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1. Introduction and Preliminaries

Suppose that X is a Banach space and A is a linear operator in X with domain D(A) and
range R(A). For a given x ∈ D(A), the abstract Cauchy problem for A with the initial value
x consists of finding a solution u(t) to the initial value problem

ACP(A;x)

⎧
⎪⎨

⎪⎩

du(t)
dt

= Au(t), t ∈ R+,

u(0) = x,

(1.1)

where by a solution we mean a function u : R+ → X, which is continuous for t ≥ 0,
continuously differentiable for t > 0, u(t) ∈ D(A) for t ∈ R+, and ACP(A;x) is satisfied.

If C ∈ B(X), the space of all bounded linear operators on X, is injective, then a one-
parameter C-semigroup (regularized semigroup) of operators is a family {T(t)}t∈R+

⊂ B(X)
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for which T(0) = C, T(s + t)C = T(s)T(t), and for each x ∈ X, the mapping t �→ T(t)x is
continuous. An operator A : D(A) → X with

D(A) =
{

x ∈ X : lim
t→ 0

T(t)x − Cx

t
exists in the range of C

}

, (1.2)

and where, for x ∈ D(A), Ax := C−1limt→ 0((T(t)x − Cx)/t) is called the infinitesimal
generator of T(t).

Regularized semigroups and their connection with the ACP(A;x) have been studied
in [1–6] and some other papers. Also the concept of local C-semigroups and their relation
with the ACP(A;x) have been considered in [7–10].

In Section 2, we introduce the concept of two-parameter regularized semigroups
of operators and their generator. Some basic properties of two-parameter regularized
semigroups and their relation with the generators are studied in this section.

In Section 3, two-parameter abstract Cauchy problems are considered. It is proved
that the existence and uniqueness of its solutions is closely related with two-parameter
regularized semigroups of operators.

2. Two-Parameter Regularized Semigroups

In this section we introduce two-parameter regularized semigroup and its generator on
Banach spaces. Then some properties of two-parameter regularized semigroups are studied.

Definition 2.1. Suppose that X is a Banach space and C ∈ B(X) is an injective operator.
A family {W(s, t)}s,t∈R+

⊂ B(X) is called a two-parameter regularized semigroup (or two
parameter C-semigroup) if

(i) W(0, 0) = C,

(ii) W(s + s′, t + t′)C = W(s, t)W(s′, t′), for all s, s′, t, t′ ∈ R+,

(iii) lim(s′,t′)→ (s,t)W(s′, t′)x = W(s, t)x, for all x ∈ X.

It is called exponentially bounded if ‖W(s, t)‖ ≤ Me(s+t)ω, for some M,ω > 0.

Suppose that {W(s, t)}s,t∈R+
is a two-parameter C-semigroup. Put u(s) := W(s, 0) and

v(t) := W(0, t), then it is easy to see that these families are two commuting one-parameter C-
semigroups such thatW(s, t)C = u(s)v(t). Also u(s) and v(t) commute with C. IfH1 andH2

are their generators, respectively, then we will think of (H1,H2) as the generator of W(s, t).
From the one-parameter case (see [8]), one can prove that R(C) ⊆ D(H1)∩D(H2), and

C−1HiC = Hi, i = 1, 2.
Also if {U(s)}s∈R+

and {V (t)}t∈R+
are two commuting one-parameter C-semigroups,

then one can see that W(s, t) := U(s)V (t) is a two-parameter C2-semigroup of operators.
The following is an example of a two-parameter C-semigroup which is not

exponentially bounded.

Example 2.2. Let X = L2(C), and [W(s, t)f](z) := e−|z|
2+(s+t)zf(z), (Cf)(z) := e−|z|

2
f(z), then

W(s, t) is a two-parameter C-semigroup which is not exponentially bounded.

In the following theorem we can see some elementary properties of a two-parameter
C-semigroup.
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Theorem 2.3. Suppose thatW(s, t) is a two-parameter C-semigroup with the infinitesimal generator
(H1,H2). Then, one has the following.

(i) For each x ∈ X and for every s, t ≥ 0,
∫ t
0

∫s
0W(μ, ν)x dμdν, is in D(H1) ∩D(H2). Also

lim
(h,k)→ (0,0)

1
hk

∫ t+h

t

∫s+k

s

W
(
μ, ν
)
x dμdν = W(s, t)x. (2.1)

(ii) For each x ∈ X, and for every s, t ∈ R+,
∫s
0W(μ, t)x dμ ∈ D(H1) and

∫ t
0W(s, ν)x dν ∈

D(H2); furthermore

H1

∫ s

0
W
(
μ, t
)
x dμ = W(s, t)x −W(0, t)x,

H2

∫ t

0
W(s, ν)x dν = W(s, t)x −W(s, 0)x.

(2.2)

(iii) R(C) ⊆ D(H1) ∩D(H2) and H1 and H2 are closed.

(iv) For any x ∈ D(H1) ∩D(H2), and each s, t > 0, u(s)x and v(t)x are in D(H1) ∩D(H2).
Also for this x, and i = 1, 2,

∂

∂ti
W(t1, t2)x = HiW(t1, t2)x = W(t1, t2)Hix. (2.3)

(v) For any a, b > 0, T(t) := W(ta, tb) is a one-parameter C-semigroup whose generator is an
extension of aH1 + bH2.

Proof. To prove (i), suppose x ∈ X. First we note that for any ν ≥ 0,

lim
h→ 0

1
h

∫ t+h

t

W
(
μ, ν
)
Cxdμ = W(0, ν) lim

h→ 0

1
h

∫ t+h

t

W
(
μ, 0
)
x dμ

= W(0, ν)W(t, 0)x

= W(t, ν)Cx.

(2.4)

Thus

1
h

(

W(h, 0)
∫ s

0

∫ t

0
W
(
μ, ν
)
x dμdν − C

∫s

0

∫ t

0
W
(
μ, ν
)
x dμdν

)

=
1
h
C

(∫s

0

∫ t+h

h

W
(
μ, ν
)
x dμdν −

∫s

0

∫ t

0
W
(
μ, ν
)
x dμdν

)

=
∫s

0

(
1
h

[∫ t+h

t

W
(
μ, ν
)
Cxdμ −

∫h

0
W
(
μ, ν
)
Cxdμ

])

dν,

(2.5)
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which tends to C
∫s
0(W(t, ν) −W(0, ν))x dν as h → 0. This implies that

∫s
0

∫ t
0W(μ, ν)x dμdν is

in D(H1) and

H1

∫s

0

∫ t

0
W
(
μ, ν
)
x dμdν =

∫ s

0
(W(t, ν) −W(0, ν))x dν. (2.6)

A similar argument implies that it is in D(H2) and

H2

∫ s

0

∫ t

0
W
(
μ, ν
)
x dμdν =

∫ t

0

(
W
(
μ, s
) −W

(
μ, 0
))
x dν. (2.7)

For the second part, from the continuity of C we have

C lim
(h,k)→ (0,0)

1
hk

∫ t+h

t

∫ s+k

s

W
(
μ, ν
)
x dμdν

= lim
(h,k)→ (0,0)

1
hk

∫ t+h

t

∫s+k

s

W
(
μ, ν
)
Cxdμdν

= lim
(h,k)→ (0,0)

1
h

∫ t+h

t

W(0, ν)
1
k

∫s+k

s

W
(
μ, 0
)
x dμdν

= lim
h→ 0

1
h

∫ t+h

t

W(0, ν)

(

lim
k→ 0

1
k

∫ s+k

s

W
(
μ, 0
)
x dμ

)

dν

= W(0, t)W(s, 0)x

= W(s, t)Cx.

(2.8)

Now the fact that C is injective completes the proof of this part.
The proof of (ii) has a process similar to the first part of (i).
To prove (iii), we first note that H1 and H2 are closed as a trivial consequence of the

one-parameter case (see [2]). For any x ∈ X we saw that

1
h

∫h

0

∫h

0
W
(
μ, ν
)
x dμdν ∈ D(H1) ∩D(H2), (2.9)

which tends toW(0, 0)x = Cx ∈ R(C), as h → 0. This implies that R(C) ⊆ D(H1) ∩D(H2).
To prove (iv), we let x ∈ D(H1) ∩D(H2). If u(s) = W(s, 0) and v(t) = W(s, t), there is

y ∈ X such that

lim
s→ 0

u(s)x − Cx

s
= Cy. (2.10)
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Hence

lim
s→ 0

u(s)v(t)x − Cv(t)x
s

= v(t)Cy = Cv(t)y, (2.11)

which is in the R(C), and this implies that v(t)x is in D(H1), similarly it is in D(H2).
Now from [2, Theorem 2.4(b)], for x ∈ D(H1) ∩ D(H2), from the fact that v(t)x is in

D(H1),

∂

∂s
W(s, t)Cx =

d

ds
(u(s)(v(t)x))

= H1u(s)(v(t)x)

= H1W(s, t)Cx

= CH1W(s, t)x.

(2.12)

On the other hand from the part (ii) and closedness of H1,

∫ s

0
H1W

(
μ, t
)
x dμ = H1

∫ s

0
W
(
μ, t
)
x dμ = W(s, t)x −W(0, t)x, (2.13)

which implies that (∂/∂s)W(s, t)x exists. Hence from the continuity of C

C
∂

∂s
W(s, t)x =

∂

∂s
W(s, t)Cx = CH1W(s, t)x. (2.14)

But C is injective so

∂

∂s
W(s, t)x = H1W(s, t)x = W(s, t)H1x. (2.15)

The second one is similar.
To prove (v), first we note that T(t) is a one-parameter C-semigroup. Now if x ∈

D(aH1 + bH2) = D(H1) ∩D(H2),

C lim
t→ 0+

T(t)x − Cx

t
= lim

t→ 0+

W(ta, 0)W(0, tb)x −W(ta, 0)Cx +W(ta, 0)Cx − C2x

t

= b lim
t→ 0+

W(ta, 0)
W(0, tb)x − Cx

bt
+ a lim

t→ 0+

W(at, 0)Cx − C2x

t

= bC2H2x + aH1C
2x.

(2.16)
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Now the fact that C is injective implies that

C−1 lim
t→ 0+

T(t)x − Cx

t
= aH1x + bH2x. (2.17)

For an exponentially bounded one-parameter C-semigroup T(t)with the generatorA,
from [1] the existence of Lλ(A)x =

∫∞
0 e

−λtT(t)x dt is guaranteed for sufficiently large λ ∈ R.
Now we have the following lemma for one-parameter C-semigroups of operators which is
similar to the Yosida-approximation theorem for strongly continuous semigroups. This will
be applied in our study of two-parameter regularized semigroups.

Lemma 2.4. Let {T(t)}t∈R+
be a one-parameterC-semigroup satisfying the condition ‖T(t)‖ ≤ Meωt,

for some ω > 0 and M > 0, with the generator A. If for λ > ω, Aλ := λALλ(A), then one has the
following.

(i) For any x ∈ X, ‖Lλ(A)x‖ ≤ (M/(λ−ω))‖x‖,Aλ = λ2Lλ(A)−λC, and soAλ is bounded.
Also S(t) := CetAλ is a one-parameter C-semigroup which is exponentially bounded.

(ii) For any x ∈ D(A), limλ→∞λLλ(A)x = Cx and for all x ∈ D(A), limλ→∞Aλx = CAx.
Also if R(C) is dense in X, then the first equality holds on X.

(iii) For any x ∈ D(A), T(t)x = limλ→∞CetAλx.

Proof. The first inequality of (i) is trivial. From [2, Lemma 2.8], we know that for any x ∈ X,
(λ −A)Lλ(A)x = Cx; thus,

−λ(λ −A)Lλ(A)x = −λCx. (2.18)

This implies our desired equality.
For the second part, first we show that CAλ = AλC. For this we note that

CLλ(A) = C

∫∞

0
e−λtT(t)x dx

=
∫∞

0
Ce−λtT(t)x dx

=
∫∞

0
e−λtT(t)Cxdx

= Lλ(A)Cx.

(2.19)

This and the first part imply that CAλ = AλC. Now we prove the C-semigroup properties of
S(t). Trivially S(0) = C. Also from the last equality,

S(s + t)C = Ce(s+t)AλC = CesAλCetAλ = S(s)S(t). (2.20)

The fact that Aλ, λ > ω, is a bounded operator trivially implies that S(·) is exponentially
bounded. Now the continuity of the mapping t �→ S(t)x at zero implies the strongly
continuity of S(t).



Abstract and Applied Analysis 7

To prove (ii), for x ∈ D(A), from (i) and the fact that A is closed, we have

‖λLλ(A)x − Cx‖ = ‖ALλ(A)x‖
= ‖Lλ(A)Ax‖
≤ ‖Lλ(A)‖‖Ax‖

≤ M

(λ −ω)
‖Ax‖ −→ 0 as λ −→ ∞.

(2.21)

The continuity of C and Lλ(A) implies that for any x ∈ D(A), limλ→∞λLλ(A)x = Cx.
Now for x ∈ D(A),

lim
λ→∞

Aλx = lim
λ→∞

λLλ(A)Ax = CAx = ACx. (2.22)

For the last part of (ii), if C has a dense range, then by [8, Lemma 1.1.3], R(C) ⊆ D(A), and
so X = R(C) ⊆ D(A) ⊆ X, which means that D(A) = X.

To prove (iii), for any x ∈ D(A), we have

∥
∥
∥CetAλx − CetAμx

∥
∥
∥ =

∥
∥
∥
∥
∥

∫1

0

d

ds

(
CetsAλet(1−sAμ)x

)
∥
∥
∥
∥
∥

≤
∫1

0
t
∥
∥
∥CetsAλet(1−sAμ)

(
Aλx −Aμx

)∥∥
∥ds

≤ t‖C‖∥∥Aλx −Aμx
∥
∥

≤ t‖C‖(‖Aλx −ACx‖ + ∥∥ACx −Aμx
∥
∥
)
.

(2.23)

This and the previous part prove the existence of limλ→∞CetAλx.

Using this theorem we may find the following approximation theorem for two-
parameter regularized semigroups.

Corollary 2.5. Suppose that (H,K) is the infinitesimal generator of an exponentially bounded two-
parameter C-semigroup W(s, t), then for each x ∈ D(H) ∩D(K),

W(s, t)x = C lim
λ→∞

esHλ+tKλx. (2.24)

For exponentially bounded C-semigroup W(s, t) satisfying ‖W(s, t)‖ ≤ Me(s+t)ω, with
the infinitesimal generator (H,K), define Lλ1(H)x :=

∫∞
0 e

−λ1sW(s, 0)x ds and Lλ2(K)x :=∫∞
0 e

−λ2tW(0, t)x dt, where Re(λi) > ω. From the previous Lemma Lλ1(H) and Lλ2(K) are
bounded operators.
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Theorem 2.6. (i) Let (H,K) be the generator of an exponentially bounded two-parameter C-semi-
group, then for large enough λ1, λ2

Lλ1(H)Lλ2(K) = Lλ2(K)Lλ1(H). (2.25)

(ii) Let (H,K) be the generator of an exponentially bounded two-parameter C-semigroup, then
D(H) ∩D(HK) ⊆ D(KH), and for x ∈ D(H) ∩D(HK),

HKx = KHx. (2.26)

(iii) Suppose that H and K are the generators of two exponentially bounded one-parameter C-
semigroups {u(s)}s∈R+

and {v(t)}t∈R+
, respectively. If their resolvents commute and R(C)

is dense in X, thenW(s, t) := u(s)v(t) is a two-parameter C2-semigroup.

Proof. The proof of (i) follows trivially from the properties of two-parameter C-semigroups.
To prove (ii), we let x ∈ D(H) ∩D(HK); from the strongly continuity of W(s, t) and

the fact that K is closed, we have

C2HKx = C lim
s→ 0

W(s, 0)Kx − CKx

s

= lim
s→ 0

1
s

(

W(s, 0)
(

lim
t→ 0

W(0, t)x − Cx

t

)

− lim
t→ 0

W(0, t)x − Cx

t

)

= lim
s→ 0

lim
t→ 0

1
st
(W(s, 0)W(0, t)x −W(s, 0)Cx −W(0, t)x + Cx)

= lim
s→ 0

lim
t→ 0

1
st
(W(0, t)W(s, 0)x −W(s, 0)Cx −W(0, t)x + Cx)

= lim
s→ 0

lim
t→ 0

1
t

(

W(0, t)
(
W(s, 0)x − Cx

s

)

− W(s, 0)x − Cx

s

)

= C lim
s→ 0

K

(
W(s, 0)x − Cx

s

)

= C2KHx.

(2.27)

However, C is injective, and this completes the proof of (i).
To prove (iii), from our hypothesis, for sufficiently large λ, λ′, we know that

Lλ(H)Lλ′(K) = Lλ′(K)Lλ(H). (2.28)

By Lemma 2.4,Hλ = λ2Lλ(H)−λC andKλ′ = λ′2Lλ′(H)−λ′C, thusHλKλ′ = Kλ′Hλ. From (iii)
of Lemma 2.4, for each x ∈ D(H) ∩D(K),

u(s)x = lim
λ→∞

CesHλx, v(t) = lim
λ′ →∞

CetKλ′x. (2.29)
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So

u(s)v(t)x = C lim
λ→∞

esHλv(t)x

= C2 lim
λ→∞

esHλ

(

lim
λ′ →∞

etKλ′x

)

,

(
esHλ is continuous

)
= C2 lim

λ→∞
lim
λ′ →∞

esHλetKλ′x

= C2 lim
λ→∞

lim
λ′ →∞

etKλ′ esHλx

= C lim
λ→∞

v(t)esHλx

= v(t)u(s)x.

(2.30)

Now the continuity of u(s) and v(t) and the fact that D(H) ∩D(K) = R(C) = X imply that
for each x ∈ X, u(s)v(t)x = v(t)u(s)x. Thus

W(s, t)W
(
s′, t′
)
= u(s)v(t)u

(
s′
)
v
(
t′
)

= u(s)u
(
s′
)
v(t)v

(
t′
)

= Cu
(
s + s′

)
Cv
(
t + t′

)

= W
(
s + s′, t + t′

)
C2.

(2.31)

On the other hand W(0, 0) = C2, which completes the proof.

If H and K are two closed operators on X, then X1 := D(H) ∩ D(K) with ‖x‖1 =
‖x‖ + ‖Hx‖ + ‖Kx‖, x ∈ X1, is a Banach space.

Proposition 2.7. Suppose that C ∈ B(X) is injective and {W(s, t)} is a two-parameter C-semigroup
with the generator (H,K). Then W1(s, t) := W(s, t)|X1 defines a two-parameter C1-semigroup, with
the generator (H1, K1), where C1 = C|X1 , and H1, K1 are the part of H and K on X1, respectively.

Proof. The C1-semigroup properties of W1(s, t) are obvious. Let (A,B) be the generator of
W1(s, t); we show that A = H1 and B = H2. First we note that

D(H1) = {x ∈ X1 : Hx ∈ X1}

=
{
x ∈ D(H) ∩D(K) : x ∈ D

(
H2
)
∩D(KH)

}

= D(K) ∩D
(
H2
)
∩D(KH).

(2.32)
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Let x ∈ D(H1). So we have

W1(s, 0)x − C1x

t
=

W(s, 0)x − Cx

t
−→ CHx = C1H1x,

H
W1(s, 0)x − C1x

t
=

W(s, 0)Hx − CHx

t
−→ CH2x = HC1H1x,

K
W1(s, 0)x − C1x

t
=

W(s, 0)Kx − CKx

t
−→ CHKx

= KCHx = KC1H1x.

(2.33)

These show that (W1(s, 0)x − C1x)/t → C1H1x in ‖ · ‖1, that is, x ∈ D(A) and Ax = H1x.
Hence H1 ⊆ A. Conversely, if x ∈ D(A) ⊆ X1, then

‖ · ‖1 − lim
t→ 0

W(s, 0)x − Cx

t
= ‖ · ‖1 − lim

t→ 0

W1(s, 0)x − C1x

t

= C1Ax

= CAx,

(2.34)

soHx = Ax ∈ X1. Hence x ∈ D(K) ∩D(H2) ∩D(KH) = D(H1) and H1x = Hx = Ax.
A similar argument shows that K1 = B, which completes the proof.

3. Two-Parameter Abstract Cauchy Problems

Suppose that Hi : D(Hi) ⊆ X → X, i = 1, 2, is linear operator. Consider the following two-
parameter Cauchy problem:

2-ACP(H1,H2;x)

⎧
⎪⎨

⎪⎩

∂

∂ti
u(t1, t2) = Hiu(t1, t2), ti > 0, i = 1, 2,

u(0, 0) = x, x ∈ C(D(H1) ∩D(H2)).
(3.1)

We mean by a solution a continuous Banach-valued function u(·, ·) : [0,∞) × [0,∞) → X
which has continuous partial derivative and satisfies 2-ACP(H1,H2;x).

In this section first we prove that if (H1,H2) is the infinitesimal generator of a two-
parameter C-semigroup of operators, then 2-ACP(H1,H2;x) has a unique solution for any
x ∈ C(D(H1) ∩ D(H2)). Next it is proved that under some condition on C, existence and
uniqueness of solutions of 2-ACP(H1,H2;Cx), for every x ∈ D(H1) ∩D(H2), imply that this
unique solution is induced by a two-parameter regularized semigroup.

Theorem 3.1. Suppose that an extension of (H1,H2) is the generator of a two-parameter C-
semigroup W(s, t), then 2-ACP(H1,H2;x) has the unique solution u(s, t;x) := W(s, t)C−1x, for
all x ∈ C(D(H1) ∩D(H2)).
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Proof. The fact that u(s, t;x) := W(s, t)C−1x is a solution of 2-ACP(H1,H2;x) is obvious from
Theorem 2.3. It is enough to show that 2-ACP(H1,H2;x) has the unique solution u(s, t) = 0,
for the initial value x = 0. From one-parameter case (see [2]), we know that the systems

du(t)
dt

= H1u(t), t ∈ R+,

u(0) = 0,
(3.2)

dv(t)
dt

= H2v(t), t ∈ R+,

v(0) = 0
(3.3)

have the unique solution zero. Now if u(s, t; 0) is a solution of 2-ACP(H1,H2; 0), then

u1(s) := W(s, 0)C−1u(0, t; 0), u2(s) := u(s, t; 0) (3.4)

are two solutions of (3.2), for the initial value u(0, t; 0), since

d

ds
u1(s) =

d

ds
W(s, 0)C−1u(0, t; 0)

= H1W(s, 0)C−1u(0, t; 0)

= H1u1(s),

d

ds
u2(s) =

∂

∂s
u(s, t; 0)

= H1u(s, t; 0)

= H1u2(s).

(3.5)

The uniqueness of solution in one-parameter case implies that u1(s) = u2(s). So

W(s, 0)C−1u(0, t; 0) = u(s, t; 0). (3.6)

Also v1(t) := W(0, t)C−1u(s, 0; 0) and v2(t) := u(s, t; 0) are two solutions of (3.3) for the initial
value u(s, 0; 0). From the uniqueness of solution in (3.3), W(0, t)C−1u(s, 0; 0) = u(s, t; 0), for
all s, t ≥ 0. Thus

u(s, t; 0) = W(s, 0)C−1u(0, t; 0) = W(s, 0)C−1W(0, t)u(0, 0; 0) = 0. (3.7)

The uniqueness of solution 2-ACP(H,K;Cx), for all x ∈ D(H) ∩D(K), also leads us
to a two-parameter C-semigroup. This will be shown in the following theorem.
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In this theorem X1 and C1 have their meaning in Proposition 2.7.

Theorem 3.2. Suppose that C ∈ B(X) is injective and H,K are two closed operators satisfying

Cx ∈ X1, KCx = CKx, HCx = CHx, ∀x ∈ X1. (3.8)

If, for each x ∈ X1, the Cauchy problem 2-ACP(H,K;Cx) has a unique solution u(·, ·;Cx), then
there exists a two-parameter C1-semigroupW1(·, ·) on X1 such that u(·, ·;Cx) = W1(·, ·)x. Moreover,
the infinitesimal generator of W1(·, ·) is a restriction of (H1, K1), where H1 and K1 are the part of H
and K on X1, respectively.

Proof. Suppose that, for any x ∈ X1, 2-ACP(H,K;Cx) has a unique solution u(·, ·;Cx) ∈
C1([0,∞) × [0,∞), X). For x ∈ X1 and 0 < s, t < ∞, define W1(s, t)x := u(s, t;Cx).

From the uniqueness of solution W1(s, t) is a well-defined and linear operator on X1

and

W1(0, 0)x = u(0, 0;x) = Cx. (3.9)

By uniqueness of solutions one can see that

W1
(
s + s′, t + t′

)
C1 = W1(s, t)W1

(
s′, t′
)
. (3.10)

We are going to show that W1(s, t) is a bounded operator on (X1, ‖ · ‖1). Let 0 < s, t <
∞. Define the mapping φs,t : X1 → C([0, s] × [0, t], X1) by φs,tx = W1(·, ·)x = u(·, ·;Cx).
Obviously φs,t is linear. We claim that this mapping is closed. Suppose that xn ∈ X1, xn → x
and u(·, ·;Cxn) = φs,t(xn) → y in C([0, s] × [0, t], X1) with its usual supremum norm. From
the Cauchy problem we know that

u
(
μ, ν;Cxn

)
= Cxn +

∫μ

0
Hu
(
η, ν;Cxn

)
dη,

u
(
μ, ν;Cxn

)
= Cxn +

∫ν

0
Ku
(
μ, η;Cxn

)
dη.

(3.11)

Letting n → ∞, we obtain

y
(
μ, ν
)
= Cx +

∫μ

0
Hy
(
η, ν
)
dη,

y
(
μ, ν
)
= Cx +

∫ν

0
Ky
(
μ, η
)
dη

(3.12)
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for any (μ, ν) ∈ [0, s] × [0, t]. Now define ỹ on [0,∞) × [0,∞) by

ỹ
(
μ, ν
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Cy
(
μ, ν
)
, 0 ≤ μ ≤ s, 0 ≤ ν ≤ t,

W1(0, ν − t)y
(
μ, t
)
, 0 ≤ μ ≤ s, t < ν < ∞,

W1
(
μ − s, 0

)
y(s, ν), s < μ < ∞, 0 ≤ ν ≤ t,

W1
(
μ − s, ν − t

)
y(s, t), s < μ < ∞, t < ν < ∞.

(3.13)

One can see that ỹ is a solution of 2-ACP(H,K;C2x). Indeed from (3.12)

ỹ(0, 0) = Cy(0, 0) = C2x. (3.14)

Also (3.12) and the fact that C commutes withH and K imply that

∂

∂μ
ỹ
(
μ, ν
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Hy
(
μ, ν
)
, 0 ≤ μ ≤ s, 0 ≤ ν ≤ t,

HW1(0, ν − t)y
(
μ, t
)
, 0 ≤ μ ≤ s, t < ν < ∞,

HW1
(
μ − s, 0

)
y(s, ν), 0 < μ < ∞, 0 ≤ ν ≤ t,

HW1
(
μ − s, ν − t

)
y(s, t), 0 < μ < ∞, 0 < ν < ∞,

= Hỹ
(
μ, ν
)
.

(3.15)

Similarly

∂

∂ν
ỹ
(
μ, ν
)
= Kỹ

(
μ, ν
)
. (3.16)

Uniqueness of the solution implies that

ỹ(·, ·) = u
(
·, ·;Cx2

)
= W1(·, ·)Cx = CW1(·, ·)x. (3.17)

In particular for 0 ≤ μ ≤ s and 0 ≤ ν ≤ s,

Cy
(
μ, ν
)
= ỹ
(
μ, ν
)
= CW1

(
μ, ν
)
x = Cφs,t(x)

(
μ, ν
)
. (3.18)

The fact that C is injective implies that y = φs,t(x), which shows that φs,t is closed operator.
By the Closed Graph Theorem φs,t is a continuous operator from Banach space X1

into the Banach space C([0, s] × [0, t], X1). So if xn → x in X1, then φs,t(xn) → φs,t(x) in
C([0, s] × [0, t], X1); thus for each (μ, ν) ∈ [0, s] × [0, t],

W1(s, t)xn = φs,t(xn)
(
μ, ν
) −→ φs,t(x)

(
μ, ν
)
= W1

(
μ, ν
)
x. (3.19)
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But s and t were arbitrary; hence W1(μ, ν) is continuous for any μ, ν ∈ [0,∞). Also for every
x ∈ X1,W1(·, ·)x = φs,t(x) is continuous on [0, s]× [0, t]; that is,W1(·, ·) is strongly continuous
family of operators.

Now let (A,B) be its infinitesimal generator and x ∈ D(A), then

‖ · ‖1 − lim
s→ 0

W1(s, 0)x − C1x

s
= C1Ax, (3.20)

which implies that lims→ 0((W1(s, 0)x − Cx)/s) = CAx, but D(A) ⊆ D(H)

lim
s→ 0

W1(s, 0)x − Cx

s
= lim

s→ 0

u(s, 0;Cx) − Cx

s

=
∂

∂s
u(0, 0;Cx)

= HCx

= CHx.

(3.21)

Hence CHx = CAx. The injectivity of C implies that Hx = Ax ∈ X1 = D(H) ∩ D(K). Thus
x ∈ D(K) ∩ D(H2) ∩ D(KH) = D(H1) and H1x = Ax. This shows that A is a restriction of
H1. Similarly one can see that B is a restriction of K1, which completes the proof.

We conclude this section with a simple example as an application of our discussion.
Consider the following sequence of initial value problems:

∂

∂s
un(s, t) = nun(s, t),

∂

∂t
un(s, t) = n2un(s, t), n ∈ N,

un(0, 0) = e−n
2
qn.

(3.22)

Suppose that X = c0, the space of all complex sequences in C which vanish at infinity. Now
define linear operators H and K in X and operator C on X as follows:

H(xn)n∈N
= (nxn)n∈N

, K(xn)n∈N
=
(
n2xn

)

n∈N

, C(xn)n∈N
=
(
e−n

2
xn

)

n∈N

. (3.23)

Using these operators the initial value problem (3.22) can be rewrite as follows:

∂

∂s
u(s, t) = Hu(s, t),

∂

∂t
u(s, t) = Ku(s, t),

u(0, 0) = Cq,

(3.24)
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where u(s, t) = (un(s, t))n∈N
and q = (qn)n∈N

. One can easily see that (H,K) is the generator
of the following two-parameter C-semigroup:

W(s, t)(xn)n∈N
= (en

2(t−1)+snxn)n∈N
(3.25)

on X. Hence for every q = (qn)n∈N
∈ D(H) ∩ D(K), by Theorem 3.1, the abstract Cauchy

problem (3.24) has the unique solution

u(s, t) = W(s, t)q = (en
2(t−1)+snqn)n∈N

. (3.26)

This implies that for each n ∈ N, un(s, t) = en
2(t−1)+tnqn is a solution of (3.22).
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