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1. Introduction

Let f be a self-mapping on a topological space X and fm denote the mth iterate of f , that is,
fm = f ◦ fm−1, f0 = id, m = 1, 2, . . . . Let C(X,X) be the set of all continuous self-mappings
on X. Equations having iteration as their main operation, that is, including iterates of the
unknown mapping, are called iterative equations. It is one of the most interesting classes
of functional equations [1–4], because it concludes the problem of iterative roots [1, 5, 6],
that is, finding f ∈ C(X,X) such that fn is identical to a given F ∈ C(X,X). As a natural
generalization of the problem of iterative roots, a class of iterative equations named as
polynomial-like iterative equation

λ1f(x) + λ2f
2(x) + · · · + λnf

n(x) = F(x), x ∈ I = [a, b], (1.1)

had fascinated many scholars, such as Dhombres [7], Zhao [8], Mukherjea and Ratti
[9]. Despite their nice constructive proofs, the classical methods prevented them from
obtaining more fruitful results. In 1986, Zhang [10] constructed an interesting operator called
“structural operator” for (1.1) and used the fixed point theory in Banach space to get the
solutions of (1.1). Hence he overcame the difficulties encountered by the formers. Bymeans of
this method, Zhang and Si made a series of work concerning these qualitative problems, such



2 Abstract and Applied Analysis

as [11–15]. In 2002, Kulczycki and Tabor [16] improved Zhang’s method and investigated the
existence of Lipschitzian solutions of the iterative functional equation

∞∑

n=1

λnf
n(x) = F(x), x ∈ B, (1.2)

where B is a compact convex subset of R
n and F : B → B are a given Lipschitz function. It is

easy to see that (1.1) is the special case of (1.2) with λi = 0, i = n + 1, . . . and B = [a, b].
Recently Zhang et al. [17] and Xu et al. [18] developed this method and they have got

the nonmonotonic, convex, and decreasing continuous solutions of (1.1). In fact they have
answered the open problem 2 which was proposed by J. Zhang et al. [19].

The problem of differentiable solutions of iterative equation had also fascinated many
scholars’ attentions. In Zhang [12] and Si [15], theC1 andC2 solutions of (1.1) are considered.
In Wang and Si [20] the differentiable solutions of the below equation

H
(
x, φn1(x), . . . , φni(x)

)
= F(x), x ∈ I = [a, b] (1.3)

are considered. Murugan and Subrahmanyam [21, 22] discussed the existence and
uniqueness of C1 solutions of the more general equations

∞∑

i=1

λiHi

(
fi(x)

)
= F(x), x ∈ I = [a, b], (1.4)

∞∑

i=1

λiHi

(
x, φai1(x), . . . , φaini (x)

)
= F(x), x ∈ I = [a, b], (1.5)

which involve iterated functional series. All the above references only got the increasing
differentiable solutions for the above equations because they only considered the case that
F is increasing. Li and Deng [23] considered the C1 solutions of the (1.2). In [24] C1 solutions
of the equation

∞∑

n=1

λn(x)fn(x) = F(x), x ∈ B, (1.6)

where B is a compact convex subset of R
n and λn(x) : B → R are discussed. Li and Deng [23]

and Li [24] work in higher dimensional case, they do not require monotonicity. It should be
pointed out that Mai and Liu [25]made an important contribution toCm solutions of iterative
equations. Mai and Liu proved the existence, uniqueness of Cm solutions of a relatively
general kind of iterative equations

G
(
x, f(x), . . . , fn(x)

)
= 0, x ∈ J, (1.7)

where J is a connected closed subset of R and G ∈ Cm(Jn+1,R), n ≥ 2. Here Cm(Jn+1,R)
denotes the set of all Cm mappings from Jn+1 to R.
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Inspired by the above work, we will investigate (1.4) and extend earlier results due
to Murugan and Subrahmanyam in two directions. In [21] the authors only get increasing
solutions of (1.4), so the present paper will investigate the nonmonotonic differentiable
solutions of (1.4) and give conditions for the existence, uniqueness, and stability of such
solutions. In [21] the authors require not only all coefficients are nonnegative but also
Hi, i = 2, 3, . . . are all increasing, but we will find that those conditions are not necessary.

2. Preliminaries

Let I = [a, b] and J = [c, d] be two compact intervals. Let C1(I, J) be the set of all
continuously differentiable functions from I to J . Then C1(I, J) is a closed subset of the
Banach space C1(I,R) consisting of all continuously differentiable functions from I to R with
norm ‖·‖c1 . Here the norm ‖·‖c1 is defined by ‖ϕ‖c1 = ‖ϕ‖c0 + ‖ϕ′‖c0 , ϕ ∈ C1(I,R), where
‖ϕ‖c0 = maxx∈I |ϕ(x)| and ϕ′ is the derivative of ϕ. Following Zhang [12], we define the
families of functions

A(I, J,m,M,N) =
{
ϕ ∈ C1(I, J) : ϕ(a) = c, ϕ(b) = d,m ≤ ∣∣ϕ′(x)

∣∣ ≤ M,
∣∣ϕ′(x1) − ϕ′(x2)

∣∣ ≤ N
∣∣x1 − x2

∣∣, ∀x, x1, x2 ∈ I
}
,

A′(I, J,m,M,N) =
{
ϕ ∈ C1(I, J) : ϕ(a) = d, ϕ(b) = c,m ≤ ∣∣ϕ′(x)

∣∣ ≤ M,
∣∣ϕ′(x1) − ϕ′(x2)

∣∣ ≤ N
∣∣x1 − x2

∣∣, ∀x, x1, x2 ∈ I
}
,

(2.1)

where 0 ≤ m < M,N > 0 are all constants.

Lemma 2.1. Both A(I, J,m,M,N) and A′(I, J,m,M,N) are compact convex subsets of C1(I, J).

The Lemma above can be proved by a method which is contained in the proof of
Theorem 3.1 in [12].

Lemma 2.2 (see [12]). Suppose that ϕ, φ ∈ A(I, J,m,M,N) (or ϕ, φ ∈ A′(I, J,m,M,N)). Then
for n = 1, 2, . . . ,

∣∣(ϕn)′(x)
∣∣ ≤ Mn, ∀x ∈ I,

∣∣(ϕn)′(x1) − (ϕn)′(x2)
∣∣ ≤ N

(
2n−2∑

i=n−1
Mi

)
∣∣x1 − x2

∣∣, ∀x1, x2 ∈ I,

∥∥ϕn − φn
∥∥
c0 ≤

(
n∑

i=1

Mi−1
)
∥∥ϕ − φ

∥∥
c0 ,

∥∥(ϕn)′ − (φn)′
∥∥
c0 ≤ nMn−1∥∥ϕ′ − φ′∥∥

c0 +Q(n)N

(
n−1∑

i=1

(n − i)Mn+i−2
)
∥∥ϕ − φ

∥∥
c0 ,

(2.2)

where Q(1) = 0, Q(m) = 1 asm = 2, 3, . . . and (ϕn)′ denotes dϕn/dx.

We can get the following Lemma from [12]. In [12] the author proved that the lemma
is valid for C1(I, I), but we find it is also valid for C1(I, J).
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Lemma 2.3 (see [12]). Suppose that f ∈ C1(I, J) satisfies that

0 < δ ≤ f ′(x), ∀x ∈ I,
∣∣f ′(x1) − f ′(x2)

∣∣ ≤ M∗∣∣x1 − x2
∣∣, ∀x1, x2 ∈ I,

(2.3)

where δ, M∗ are positive constants. Then

∣∣(f−1)′(y1) − (f−1)′(y2)
∣∣ ≤ M∗

δ3

∣∣y1 − y2
∣∣, ∀y1, y2 ∈ J. (2.4)

Lemma 2.4 (see [18]). If both fi : I → J, i = 1, 2 are homeomorphisms from I to J such that

∣∣fi(x1) − fi(x2)
∣∣ ≤ K

∣∣x1 − x2
∣∣, ∀x1, x2 ∈ I, (2.5)

where K is a positive constant. Then

∥∥f1 − f2
∥∥
c0 ≤ K

∥∥f−1
1 − f−1

2

∥∥
c0 . (2.6)

3. Differentiable solutions of (1.4)

3.1. Existence of solutions

Let {λi}∞i=1 be coefficients of (1.4) and I = [a, b]. For any f ∈ A(I, I, 0,M,N) (or A′(I, I, 0,
M,N)) defineA =

∑∞
i=1λiHi(fi−1(a)) and B =

∑∞
i=1λiHi(fi−1(b)). It is easy to see that both the

convergence and the value of A,B have nothing to do with the choice of f .

Theorem 3.1. SupposeM > 1, L are positive constants andH1 ∈ A(I, I,m1,M1,N1), Hi ∈ A(I, I,
0,Mi,Ni) or Hi ∈ A′(I, I, 0,Mi,Ni) for i = 2, 3, . . . , where m1 > 0 and Mi ≥ 1,Ni are positive
constants for i = 1, 2, . . . . Assume further the following conditions:

K0 = λ1m1 −
∞∑

i=2

∣∣λi
∣∣MiM

i−1 > 0,

K1 =
1

(M − 1)

∞∑

i=1

∣∣λi+1
∣∣Mi+1M

i−1(Mi − 1) < ∞,

K0 −K1M
2 > 0,

K2 =
∞∑

i=1

∣∣λi
∣∣NiM

i−1(Mi − 1) < ∞,

−∞ < A < B < ∞,

(3.1)

hold. Then for any given F ∈ A(I, J, 0, K0M,L) (or A′(I, J, 0, K0M,L)), (1.4) has a solution
f ∈ A(I, I, 0,M,M∗) (or A′(I, I, 0,M,M∗)), where M∗ ≥ (L + K4M

2)/(K0 − K1M
2), K4 =∑∞

i=1|λi|NiM
2(i−1) and I = [a, b], J = [A,B].
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As in [22], firstly we give the following three Lemmas which lead directly to the proof
of Theorem 3.1. In the sequel we denote

N =

(
L +K4M

2)
(
K0 −K1M2

) . (3.2)

Lemma 3.2. Under the assumptions of Theorem 3.1 the following series:

K3 = λ1M1 +
∞∑

i=2

∣∣λi
∣∣MiM

i−1,

K4 =
∞∑

i=1

∣∣λi
∣∣NiM

2(i−1),

K5 =
∞∑

k=1

∣∣λk+1
∣∣Mk+1

(
k∑

i=1

(
Mi−1)

)
,

K6 =
∞∑

k=1

∣∣λk+1
∣∣Mk+1kM

k−1,

K7 =
∞∑

k=1

∣∣λk+1
∣∣Nk+1M

k

(
k∑

i=1

Mi−1
)
,

K8 =
∞∑

K=2

∣∣λk+1
∣∣Mk+1

k−1∑

j=1

(k − j)Mk+j−2,

(3.3)

are all convergent.

Proof. The convergence ofK3,K4,K5,K6, andK7 is easy to be verified. As mentioned in [21],
the equality

n−1∑

i=1

(n − i)xn+i−2 = xn−1
(

xn − 1

(x − 1)2
− n

x − 1

)
, x /= 1 (3.4)

holds. We get that

K8 =
∞∑

K=2

|λk+1|Mk+1

(
Mk−1

(
Mk − 1

(M − 1)2
− k

M − 1

))
. (3.5)

By the convergence of K1 and K6, K8 is also convergent.

Lemma 3.3. Under the assumptions of Theorem 3.1, for each f ∈ A(I, I, 0,M,N) (or A′(I, I, 0,
M,N)) the mapping Lf : I → R defined by

Lf(x) =
∞∑

i=1

λiHi

(
fi−1(x)

)
, x ∈ I (3.6)
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has the following properties:

(i) Lf ∈ A(I, J,K0, K3, K1N +K4);

(ii) L−1
f ∈ A(J, I, 1/K3, 1/K0, (K1N +K4)/(K0)

3),

where I = [a, b] and J = [A,B].

Proof. For any f ∈ A(I, I, 0,M,N) (or A′(I, I, 0,M,N)), we have

Lf(a) =
∞∑

i=1

λiHi

(
fi−1(a)

)
< Lf(b) =

∞∑

i=1

λiHi

(
fi−1(b)

)
. (3.7)

It is easy to see that for any x ∈ I

0 < λ1m1 −
∞∑

i=2

∣∣λi
∣∣MiM

i−1 ≤
∞∑

i=1

λiH
′
i

(
fi−1(x)

)(
fi−1)′(x) ≤ λ1M1 +

∞∑

i=2

∣∣λi
∣∣MiM

i−1. (3.8)

We have for any x ∈ I

0 < K0 ≤ L′
f(x) ≤ K3, (3.9)

and for any y ∈ J

0 <
1
K3

≤ (
L−1
f

)′(y) ≤ 1
K0

. (3.10)

Thus Lf : I → J is an orientation-preserving diffeomorphism.

By Lemma 2.2 we can see that for any x1, x2 ∈ I,

∣∣L′
f(x1) − L′

f(x2)
∣∣ =

∣∣∣∣∣

∞∑

i=1

λiH
′
i

(
fi−1(x1)

)(
fi−1)′(x1) −

∞∑

i=1

λiH
′
i

(
fi−1(x2)

)(
fi−1)′(x2)

∣∣∣∣∣

≤
∞∑

i=1

∣∣λi
∣∣{∣∣H ′

i

(
fi−1(x1)

)∣∣·∣∣(fi−1)′(x1) −
(
fi−1)′(x2)

∣∣

+
∣∣H ′

i

(
fi−1(x1)

) −H ′
i

(
fi−1(x2)

)∣∣·∣∣(fi−1)′(x2)
∣∣}

≤
{ ∞∑

i=2

∣∣λi
∣∣MiN

(
2(i−2)∑

j=i−2
Mj

)
+

∞∑

i=1

∣∣λi
∣∣NiM

2(i−1)
}
∣∣x1 − x2

∣∣

=
(
K1N +K4

)∣∣x1 − x2
∣∣.

(3.11)

By (3.9), (3.11), and Lemma 2.3 we get for any y1, y2 ∈ J :

∣∣(L−1
f

)′(y1) −
(
L−1
f

)′(
y2
)∣∣ ≤ K1N +K4

(K0)
3

∣∣y1 − y2
∣∣. (3.12)
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Lemma 3.4. Under the assumptions of Theorem 3.1, for each f1, f2 ∈ A(I, I, 0,M,N) (or A′(I, I, 0,
M,N)) the mappings Lf1 , Lf2 : I → J satisfy the following inequalities:

(i)
∥∥L−1

f1
− L−1

f2

∥∥
c0 ≤ K5/K0

∥∥f1 − f2
∥∥
c0 ;

(ii)
∥∥(L−1

f1

)′ − (
L−1
f2

)′∥∥
c0 ≤ (((

K1N + K4
)
K5 +

(
K7 + NK8

)
K0

)
/
(
K0

)3)∥∥f1 − f2
∥∥
c0 +

K6/
(
K0

)2∥∥f ′
1 − f ′

2

∥∥
c0 .

Proof. Firstly we have

∥∥Lf1 − Lf2

∥∥
c0 ≤

∞∑

k=1

∣∣λk+1
∣∣·∥∥Hk+1 ◦ fk

1 −Hk+1 ◦ fk
2

∥∥
c0

(2.2)
≤

∞∑

k=1

∣∣λk+1
∣∣Mk+1

(
k∑

i=1

Mi−1
)
·∥∥f1 − f2

∥∥
c0 ,

(3.13)

and thus

∥∥L−1
f1

− L−1
f2

∥∥
c0

(Lemma (2.4))
≤ 1

K0

∥∥Lf1 − Lf2

∥∥
c0 ≤

K5

K0

∥∥f1 − f2
∥∥
c0 . (3.14)

Secondly we get

∥∥(L−1
f1

)′ − (
L−1
f2

)′∥∥
c0 = max

y∈J

{∣∣∣∣∣
1

L′
f1(L

−1
f1
(y))

− 1
L′

f2(L
−1
f2
(y))

∣∣∣∣∣

}

(3.9)
≤ max

y∈J

{∣∣L′
f2

(
L−1
f2
(y)

) − L′
f1

(
L−1
f1
(y)

)∣∣

(K0)
2

}

≤ 1

(K0)
2
·max

y∈J
{∣∣L′

f2

(
L−1
f2
(y)

) − L′
f2

(
L−1
f1
(y)

)∣∣}

+
1

(K0)
2
·max

y∈J
{∣∣L′

f2

(
L−1
f1
(y)

) − L′
f1

(
L−1
f1
(y)

)∣∣}

(3.11)
≤ K1N +K4

(K0)
2

·max
y∈J

{∣∣L−1
f2
(y)−L−1

f1
(y)

∣∣}+
1

(K0)
2
·max

x∈I
{∣∣L′

f2(x)−L′
f1(x)

∣∣}

=
K1N +K4

(K0)
2

·∥∥L−1
f2

− L−1
f1

∥∥
c0 +

1

(K0)
2
·∥∥L′

f2 − L′
f1

∥∥
c0 .

(3.15)

Notice that

∥∥L′
f2 − L′

f1

∥∥
c0 ≤

∞∑

k=1

∣∣λk+1
∣∣ ·∥∥(Hk+1 ◦ fk

2 )
′ − (Hk+1 ◦ fk

1 )
′∥∥

c0 (3.16)
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and for k = 1, 2, . . .,

∥∥(Hk+1 ◦ fk
2

)′ − (
Hk+1 ◦ fk

1

)′∥∥
c0 =

∥∥(H ′
k+1 ◦ fk

2

) · (fk
2

)′ − (
H ′

k+1 ◦ fk
1

) · (fk
1

)′∥∥
c0

≤ ∥∥H ′
k+1 ◦ fk

2 −H ′
k+1 ◦ fk

1

∥∥
c0 ·

∥∥(fk
2

)′∥∥
c0

+
∥∥H ′

k+1 ◦ fk
1

∥∥
c0

∥∥(fk
2

)′ − (
fk
1

)′∥∥
c0

≤ MkNk+1

k∑

i=1

Mi−1∥∥f2 − f1
∥∥
c0 +Mk+1kM

k−1∥∥f ′
2 − f ′

1

∥∥
c0

+Mk+1Q(k)N
k−1∑

i=1

(k − i)Mk+i−2∥∥f2 − f1
∥∥
c0 ,

(3.17)

then

∥∥L′
f2 − L′

f1

∥∥
c0 ≤

(
K7 +NK8

)∥∥f2 − f1
∥∥
c0 +K6

∥∥f ′
2 − f ′

1

∥∥
c0 . (3.18)

Finally we get

∥∥(L−1
f1

)′ − (
L−1
f2

)′∥∥
c0 ≤

((
K1N +K4

)
K5 +

(
K7 +NK8

)
K0

(
K0

)3

)
∥∥f1 − f2

∥∥
c0 +

K6
(
K0

)2
∥∥f ′

1 − f ′
2

∥∥
c0 .

(3.19)

Proof of Theorem 3.1. For any f ∈ A(I, I, 0,M,N) (or A′(I, I, 0,M,N)) we define Θ(f) as
follows:

Θ(f) = L−1
f ◦ F, (3.20)

and denote Θ(f) = g for convenience. Clearly g ∈ C1(I, I), g(a) = a, g(b) = b, (or g(a) =
b, g(b) = a), and (3.10) yields that for any x ∈ I,

∣∣g ′(x)
∣∣ =

∣∣(L−1
f

)′(F(x)) ·F ′(x)
∣∣ ≤ K0M

K0
= M. (3.21)

Furthermore by (3.12) we get that for any x1, x2 ∈ I,

∣∣g ′(x1) − g ′(x2)
∣∣ ≤ ∣∣(L−1

f

)′(
F
(
x1
))∣∣ · ∣∣F ′(x1

) − F ′(x2
)∣∣

+
∣∣(L−1

f

)′(
F
(
x1
)) − (

L−1
f

)′(
F
(
x2
))∣∣ · ∣∣F ′(x2

)∣∣

≤ 1
K0

L
∣∣x1 − x2

∣∣ +K0M · K1N +K4
(
K0

)3 ·K0M
∣∣x1 − x2

∣∣

= N
∣∣x1 − x2

∣∣.

(3.22)
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So g ∈ A(I, I, 0,M,N) (or A′(I, I, 0,M,N)), which means that Θ(A(I, I, 0,M,N)) ⊂ A(I, I, 0,
M,N) (or Θ(A′(I, I, 0,M,N)) ⊂ A′(I, I, 0,M,N)).

Secondly we prove that

Θ : A(I, I, 0,M,N) −→ A(I, I, 0,M,N)

(or Θ : A′(I, I, 0,M,N) −→ A′(I, I, 0,M,N))
(3.23)

is continuous. For any f1, f2 ∈ A(I, I, 0,M,N) (or A′(I, I, 0,M,N)) we denote gi = Θ(fi), i =
1, 2. It is easy to see that

∥∥g1 − g2
∥∥
c0 =

∥∥L−1
f1

◦ F − L−1
f2

◦ F∥∥c0 ≤
∥∥L−1

f1
− L−1

f2

∥∥
c0 ≤

K5

K0

∥∥f1 − f2
∥∥
c0 . (3.24)

By Lemma 3.4 we get

∥∥g ′
1 − g ′

2

∥∥
c0 =

∥∥((L−1
f1

)′ ◦ F)·F ′ − ((
L−1
f2

)′ ◦ F) ·F ′∥∥
c0

≤ K0M ·∥∥((L−1
f1

)′ − (
L−1
f2

)′)∥∥
c0

≤
((

K1N +K4
)
K5M +

(
K7 +NK8

)
K0M

(
K0

)2

)
∥∥f1 − f2

∥∥
c0 +

MK6

K0

∥∥f ′
1 − f ′

2

∥∥
c0 .

(3.25)

By the discussion above we get

‖g1 − g2‖c1 =
∥∥g1 − g2

∥∥
c0 +

∥∥g ′
1 − g ′

2

∥∥
c0

≤
{
K5

K0
+

(
K1N +K4

)
K5M +

(
K7 +NK8

)
K0M

(
K0

)2

}
∥∥f2 − f1

∥∥
c0 +

MK6

K0

∥∥f ′
2 − f ′

1

∥∥
c0

≤ E
∥∥f1 − f2

∥∥
c1 ,

(3.26)

where

E = max

{
K5

K0
+

(
K1N +K4

)
K5M +

(
K7 +NK8

)
K0M

(
K0

)2 ,
MK6

K0

}
. (3.27)

Hence Θ : A(I, I, 0,M,N) → A(I, I, 0,M,N) (or Θ : A′(I, I, 0,M,N) → A′(I, I, 0,
M,N)) is continuous. By Schauder fixed point theorem, there exists a function f ∈ A(I, I, 0,
M,N) (or A′(I, I, 0,M,N)) such that

f = Θ(f) = L−1
f ◦ F. (3.28)

That means f is a solution of (1.4) in A(I, I, 0,M,N) (or A′(I, I, 0,M,N)).
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4. Uniqueness and stability of solutions

Theorem 4.1. Let {λi}∞i=1 be coefficient of (1.4) and M > 1, N > 0 positive constants. Suppose that
the conditions in (3.1) are valid. Further one assumes that

E = max

{
K5

K0
+

(
K1N +K4

)
K5M +

(
K7 +NK8

)
K0M

(
K0

)2 ,
MK6

K0

}
< 1. (4.1)

Then for any F ∈ A(I, J, 0, K0M,L) (or A′(I, J, 0, K0M,L)), there exists a unique function f ∈
A(I, I, 0,M,M∗) (or A′(I, I, 0,M,M∗)) satisfying (1.4), whereM∗ ≥ (L+K4M

2)/(K0 −K1M
2).

Furthermore the solution f depends continuously on the given function F.

Proof. If E < 1, then by (3.26) the map Θ defined in Theorem 3.1 becomes a strict contraction.
The fix point of Θ, which is a solution of (1.4), is unique by Banach’s contraction principle.

Let f1, f2 be the solutions of (1.4) for the corresponding functions F1, F2. First, since

fi = L−1
fi

◦ Fi, i = 1, 2, (4.2)

we get

∥∥f1 − f2
∥∥
c0 =

∥∥L−1
f1

◦ F1 − L−1
f2

◦ F2
∥∥
c0

≤ ∥∥L−1
f1

◦ F1 − L−1
f1

◦ F2
∥∥
c0 +

∥∥L−1
f1

◦ F2 − L−1
f2

◦ F2
∥∥
c0

(Lemma (3.4))
≤ 1

K0

∥∥F1 − F2
∥∥
c0 +

K5

K0

∥∥f1 − f2
∥∥
c0 .

(4.3)

Second, we have

∥∥f ′
1 − f ′

2

∥∥
c0 =

∥∥((L−1
f1

)′ ◦ F1
) ·F ′

1 −
((
L−1
f2

)′ ◦ F2
) ·F ′

2
∥∥
c0

≤ ∥∥((L−1
f1

)′ ◦ F1
) ·F ′

1 −
((
L−1
f1

)′ ◦ F1
) ·F ′

2
∥∥
c0

+
∥∥((L−1

f1

)′ ◦ F1
) ·F ′

2 −
((
L−1
f1

)′ ◦ F2
) ·F ′

2
∥∥
c0

+
∥∥((L−1

f1

)′ ◦ F2
) ·F ′

2 −
((
L−1
f2

)′ ◦ F2
) ·F ′

2
∥∥
c0

(3.12)
≤ 1

K0

∥∥F ′
1 − F ′

2
∥∥
c0 +

M
(
K1N +K4

)

(
K0

)2
∥∥F1 − F2

∥∥
c0

+K0M
∥∥(L−1

f1

)′ − (
L−1
f2

)′∥∥
c0

(Lemma (3.4))
≤ 1

K0

∥∥F ′
1 − F ′

2
∥∥
c0 +

M
(
K1N +K4

)

(
K0

)2
∥∥F1 − F2

∥∥
c0

+

{(
K1N +K4

)
K5M +

(
K7 +NK8

)
K0M

(
K0

)2

}
∥∥f1 − f2

∥∥
c0

+
MK6

K0

∥∥f ′
2 − f ′

1

∥∥
c0 .

(4.4)
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By the above discussion we get

∥∥f1 − f2
∥∥
c1 =

∥∥f1 − f2
∥∥
c0 +

∥∥f ′
1 − f ′

2

∥∥
c0

≤ E
∥∥f1 − f2

∥∥
c1 +

{
M

(
K1N +K4

)

(
K0

)2 +
1
K0

}
∥∥F1 − F2

∥∥
c1 ,

(4.5)

which means that

∥∥f1 − f2
∥∥
c1 ≤

1
1 − E

{
M

(
K1N +K4

)

(
K0

)2 +
1
K0

}
∥∥F1 − F2

∥∥
c1 . (4.6)

So the solution f depends continuously on the given function F.

4.1. Examples

Example 4.2. Let M = 10, L = 20 and I = [0, 1]. The equation

1001
(
ef(x) − 1

)

1000(e − 1)
−
(
f2(x)

)2

1000
= x +

1
2
sin(2πx), (4.7)

where x ∈ [0, 1], has a unique solution f ∈ A([0, 1], [0, 1], 0, 10, 900).

Proof. It is easy to see that H1(x) = (ex − 1)/(e − 1) ∈ A(I, I, 1/2, 2, 2), H2(x) = x2 ∈
A(I, I, 0, 2, 2) and F(x) = x + 1/2 sin(2πx) ∈ A(I, I, 0, 4.5, 20). By simple calculation we get
that

K0 =
961
2000

, K1 =
1
500

, K2 =
9999
500

, K3 =
2022
1000

, K4 =
1101
500

,

K5 = K6 =
1
500

, K7 =
1
50

, K8 = 0, K0M =
961
200

,

K0 −K1M
2 =

561
2000

, A = 0 < B = 1,

N =
(L +K4M

2)
(K0 −K1M2)

=
480400
561

< 900,

(4.8)

by Theorem 3.1 the equation has a solution f ∈ A([0, 1], [0, 1], 0, 10, 900). Further we get that

K5

K0
+

(
K1N +K4

)
K5M +

(
K7 +NK8

)
K0M

(
K0

)2 <
804
961

,

MK6

K0
=

40
961

,

(4.9)

this means E < 1. By Theorem 4.1 the solution is unique.
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By similar discussion we have the following example.

Example 4.3. Let M = 10, L = 20, and I = [0, 1]. The equation

1001
(
ef(x) − 1

)

1000(e − 1)
− 1 − (

f2(x)
)2

1000
= 1 − x − 1

2
sin(2πx), (4.10)

where x ∈ [0, 1] has a unique solution f ∈ A′([0, 1], [0, 1], 0, 10, 900).
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