Prokhorov’s theorem [12], we have that there exist
a subsequence {ΠNj} and a measure Π such that ΠNj → Π weakly.

By Skorokhod’s theorem [13], there exist a probability space (Ω,F, P) and random
variables (WNj , u

Nj ), (W,u) on (Ω,F, P)with values in S such that

the law of
(
WNj , u

Nj

)
is ΠNj , (4.48)

the law of (W,u) is Π, (4.49)
(
WNj , u

Nj

)
−→ (W,u) in ‘S, P -a.s. (4.50)

Hence, {WNj} is a sequence of an m-dimensional standard Wiener process.
Let Ft = σ{W(s), u(s), 0 ≤ s ≤ t}.
Arguing as in [16], we prove that W(t) is an m-dimensional Ft standard Wiener

process and the pair (WNj , u
Nj ) satisfies the equation

uNj (t) + ν

∫ t

0
PNj ÃuNj (s)ds +

∫ t

0
PNj B̃

(
uNj (s), uNj (s)

)
ds

=
∫ t

0
PNj F̃

(
s, uNj (s)

)
ds +

∫ t

0
PNj G̃

(
s, uNj (s)

)
dWNj + u

Nj

0 .

(4.51)

4.1.5. Step 5. Passage to the Limit

From (4.51), it follows that uNj satisfies the results of the Lemmas 4.2, 4.3, and 4.4. Therefore,
we have for p ≥ 1 the a priori estimates

E sup
0≤t≤T

∥∥∥uNj (t)
∥∥∥
p ≤ C;

E

(∫T

0

∥∥∥uNj (t)
∥∥∥
2

D(A)
dt

)p

≤ C;

E sup
0≤θ≤δ

∫T

0

∥∥∥uNj (t + θ) − uNj

∥∥∥
2

D(A)′
dt ≤ C(α)δ

(4.52)

thus modulo the extraction of a subsequence denoted again by uNj , we have

uNj −→ u weakly ∗ in Lp(Ω,F, P ;L∞(0, T ;V ));

uNj −→ u weakly in Lp
(
Ω,F, P ;L2(0, T ;D(A))

)
;
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E sup
0≤t≤T

‖u(t)‖p ≤ C; E

(∫T

0
‖u(t)‖2D(A)dt

)p

≤ C;

E sup
0≤θ≤δ

∫T

0
‖u(t + θ) − u(t)‖2D(A)′ dt ≤ Cδ.

(4.53)

By (4.50) and the first estimate in (4.52) and Vitali’s theorem, we have

uNj −→ u strongly in L2
(
Ω,F, P ;L2(0, T, V )

)
, (4.54)

and thus modulo the extraction of a subsequence and for almost every (ω, t) with respect to
the measure dP ⊗ dt:

uNj −→ u in V. (4.55)

This convergence together with the condition on F̃, the first estimate in (4.52) and Vitali’s
theorem, give

F̃
(
·, uNj (·)

)
−→ F̃(·, u(·)) strongly in L2

(
Ω,F, P ;L2(0, T, V )

)
,

∫ t

0
F̃
(
s, uNj (s)

)
ds −→

∫ t

0
F̃(s, u(s))ds strongly in L2

(
Ω,F, P ;L2(0, T, V )

)
.

(4.56)

As

uNj −→ u weakly in L2
(
Ω,F, P ;L2(0, T ;D(A))

)
, (4.57)

then

∫ t

0
ÃuNj (s)ds −→

∫ t

0
Ãu(s)ds weakly in L2

(
Ω,F, P ;L2(0, T ;D(A)′

))
. (4.58)

We also have

∫ t

0
B̃
(
uNj (s), uNj (s)

)
ds −→

∫ t

0
B̃(u(s), u(s))ds weakly in L2

(
Ω,F, P ;L2(0, T ;D(A)′

))
.

(4.59)
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In fact, since L∞(Ω × (0, T), dP × dt;D(A)) is dense in L2(Ω,F, P ;L2(0, T ;D(A))), and
B̃(uNj (s), uNj (s)) is bounded in L2(Ω,F, P ;L2(0, T ;D(A)′)) it suffices to prove that for all ϕ ∈
L∞(Ω × (0, T), dP × dt;D(A)),

E

∫T

0
〈B̃
(
uNj (s), uNj (s)

)
, ϕ(s)〉D(A)′ds −→ E

∫T

0
〈B̃(u(s), u(s)), ϕ(s)〉D(A)′ ds. (4.60)

Indeed, we have

E

∫T

0
〈B̃
(
uNj (s), uNj (s)

)
− B̃(u(s), u(s)), ϕ(s)〉D(A)′ ds

= E

∫T

0

〈
B̃(uNj (s) − u(s), uNj (s)), ϕ(s)

〉
D(A)′

ds

+ E

∫T

0

〈
B̃(u(s), uNj (s) − u(s)), ϕ(s)

〉
D(A)′

ds

= I1j + I2j ,

I1j = E

∫T

0

〈
B̃
(
uNj (s) − u(s), uNj (s)

)
, ϕ(s)

〉
D(A)′

ds

(4.61)

By the property (3.17) of B̃, we have

I1j ≤ CE

∫T

0

∥∥∥uNj (s) − u(s)
∥∥∥
∥∥∥uNj (s)

∥∥∥
D(A)

∣∣Aϕ(s)
∣∣ds, (4.62)

applying Cauchy-Schwarz inequality

I1j ≤ Cϕ

(
E

∫T

0

∥∥∥uNj (s) − u(s)
∥∥∥
2
ds

)1/2(
E

∫T

0

∥∥∥uNj (s)
∥∥∥
2

D(A)
ds

)1/2

. (4.63)

Since

uNj −→ u strongly in L2
(
Ω,F, P ;L2(0, T ;V )

)
, (4.64)

and uNj is bounded in L2(Ω,F, P ;L2(0, T ;D(A))), we conclude that

I1j −→ 0 as j −→ ∞.

I2j = E

∫T

0
〈B̃
(
u(s), uNj − u(s)

)
, ϕ(s)〉D(A)′ ds.

(4.65)
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Again thanks to the property (3.18) of B̃, as

uNj −→ u weakly in L2
(
Ω,F, P ;L2(0, T ;D(A))

)
, (4.66)

we obtain I2j → 0 as j → ∞ since any strongly continuous linear operator is weakly
continuous. We are now left with the proof of

∫ t

0
G̃
(
s, uNj (s)

)
dWNj (s) −→

∫ t

0
G̃(s, u(s))dW(s) weakly ∗ L2(Ω,F, P ;L∞(0, T ;D(A)′

))
,

(4.67)

which can be prove with the same argument like in [16].
Collecting all the convergence results, we deduce that

u(t) + ν

∫ t

0
Ãu(s)ds +

∫ t

0
B̃(u(s), u(s))ds

=
∫ t

0
F̃(s, u(s))ds +

∫ t

0
G̃(s, u(s))dW(s) + u0, P -a.s.

(4.68)

as the equality in D(A)′.
We have B̃(u, u) ∈ L2(Ω,F, P ;L∞(0, T ;D(A)′)), Ãu − F̃(t, u) ∈ L2(Ω,F, P ;L∞(0, T ;

D(A)′)), G̃(t, u) ∈ L2(Ω,F, P ;L∞(0, T ;V ⊗m)).
Thus, from the classical results in [18] (see also [19]), we deduce from (4.68) that u is

P -a.s. continuous with values in V .

4.1.6. Step 6. Existence of the Pressure

For the existence of the pressure, we use a generalization of the Rham’s theorem processes
[20, Theorem 4.1, Remark 4.3]. From (3.6), we have for all v ∈ V,

〈
− ∂t(u − αΔu) − ν(Au − αΔ(Au)) − (u · ∇)(u − αΔu)

+α∇u∗ ·Δu + F(·, u) +G(·, u)dW
dt

, v

〉

(D′(D))3×(D(D))3
= 0.

(4.69)

We denote

h = −∂t(u − αΔu) − ν(Au − αΔ(Au)) − (u · ∇)(u − αΔu)

+ α∇u∗ ·Δu + F(·, u) +G(·, u)dW
dt

.
(4.70)
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We will prove that the regularity on u, implies that

h ∈ L2
(
Ω,Ft, P ;H−1

(
0, t;
(
H−2(D)

)3)
. (4.71)

By (2.7) and (2.9), we have as u ∈ L4(Ω,F, P ;L2(0, T ;D(A))),

(u · ∇(u − αΔu)) +∇u∗ ·Δu ∈ L2
(
Ω,Ft, P ;L1

(
0, t;
(
H−1(D)

)3))
,

Au − αΔ(Au) ∈ L4
(
Ω,Ft, P ;L2

(
0, t;
(
H−2(D)

)3))
.

(4.72)

We also have

u − αΔu ∈ L4
(
Ω,Ft, P ;L2

(
0, t;
(
L2(D)

)3))
,

∂t(u − αΔu) ∈ L4
(
Ω,Ft, P ;H−1

(
0, t;
(
L2(D)

)3))
, ∀t ∈ [0, T].

(4.73)

Again, as u ∈ L4(Ω,F, P ;C([0, T];V )), then its follows that

F(t, u) ∈ L4
(
Ω,Ft, P ;L2

(
0, t;
(
H−1(D)

)3))
,

G(t, u)
dW

dt
∈ L4
(
Ω,Ft, P ;W−1,∞

(
0, t;
(
L2(D)

)3))
,

(4.74)

for all t ∈ [0, T].
Then h ∈ L2(Ω,Ft, P ;H−1(0, t; (H−2(D))3), and

〈h, v〉(D′(D))3×(D(D))3 = 0, ∀v ∈ V. (4.75)

Therefore, by a generalization of the Rham theorem processes [20], there exists a unique p̃ ∈
L2(Ω,Ft, P ;H−1(0, t; (H−1(D))3) such that P -a.s.

∇p̃ = h,

∫

D

p̃ dx = 0, that is, (3.7). (4.76)

Theorem 3.2 is proved.
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4.2. Proof of Corollary 3.3

Proof. We will prove the pathwise uniqueness which implies uniqueness of weak solutions.
Let LF and LG be two real such that

‖F(t, u) − F(t, v)‖(H−1(D))3 ≤ LF‖u − v‖,

‖G(t, u) −G(t, v)‖((L2(D))3)m ≤ LG‖u − v‖.
(4.77)

Then F̃ and G̃ are defined, respectively, by (3.14) and (3.20) satisfying

∥∥∥F̃(t, u) − F̃(t, v)
∥∥∥
V
≤ LF̃‖u − v‖,

∥∥∥G̃(t, u) − G̃(t, u)
∥∥∥
V ⊗m

≤ LG̃‖u − v‖.
(4.78)

Let u1 and u2 two weak solutions of problem (1.1) defined on the same probability space
together with the same Wiener process and starting from the same initial value u0.

We denote u = u1 − u2. Take μ > 0 to be defined later and ρ(t) =
exp(−μ∫ t0‖u2(s)‖2D(A) ds), 0 ≤ t ≤ T .

Applying Ito’s formula to the real process ρ(t)‖u(t)‖2, we obtain from (3.13), (3.18),
(3.19), and (3.26) that

ρ(t)‖u(t)‖2 + α̃

∫ t

0
ρ(s)‖u(s)‖2D(A) ds ≤ L2

G̃

∫ t

0
ρ(s)‖u(s)‖2ds

+ 2c̃
∫ t

0
ρ(s)‖u2(s)‖D(A)‖u(s)‖D(A)‖u(s)‖ds

+ 2LF̃

∫ t

0
ρ(s)‖u(s)‖D(A)‖u(s)‖ds

+ 2
∫ t

0

((
ρ(s)
(
G̃(s, u1(s)) − G̃(s, u2(s))

)
, u(s)

))
dW(s)

− μ

∫ t

0

∫ t

0
ρ(s)‖u2(s)‖2D(A)‖u(s)‖2ds,

(4.79)

for all t ∈ [0, T].
By young’s inequality, we have

2c̃‖u2(s)‖D(A)‖u(s)‖D(A)‖u(s)‖ ≤ α̃

2
‖u(s)‖2D(A) +

2c̃2

α̃
‖u2(s)‖2D(A)‖u(s)‖2

2LF̃‖u(s)‖D(A)‖u(s)‖ ≤ α̃

2
‖u(s)‖2D(A) +

2L2
F̃

α̃
‖u(s)‖2.

(4.80)
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If we take μ = 2(c̃2/α̃), we obtain from (4.79) that

ρ(t)‖u(t)‖2 ≤
⎛
⎝L2

G̃
+
2L2

F̃

α̃

⎞
⎠
∫ t

0
ρ(s)‖u(s)‖2ds

+ 2
∫ t

0

((
ρ(s)
(
G̃(s, u1(s)) − G̃(s, u2(s)), u(s)

)))
dW.

(4.81)

As 0 < ρ(t) ≤ 1, the expectation of the stochastic integral in (4.81) vanishes and

Eρ(t)‖u(t)‖2 ≤
⎛
⎝L2

G̃
+
2L2

F̃

α̃

⎞
⎠E

∫ t

0
ρ(s)‖u(s)‖2ds. (4.82)

The Gronwall lemma implies that u(t) = 0, P -a.s. for all t ∈ [0, T]. Also, the corollary is
proved.

Remark 4.7. Using the famous Yamada-Watanabe theorem [11], Corollary 3.3 implies the
existence of a unique strong solution of (1.1).
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