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1. Introduction and Main Results

We assume that the reader is familiar with the usual notations and basic results of the
Nevanlinna theory [1–3]. Let now f(z) be a nonconstant meromorphic function in the
complex plane. We remark that ρ(f)will be used to denote the order of f , and

ρ(f) = lim sup
r→∞

log T(r, f)
log r

. (1.1)

We now recall some previous results concerning nonhomogeneous linear differential
equations of type

f (k) +Ak−1(z)f (k−1) + · · · +A1(z)f ′ +A0(z)f = H(z), (1.2)

whereAj (j = 0, 1, . . . , k − 1) andA0 /≡ 0,H /≡ 0 are entire functions of finite-order, k ≥ 2. In the
case that the coefficientsAj (j = 0, 1, . . . , k−1) are polynomials, growth properties of solutions
of (1.2) have been extensively studied, see, for example, [4]. In (1.2), if p is the largest integer
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such thatAp is transcendental, it is well known that there exist at most p linearly independent
finite-order solutions of the corresponding homogeneous equation

f (k) +Ak−1(z)f (k−1) + · · · +A1(z)f ′ +A0(z)f = 0. (1.3)

Thus, when at least one of the coefficients Aj is transcendental, most of the solutions of (1.2)
and (1.3) are of infinite-order. In the case when

max
j /=d

{
ρ
(
Aj

)
, ρ(H)

}
< ρ

(
Ad

) ≤ 1
2
, (1.4)

Hellerstein et al. [5] proved that every transcendental solution of (1.2) is of infinite-order. As
for sectorial growth conditions on the coefficients of (1.2) that imply that all solutions are of
infinite-order, see, for example, [6]. As for the special case of k = 2, Wang and Laine studied
equations of type

f ′′ +A1(z)eazf ′ +A0(z)ebzf = H(z), (1.5)

where A1 /≡ 0, A0 /≡ 0,H are entire functions of order less than one, and the complex numbers
a, b satisfy ab /≡ 0. They proved that every nontrivial solution of (1.5) is of infinite-order if
a/≡ b, see [7]. We remark that (1.2) may indeed have solutions of finite-order as soon as
ρ(H) ≥ max{ρ(Aj) (j = 0, . . . , k)}, as shown by the next examples.

Example 1.1. The exponential function f(z) = ez satisfies the equation

f (k) + f (k−1) + · · · + f ′′ + e−zf ′ +Q(z)f =
(
k − 1 +Q(z)

)
ez + 1, (1.6)

where Q(z) can be any entire function. Choosing Q(z) = 1 − k shows that (1.2) may admit a
solution of finite-order even if ρ(H) < max{ρ(Aj) (j = 0, . . . , k)}. On the other hand, taking
Q(z) = ez, we have the case that ρ(H) = max{ρ(Aj) (j = 0, . . . , k)} in (1.2).

Example 1.2. The function f(z) = ez
2
satisfies the equation

f ′′′ + e−zf ′′ + ezf ′ + e2zf =
(
8z3 + 12z + 4z2e−z + 2e−z + 2zez + e2z

)
ez

2
. (1.7)

In this paper, we continue to consider (1.2) in the case when ρ(H) < max{ρ(Aj) (j =
0, . . . , k)}. Recently, Tu and Yi investigated the growth of solutions of (1.3) when most
coefficients have the same order, see [8]. We next prove two results of (1.2), which generalize
Theorems 2 and 4 in [8] and Theorem 1.1 in [7].

Theorem 1.3. Suppose that Aj(z) = hj(z)ePj (z) (j = 0, . . . , k − 1) where Pj (z) = ajnz
n + · · · + aj0

are polynomials with degree n ≥ 1, hj(z) are entire functions of order less than n, not all vanishing,
and H(z)/≡ 0 is an entire function of order less than n. If ajn (j = 0, . . . , k − 1) are distinct complex
numbers, then every solution of (1.2) is of infinite-order.
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Theorem 1.4. Suppose that Aj(z) = hj(z)ePj (z) (j = 0, . . . , k − 1) where Pj(z) = ajnz
n + · · · + aj0

are polynomials with degree n ≥ 1, hj(z) and H(z)/≡ 0 are entire functions of order less than n.
Moreover, suppose that there are two coefficients As, Al so that for asn = |asn|eiθs and aln = |aln|eiθl ,
where 0 ≤ s < l ≤ k − 1, θs, θl ∈ [0, 2π), θs /≡ θl, hshl /≡ 0, and for all j /≡ s, l, ajn satisfies either
ajn = djasn (0 < dj < 1) or ajn = djaln (0 < dj < 1). Then every transcendental solution of (1.2) is
of infinite-order.

In the case when Aj(z) = hje
ajz + gj where hj , gj (j = 0, . . . , k − 1) are polynomials,

Chen considered the growth of solutions of (1.3) with some additional conditions imposed
upon on aj , see [9]. Our last results generalizes his result and [7, Theorem 1.3].

Theorem 1.5. Suppose that Aj(z) = hj(z)ePj (z) + gj(z) (j = 0, . . . , k − 1) where Pj(z) = ajnz
n +

· · · + aj0 are polynomials with degree n ≥ 1, hj(z), gj(z) and H(z)/≡ 0 are entire functions of order
less than n. Moreover, suppose that there exist asn = dse

iϕ and aln = −dle
iϕ with ds > 0, dl > 0

and 0 ≤ s < l ≤ k − 1 such that for j /= s, l, ajn = dje
iϕ (dj ≥ 0) or ajn = −dje

iϕ (dj ≥ 0), and
max{dj, j /≡ s, l} = d < min{ds, dl}. If hshl /≡ 0, then every transcendental solution of (1.2) is of
infinite-order.

Remark 1.6. Under the assumptions of Theorem 1.4, respectively, of Theorem 1.5, polynomial
solutions may exist. However, such possible polynomial solutions must be of degree less than
s. If not, a contradiction immediately follows by combining (5.1) with Lemma 2.1, if F ≡ 0,
respectively, with Lemma 2.2, if F /≡ 0.

Remark 1.7. In the preceding three theorems, if ρ(f) = ∞, then we also have λ(f) = ∞ for the
exponent of convergence of the zero-sequence of f . Indeed, rewriting (1.2) in the form

1
f

=
1
H

(
f (k)

f
+Ak−1

f (k−1)

f
+ · · · +A0

)
, (1.8)

we have

m

(
r,

1
f

)
≤ m

(
r,

1
H

)
+

k−1∑

j=0

m
(
r,Aj

)
+

k−1∑

j=0

m

(
r,
f (j)

f

)
= O

(
rβ
)
+ S(r, f), (1.9)

for some finite β. Therefore, N(r, 1/f) must be of infinite-order.

2. Preliminary Lemmas

Lemma 2.1 (see [10]). Suppose that f1(z), f2(z), . . . , fn(z) (n ≥ 2) are meromorphic functions and
g1(z), g2(z), . . . , gn(z) are entire functions satisfying the following conditions:

(i)
∑n

j=1fj(z)e
gj (z) ≡ 0,

(ii) gj(z) − gk(z) are not constants for 1 ≤ j < k ≤ n,
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(iii) for 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T
(
r, fj

)
= o

{
T
(
r, egh−gk

)}
, (r −→ ∞, r/∈E), (2.1)

where E is a set with finite linear measure.

Then fj ≡ 0 (j = 1, 2, . . . , n).

Lemma 2.2 (see [10]). Suppose that f1(z), f2(z), . . . , fn(z) (n ≥ 2) are linearly independent
meromorphic functions satisfying the following identity:

n∑

j=1

fj ≡ 1. (2.2)

Then for 1 ≤ j ≤ n, one has

T
(
r, fj

) ≤
k∑

j=1

N

(
r,

1
fk

)
+N

(
r, fj

)
+N(r,D) −

n∑

k=1

N
(
r, fk

) −N

(
r,

1
D

)
+ S(r), (2.3)

where D is the Wronskian determinant W(f1, f2, . . . , fn),

S(r) = o
(
max
1≤k≤n

{
T
(
r, fk

)})
, (r −→ ∞, r/∈E), (2.4)

E is a set with finite linear measure.

Lemma 2.3 (see [11, 12]). Suppose that P(z) = (α+ iβ)zn + · · · (α, β are real numbers, |α|+ |β|/= 0)
is a polynomial with degree n ≥ 1, and that A(z)(/≡ 0) is an entire function with ρ(A) < n. Set
g(z) = A (z)eP(z), z = reiθ, δ (P, θ) = α cos(nθ)− β sin(nθ). Then for any given ε > 0, there exists
a set H1 ⊂ [0, 2π) of finite linear measure such that for any θ ∈ [0, 2π) \ (H1 ∪H2), there is R > 0
such that for |z| = r > R, one has

(i) if δ(P, θ) > 0, then

exp
{
(1 − ε)δ(P, θ)rn

}
<
∣∣g
(
reiθ

)∣∣ < exp
{
(1 + ε)δ(P, θ)rn

}
; (2.5)

(ii) if δ(P, θ) < 0, then

exp
{
(1 + ε)δ(P, θ)rn

}
<
∣∣g
(
reiθ

)∣∣ < exp
{
(1 − ε)δ(P, θ)rn

}
, (2.6)

whereH2 = {θ ∈ [0, 2π); δ(P, θ) = 0}.
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Lemma 2.4 (see [13]). Let f(z) be a transcendental meromorphic function of finite-order ρ, and let
ε > 0 be a given constant. Then there exists a setH ⊂ (1,∞) that has finite logarithmic measure, such
that for all z satisfying |z|/∈H ∪ [0, 1] and for all k, j, 0 ≤ j < k, one has

∣
∣
∣
∣
f (k)(z)
f (j)(z)

∣
∣
∣
∣ ≤ |z|(k−j)(ρ−1+ε). (2.7)

Similarly, there exists a set E ⊂ [0, 2π) of linear measure zero such that for all z = reiθ with |z|
sufficiently large and θ ∈ [0, 2π) \ E, and for all k, j, 0 ≤ j < k, the inequality (2.7) holds.

Lemma 2.5. Let f(z) be an entire function and suppose that

G(z) :=
log+

∣
∣f (k)(z)

∣
∣

|z|ρ (2.8)

is unbounded on some ray arg z = θ with constant ρ > 0. Then there exists an infinite sequence of
points zn = rne

iθ (n = 1, 2, . . .), where rn → ∞, such that G(zn) → ∞ and

∣∣∣∣
f (j)(zn)
f (k)(zn)

∣∣∣∣ ≤
1

(k − j)!
(
1 + o(1)

)
r
k−j
n , j = 0, . . . , k − 1, (2.9)

as n → ∞.

Proof. The first assertion is trivial. Denoting

M(r, G, θ) = max
{
G(z) : 0 ≤ |z| ≤ r, arg z = θ

}
, (2.10)

we may take the sequence {zn} in the first assertion so that G(zn) = M(rn, G, θ). Since

G
(
zn

) −→ ∞ (2.11)

as n → ∞, we immediately see that

∣∣f (k)(zn
)∣∣ = M

(
rn, f

(k), θ
) −→ ∞ (2.12)

as n → ∞. Using now the same reasoning as in the proof of [14, Lemma 4], see also [15,
Lemma 3.1], the second assertion (2.9) follows.

Lemma 2.6. Let f(z) be an entire function with ρ(f) = ρ < ∞. Suppose that there exists a set
E ⊂ [0, 2π) which has linear measure zero, such that log+|f(reiθ)| ≤ Mrσ for any ray arg z = θ ∈
[0, 2π)\E, whereM is a positive constant depending on θ, while σ is a positive constant independent
of θ. Then ρ(f) ≤ σ.
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Proof. Clearly, we may assume that σ < ρ. Since E has linear measure zero, we may choose
θj ∈ [0, 2π) \ E such that 0 ≤ θ1 < θ2 < · · · < θn+1 = 2π , and

max
{
θj+1 − θj , 1 ≤ j ≤ n

} ≤ π

ρ + 1
. (2.13)

We first treat the sector

H1 :=
{
z | θ1 ≤ arg z ≤ θ2

}
, (2.14)

defining

φ(z) = f(z) exp
{ − be−iθ0zσ

}
, (2.15)

where θ0 = σ(θ1 + θ2)/2 and b is a positive constant, to be determined in what follows. Then
φ(z) is a holomorphic inside the sectorH1. By (2.13), we have ρ ≤ π/(θ2 − θ1) − 1. Therefore,

0 > arg
(
e−iθ0zσ

)
= arg

(
e−iθ0rσeiσθ1

)
=

σ
(
θ1 − θ2

)

2
≥ −π

2
+

(
θ2 − θ1

)

2
(2.16)

on the ray arg z = θ1, and, respectively,

0 < arg
(
e−iθ0zσ

)
= arg

(
e−iθ0rσeiσθ2

)
=

σ
(
θ2 − θ1

)

2
≤ π

2
−
(
θ2 − θ1

)

2
(2.17)

on the ray arg z = θ2. Hence, we may now fix b > 0 so that

b cos
(
π

2
−
(
θ2 − θ1

)

2

)
> M. (2.18)

By elementary computation, |φ(z)| ≤ M on the boundary of H1, where M > 0 is a bounded
constant, not the same at each occurrence. By the definition of φ in (2.15), it is immediate
to see that φ is of order at most ρ. By the Phragmén-Lindelöf theorem, we conclude that
|φ(z)| ≤ M holds on the whole sector H1. Hence

∣∣f(z)
∣∣ ≤ ∣∣ exp

{
be−iθ0zσ

}∣∣ ≤ exp
{
brσ

}
(2.19)

on H1. Repeating the same reasoning for all the sectors Hj = {z | θj ≤ arg z ≤ θj+1} where θj
are determined in (2.13), the assertion immediately follows.

3. Proof of Theorem 1.3

Suppose, contrary to the assertion, that f is a solution of (1.2) with ρ(f) = ρ < ∞, then
n ≤ ρ. Indeed, if f (k) = H, we may apply Lemma 2.1 to conclude that hsf

(s) ≡ 0 for some s,
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0 ≤ s ≤ k−1 such that hs /= 0. Then f has to be a polynomial of degree less than s, soH(z) ≡ 0,
a contradiction. Therefore, we may assume that f (k) /=H. By Lemma 2.2, it is easy to see that
n ≤ ρ since the exponential functions ePj (j = 0, 1, . . . , k − 1) are linearly independent.

By Lemma 2.3, there is a set E ⊂ [0, 2π) of linear measure such that whenever θ ∈
[0, 2π)\E, then δ(Pj, θ)/= 0 for all 0 ≤ j ≤ k−1 and δ(Pj−Pi, θ)/= 0 for all i, j with 0 ≤ i < j ≤ k−1.
If, moreover, z = reiθ has r large enough, then each Aj(z) satisfies either (2.5) or (2.6). By
Lemma 2.4, we may assume, at the same time, that

∣∣
∣
∣
f (j)(z)
f (i)(z)

∣∣
∣
∣ ≤ |z|kρ, 0 ≤ i < j ≤ k. (3.1)

Since ajn are distinct complex numbers, then for any fixed θ ∈ [0, 2π) \ E, there exists exactly
one s ∈ {0, . . . , k − 1} such that

δ
(
Ps, θ

)
= δ := max

{
δ
(
Pj , θ

) | j = 0, . . . , k − 1
}
. (3.2)

Denoting δ1 = max{δ(Pj, θ) | j /= s}, then δ1 < δ and δ /= 0. We now discuss two cases
separately.

Case 1. Assume first that δ > 0. By Lemma 2.3, for any given ε with 0 < 3ε < min{(δ −
δ1)/δ, n − ρ(H)}, we have

∣∣As

(
reiθ

)∣∣ ≥ exp
{
(1 − ε)δrn

}
,

∣∣Aj

(
reiθ

)∣∣ ≤ exp
{
(1 + ε)δ1rn

}
,

(3.3)

for j /= s, provided that r is sufficiently large. We now proceed to show that

log+
∣∣f (s)(z)

∣∣

|z|ρ(H)+ε
(3.4)

is bounded on the ray arg z = θ. Supposing that this is not the case, then by Lemma 2.5, there
is a sequence of points zm = rme

iθ, such that rm → ∞, and that

log+
∣∣f (s)(zm

)∣∣

r
ρ(H)+ε
m

−→ ∞, (3.5)

∣∣∣∣
f (j)(zm

)

f (s)
(
zm

)
∣∣∣∣ ≤

(
1 + o(1)

)
r
s−j
m , (j = 0, . . . , s − 1). (3.6)

From (3.5) and the definition of order, it is easy to see that

∣∣∣∣
H
(
zm

)

f (s)
(
zm

)
∣∣∣∣ −→ 0, (3.7)
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for m is large enough. From (1.2), we obtain

∣
∣As

(
zm

)∣∣ ≤
∣
∣
∣
∣
f (k)(zm

)

f (s)
(
zm

)
∣
∣
∣
∣ + · · · + ∣

∣As+1
(
zm

)∣∣
∣
∣
∣
∣
f (s+1)(zm

)

f (s)
(
zm

)
∣
∣
∣
∣ +

∣
∣As−1

(
zm

)∣∣
∣
∣
∣
∣
f (s−1)(zm

)

f (s)
(
zm

)
∣
∣
∣
∣

+ · · · + ∣
∣A0

(
zm

)∣∣
∣
∣
∣
∣
f
(
zm

)

f (s)
(
zm

)
∣
∣
∣
∣ +

∣
∣
∣
∣
H
(
zm

)

f (s)
(
zm

)
∣
∣
∣
∣.

(3.8)

Using inequalities (3.1), (3.3), (3.6), and the limit (3.7), we conclude from the preceding
inequality that

exp
{(

1 − ε1
)
δrnm

} ≤ (k + 1) exp
{(

1 + ε1
)
δ1r

n
m

}
rMm , (3.9)

whereM > 0 is a bounded constant, which is a contradiction. Therefore, log+|f (s)(z)|/|z|ρ(H)+ε

is bounded, and we have |f (s)(z)| ≤ M exp{rρ(H)+ε} on the ray arg z = θ. By the same
reasoning as in the proof of [15, Lemma 3.1], we immediately conclude that

∣∣f(z)
∣∣ ≤ (

1 + o(1)
)
rs
∣∣f (s)(z)

∣∣ ≤ (1 + o(1))Mrser
ρ(H)+ε ≤ Mer

ρ(H)+2ε
(3.10)

on the ray arg z = θ.

Case 2. Suppose now that δ < 0. From (1.2), we get

−1 = Ak−1
f (k−1)

f (k)
+ · · · +Aj

f (j)

f (k)
+ · · · +A0

f

f (k)
− H

f (k)
. (3.11)

Again by Lemma 2.3, for any given ε with 0 < 3ε < min{1, n − ρ(H)}, we have

∣∣Aj

(
reiθ

)∣∣ ≤ exp
{
(1 − ε)δrn

}
, (j = 0, 1, . . . , k − 1), (3.12)

for r sufficiently large. As in Case 1, we prove that

log+
∣∣f (k)(z)

∣∣

|z|ρ(H)+ε
(3.13)

is bounded on the ray arg z = θ. If not, similarly as in Case 1, it follows from Lemma 2.5 that
there is a sequence of points zm = rme

iθ, such that

∣∣∣∣
f (j)(zm

)

f (k)
(
zm

)
∣∣∣∣ ≤ r

k−j
m

(
1 + o(1)

)
, (j = 0, . . . , k − 1),

∣∣∣∣
H
(
zm

)

f (k)
(
zm

)
∣∣∣∣ −→ 0,

(3.14)
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for all m large enough. Substituting the inequalities (3.12) and (3.14) into (3.11), a
contradiction immediately follows. Hence, we have |f (k)(z)| ≤ M exp{rρ(H)+ε} on the ray
arg z = θ. This implies, as in Case 1, that

∣
∣f(z)

∣
∣ ≤ M exp

{
rρ(H)+2ε}. (3.15)

Therefore, for any given θ ∈ [0, 2π) \ E, E of linear measure zero, we have got (3.15) on the
ray arg z = θ, provided that r is large enough. Then by Lemma 2.6, ρ(f) ≤ ρ(H) + 2ε < n, a
contradiction. Hence, every transcendental solution of (1.2)must be of infinite-order.

4. Proof of Theorem 1.4

Suppose that f is a transcendental solution of (1.2) with ρ(f) = ρ < ∞.
If f (k) ≡ H and ρ < n, it follows from (1.2) that

f (l)hle
Pl(z) + f (s)hse

Ps(z) +
p∑

u=1

Bu(z)edjuPl(z) +
q∑

v=1

Cv(z)edjv Ps(z) = 0, (4.1)

where Bu (u = 1, . . . , p), Cv (v = 1, . . . , q) are entire functions of order less than n. Collecting
terms of the same type together, if needed, we may assume that the coefficients dju (u =
1, . . . , p), respectively, djv (v = 1, . . . , q), are distinct. Since θs /= θl and θs, θl ∈ [0, 2π), we
conclude that djuPl(z) − djvPs(z) are polynomials of degree n. Indeed, if djualn = djvasn, we
have

0 <
dju

djv

∣∣∣∣
aln

asn

∣∣∣∣ = ei(θs−θl) (4.2)

which is impossible. Similarly, Pl(z) − Ps(z), Pl(z) − djvPs(z), and Ps(z) − djuPl(z) are also
polynomials of degree n. Therefore, applying Lemma 2.1 to (4.1), we infer that f (l)hl ≡
f (s)hs ≡ 0. Since hshl /≡ 0, f has to be a polynomial of degree less than s, then H ≡ 0, a
contradiction.

Therefore, we may proceed under the assumption that f (k) /≡H. By Lemma 2.2, if
f (k) /≡H, then n ≤ ρ since the exponential functions ePl , ePs , edjuPl (u = 1, 2, . . . , p) and
edjv Ps (v = 1, 2, . . . , q) are linearly independent.

Since θs /= θl, by Lemmas 2.3 and 2.4, there exists a set E ⊂ [0, 2π) of linear measure
zero such that whenever θ ∈ [0, 2π) \E thenAj(reiθ) satisfies either (2.5) or (2.6), (3.1) holds,
and

δ
(
Ps, θ

)
/= δ

(
Pl, θ

)
, δ2 := max

{
δ
(
Ps, θ

)
, δ
(
Pl, θ

)}
/= 0. (4.3)

In what follows, we apply the notations δ, δ1 from the proof of Theorem 1.5 as well.

Case 1. Firstly assume that δ2 > 0. Without loss of generality, we may assume that δ2 =
δ(Ps, θ). From the hypothesis of ajn, we know that δ1 < δ2 = δ. Therefore, (3.3) holds by
Lemma 2.3. Using the same reasoning as in Case 1 of the proof of Theorem 1.3, we obtain the
inequality (3.15) on the ray arg z = θ.
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Case 2. Finally, assume that δ2 < 0. Again by the condition on ajn, we see that δ < 0. Then the
same argument as in Case 2 of the proof of Theorem 1.3 applies, and we again obtain (3.15).

Therefore, by Lemma 2.6, we obtain a contradiction, so ρ(f) = ∞.

5. Proof of Theorem 1.5

Contrary to the assertion, suppose that f is a transcendental solution of (1.2) of finite-order.
If ρ < n, then it follows from (1.2) that

f (l)hle
Pl(z) + f (s)hse

Ps(z) +
p∑

u=1

Bu(z)edjuPl(z) +
q∑

v=1

Cv(z)edjv Ps(z) = F(z), (5.1)

where Bu (u = 1, . . . , p), Cv (v = 1, . . . , q), and F(z) are entire functions of order less than n,
dju /= 0 (u = 1, . . . , p) are distinct, and djv /= 0 (v = 1, . . . , q) are also distinct. Similarly as in the
proof of Theorem 1.4, we may assume that n ≤ ρ. Since σ = max{ρ(gj) (j = 0, . . . , k − 1)} < n,
we have

max
{∣∣gj(z)

∣∣ (j = 0, . . . , k − 1),
∣∣H(z)

∣∣} ≤ exp
{
rσ+ε

}
(5.2)

for any ε with 0 < 3ε < n − σ, and for |z| sufficiently large. Since ds and dl in asn = dse
iϕ

and aln = −dle
iϕ are strictly positive, the set {θ ∈ [0, 2π), δ(Ps, θ) = δ(Pl, θ)} is of linear

measure zero. Therefore, again by Lemmas 2.3 and 2.4, there exists a set E ⊂ [0, 2π) of linear
measure zero such that for any given θ ∈ [0, 2π) \ E, hje

Pj satisfies either (2.5) or (2.6),
and (3.1) holds. Moreover, δ(Ps, θ)/= δ(Pl, θ). Without loss of generality, we may assume that
δ2 := max{δ(Ps, θ), δ(Pl, θ)} = δ(Pl, θ) = −dl cos(ϕ + nθ), where cos(ϕ + nθ) < 0. Then from
(2.5) and (5.2), for any ε also satisfying 0 < 3ε < (dl − d) \ dl, we obtain for |z| sufficiently
large that

∣∣Al

(
reiθ

)∣∣ ≥ exp
{ − (1 − ε)dl cos

(
ϕ + nθ

)
rn
}
. (5.3)

For all other coefficients Aj (j /= s), considering the hypothesis of ajn, we have

∣∣Aj

(
reiθ

)∣∣ ≤ exp
{ − (1 + ε)d cos(ϕ + nθ)rn

}
, (5.4)

when r is large enough. It follows from (1.2) that

−Al =
f (k)

f (s)
+ · · · +Al+1

f (l+1)

f (l)
+Al−1

f (l−1)

f (l)
+ · · · +A0

f

f (l)
− H

f (l)
. (5.5)

Similarly as in Case 1 of the proof of Theorem 1.4, and using Lemma 2.5, we may prove that

log+
∣∣f (l)(z)

∣∣

|z|ρ(H)+ε
(5.6)
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is bounded on the ray arg z = θ. Therefore, the inequality (3.15) always holds on the ray
arg z = θ. Then, by Lemma 2.6, a contradiction follows, and so ρ(f) = ∞.
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