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Lizorkin spaces on the underlying spaces. In particular, this includes a theory of Hardy spaces
Hp(X) and local Hardy spaces hp(X) on RD-spaces, which appears to be new in this setting.
Among other things, we give frame characterization of these function spaces, study interpolation
of such spaces by the real method, and determine their dual spaces when p ≥ 1. The relations
among homogeneous Besov spaces and Triebel-Lizorkin spaces, inhomogeneous Besov spaces
and Triebel-Lizorkin spaces, Hardy spaces, and BMO are also presented. Moreover, we prove
boundedness results on these Besov and Triebel-Lizorkin spaces for classes of singular integral
operators, which include non-isotropic smoothing operators of order zero in the sense of Nagel
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domains in CN . Our theory applies in a wide range of settings.
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1. Introduction

The scales of Besov spaces Bsp,q and Triebel-Lizorkin spaces Fsp,q on R
n, respectively, domains in

R
n for the full range of parameters, s ∈ R and 0 < p, q ≤ ∞, were introduced between

1959 and 1975. They cover many well-known classical concrete function spaces such as
Hölder-Zygmund spaces, Sobolev spaces, fractional Sobolev spaces (also often referred to
as Bessel-potential spaces), local Hardy spaces, and bmo, which have their own history.
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A comprehensive treatment of these function spaces and their history can be found in
Triebel’s monographs [1, 2]. For further developments, including analogous theories of
function spaces on fractals, we refer to [3–6].

Metric spaces play a prominent role in many fields of mathematics. In particular,
they constitute natural generalizations of manifolds admitting all kinds of singularities and
still providing rich geometric structure; see [7–9]. Analysis on metric measure spaces has
been studied quite intensively in recent years; see, for example, Semmes’s survey [10] for
a more detailed discussion and references. Of particular interest is the study of functional
inequalities, like Sobolev and Poincaré inequalities, on metric measure spaces; see, for
example, [11–16]. Also the theory of function spaces on metric measure spaces has seen
a rapid development in recent years. Since Hajłasz in [17] introduced Sobolev spaces on
any metric measure spaces, a series of papers has been devoted to the construction and
investigation of Sobolev spaces of various types on metric measure spaces; see, for example,
[12, 13, 18–27].

It is well known that Calderón-Zygmund operators are in general not bounded on
L1(Rn), and the Hardy space H1(Rn) is a good substitute for L1(Rn). Coifman and Weiss
[28] introduced atomic Hardy spaces Hp

at(X) for p ∈ (0, 1] when X is a general space of
homogeneous type in the sense of Coifman and Weiss [29], that is, μ is known only to be
doubling. Moreover, under the assumption that the measure of any ball in X is equivalent to
its radius (i.e., if X is essentially a so-called Ahlfors 1-regular metric measure space), Coifman
andWeiss [28] further established a molecular characterization ofH1

at(X), and if p ∈ (1/2, 1],
Macı́as and Segovia [30] gave a maximal function characterization of Hp

at(X). For p in this
range, a Lusin-area characterization for Hp

at(X) was given in [31], and Duong and Yan in
[32] characterized these atomic Hardy spaces in terms of Lusin-area functions associated
with certain Poisson semigroups. However, the results in [28, 30, 32] require that X is an
Ahlfors 1-regular metric measure space, and the methods do not extend to arbitrary spaces
of homogeneous type, even though Macı́as and Segovia [33] proved that any space of
homogeneous type is topologically equivalent to an Ahlfors 1-regular metric measure space.
On the other hand, via Littlewood-Paley theory, a theory of Besov and Triebel-Lizorkin
spaces on Ahlfors n-regular metric measure spaces was established in [34], which was further
completed in [2, 31, 35–37], and it turns out that some ideas from [31, 34, 35] still work on
general metric measure spaces considered in this paper.

In this paper, we work on RD-spaces X, that is, spaces of homogeneous type in
the sense of Coifman and Weiss with the additional property that a reverse doubling
property holds in X, or equivalently, that there exists a constant a0 > 1 such that for
all x ∈ X and 0 < r < diam(X)/a0, the annulus B(x, a0r) \ B(x, r) is nonempty,
where and in what follows, diam(X) denotes the diameter of the metric space (X, d).
An important class of RD-spaces is provided by Carnot-Carathéodory spaces with a
doubling measure, which have been the object of intensive studies for quite a while. A
Carnot-Carathéodory (or sub-Riemannian) space is a connected smooth manifold endowed
with a Hörmander system of vectors {X1, X2, . . . , Xk}, which span, together with their
commutators of order ≤ m, the tangent space at each point, and the distance function
d is in this case given by the Carnot-Carathéodory or control distance associated with
the Hörmander system. Carnot-Carathéodory spaces arise in many places in mathematics,
including control theory, the theory of hypoelliptic differential operators, and several areas
of harmonic analysis and complex analysis; see [38–40] for a general discussion and detailed
references. Also, this type of metric measure space plays an important role in connection
with problems related to snowflaked transforms; see [13, page 99] or [2]. Examples
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of noncompact Carnot-Carathéodory spaces naturally arise as boundaries of unbounded
model polynomial domains in C

N appearing in the work of Nagel and Stein; see [41–
43].

Our theory of function spaces on RD-spaces will use Carnot-Carathéodory spaces as a
basic model, in particular well-known estimates of heat kernels on such spaces.

By constructing an approximation of the identity with bounded support of Coifman
type on RD-spaces, we develop a theory of Besov and Triebel-Lizorkin spaces on the
underlying spaces. In particular, this includes a theory of Hardy spaces Hp(X) and local
Hardy spaces hp(X) on RD-spaces, which appears to be new in this setting. Among other
things, we give frame characterization of these function spaces, study interpolation of such
spaces by the real method and determine their dual spaces when p ≥ 1. The relations among
homogeneous Besov spaces and Triebel-Lizorkin spaces, inhomogeneous Besov spaces and
Triebel-Lizorkin spaces, Hardy spaces, and BMO are also presented. Moreover, we prove
boundedness results on these Besov and Triebel-Lizorkin spaces for classes of singular
integral operators in [44], which include nonisotropic smoothing operators of order zero in
the sense of Nagel and Stein that appear in estimates for solutions of the Kohn-Laplacian on
certain classes of model domains in C

N ; see [43, 45–47].
We point out that a theory of Hardy spaces on RD-spaces was also established in

[48] by using spaces of test functions, the theory of distributions, and the boundedness
criterion of singular integrals on spaces of test functions, which are all developed in the
current paper, and by assuming that there exists a suitable Calderón reproducing formula
in L2(X). These Hardy spaces are proved to coincide with some of Triebel-Lizorkin spaces
in this paper. Also, some spaces of Lipschitz type on RD-spaces were recently studied in
[49]. Via Calderón reproducing formulae developed in the current paper, the relations of
Besov and Triebel-Lizorkin spaces introduced in the current paper with those spaces of
Lipschitz type in [49] and with various known Sobolev spaces as mentioned above were
established in [49]. As an application, a difference characterization of Besov and Triebel-
Lizorkin on RD-spaces was also obtained in [49]. Moreover, it is possible to establish
smooth atomic and molecular characterizations and lifting property of these spaces by using
fractional integrals and derivatives, and it is also possible to develop a corresponding product
theory. However, to limit the length of this paper, we will leave these topics to forthcoming
papers.

Our setting of RD-spaces includes spaces with a “local” dimension strictly less than
the global dimension, such as certain classes of nilpotent Lie groups. In such situations, the
Lipschitz classes (in the sense of Coifman and Weiss [28]) that we consider in this paper do
not compare with the usual Hölder classes (which are particular Besov spaces), which is why
some of our results, for example, about duality of Besov and Triebel-Lizorkin spaces, assume
a different form compared to the corresponding “classical” results on R

n, respectively, on
Ahlfors n-regular spaces.

1.1. Underlying spaces

We first recall the notion of a space of homogeneous type in the sense of Coifman and
Weiss [28, 29] and then introduce the so-called RD-spaces, which are particular spaces of
homogeneous type.

Definition 1.1. Let (X, d) be a metric space with a regular Borel measure μ, which means that
μ is a nonnegative countably subadditive set function defined on all subsets of X, open sets



4 Abstract and Applied Analysis

are measurable, and every set is contained in a Borel set with the same measure, such that all
balls defined by d have finite and positive measure. For any x ∈ X and r > 0, set

B(x, r) =
{
y ∈ X : d(x, y) < r

}
. (1.1)

(i) The triple (X, d, μ) is called a space of homogeneous type if there exists a constant
C0 ≥ 1 such that for all x ∈ X and r > 0,

μ
(
B(x, 2r)

) ≤ C0μ
(
B(x, r)

)
(doubling property). (1.2)

(ii) Let 0 < κ ≤ n. The triple (X, d, μ) is called a (κ, n)-space if there exist constants
0 < C1 ≤ 1 and C2 ≥ 1 such that for all x ∈ X, 0 < r < diam(X)/2, and 1 ≤ λ <
diam(X)/(2r),

C1λ
κμ
(
B(x, r)

) ≤ μ(B(x, λr)) ≤ C2λ
nμ
(
B(x, r)

)
, (1.3)

where diam(X) = supx,y∈Xd(x, y).

A space of homogeneous type will be called an RD-space if it is a (κ, n)-space for some
0 < κ ≤ n, that is, if some “reverse” doubling condition holds.

Clearly, any Ahlfors n-regular metric measure space (X, d, μ), which means that there
exists some n > 0 such that μ(B(x, r)) ∼ rn for all x ∈ X and 0 < r < diam(X)/2, is an
(n, n)-space.

Remark 1.2. (i) Obviously, any (k, n)-space is a space of homogeneous type with C0 = C22n.
Conversely, any space of homogeneous type satisfies the second inequality of (1.3) with
C2 = C0 and n = log2C0. Comparing with spaces of homogeneous type, the only additional
restriction in (k, n)-spaces is the first inequality of (1.3).

If X is a (κ, n)-space, the first inequality in (1.3) implies that there exist constants a0 >
1/C1/κ

1 ≥ 1 and C̃1 = C1a
κ
0 > 1 such that for all x ∈ X and 0 < r < diam(X)/a0,

μ
(
B
(
x, a0r

)) ≥ C̃1μ
(
B(x, r)

)
(reverse doubling property), (1.4)

(if a0 = 2, this is the classical reverse doubling condition), and therefore,

B
(
x, a0r

) \ B(x, r)/=∅. (1.5)

Conversely, assume that μ satisfies the second inequality of (1.3) (i.e., μ is doubling)
and (1.5) holds for some a0 > 1 and for all x ∈ X and 0 < r < diam(X)/a0. Then, X is a
(κ, n)-space for some κ > 0.

To see this, by ideas in [50, pages 11-12] (see also [51, pages 269-270]), it suffices to
show that there exist constants a1 > a0 and C̃1 > 1 such that for all x ∈ X and 0 < r <
diam(X)/2a0,

μ
(
B
(
x, a1r

)) ≥ C̃1μ
(
B(x, r)

)
, (1.6)
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which further implies that the first inequality in (1.3) also holds for some κ > 0, that is, X
is a (κ, n)-space. To this end, fix any σ ∈ (0, 1]. Then, if 0 < r < diam(X)/2a0, we have
(1 + σ)r < diam(X)/a0. Thus, by the assumption,

B
(
x, a0(1 + σ)r

) \ B(x, (1 + σ)r)/=∅. (1.7)

Choose y ∈ B(x, a0(1 + σ)r) \ B(x, (1 + σ)r). It is easy to see that

B(y, σr) ∩ B(x, r) = ∅, (1.8)

B(y, σr) ⊂ B(x, [σ + a0(1 + σ)]r), and

B
(
x,
[
σ + a0(1 + σ)

]
r
) ⊂ B(y, [σ + 2a0(1 + σ)

]
r
)
, (1.9)

which together with the second inequality in (1.3) imply

μ
(
B
(
x,
[
σ + a0(1 + σ)

]
r
))

≥ μ(B(x, r)) + μ(B(y, σr))

≥ μ(B(x, r)) + C−1
2

(
σ

σ + 2a0(1 + σ)

)n
μ
(
B
(
y,
[
σ + 2a0(1 + σ)

]
r
))

≥ μ(B(x, r)) + C−1
2

(
σ

σ + 2a0(1 + σ)

)n
μ
(
B
(
x,
[
σ + a0(1 + σ)

]
r
))
.

(1.10)

This implies (1.6)with a1 ≡ σ + a0(1 + σ) > a0 and

C̃1 ≡
[

1 − C−1
2

(
σ

σ + 2a0(1 + σ)

)n]−1
> 1. (1.11)

Thus, X is a (κ, n)-space.
Therefore, X is an RD-space if and only if X is a space of homogeneous type with the

additional property that there exists a constant a0 > 1 such that for all x ∈ X and 0 < r <
diam(X)/a0, B(x, a0r) \ B(x, r)/=∅.

(ii) From (i), it is obvious that an RD-space has no isolated points.
(iii) It is proved in [7–9] that some curvature-dimension condition on metric measure

spaces implies the doubling property of the considered measure.

Remark 1.3. We recall that two metrics d and d̃ are said to be equivalent if d/d̃ is uniformly
bounded and uniformly bounded away from zero. In what follows, we always regard two
(κ, n)-spaces or spaces of homogeneous type with equivalent metrics as the same space.
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Remark 1.4. Let d be a quasimetric, which means that d is a nonnegative and symmetric
function on X × X, d(x, y) = 0 if and only if x = y, and there exists a constant A0 ≥ 1
such that for all x, y, z ∈ X,

d(x, y) ≤ A0
(
d(x, z) + d(z, y)

)
. (1.12)

Macı́as and Segovia [33] proved that for any quasimetric d, there exists an equivalent
quasimetric d̃ such that all balls corresponding to d̃ are open in the topology induced by

d̃, and there exist constants A′
0 > 0 and θ ∈ (0, 1) such that for all x, y, z ∈ X,

∣
∣d̃(x, z) − d̃(y, z)∣∣ ≤ A′

0d̃(x, y)
θ[d̃(x, z) + d̃(y, z)

]1−θ
, (1.13)

which means d̃ has some regularity; see [33, Theorem 2].
Notice that all results below are true if d is a quasimetric and has some regularity, and

Remark 1.3 is also true for both such equivalent quasimetrics. From this and the above result
of Macı́as and Segovia, it follows that all results in this paper are still true if d on X is only
known to be a quasimetric (especially, ifX is a so-called d-space of Triebel; see [2, page 189]),
which is another advantage of the results in this paper compared to all known results so far.

In what follows, for the simplicity of the presentation, we always assume that d is a
metric, which means A0 = 1 and θ = 1.

Remark 1.5. If X is a closed subset of R
n and X is a (κ, n)-space with the additional

normalization assumption that μ(B(x, 1)) ∼ 1 for all x ∈ X, Jonsson in [52, 53] introduced
certain Besov spaces for some special indices on such sets with the aid of difference or local
polynomial approximation (equivalently by atoms) and obtained some trace theorems for
restrictions toX.

Moreover, Bylund and Gudayol [54] gave out some conditions such that a compact
pseudometric space becomes a (κ, n)-space with μ being a probability measure.

Remark 1.6. Under rather general circumstances, regular Borel measures have two useful
properties, which are often called inner regularity and outer regularity. More precisely, if μ
is a regular Borel measure, then for each Borel set A of finite measure, μ(A) is the supremum
of the numbers μ(C), where C runs through all closed subsets of A; moreover, if the metric
balls have finite measure, andA is a Borel set, then μ(A) is the infimum of the numbers μ(U),
where U runs through all open supersets of A; see [55, Theorem 2.2.2] or [13, page 3]. These
properties are used in establishing Lebesgue’s differentiation theorem; see [13, pages 4–7] for
the details.

We now recall the definition ofCarnot-Carathéodory spaces. LetX be a connected smooth
manifold and let {X1, . . . , Xk} be k given smooth real vector fields onX satisfyingHörmander’s
condition of order m, that is, these vector fields together with their commutators of order at
most m span the tangent space to X at each point. To develop a theory of Besov and Triebel-
Lizorkin spaces onX, we make use of the notion of control distances associated to the vector
fields. One possibility of defining a control distance is as follows: for x, y ∈ X and δ > 0,
let AC(x, y, δ) denote the collection of absolutely continuous mappings ϕ: [0, 1] → X with
ϕ(0) = x and ϕ(1) = y such that for almost every t ∈ [0, 1], ϕ′(t) =

∑k
j=1ajXj(ϕ(t)), with



Yongsheng Han et al. 7

|aj | ≤ δ. Then, the control metric d(x, y) from x to y is the infimum of the set of δ > 0 such
that AC(x, y, δ)/=∅. Hörmander’s condition makes sure that d(x, y) <∞ for every x, y ∈ X.

The following three specific examples of Carnot-Carathéodory spaces which are also
(κ, n)-spaces naturally come from harmonic analysis and several complex variables.

(a) Compact case. If X is a compact n-dimensional Carnot-Carathéodory space and is
endowed with any fixed smooth measure μ with strictly positive density, by [56,
Theorem 1] (or [42, Theorem 2.2.4]), we know that X is an (n, nm)-space; see also
[44].

(b) Noncompact case. Let Ω = {(z,w) ∈ C
2 : Im[w] > P(z)}, where P is a real,

subharmonic, nonharmonic polynomial of degree m. Namely, Ω is an unbounded
model domain of polynomial type in C

2. Then, X = ∂Ω can be identified with
C × R = {(z, t) : z ∈ C, t ∈ R}. The basic (0, 1) Levi vector field is then
Z = ∂/∂z − i(∂P/∂z)(∂/∂t), and we write Z = X1 + iX2. The real vector fields
{X1, X2} and their commutators of orders ≤ m span the tangent space at each point.
If we endow C × R with the Lebesgue measure, then by [43, Proposition 3.1.1] we
know that X = C × R is a (4, m + 2)-space; see also [42, 44, 56].

(c) (Noncompact case) Lie groups of polynomial growth (see [56–60]). Let G be a
connected Lie group and fix a left invariant Haar measure μ on G. We assume that
G has polynomial volume growth, that is, if U is a compact neighborhood of the
identity element e of G, then there is a constant C > 0 such that μ(Un) � nC for all
n ∈ N (see [56]). ThenG is unimodular. Furthermore, there is a nonnegative integer
n∞ such that μ(Un) ∼ nn∞ as n → ∞; see [61] and also [57, 62]. Let X1, . . . , Xn

be left invariant vector fields on G that satisfy Hörmander’s condition, that is,
they together with their successive Lie brackets [Xi1 , [Xi2 , [. . . , Xik] . . .] span the
tangent space of G at every point of G. Let d be the associated control metric. Then
this metric is left invariant and compatible with the topology on G; see [57, 58].
Moreover, by the results in [56, 57], we know that there is n0 ∈ N, independent of
x, such that μ(B(x, r)) ∼ rn0 when 0 < r ≤ 1, and μ(B(x, r)) ∼ rn∞ when r ≥ 1. From
this, it is easy to verify that G is a (min{n0, n∞},max{n0, n∞})-space.

1.2. Outline of some basic methods

Let X be a Carnot-Carathéodory space as in Case (a) with n ≥ 3 or as in Case (b), and let
{X1, . . . , Xk} be a family of real vector fields on X, which are of finite-type m. Consider the
sub-Laplacian L on X in self-adjoint form, given by

L =
k∑

j=1

X∗
j Xj . (1.14)

Here (X∗
j ϕ, ψ) = (ϕ,Xjψ), where

(ϕ, ψ) =
∫

X
ϕ(x)ψ(x)dμ(x) (1.15)

and ϕ, ψ ∈ C∞
c (X), the space of C∞ functions on X with compact support. In general, X∗

j =

−Xj + aj , where aj ∈ C∞(X). The solution of the following initial value problem for the heat
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equation,

∂u

∂s
(x, s) +Lxu(x, s) = 0 (1.16)

with u(x, 0) = f(x), is given by us(x, s) = Hs[f](x), where Hs is the operator given via the
spectral theorem byHs = e−sL, and an appropriate self-adjoint extension of the nonnegative
operator L initially defined on C∞

c (X). It was proved in [44] that for f ∈ L2(X),

Hs[f](x) =
∫

X
H(s, x, y)f(y)dμ(y), (1.17)

where x ∈ X. Moreover, H(s, x, y) has some nice regularity properties (see [44, Proposition
2.3.1] and [63]).

By abstracting from the properties of heat kernelsH(s, x, y), we will introduce notions
of approximations of the identity and spaces of test functions and their dual spaces on
arbitrary spaces of homogeneous type. These two spaces are, respectively, the substitutes
of the space of Schwartz functions and the space of tempered distributions; see, for example,
[31, 34]. Following Coifman’s idea in [64], we then construct an approximation of the identity
with bounded support on metric measure spaces. We will show that our spaces of test
functions are invariant under a large class of singular integral operators. The integral kernels
associated to these operators satisfy a certain “second difference regularity condition,” which
also turns out to be necessary to this result; see [31, 35]. This theorem is a main tool for
establishing a Calderón reproducing formula. Let {Sk}k∈Z

be such an approximation of the
identity. Set next Dk = Sk − Sk−1 for k ∈ Z. Based on Coifman’s ideas (see [64] for the
details), on Lp(X) with p ∈ (1,∞), we can decompose the identity operator I in the strong
sense as

I =
∞∑

k=−∞
Dk

=

( ∞∑

k=−∞
Dk

)( ∞∑

j=−∞
Dj

)

=
∑

|k−j|≤N
DkDj +

∑

|k−j|>N
DkDj

= TN + RN.

(1.18)

The error term RN will be small of order 2−δN in norm with δ > 0. Using the above-
mentioned theorem, we prove that if N is large enough, then RN is bounded on the space
of test functions with the operator norm less than 1. Therefore, if N is large enough and
DN
k =

∑
|j|≤NDk+j for k ∈ Z, we then obtain the following Calderón-type reproducing

formulae:

f =
∞∑

k=−∞
T−1
N DN

k Dk(f) =
∞∑

k=−∞
DkD

N
k T

−1
N (f), (1.19)
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where T−1
N is the inverse of TN and the series converge in Lp(X), 1 < p < ∞, and in the

space of test functions and its dual space. We also obtain a corresponding discrete version.
The Calderón reproducing formula is another main tool of this paper. As soon as (1.19) is
established, we can introduce Besov and Triebel-Lizorkin spaces on X via approximations
of the identity and prove that these spaces are independent of the choice of approximations
of the identity. The Calderón reproducing formula is also employed to establish the atomic
decomposition of these spaces and to prove boundedness results for operators acting on these
spaces.

Remark 1.7. Let {Sk}k∈Z
be an approximation of the identity as constructed in Theorem 2.6

below. An essential difference in the theory occurs when themeasure, μ(X), of the underlying
space X is finite versus the case when the measure of the underlying space is infinite. When
μ(X) < ∞, it is not true that ‖Sk(f)‖Lp(X) → 0 as k → −∞ for all p ∈ (1,∞) and f ∈
Lp(X); see the proof of Proposition 3.1(i) below. Thus, when μ(X) <∞, in the Calderón-type
reproducing formulae (1.19), we should replace D0 by S0 and Dk for k ∈ {−1,−2, . . .} by 0.
This means that when μ(X) < ∞, we always have an inhomogeneous term corresponding to
S0, which needs some special care.

1.3. Notation

Finally, we introduce some notation and make some conventions. Throughout the paper,
A ∼ B means that the ratio A/B is bounded and bounded away from zero by constants that
do not depend on the relevant variables in A and B; A � B and B � A mean that the ratio
A/B is bounded by a constant independent of the relevant variables. For any p ∈ [1,∞],
we denote by p′ its conjugate index, namely, 1/p + 1/p′ = 1. We also denote by C a positive
constant which is independent of the main parameters, but it may vary from line to line.
Constants with subscripts, such as C0, do not change in different occurrences. If E is a subset
of a metric space (X, d), we denote by χE the characteristic function of E and define

diamE = sup
x,y∈E

d(x, y). (1.20)

We also set N = {1, 2, . . .} and Z+ = N ∪ {0}. For any a, b ∈ R, we denote min{a, b}, max{a, b},
and max{a, 0} by a ∧ b, a ∨ b, and a+, respectively.

If (X, d, μ) is a space of homogeneous type, we also introduce the volume functions
Vδ(x) = μ(B(x, δ)) and V (x, y) = μ(B(x, d(x, y))) for all x, y ∈ X and δ > 0. By (1.2), it is easy
to see that V (x, y) ∼ V (y, x); see also [44]. We will use this fact without further mentioning.

Throughout the whole paper, for ε ∈ (0, 1] and |s| < ε, we set

p(s, ε) ≡ max
{

n

n + ε
,

n

n + ε + s

}
. (1.21)

2. Approximations of the identity and spaces of test functions

In this section, we will work on spaces of homogeneous type with the constant C0 as in
Definition 1.1, (X, μ, d), where μ(X) can be finite or infinite. We first present some basic
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estimates which will be used throughout the whole paper. We then introduce the notion of
an approximation of the identity. Following Coifman’s idea in [64], we then construct an
approximation of the identity with bounded support on X. We also introduce spaces of test
functions and establish the boundedness of singular integrals on these spaces, which are key
tools of the whole theory.

2.1. Approximations of the identity

Throughout the whole paper, we denote by Mf the Hardy-Littlewood maximal function on X
for any f ∈ L1

loc(X). It is well known that M is bounded on Lp(X) with p ∈ (1,∞]; see
[29, 44]. Some basic estimates used throughout the whole paper are stated in the following
lemma, whose main part is included in [48, Lemma 2.1], and the remaining statements are
obvious.

Lemma 2.1. Let δ > 0, a > 0, r > 0, and θ ∈ (0, 1). Then the following hold.

(i)
∫
d(x,y)≤δ(d(x, y)

a/V (x, y))dμ(y)≤ Cδa and ∫d(x,y)≥δ(1/V (x, y))(δa/d(x, y)a)dμ(y) ≤
C uniformly in x ∈ X and δ > 0.

(ii)
∫
X(1/(Vδ(x) + V (x, y)))(δa/(δ + d(x, y))a)d(x, y)ηdμ(y) ≤ Cδη uniformly in x ∈ X
and δ > 0, if a > η ≥ 0.

(iii) If x, x′, x1 ∈ X satisfy d(x, x′) ≤ θ(r + d(x, x1)), then 1/(r + d(x′, x1)) ≤ C(1/(r +
d(x, x1))), 1/(Vr(x1) + V (x1, x′)) ≤ C(1/(Vr(x1) + V (x1, x))), and

1
Vr
(
x′) + V

(
x′, x1

) ≤ C 1
Vr(x) + V

(
x, x1

) (2.1)

uniformly in r > 0 and x, x′, x1 ∈ X.

(iv) For all f ∈ L1
loc(X) and all x ∈ X,

∫
d(x,y)>δ(1/V (x, y))(δa/d(x, y)a)|f(y)|dμ(y) ≤

CM(f)(x) uniformly in δ > 0, f ∈ L1
loc(X) and x ∈ X.

(v) For any ε > 0,
∫
d(y,x)≥δ(1/(Vr(x) + V (y, x)))(1/(r + d(y, x))ε)dμ(y) ≤ C(1/(r + δ)ε)

uniformly in x ∈ X and δ, r > 0.

(vi) For any fixed α > 0, if d(x, y) ≤ αr, then Vr(x) ∼ Vαr(x) ∼ Vαr(y) ∼ Vr(y) uniformly in
x, y ∈ X and r > 0.

(vii) For all r > 0 and all x, y ∈ X, Vr(x) + V (x, y) ∼ Vr(x) + Vr(y) + V (x, y) ∼ Vr(y) +
V (x, y).

Motivated by the properties of the heat kernel defined in (1.17) in the case of Carnot-
Carathéodory spaces, we introduce the following notion of an approximation of the identity
on X.

Definition 2.2. Let ε1 ∈ (0, 1], ε2 > 0, and ε3 > 0. A sequence {Sk}k∈Z
of bounded linear

integral operators on L2(X) is said to be an approximation of the identity of order (ε1, ε2, ε3) (for
short, (ε1, ε2, ε3)-ATI) if there exists a constant C3 > 0 such that for all k ∈ Z and all x, x′, y,
and y′ ∈ X, Sk(x, y), the integral kernel of Sk is a measurable function from X × X into C

satisfying

(i) |Sk(x, y)| ≤ C3(1/(V2−k(x) + V2−k(y) + V (x, y)))(2−kε2/(2−k + d(x, y))
ε2);



Yongsheng Han et al. 11

(ii) |Sk(x, y)−Sk(x′, y)| ≤ C3(d(x, x′)/(2−k + d(x, y)))ε1(1/(V2−k(x)+V2−k(y)+V (x, y)))×
(2−kε2/(2−k + d(x, y))

ε2) for d(x, x′) ≤ (2−k + d(x, y))/2;

(iii) property (ii) also holds with x and y interchanged;

(iv) |[Sk(x, y) − Sk(x, y′)] − [Sk(x′, y) − Sk(x′, y′)]| ≤ C3(d(x, x′)/(2−k + d(x, y)))ε1 ×
(d(y, y′)/(2−k + d(x, y)))ε1(1/(V2−k(x) + V2−k(y) + V (x, y)))(2−kε3/(2−k + d(x, y))

ε3)
for d(x, x′) ≤ (2−k + d(x, y))/3 and d(y, y′) ≤ (2−k + d(x, y))/3;

(v)
∫
XSk(x, y)dμ(y) = 1;

(vi)
∫
XSk(x, y)dμ(x) = 1.

In case the ATI has bounded support, in the sense that Sk(x, y) = 0 when d(x, y) �
2−k, then the conditions (i), (ii), (iii), and (iv) of Definition 2.2 simplify as follows (see
Proposition 2.5).

Definition 2.3. Let ε1 ∈ (0, 1]. A sequence {Sk}k∈Z
of bounded linear integral operators on

L2(X) is said to be an approximation of the identity of order ε1 with bounded support (for short,
ε1-ATI with bounded support) if there exist constants C4, C5 > 0 such that for all k ∈ Z and all
x, x′, y, and y′ ∈ X, Sk(x, y), the integral kernel of Sk is a measurable function from X × X
into C satisfying (v) and (vi) of Definition 2.2 as above, and

(i) Sk(x, y) = 0 if d(x, y) ≥ C52−k and |Sk(x, y)| ≤ C4(1/(V2−k(x) + V2−k(y)));

(ii) |Sk(x, y) − Sk(x′, y)| ≤ C42kε1d(x, x′)ε1(1/(V2−k(x) + V2−k(y))) for d(x, x′) ≤
max {C5, 1}21−k;

(iii) property (ii) also holds with x and y interchanged;

(iv) |[Sk(x, y) − Sk(x, y′)] − [Sk(x′, y) − Sk(x′, y′)]| ≤ C422kε1d(x, x′)ε1d(y, y′)ε1 ×
(1/(V2−k(x) + V2−k(y))) for d(x, x′) ≤ max {C5, 1}21−k and d(y, y′) ≤ max {C5, 1}21−k.

We call ε1 the regularity of (ε1, ε2, ε3)-ATI {Sk}k∈Z
.

Remark 2.4. (i) Assume that X is as in Case (a) with n ≥ 3 or as in Case (b) in the
introduction, and let H(s, x, y) be the heat kernel defined in (1.17). Define Sk(x, y) =
H(2−2k, x, y) for k ∈ Z and x, y ∈ X. Using [44, Proposition 2.3.1], we can verify that
{Sk}k∈Z

is an (ε1, ε2, ε3)-ATI for any ε1 ∈ (0, 1], ε2 > 0, and ε3 > 0. Moreover, in this case,
Sk(x, y) = Sk(y, x).

(ii) If X is any (compact or noncompact) Ahlfors n-regular metric measure space or
any Lie group with polynomial growth, then one can construct an ε1-ATI with bounded
support for any ε1 ∈ (0, 1] by following Coifman’s idea in [64].

(iii) We remark that when we consider the existence of ATIs, the condition (iv) of
Definition 2.2 is not essential, in the sense that if there exist {Sk}k∈Z

with k ∈ Z satisfying
(i), (ii), (iii), (v), and (vi) of Definition 2.2, then {Sk ◦ Sk}k∈Z

satisfy (i) through (vi) of
Definition 2.2.

Proposition 2.5. Suppose {Sk}k∈Z
is a sequence of bounded linear integral operators on L2(X) such

that Sk(x, y) = 0 whenever d(x, y) ≥ C52−k. Then {Sk}k∈Z
is an ATI if and only if it is an ATI with

bounded support.
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Proof. Obviously, from the assumption that Sk(x, y) = 0 whenever d(x, y) ≥ C52−k, it easily
follows that Sk satisfies Definition 2.2(i) if and only if

∣∣Sk(x, y)
∣∣ � 1

V2−k(x) + V2−k(y)
, (2.2)

which appears in Definition 2.3(i).
We now establish the equivalence between Definitions 2.2(ii) and 2.3(ii), with the

proof for the equivalence between (iii) of Definitions 2.2 and (iii) of Definition 2.3 being
similar. Notice that Sk(x, y) − Sk(x′, y)/= 0 implies that d(x, y) < C52−k or d(x′, y) <

C52−k. Thus, Sk(x, y) − Sk(x′, y)/= 0 together with d(x, x′) ≤ 2max {C5, 1}2−k shows
that d(x, y) < 3max {C5, 1}2−k, and hence, 2−k + d(x, y) ∼ 2−k and V2−k(x) + V2−k(y) +
V (x, y) ∼ V2−k(x)+V2−k(y). From these estimates, it immediately follows that Definition 2.2(ii)
implies Definition 2.3(ii), and conversely Definition 2.3(ii) implies that Definition 2.2(ii)
holds whenever d(x, x′) ≤ 2max {C5, 1}2−k. We still need to prove that Definition 2.3(ii) also
implies that Definition 2.2(ii) holds when 2max {C5, 1}2−k < d(x, x′) ≤ (2−k + d(x, y))/2.
However, if 2max {C5, 1}2−k < d(x, x′) ≤ (2−k+d(x, y))/2, we have d(x, y) > 3max {C5, 1}2−k
and d(x′, y) ≥ d(x, x′)− 2−k > C52−k. Thus, in this case, Sk(x, y) = 0 = Sk(x′, y), and therefore,
Definition 2.2(ii) automatically holds. This proves the equivalence between Definitions 2.2(ii)
and 2.3(ii).

We now establish the equivalence between Definitions 2.2(iv) and 2.3(iv). Notice
that [Sk(x, y) − Sk(x, y′)] − [Sk(x′, y) − Sk(x′, y′)]/= 0 implies that d(x, y) < C52−k or
d(x′, y) < C52−k or d(x, y′) < C52−k or d(x′, y′) < C52−k. This together with d(x, x′) ≤
max {C5, 1}21−k and d(y, y′) ≤ max {C5, 1}21−k further shows that we have d(x, y) <

5max {C5, 1}21−k, and hence, 2−k + d(x, y) ∼ 2−k and V2−k(x) + V2−k(y) + V (x, y) ∼ V2−k(x) +
V2−k(y). From these estimates, we see that Definition 2.2(iv) implies Definition 2.3(iv), and
conversely, Definition 2.3(iv) also implies that Definition 2.2(iv) holds when d(x, x′) ≤
2max {C5, 1}2−k and d(y, y′) ≤ max {C5, 1}21−k. We still need to prove that Definition 2.3(iv)
also implies that Definition 2.2(iv) holds in the three cases listed below. Recall that we
always assume that d(x, x′) ≤ (2−k + d(x, y))/3 and d(y, y′) ≤ (2−k + d(x, y))/3 in
Definition 2.2(iv).

Case 1. d(x, x′) ≤ 2max {C5, 1}2−k and d(y, y′) > 2max {C5, 1}2−k. In this case, d(x, y) ≥
3d(y, y′) − 2−k ≥ C52−k, d(x, y′) ≥ 2d(y, y′) − 2−k > C52−k, d(x′, y) > 2d(y, y′) − 2−k > C52−k,
and d(x′, y′) > d(y, y′)− 2−k > C52−k. Thus Sk(x, y) = Sk(x, y′) = Sk(x′, y) = Sk(x′, y′) = 0 and
therefore Definition 2.2(iv) automatically holds in this case.

Case 2. d(x, x′) > 2max {C5, 1}2−k and d(y, y′) ≤ 2max {C5, 1}2−k. This case is similar to Case
1 by symmetry.

Case 3. d(x, x′) > 2max {C5, 1}2−k and d(y, y′) > 2max {C5, 1}2−k. In this case, similar to
Case 1, we have that d(x, y) ≥ 3d(y, y′) − 2−k > C52−k, d(x, y′) ≥ 2d(y, y′) − 2−k > C52−k,
d(x′, y) ≥ 2d(x, x′) − 2−k > C52−k, and d(x′, y′) ≥ d(x, y) − d(x, x′) − d(y, y′) ≥ (d(x, y) −
21−k)/3 > d(y, y′) − 2−k > C52−k. We also have Sk(x, y) = Sk(x, y′) = Sk(x′, y) = Sk(x′, y′) = 0
and therefore (iv) automatically holds in this case. This establishes the equivalence between
(iv) and (iv)′, and hence completes the proof of Proposition 2.5.
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Following Coifman’s idea in [64], for any ε1 ∈ (0, 1], we can construct ε1-ATIs with
bounded support on X (cf. also [65, Theorem (1.13)]).

Theorem 2.6. Let (X, d, μ) be a space of homogeneous type as in Definition 1.1 and ε1 ∈ (0, 1]. Then
there exists an approximation of the identity {Sk}k∈Z

of order ε1 with bounded support on X, with
constant C5 = 4. Moreover, for all k ∈ Z and x, y ∈ X, Sk(x, y) = Sk(y, x).

Proof. Obviously, we only need to prove the theorem for ε1 = 1. Let h ∈ C1(R), h(t) = 1 if
t ∈ [0, 1], h(t) = 0 if t ≥ 2, and 0 ≤ h(t) ≤ 1 for all t ∈ R. For any k ∈ Z, f ∈ L1

loc(X) and u ∈ X,
we then define

Tkf(u) =
∫

X
h
(
2kd(u,w)

)
f(w)dμ(w). (2.3)

Obviously, we have V2−k(u) ≤ Tk1(u) ≤ V21−k(u). Fix any x ∈ X. By Lemma 2.1(vi), for all
u ∈ B(x, 25−k), we further have

Tk1(u) ∼ V2−k(x). (2.4)

Thus, if z ∈ B(x, 24−k) and h(2kd(z, u))/= 0, then u ∈ B(x, 25−k), and by (2.4), we further have

Tk

(
1
Tk1

)
(z) =

∫

X
h
(
2kd(z, u)

) 1
Tk1(u)

dμ(u) ∼ 1. (2.5)

For all x, y ∈ X, we define

Sk(x, y) =
1

Tk1(x)

{∫

X
h
(
2kd(x, z)

) 1
Tk
(
1/Tk1

)
(z)

h
(
2kd(z, y)

)
dμ(z)

}
1

Tk1(y)
. (2.6)

We now prove that {Sk}k∈Z
is a 1-ATI with bounded support and C5 = 4. It is obvious that for

all x, y ∈ X, Sk(x, y) = Sk(y, x), and that if d(x, y) ≥ 22−k, then Sk(x, y) = 0. Also, it is easy to
show that

∫
XSk(x, y)dμ(y) = 1. Moreover, if d(x, y) < 22−k, by (2.4) and (2.5) together with

Lemma 2.1(vi), we obtain

0 ≤ Sk(x, y) � 1
V2−k(x)

∼ 1
V2−k(x) + V2−k(y)

. (2.7)

Thus Sk(x, y) satisfies (i)
′ of Definition 2.2 with C5 = 4.

We now show that Sk(x, y) has the desired regularity in the first variable when
d(x, x′) ≤ 23−k. Notice that in this case, Sk(x, y) − Sk(x′, y)/= 0 implies that d(x, y) < 24−k,
and hence,

1
V2−k(x) + V2−k(y)

∼ 1
V2−k(x)

. (2.8)
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By (2.6), we have

Sk(x, y) − Sk
(
x′, y
)

=
[

1
Tk1(x)

− 1
Tk1
(
x′)
]{∫

X
h
(
2kd(x, z)

) 1
Tk
(
1/Tk1

)
(z)

h
(
2kd(z, y)

)
dμ(z)

}
1

Tk1(y)

+
1

Tk1
(
x′)
{∫

X

[
h
(
2kd(x, z)

) − h(2kd(x′, z
))] 1

Tk
(
1/Tk1

)
(z)

h
(
2kd(z, y)

)
dμ(z)

}
1

Tk1(y)

≡ Z1 + Z2.

(2.9)

To estimate Z1, by the choice of h, the mean value theorem, and (2.4) together with
Lemma 2.1(vi), we first have

∣∣∣∣
1

Tk1(x)
− 1
Tk1
(
x′)
∣∣∣∣ �

1
[
V2−k(x)

]2 2
kd
(
x, x′)μ

(
B
(
x, 24−k

)) ∼ 2kd
(
x, x′)

V2−k(x)
, (2.10)

which together with (2.4), (2.5), and (2.8) further yields

∣∣Z1
∣∣ �

2kd
(
x, x′)

V2−k(x)
∼ 2kd

(
x, x′)

V2−k(x) + V2−k(y)
. (2.11)

To estimate Z2, notice that h(2
kd(x, z))−h(2kd(x′, z))/= 0 implies d(x, z) < 24−k. By this

observation, (2.5), the mean value theorem together with Lemma 2.1(vi), we obtain

∣∣∣∣

∫

X

[
h
(
2kd(x, z)

) − h(2kd(x′, z
))] 1

Tk
(
1/Tk1

)
(z)

h
(
2kd(z, y)

)
dμ(z)

∣∣∣∣

� 2kd
(
x, x′)μ

(
B
(
x, 24−k

))

� 2kd
(
x, x′)V2−k(x),

(2.12)

which together with (2.4) and (2.8) yields

∣∣Z2
∣∣ �

2kd
(
x, x′)

V2−k(x)
∼ 2kd

(
x, x′)

V2−k(x) + V2−k(y)
. (2.13)

In combination with the estimate for Z1, this shows that Sk(x, y) has the desired regularity
with respect to the first variable when d(x, x′) ≤ 23−k.
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We finally prove that Sk(x, y) satisfies the desired second difference condition, when
d(x, x′) ≤ 23−k and d(y, y′) ≤ 23−k. Notice that in this case, [Sk(x, y) − Sk(x′, y)] − [Sk(x, y′) −
Sk(x′, y′)]/= 0 implies that d(x, y) < 25−k. Thus, (2.8) also holds in this case. By (2.6), we have

[
Sk(x, y) − Sk

(
x′, y
)] − [Sk

(
x, y′) − Sk

(
x′, y′)]

=
[

1
Tk1(x)

− 1
Tk1
(
x′)
]{∫

X
h
(
2kd(x, z)

) 1
Tk
(
1/Tk1

)
(z)

h
(
2kd(z, y)

)
dμ(z)

}

×
[

1
Tk1(y)

− 1
Tk1
(
y′)
]
+
[

1
Tk1(x)

− 1
Tk1
(
x′)
]

1
Tk1
(
y′)

×
{∫

X
h
(
2kd(x, z)

) 1
Tk
(
1/Tk1

)
(z)

[
h
(
2kd(z, y)

) − h(2kd(z, y′))]dμ(z)
}

+
1

Tk1
(
x′)
{∫

X

[
h
(
2kd(x, z)

) − h(2kd(x′, z
))]

× 1
Tk
(
1/Tk1

)
(z)

h
(
2kd(z, y)

)
dμ(z)

}[
1

Tk1(y)
− 1
Tk1
(
y′)
]

+
1

Tk1
(
x′)

1
Tk1
(
y′)
{∫

X

[
h
(
2kd(x, z)

) − h(2kd(x′, z
))]

× 1
Tk
(
1/Tk1

)
(z)

[
h
(
2kd(z, y)

) − h(2kd(z, y′))]dμ(z)
}

≡ Z3 + Z4 + Z5 + Z6.

(2.14)

The estimates (2.10), (2.5), and (2.8) together with Lemma 2.1(vi) show that

∣∣Z3
∣∣ �

2kd
(
x, x′)

V2−k(x)
μ
(
B
(
x, 23−k

))2kd
(
y, y′)

V2−k(x)
∼ 22kd

(
x, x′)d

(
y, y′) 1

V2−k(x) + V2−k(y)
. (2.15)

The estimate for Z4 is similar to the one for Z5, while the estimate for Z5 can be deduced
immediately from the estimates (2.12), (2.10), and (2.4) together with (2.8). Finally, to
estimate Z6, notice that h(2kd(x, z)) − h(2kd(x′, z))/= 0 and d(x, x′) ≤ 23−k implies that z ∈
B(x, 24−k). This observation together with the mean value theorem, (2.5), and Lemma 2.1(vi)
yields

∣∣∣∣

∫

X

[
h
(
2kd(x, z)

) − h(2kd(x′, z
))] 1

Tk
(
1/Tk1

)
(z)

[
h
(
2kd(z, y)

) − h(2kd(z, y′))]dμ(z)
∣∣∣∣

� 22kd
(
x, x′)d

(
y, y′)V2−k(x),

(2.16)
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which together with (2.4) and (2.8) further gives

∣
∣Z6
∣
∣ � 22kd

(
x, x′)d

(
y, y′) 1

V2−k(x)
∼ 22kd

(
x, x′)d

(
y, y′) 1

V2−k(x) + V2−k(y)
. (2.17)

This proves that Sk(x, y) has the desired second difference property, and hence, completes
the proof of Theorem 2.6.

In the sequel, for any f ∈ Lp(X)with p ∈ [1,∞] and x ∈ X, we set

Skf(x) =
∫

X
Sk(x, y)f(y)dμ(y). (2.18)

We also let

L∞
b (X) =

{
f ∈ L∞(X) : f has bounded support

}
. (2.19)

Some basic properties of ATIs are presented in the next proposition.

Proposition 2.7. Let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI with ε1 ∈ (0, 1], ε2 > 0 and ε3 > 0, and let St

k
denote the adjoint operator to Sk, whose integral kernel is given by St

k
(x, y) = Sk(y, x). Then the

following hold.

(i) For any k ∈ Z and any x, y ∈ X,
∫
X|Sk(x, y)|dμ(y) ≤ C and

∫
X|Sk(x, y)|dμ(x) ≤ C.

(ii) For any k ∈ Z and any f ∈ L1
loc(X), |Skf(x)| ≤ CMf(x).

(iii) For 1 ≤ p ≤ ∞, there exists a constant Cp > 0 such that for all f ∈ Lp(X),

∥∥Skf
∥∥
Lp(X) ≤ Cp‖f‖Lp(X). (2.20)

(iv) For 1 ≤ p <∞ and any f ∈ Lp(X), ‖Skf − f‖Lp(X) → 0 when k → ∞.

(v) Properties (ii) through (iv) also hold for Sk replaced by Stk.

Proof. Definition 2.2(i) together with Lemma 2.1(i) shows that for any k ∈ Z and any x ∈ X,

∫

X

∣∣Sk(x, y)
∣∣dμ(y) =

∫

d(x,y)≤2−k

∣∣Sk(x, y)
∣∣dμ(y) +

∫

d(x,y)>2−k

∣∣Sk(x, y)
∣∣dμ(y)

� 1 +
∫

d(x,y)>2−k

1
V (x, y)

2−kε2

d(x, y)ε2
dμ(y)

� 1.

(2.21)

A similar argument proves that
∫
X|Sk(x, y)|dμ(x) � 1.
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To prove (ii), by Definition 2.2(i) together with Lemma 2.1(iv), we have

∣
∣Skf(x)

∣
∣ � 1

V2−k(x)

∫

d(x,y)≤2−k

∣
∣f(y)

∣
∣dμ(y) +

∫

d(x,y)>2−k

1
V (x, y)

2−kε2

d(x, y)ε2
∣
∣f(y)

∣
∣dμ(y)

� Mf(x).

(2.22)

From (ii) and the Lp(X)-boundedness of M, we obtain (iii) for p ∈ (1,∞]. For p = 1,
we obtain (iii) from (i), by Fubini’s theorem.

To prove (iv), we first recall that Lebesgue’s differentiation theorem holds in X, that
is, if f is locally integrable, then for almost all x ∈ X, x is a Lebesgue point which means

lim
r→ 0

1
μ
(
B(x, r)

)
∫

B(x,r)

∣
∣f(y) − f(x)∣∣dμ(y) = 0, (2.23)

since the measure μ is regular; see [13, page 4] and [66, page 11].
For any given f ∈ Lp(X)with p ∈ [1,∞], assume that x0 is a Lebesgue point of f , then

Mf(x0) + |f(x0)| <∞. By the conditions (v) and (i) of Sk in Definition 2.2, we have

∣∣Skf
(
x0
) − f(x0

)∣∣

=
∣∣∣∣

∫

X
Sk
(
x0, y

)[
f(y) − f(x0

)]
dμ(y)

∣∣∣∣

≤ C3

∫

d(x0,y)<2
−k

1
V2−k
(
x0
)
+ V2−k(y) + V

(
x0, y

)
2−kε2

(
2−k + d

(
x0, y

))ε2
∣∣f(y) − f(x0

)∣∣dμ(y)

+ C3

∞∑

l=0

∫

2l−12−k≤d(x0,y)<2l2−k
· · ·

≤ CC3

∞∑

l=0

1
2lε2

1
V2l2−k

(
x0
)
∫

d(x0,y)<2
l2−k

∣∣f(y) − f(x0
)∣∣dμ(y).

(2.24)

For any δ > 0, we choose L0 ∈ N so that

CC3
[
Mf
(
x0
)
+
∣∣f
(
x0
)∣∣]

∞∑

l=L0+1

1
2lε2

<
δ

2
. (2.25)

Since x0 is a Lebesgue point, by the definition, we know that there exists K ∈ N such that
when k > K,

CC3

L0∑

l=0

1
2lε2

1
V2l2−k

(
x0
)
∫

d(x0,y)<2
l2−k

∣∣f(y) − f(x0
)∣∣dμ(y) <

δ

2
. (2.26)
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Thus limk→∞Skf(x0) = f(x0), and therefore for almost everywhere x ∈ X,

lim
k→∞

Skf(x) = f(x). (2.27)

This fact together with |Skf(x)| � Mf(x) (see (ii) of this proposition), the Lp(X)-
boundedness of M with p ∈ (1,∞) again and Lebesgue’s dominated convergence theorem,
gives that limk→∞‖Skf − f‖Lp(X) = 0 for all f ∈ Lp(X).

When p = 1, we first consider f ∈ L∞
b
(X). Assume that supp f ⊂ B(y0, r0) for some

y0 ∈ X and r0 > 0. For some fixed L > 2r0, by Hölder’s inequality and the conditions (i) and
(v) of Sk in Definition 2.2 together with Lemma 2.1(i), we have

∥
∥Skf − f∥∥L1(X) =

∫

d(x,y0)<L

∣
∣Skf(x) − f(x)

∣
∣dμ(x) +

∫

d(x,y0)≥L

∣
∣Skf(x) − f(x)

∣
∣dμ(x)

≤ μ(BL
(
y0
))1/2∥∥Skf − f∥∥L2(X)

+ C3

∫

d(y,y0)<r0

∣∣f(y)
∣∣
{∫

d(x,y)≥L/2

1
V (x, y)

2−kε2

d(x, y)ε2
dμ(x)

}
dμ(y)

≤ μ(BL
(
y0
))1/2∥∥Skf − f∥∥L2(X) + CC32−kε2L−ε2‖f‖L1(X),

(2.28)

which together with L∞
b (X) ⊂ L2(X) and the above proved conclusion for p ∈ (1,∞) implies

that limk→∞‖Skf − f‖L1(X) = 0 for all f ∈ L∞
b
(X). This and the density of L∞

b
(X) in L1(X)

further yield that limk→∞‖Skf − f‖L1(X) = 0 for all f ∈ L1(X), which verify (iv).
Property (v) can be deduced from (i) through (iv) together with the symmetry, which

completes the proof of Proposition 2.7.

We now introduce the space of test functions onX.

Definition 2.8. Let x1 ∈ X, r > 0, 0 < β ≤ 1, and γ > 0. A function f on X is said to be a test
function of type (x1, r, β, γ) if there exists a constant C ≥ 0 such that

(i) |f(x)| ≤ C(1/(Vr(x1) + V (x1, x)))(r/(r + d(x1, x)))
γ for all x ∈ X;

(ii) |f(x) − f(y)| ≤ C(d(x, y)/(r + d(x1, x)))
β(1/(Vr(x1) + V (x1, x)))(r/(r + d(x1, x)))

γ

for all x, y ∈ X satisfying that d(x, y) ≤ (r + d(x1, x))/2.

Moreover, we denote by G(x1, r, β, γ) the set of all test functions of type (x1, r, β, γ), and if
f ∈ G(x1, r, β, γ), we define its norm by

‖f‖G(x1,r,β,γ) = inf {C : (i) and (ii) hold}. (2.29)

The space G(x1, r, β, γ) is called the space of test functions.

This definition of a test function of type (x1, r, β, γ) gives a quantified meaning to the
notation of a sufficiently “smooth” function which is essentially supported in the ball of
radius r centered at x1 in the sense that it decays of sufficiently high order (measured by
γ) at infinity, and is Hölder continuous of order β (at the right scale r).
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Obviously, Sk(x, ·) for any fixed k ∈ Z and x ∈ X in Definition 2.2 is a test function
of type (x, 2−k, ε1, ε2), and Sk(·, y) for any fixed k ∈ Z and y ∈ X in Definition 2.2 is a test
function of type (y, 2−k, ε1, ε2). Moreover, for η ∈ (0, 1], let

‖f‖Ċη(X) = sup
x,y∈X
x /=y

∣
∣f(x) − f(y)∣∣
d(x, y)η

(2.30)

and define the homogeneous Hölder space

Ċη(X) =
{
f ∈ C(X) : ‖f‖Ċη(X) <∞}; (2.31)

we also consider the inhomogeneous Hölder space

Cη(X) =
{
f ∈ C(X) : ‖f‖Cη(X) <∞},

C
η

b(X) =
{
f ∈ Cη(X) : f has bounded support

}
,

(2.32)

where ‖f‖Cη(X) = ‖f‖L∞(X) + ‖f‖Ċη(X). Then any f ∈ C
η

b(X) is also a test function of type
(x1, r, η, γ) for any x1 ∈ X, r > 0, and γ > 0.

Now fix x1 ∈ X and let G(β, γ) = G(x1, 1, β, γ). It is easy to see that

G(x0, r, β, γ
)
= G(β, γ) (2.33)

with the equivalent norms for all x0 ∈ X and r > 0. Furthermore, it is easy to check that
G(β, γ) is a Banach space with respect to the norm in G(β, γ).

It is well known that even when X = R
n, G(β1, γ) is not dense in G(β2, γ) if β1 > β2,

which will bring us some inconvenience. To overcome this defect, in what follows, for given
ε ∈ (0, 1], let Gε

0(β, γ) be the completion of the space G(ε, ε) in G(β, γ) when 0 < β, γ ≤ ε.
Obviously, Gε

0(ε, ε) = G(ε, ε). Moreover, f ∈ Gε
0(β, γ) if and only if f ∈ G(β, γ) and there

exist {fn}n∈N
⊂ G(ε, ε) such that ‖f − fn‖G(β,γ) → 0 as n → ∞. If f ∈ Gε

0(β, γ), we then
define ‖f‖Gε

0(β,γ)
= ‖f‖G(β,γ). Then, obviously, Gε

0(β, γ) is a Banach space and we also have

‖f‖Gε
0(β,γ)

= limn→∞‖fn‖G(β,γ) for the above chosen {fn}n∈N
.

We define the dual space (Gε
0(β, γ))

′ to be the set of all linear functionalsL fromGε
0(β, γ)

to C with the property that there exists C ≥ 0 such that for all f ∈ Gε
0(β, γ),

|L(f)| ≤ C‖f‖Gε
0(β,γ)

. (2.34)

We denote by 〈h, f〉 the natural pairing of elements h ∈ (Gε
0(β, γ))

′ and f ∈ Gε
0(β, γ). Clearly,

for all h ∈ (Gε
0(β, γ))

′, 〈h, f〉 is well defined for all f ∈ Gε
0(x1, r, β, γ) with x1 ∈ X and r > 0.
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In the sequel, we define

G̊(x1, r, β, γ
)
=
{
f ∈ G(x1, r, β, γ

)
:
∫

X
f(x)dμ(x) = 0

}
, (2.35)

which is called the space of test functions with mean zero. The space G̊ε
0(β, γ) is defined to be the

completion of the space G̊(ε, ε) in G̊(β, γ) when 0 < β, γ < ε. Moreover, if f ∈ G̊ε
0(β, γ), we

then define ‖f‖G̊ε
0(β,γ)

= ‖f‖G(β,γ).
By essentially following a procedure similar to that of [44, Lemma 3.5.1], we can

establish some kind of decomposition for test functions with mean zero.

Proposition 2.9. Let x1 ∈ X, r > 0, 0 < β ≤ 1, and γ > 0, and let f ∈ G̊(x1, r, β, γ). Then for any
γ̃ ∈ (0, γ] and all x ∈ X,

f(x) =
∞∑

l=0

2−lγ̃ϕl(x), (2.36)

where ϕl is an adjusted bump function associated with the ball B(x1, 2lr), which means that there
exists a constant C > 0 independent of r and l such that

(i) suppϕl ⊂ B(x1, 2lr);
(ii) |ϕl(x)| ≤ C(1/V2lr(x1)) for all x ∈ X;

(iii) ‖ϕl‖Ċη(X) ≤ C(2lr)
−η
(1/V2lr(x1)) for all 0 < η ≤ β;

(iv)
∫
Xϕl(x)dμ(x) = 0.

Moreover, the series in (2.36) converges to f pointwise, as well as in Lp(X) for p ∈ [1,∞], and in
G̊β∧γ̃
0 (β′, γ ′) with 0 < β′, γ ′ < (β ∧ γ̃) and also in (G̊β∧γ̃

0 (β′, γ ′))′ with 0 < β′, γ ′ ≤ (β ∧ γ).

Proof. Fix a nonnegative function α ∈ C1(R) such that α(t) = 1 if t ≤ 1/2 and α(t) = 0 if t ≥ 1.
Let A0(x) = α(d(x, x1)/r)f(x), and for l ∈ N,

Al(x) =
[
α

(
d
(
x, x1

)

2lr

)
− α
(
d
(
x, x1

)

2l−1r

)]
f(x). (2.37)

Then f(x) =
∑∞

l=0Al(x), and for all γ̃ ∈ (0, γ],

∣∣Al(x)
∣∣ � 2−lγ̃

1
V2lr
(
x1
) . (2.38)

Define al =
∫
XAl(x)dμ(x) and vl =

∑l
j=0aj . Let η̃l(x) = α(d(x, x1)/2lr) and ηl(x) =

η̃l(x)[
∫
Xη̃l(z)dμ(z)]

−1. Finally, if we define

Ãl(x) = Al(x) − alηl(x) + vl
(
ηl(x) − ηl+1(x)

)
(2.39)
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and ϕl(x) = 2lγ̃ Ãl(x), then it is easy to verify that ϕl satisfies (i) through (iv) of the proposition
and (2.36) holds pointwise.

Obviously, ϕl ∈ G̊(β, γ) and therefore ϕl ∈ G̊β∧γ̃
0 (β′, γ ′) for 0 < β′, γ ′ ≤ (β ∧ γ̃). Moreover,

if l ∈ N is large enough, then there exists a constant Cr,x1 > 0, which is independent of x, such
that for all x ∈ B(x1, 2lr), 1 + d(x, x1) ≤ Cr,x12

l and hence

∥
∥ϕl
∥
∥
G̊β∧γ̃
0 (β′,γ ′) ≤ Cr,x12

lγ ′ . (2.40)

From this, it follows that if γ ′ < γ̃ ,

∥
∥
∥
∥
∥
f −

L∑

l=0

2−lγ̃ϕl

∥
∥
∥
∥
∥
G̊β∧γ̃
0 (β′,γ ′)

� Cr,x1

∞∑

l=L+1

2−l(γ̃−γ
′) ∼ Cr,x12

−L(γ̃−γ ′) −→ 0, (2.41)

as L → ∞. This shows that (2.36) holds in G̊β∧γ̃
0 (β′, γ ′) with 0 < β′, γ ′ < (β ∧ γ̃). By Fatou’s

lemma and Minkowski’s inequality, we also obtain that for any p ∈ [1,∞],

∥∥∥∥∥
f −

L∑

l=0

2−lγ̃ϕl

∥∥∥∥∥
Lp(X)

≤
∞∑

l=L+1

2−lγ̃
∥∥ϕl
∥∥
Lp(X)

�
∞∑

l=L+1

2−lγ̃
1

V2lr
(
x1
)1−1/p

� 1

Vr
(
x1
)1−1/p 2

−Lγ̃

−→ 0,

(2.42)

as L → ∞. That is, (2.36) holds in Lp(X)with p ∈ [1,∞].
Finally, for any ψ ∈ G̊β∧γ

0 (β′, γ ′)with 0 < β′, γ ′ ≤ (β∧γ), fromHölder’s inequality, Fatou
lemma and Minkowski’s inequality, it follows that

∣∣∣∣∣
〈f, ψ〉 −

L∑

l=0

2−lγ̃
〈
ϕl, ψ

〉
∣∣∣∣∣
≤
∥∥∥∥∥

∞∑

l=L+1

2−lγ̃ϕl

∥∥∥∥∥
L1(X)

‖ψ‖L∞(X)

�
( ∞∑

l=L+1

2−lγ̃
)

‖ψ‖L∞(X)

� 2−Lγ̃‖ψ‖L∞(X)

−→ 0,

(2.43)

as L → ∞. Thus, (2.36) also holds in (G̊β∧γ
0 (β′, γ ′))′ with 0 < β′, γ ′ ≤ (β ∧ γ), which completes

the proof of Proposition 2.9.
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The following proposition is a slight variant of Proposition 2.9.

Proposition 2.10. Let x1 ∈ X, r > 0, 0 < β ≤ 1, and γ > 0, and let f ∈ (x1, r, β, γ). Then for any
γ̃ ∈ (0, γ] and all x ∈ X,

f(x) =
∞∑

l=0

2−lγ̃ϕl(x), (2.44)

where ϕl is an adjusted bump function associated with the ball B(x1, 2lr), which means that there
exists a constant C > 0 independent of r and l such that

(i) suppϕl ⊂ B(x1, 2lr);
(ii) |ϕl(x)| ≤ C(1/V2lr(x1)) for all x ∈ X;

(iii) ‖ϕl‖Ċη(X) ≤ C(2lr)
−η
(1/V2lr(x1)) for all 0 < η ≤ β.

Moreover, the series in (2.44) converges to f pointwise, as well as in Lp(X) for p ∈ [1,∞], and in
Gβ∧γ̃
0 (β′, γ ′) with 0 < β′, γ ′ < (β ∧ γ̃) and also in (Gβ∧γ

0 (β′, γ ′))′ with 0 < β′, γ ′ ≤ (β ∧ γ).

Proof. Let α ∈ C1(R) be as in the proof of Proposition 2.9. Let A0(x) = α(d(x, x1)/r)f(x), and
for l ∈ N,

Al(x) =
[
α

(
d
(
x, x1

)

2lr

)
− α
(
d
(
x, x1

)

2l−1r

)]
f(x). (2.45)

Then for l ∈ Z+, setting ϕl(x) = 2lγ̃Al(x),we can verify that the {ϕl}l∈Z+
have all the properties

stated in the proposition, which completes the proof of Proposition 2.10.

In what follows, for any β ∈ (0, 1], γ > 0, and r > 0, we let

G̊b

(
x1, r, β, γ

)
=
{
f ∈ G̊(x1, r, β, γ

)
: f has bounded support

}
,

Gb

(
x1, r, β, γ

)
=
{
f ∈ G(x1, r, β, γ

)
: f has bounded support

}
.

(2.46)

Also, for η ∈ (0, 1], let

C̊
η

b
(X) =

{
f ∈ Cη

b
(X) :

∫

X
f(x)dμ(x) = 0

}
. (2.47)

From Propositions 2.7, 2.9, and 2.10, it is easy to deduce the following useful result; we
omit the details.

Corollary 2.11. Let ε1 ∈ (0, 1] be as in Definition 2.2, 0 < β ≤ ε1 and γ > 0. Then,

(i) both C̊β

b
(X) and G̊b(x1, r, β, γ) for any fixed x1 ∈ X and r > 0 are dense in G̊(x1, r, β, γ);

(ii) both C
β

b
(X) and Gb(x1, r, β, γ) for any fixed x1 ∈ X and r > 0 are dense in both

G(x1, r, β, γ) and Lp(X) with p ∈ [1,∞).
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2.2. Boundedness of singular integrals on spaces of test functions with mean zero

Let β ∈ (0, 1]. In analogy with the topology of the space D(Rn), in what follows, we endow
the spaces Cβ

b(X) (resp., C̊β

b(X)) with the strict inductive limit topology (see [30, page 273] or

[67]) arising from the decomposition Cβ

b(X) =
⋃
nC

β(Bn) (resp., C̊
β

b(X) =
⋃
nC̊

β(Bn)), where
{Bn}n is any increasing sequence of closed balls with the same center and X =

⋃
nBn, and the

space Cβ(Bn) (resp., C̊β(Bn))means the set of all functions f ∈ Cβ(X) (resp., f ∈ C̊β(X))with
supp f ⊂ Bn, whose topology is given by the norm ‖·‖Cβ(X). It is well known that the topology

of Cβ

b(X) (resp., C̊β

b(X)) is independent of the choice of closed balls {Bn}n; see [30, page 273]
or [67]. Their dual spaces (Cβ

b
(X))′ and (C̊β

b
(X))′ will be endowed with the weak∗ topology.

We first have the following basic facts.

Proposition 2.12. Let β ∈ (0, 1] and let T be a continuous linear operator from C
β

b(X) to (Cβ

b(X))′.
Assume that T has a distributional kernel K, which is locally integrable away from the diagonal of
X ×X, in the sense that for all ϕ, ψ ∈ Cβ

b(X) with disjoint supports,

〈Tϕ, ψ〉 =
∫∫

X×X
K(x, y)ϕ(y)ψ(x)dμ(x)dμ(y). (2.48)

Assume also that there exists a constant CT > 0 such that for all x, x′, y ∈ X with d(x, x′) ≤
d(x, y)/2 and x /=y,

∣∣K(x, y) −K(x′, y
)∣∣ ≤ CT

d
(
x, x′)ε

V (x, y)d(x, y)ε
. (2.49)

Then T can be extended to a continuous linear operator from Cβ(X) to (C̊β

b
(X))′.

Proof. For any f ∈ Cβ(X) and g ∈ C̊β

b(X), suppose supp g ⊂ B(x0, r) for some x0 ∈ X and r >

0. Choose ψ ∈ Cβ

b(X) such that ψ(x) = 1 when x ∈ B(x0, 2r) and ψ(x) = 0 when x /∈ B(x0, 4r).

It is easy to see that ψf ∈ C
β

b
(X), which shows that 〈T(ψf), g〉 is well defined. On the other

hand, we define

〈
T
(
(1 − ψ)f), g〉 =

∫∫

X×X

[
K(x, y) −K(x0, y

)](
1 − ψ(y))f(y)g(x)dμ(x)dμ(y). (2.50)

By (2.49) and Lemma 2.1(i), it is easy to see that the right-hand side of the above equality is
finite; furthermore, if f has also bounded support, this equals with

∫∫

X×X
K(x, y)

(
1 − ψ(y))f(y)g(x)dμ(x)dμ(y), (2.51)

which coincides with (2.48). Moreover, it is easy to verify that

〈
T(ψf), g

〉
+
〈
T
(
(1 − ψ)f), g〉 (2.52)
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is independent of choice of ψ. Thus we can define Tf by letting

〈Tf, g〉 =
〈
T(ψf), g

〉
+
〈
T
(
(1 − ψ)f), g〉. (2.53)

In this sense, we have Tf ∈ (C̊β

b
(X))′, which completes the proof of Proposition 2.12.

We also need the weak boundedness property and the strong weak boundedness
property of operators; see [68] for the definition of the weak boundedness property on R

n

and [34] for the definition of the strong weak boundedness property on Ahlfors 1-regular
metric measure spaces.

In what follows, for β ∈ (0, 1], we denote by Cβ

b
(X × X) the set of all functions f on

X ×X with bounded support, which satisfy that for any x ∈ X, both f(x, ·) and f(·, x) are in
Ċβ(X).

Definition 2.13. Let β ∈ (0, 1] and let T be a continuous linear mapping from C
β

b
(X) to

(Cβ

b
(X))′. The operator T is said to have the weak boundedness property of order β (for short,

T ∈ WBP(β)) if there exists a constant C > 0 such that for all φ, ψ ∈ C
β

b(X) with
suppφ, suppψ ⊂ B(z, r) for some z ∈ X and r > 0, ‖φ‖Ċβ(X) ≤ r−β and ‖ψ‖Ċβ(X) ≤ r−β,

∣∣〈Tφ, ψ〉∣∣ ≤ Cμ(B(z, r)). (2.54)

The minimal constant C as above is denoted by ‖T‖WBP(β).

Remark 2.14. (i) Let β ∈ (0, 1] and γ > 0. Let us also endow the space Gb(β, γ) (resp., G̊b(β, γ))
with the strict inductive limit topology in a similar way as the space Cβ

b(X) (resp., C̊β

b(X))
and its dual space (Gb(β, γ))

′ (resp., (G̊b(β, γ))
′)with the weak∗ topology. Then, as topological

spaces, Cβ

b
(X) = Gb(β, γ) and (Cβ

b
(X))′ = (Gb(β, γ))

′ (resp., C̊β

b
(X) = G̊b(β, γ) and (C̊β

b
(X))′ =

(G̊b(β, γ))
′).

(ii)We remark that ifX is a (κ, n)-space as in Definition 1.1, then there exists a constant
C > 0 such that for all φ ∈ Ċβ

b(X) and all x ∈ X,

∣∣φ(x)
∣∣ ≤ C[diam (suppφ)

]β‖φ‖Ċβ(X). (2.55)

To see this, assume that suppφ ⊂ B(x0, r) for some x0 ∈ X and r > 0. By Remark 1.2, we can
find a y0 ∈ X such that r ≤ d(y0, x0) ≤ 2r. Then φ(y0) = 0 and for all x ∈ suppφ,

∣∣φ(x)
∣∣ =
∣∣φ(x) − φ(y0

)∣∣ ≤ d(x, y0
)β‖φ‖Ċβ(X) ≤ (3r)β‖φ‖Ċβ(X), (2.56)

which is just (2.55). By this observation, we see that the functions φ and ψ in Definition 2.13
also satisfy ‖φ‖L∞(X) � 1 and ‖ψ‖L∞(X) � 1.

(iii) From Hölder’s inequality, it is easy to deduce that if T is bounded on Lp(X) with
p ∈ (1,∞), then T ∈ WBP(β) for any β ∈ (0, 1] and

‖T‖WBP(β) ≤ ‖T‖Lp(X)→Lp(X), (2.57)
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where and in what follows, ‖T‖Lp(X)→Lp(X) denotes the operator norm of T from Lp(X) to
Lp(X).

(iv) Following [34], we can also introduce a slightly stronger property than WBP,
called strong weak boundedness property in [34] as follows: let T be as in Definition 2.13.
The operator T is said to have the strong weak boundedness property of order β (for short,
T ∈ SWBP(β)) if T has a distributional kernel K ∈ (Cβ

b
(X × X))′ such that (2.48) holds and

there exists a constant C > 0 such that for all f ∈ Cβ

b(X ×X) with supp f ⊂ B(x0, r) × B(x0, r)
for some x0 ∈ X and r > 0, ‖f(·, y)‖Ċβ(X) ≤ r−β for all y ∈ X and ‖f(x, ·)‖Ċβ(X) ≤ r−β for all
x ∈ X,

∣
∣〈K, f〉∣∣ ≤ Cμ(B(x0, r

))
. (2.58)

The minimal constant C as above is denoted by ‖T‖SWBP(β).
By the observation in (ii) of this remark, the function f also satisfies that ‖f‖L∞(X×X)

� 1.
(v) Let i = 1, 2, βi ∈ (0, 1] and let T be a continuous linear mapping from C

βi
b (X) to

(Cβi
b (X))′ with a distributional kernel K as in (2.48) of Proposition 2.12. If K satisfies the size

condition that for all x, y ∈ Xwith x /=y,

∣∣K(x, y)
∣∣ ≤ CT

1
V (x, y)

, (2.59)

then T ∈ WBP(β1) if and only if T ∈ WBP(β2). This fact can be proved by an argument similar
to that used in the proof of Proposition 1 in [64] and we omit the details.

In what follows, standard notions from distribution theory carry over to continuous
linear functionals on Cβ

b(X). For instance, if U ⊂ X is an open subset, the restriction of ω ∈
(Cβ

b
(X))′ to U is defined by 〈ω|U, ϕ〉 = 〈ω,ϕ〉 for all ϕ ∈ Cβ

b
(X) supported in U.

Using some ideas from Meyer in [69], we can obtain the following useful estimates
which play a key role in establishing the boundedness of singular integrals on spaces of test
functions with mean zero.

Lemma 2.15. Fix a bump function θ ∈ C1
b
(R) with 0 ≤ θ(x) ≤ 1 for all x ∈ supp θ ⊂ {x ∈ R : |x| ≤

2} and θ(x) = 1 on {x ∈ X : |x| ≤ 1}. For any fixed z ∈ X and r > 0, let θz,r(y) = θ(d(z, y)/r) for
all y ∈ X and put ωz,r = 1 − θz,r . Let T be as in Proposition 2.12. If T(1) ∈ (C̊β

b
(X))′ is 0, then the

following hold.

(i) The restriction of the linear functional T(θz,r) ∈ (Cβ

b
(X))′ to the ball B(z, r/2) is a mea-

surable function, and for a.e. x ∈ B(z, r/2),

T
(
θz,r
)
(x) = Cz,r −

∫

X

[
K(x, y) −K(z, y)

]
ωz,r(y)dμ(y), (2.60)

where Cz,r is a constant independent of x.
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(ii) If further assuming that T ∈ WBP(β), then there exists a constant C > 0 such that for a.e.
x ∈ B(z, r/2),

∣
∣T
(
θz,r
)
(x)
∣
∣ ≤ C(CT + ‖T‖WBP(β)

)
. (2.61)

Proof. Assume that T(1) = 0 in (C̊β

b(X))′. For any f ∈ C̊
β

b(X) with supp f ⊂ B(z, r/2), since∫
Xf(x)dμ(x) = 0, we have

0 =
〈
T(1), f

〉
=
〈
T(θz,r) +

∫

X

[
K(·, y) −K(z, y)

]
ωz,r(y)dμ(y), f

〉
. (2.62)

Let α ∈ C1(R) be as in the proof of Proposition 2.9, and η̃z,r(y) = α(d(y, z)/(r/2)). Set

ηz,r(y) = η̃z,r(y)
[∫

X
η̃z,r(w)dμ(w)

]−1
. (2.63)

Then ηz,r ∈ C1
b
(X), suppηz,r ⊂ B(z, r/2) and

∫
Xηz,r(y)dμ(y) = 1. For any f ∈ C

β

b
(X) with

supp f ⊂ B(z, r/2), we set f̃(y) = f(y) − ηz,r(y)
∫
Xf(y)dμ(y); then f̃ ∈ C̊β

b
(X) with supp f̃ ⊂

B(z, r/2). Applying (2.62) to f̃ and using Corollary 2.11(ii) in the case p = 1 show that the
restriction of the linear functional T(θz,r) ∈ (Cβ

b(X))′ to the ball B(z, r/2) is a measurable
function, and for a.e. x ∈ B(z, r/2),

〈
T
(
θz,r
)
(x) +

∫

X

[
K(x, y) −K(z, y)

]
ωz,r(y)dμ(y), f

〉

=
∫

X

〈
T
(
θz,r
)
+
∫

X

[
K(·, y) −K(z, y)

]
ωz,r(y)dμ(y), ηz,r

〉
f(x)dμ(x),

(2.64)

which implies (i) with

Cz,r =
〈
T
(
θz,r
)
+
∫

X

[
K(·, y) −K(z, y)

]
ωz,r(y)dμ(y), ηz,r

〉
, (2.65)

by noticing that Cz,r is a constant independent of x and the choice of ηz,r , but, it may depend
on z and r.
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To verify (ii), by (2.62) together with the definition of T(1), (2.49) of Proposition 2.12
and Lemma 2.1(i), we have

∣
∣〈T
(
θz,r
)
, f
〉∣∣ =

∣
∣ − 〈T(ωz,r

)
, f
〉∣∣

=
∣
∣
∣
∣

∫∫

X×X

[
K(x, y) −K(z, y)

]
ωz,r(y)f(x)dμ(y)dμ(x)

∣
∣
∣
∣

≤ CT

∫

X

[∫

2d(z,x)<d(z,y)

d(x, z)ε

V (z, y)d(z, y)ε
dμ(y)

]∣
∣f(x)

∣
∣dμ(x)

� CT‖f‖L1(X),

(2.66)

which together with Corollary 2.11(ii) in the cases r = 1 and p = 1 again shows that for a.e.
x ∈ B(z, r/2),

T
(
θz,r
)
(x) = Ωz,r(x) + Cz,r , (2.67)

where ‖Ωz,r‖L∞(X) � CT and Cz,r is a constant independent of x. We now estimate Cz,r by

using that T ∈ WBP(β). To this end, let g ∈ C
β

b(X) with supp g ⊂ B(z, r), ‖g‖L∞(X) ≤ 1,
‖g‖Ċβ(X) ≤ r−β, and

∫
Xg(x)dμ(x) ∼ μ(B(z, r)). From (2.67) and T ∈ WBP(β), it follows that

∣∣Cz,r

∣∣
∣∣∣∣

∫

X
g(x)dμ(x)

∣∣∣∣ =
∣∣∣∣〈T
(
θz,r
)
, g〉 −

∫

X
Ωz,r(x)g(x)dμ(x)

∣∣∣∣

�
(‖T‖WBP(β) + CT

)
μ
(
B(z, r)

)
,

(2.68)

which implies that |Cz,r | � ‖T‖WBP(β) + CT , and hence, completes the proof of Lemma 2.15.

We recall the notion of the space of functions with boundedmean oscillation, BMO(X),
which was first introduced by John and Nirenberg in [70], and was proved to be the dual
space ofH1

at(X) in [28].

Definition 2.16. Let 1 ≤ q < ∞. The space BMOq(X) is defined to be the set of all f ∈ L
q

loc(X)
such that

‖f‖BMOq(X) = sup
x∈X, r>0

{
1

μ
(
B(x, r)

)
∫

B(x,r)

∣∣f(y) −mB(x,r)(f)
∣∣qdμ(y)

}1/q

<∞. (2.69)

When q = 1, one denotes BMO1(X) simply by BMO(X).

It was proved in [28] that for any 1 ≤ q1, q2 < ∞, BMOq1(X) and BMOq2(X) are equal
as vector spaces and the seminorms ‖·‖BMOq1 (X) and ‖·‖BMOq2 (X) are equivalent. Moreover, if
we letN ≡ C be the subspace of all constant functions onX, then the quotient space BMO(X)/N
becomes a Banach space in a natural way.
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Remark 2.17. Let β ∈ (0, ε] and γ > 0. It is easy to see that T(1) = 0 in (C̊β

b
(X))′ if and

only if T(1) ∈ (C̊β

b
(X))′ is constant; see also [71, page 22]. Moreover, from Corollary 2.11(i),

Proposition 5.21, Theorems 5.19(i) and 6.11 below, it is easy to see that T(1) ∈ (C̊β

b
(X))′ is

constant if and only if T(1) ∈ BMO(X) is constant, which is also equivalent to T(1) = 0 in
BMO(X).

We now establish a basic boundedness result for singular integrals on spaces of test
functions with mean zero, which will be a key tool for the whole paper.

Theorem 2.18. Let ε ∈ (0, 1], β ∈ (0, ε), and let T be as in Proposition 2.12 with the distributional
kernel K satisfying the following additional conditions that

(i) for all x, y ∈ X with x /=y, |K(x, y)| ≤ CT (1/V (x, y));

(ii) for all x, y, y′ ∈ X with d(y, y′) ≤ d(x, y)/2 and x /=y,

∣∣K(x, y) −K(x, y′)∣∣ ≤ CT

d
(
y, y′)ε

V (x, y)d(x, y)ε
; (2.70)

(iii) for all x, x′, y, y′ ∈ X with d(x, x′) ≤ d(x, y)/3, d(y, y′) ≤ d(x, y)/3 and x /=y,

∣∣[K(x, y) −K(x′, y
)] − [K(x, y′) −K(x′, y′)]∣∣ ≤ CT

d
(
x, x′)εd

(
y, y′)ε

V (x, y)d(x, y)2ε
. (2.71)

If T ∈ WBP(β) and T(1) = 0 in (C̊β

b(X))′, then T extends to a bounded linear operator from
G̊(x1, r, β, γ) to G(x1, r, β, γ) for all x1 ∈ X, r > 0, and γ ∈ (0, ε). Moreover, there exists a constant
Cβ,γ,C0 > 0 such that for all f ∈ G̊(x1, r, β, γ) with any x1 ∈ X, any r > 0, and any γ ∈ (0, ε),

‖Tf‖G(x1,r,β,γ) ≤ Cβ,γ,C0

(
CT + ‖T‖WBP(β)

)‖f‖G(x1,r,β,γ). (2.72)

Compared with the corresponding results in [31, 35], Theorem 2.18 has three advan-
tages. (1) Theorem 2.18 is true on spaces of homogeneous type, while the corresponding
results in [31, 35] are proved only for R

n or for spaces of homogeneous type with
μ(B(x, r)) ∼ r for all x ∈ X and 0 < r ≤ diamX, respectively. (2) We do not assume that
T ∗(1) = 0 in Theorem 2.18. Since T ∗(1) = 0 was also assumed in [31, 35], by the T(1)-theorem
in those settings, one knows that T is bounded on L2(X). Thus, for any f ∈ G̊(x1, r, β, γ) for
some x1 ∈ X, r > 0, β ∈ (0, 1] and γ > 0, Tf ∈ L2(X), which makes the proof much easier. (3)
We only require T ∈ WBP(β) instead of T ∈ SWBP(β) in [35].

To prove Theorem 2.18, we first recall the following construction given by Christ
in [72], which provides an analogue of the grid of Euclidean dyadic cubes on spaces of
homogeneous type.

Lemma 2.19. Let X be a space of homogeneous type. Then there exists a collection {Qk
α ⊂ X : k ∈

Z, α ∈ Ik} of open subsets, where Ik is some index set, and constants δ ∈ (0, 1) and C6, C7 > 0 such
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that

(i) μ(X \⋃αQ
k
α) = 0 for each fixed k and Qk

α ∩Qk
β = ∅ if α/= β;

(ii) for any α, β, k, l with l ≥ k, either Ql
β ⊂ Qk

α or Q
l
β ∩Qk

α = ∅;

(iii) for each (k, α) and each l < k there is a unique β such that Qk
α ⊂ Ql

β;

(iv) diam (Qk
α) ≤ C6δ

k;

(v) each Qk
α contains some ball B(zkα, C7δ

k), where zkα ∈ X.

In fact, we can think of Qk
α as being a dyadic cubewith diameter rough δk and centered

at zkα. In what follows, to simplify our presentation, we always suppose δ = 1/2; otherwise,
we need to replace 2−k in the definition of ATIs by δk and some other changes are also
necessary; see [34, pages 96–98] for more details.

To prove Theorem 2.18, we need another technical lemma, where we need Lemma 2.19
and T ∈ WBP(β); see also [69, Lemma 3] and [34, Lemma (3.12)].

In what follows, if Tf ∈ (Cβ

b(X))′ and g ∈ Cβ

b(X), we sometimes will write

∫

X
Tf(x)g(x)dμ(x) (2.73)

in place of 〈Tf, g〉, in order to indicate more clearly the dependence on the variable x.

Lemma 2.20. Let ε ∈ (0, 1], β ∈ (0, ε), γ ∈ (0, ε] and let T be as in Proposition 2.12 with the
distributional kernel K satisfying the additional size condition (2.59). Let θ be as in Lemma 2.15
and for any fixed x1 ∈ X and r > 0, one defines θ̃ ≡ θx1,20r and ω̃ ≡ ωx1,20r in the same way as
in Lemma 2.15. If T ∈ WBP(β) and T(1) = 0 in (C̊β

b(X))′, then for any f ∈ Gb(x1, r, β, γ), the

restriction of the linear functional Tf ∈ (Cβ

b(X))′ to the ball B(x1, 10r) is a measurable function, and
for a.e. x ∈ B(x1, 10r),

Tf(x) =
∫

X
K(x, y)

[
f(y) − f(x)]θ̃(y)dμ(y) +

∫

X
K(x, y)f(y)ω̃(y)dμ(y) + f(x)T(θ̃)(x),

(2.74)

where the first two integrals are absolutely convergent.

Proof. We make use of some ideas used in the proofs of Lemma 3 in [69] and Lemma (3.12)
in [34]. For any fixed f ∈ Gb(x1, r, β, γ) and any ψ ∈ Cβ

b
(X)with suppψ ⊂ B(x1, 10r), we have

〈Tf, ψ〉 =
〈
T
(
fθ̃
)
, ψ
〉
+
〈
T
(
fω̃
)
, ψ
〉

=
∫

X
T
(
θ̃
[
f − f(x)])(x)ψ(x)dμ(x) +

∫

X
T(θ̃)(x)f(x)ψ(x)dμ(x)

+
∫∫

X×X
K(x, y)ψ(x)f(y)ω̃(y)dμ(x)dμ(y)

≡ Y1 + Y2 + Y3,

(2.75)
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where the first two integrals have to be interpreted in the sense of “distributions,” whereas
the third one is an absolutely convergent integral.

Actually, by Lemma 2.15(ii), T(θ̃) is a bounded function in B(x1, 10r), and we have

∣
∣Y2
∣
∣ ≤
(

sup
x∈B(x1,10r)

∣
∣T
(
θ̃
)
(x)
∣
∣
)∫

X

∣
∣ψ(y)f(y)

∣
∣dμ(y) � 1

Vr
(
x1
)‖ψ‖L1(X), (2.76)

which is the desired estimate.
Notice that if d(x, x1) < 10r, then x /∈ supp ω̃. Moreover, if we put

Y3,1(x) ≡
∫

X
K(x, y)f(y)ω̃(y)dμ(y), (2.77)

then for x ∈ B(x1, 10r),

∣∣Y3,1(x)
∣∣ � 1

Vr
(
x1
)
+ V
(
x1, x

) . (2.78)

In fact, we first notice that ω̃(y)/= 0 implies that d(y, x1) ≥ 20r ≥ 2d(x, x1). From this, it
follows that V (x1, y) ≥ μ(B(x1, 2d(x, x1))) ≥ V (x1, x) and d(y, x1) ≤ 2d(x, y), which together
with (1.2) shows that

V
(
x1, y

) ∼ V
(
y, x1

)
= μ
(
B
(
y, d
(
y, x1

))) ≤ μ(B(y, 2d(x, y))) � V (y, x) ∼ V (x, y). (2.79)

These estimates together with Lemma 2.1(i) and (2.59) imply that

∣∣Y3,1(x)
∣∣ �
∫

d(y,x1)≥20r

1
V (x, y)

1
Vr
(
x1
)
+ V
(
x1, y

)
rγ

(
r + d

(
y, x1

))γ dμ(y)

� 1
Vr
(
x1
)
+ V
(
x1, x

) ,

(2.80)

which is just (2.78). Noticing that suppψ ∩ supp (fω̃) = ∅, by the assumption (2.48) of
Proposition 2.12 and (2.78), we have

∣∣Y3
∣∣ =
∣∣∣∣

∫

X
Y3,1(x)ψ(x)dμ(x)

∣∣∣∣ �
1

Vr
(
x1
)‖ψ‖L1(X), (2.81)

which is again the desired estimate.
Let k ∈ N be large enough, which will be determined later, and let {Sk}k∈Z

be an ATI
with bounded support as constructed in Theorem 2.6. Let η ∈ C2(R) be radial and η(t) = 1
when t ∈ [0, 23], η(t) = 0 when |t| > 24 and 0 ≤ η(t) ≤ 1 for all t ∈ R. For any x, y ∈ R,
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we then define λk(x, y) =
∫
XSk(x, z)η(2

kd(z, y))dμ(z). It is easy to see that λk(x, y) = 0 if
d(x, y) ≥ 25−k, and that

λk(x, y) =
∫

X
Sk(x, z)dμ(z) = 1, if d(x, y) < 2−k. (2.82)

For any fixed k ∈ N, choose J ∈ N so large that C62−J ≤ 23−k. Put

NJ =
{
i ∈ IJ : QJ

i ∩ B
(
x, 22−k

)
/=∅ for some x ∈ B(x1, 10r

)}
, (2.83)

and for all x ∈ B(x1, 10r), Nx
J = {i ∈ IJ : QJ

i ∩ B(x, 22−k)/=∅}, where QJ
i is the dyadic cube

as in Lemma 2.19. Let �NJ and �Nx
J denote the cardinality of NJ and Nx

J , respectively. It is

easy to see that if QJ
i ∩ B(x, 22−k)/=∅ for some x ∈ B(x1, 10r), then QJ

i ⊂ B(x1, 24−k + 10r) and
B(x1, 24−k + 10r) ⊂ B(zQJ

i
, 2(24−k + 10r)), where zQJ

i
is the center ofQJ

i as in Lemma 2.19. From
this, and Lemma 2.19(i) and (v), it is easy to see that

�NJ � 2nJ
(
r + 2−k

)n
. (2.84)

Similarly, �Nx
J � 2(J−k)n.

We now claim that for any given k ∈ N and any given x ∈ B(x1, 10r),

λk(x, ·) = lim
J→∞

∑

i∈NJ

Sk
(
x, zQJ

i

)
η
(
2kd
(
zQJ

i
, ·))μ(QJ

i

)
, (2.85)

1 − λk(x, ·) = lim
J→∞

∑

i∈NJ

Sk
(
x, zQJ

i

)[
1 − η(2kd(zQJ

i
, ·))]μ(QJ

i

)
(2.86)

hold in Cβ(X).
We only prove (2.85), the proof of (2.86) being similar. To this end, it is easy to see that

λk(x, y) −
∑

i∈NJ

Sk
(
x, zQJ

i

)
η
(
2kd
(
zQJ

i
, y
))
μ
(
Q
J
i

)

=
∑

i∈Nx
J

∫

Q
J
i

[
Sk(x, z) − Sk

(
x, zQJ

i

)]
η
(
2kd(z, y)

)
dμ(z)

+
∑

i∈Nx
J

∫

Q
J
i

Sk
(
x, zQJ

i

)[
η
(
2kd(z, y)

) − η(2kd(zQJ
i
, y
))]

dμ(z)

≡ Y4(y) + Y5(y).

(2.87)
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Since z ∈ Q
J
i , by Lemma 2.19(iv), we have d(z, zQJ

i
) ≤ C62−J , which together with the

regularity of Sk yields

∣
∣Y4(y)

∣
∣ �
∑

i∈Nx
J

2k−J

V2−k(x)
μ
(
Q
J
i

)
� 2k−J

V2−k(x)
μ
(
B
(
x, 24−k

))
� 2k−J −→ 0, (2.88)

as J → ∞. Similarly, by the size condition of Sk and the mean value theorem, we have

∣
∣Y5(y)

∣
∣ � 2k−J

1
V2−k(x)

∑

i∈Nx
J

μ
(
Q
J
i

)
� 2k−J −→ 0, (2.89)

as J → ∞. Thus, as J → ∞,

∥∥∥∥∥
λk(x, ·) −

∑

i∈NJ

Sk
(
x, zQJ

i

)
η
(
2kd
(
zQJ

i
, ·))μ(QJ

i

)
∥∥∥∥∥
L∞(X)

−→ 0. (2.90)

For any y, y′ ∈ X, if d(y, y′) ≥ 2k−J , by (2.88), we then have

∣∣Y4(y) − Y4
(
y′)∣∣ � 2(k−J)(1−β)d

(
y, y′)β. (2.91)

If d(y, y′) < 2k−J , by the regularity of Sk and the mean value theorem, we have

∣∣Y4(y) − Y4
(
y′)∣∣ =

∣∣∣∣∣

∑

i∈Nx
J

∫

Q
J
i

[
Sk(x, z) − Sk

(
x, zQJ

i

)][
η
(
2kd(z, y)

) − η(2kd(z, y′))]dμ(z)

∣∣∣∣∣

� 22k−J

V2−k(x)
d
(
y, y′)μ

(
B
(
x, 24−k

))

� 2k(3−β)−J(2−β)d
(
y, y′)β.

(2.92)

Similarly, if d(y, y′) ≥ 2k−J , by (2.89), we then have

∣∣Y5(y) − Y5
(
y′)∣∣ � 2(k−J)(1−β)d

(
y, y′)β. (2.93)

To estimate Y5(y) − Y5(y′)when d(y, y′) < 2k−J , by the mean value theorem, we first see that

∣∣[η
(
2kd(z, y)

) − η(2kd(zQJ
i
, y
))] − [η(2kd(z, y′)) − η(2kd(zQJ

i
, y′))]∣∣ � 2kd

(
z, zQJ

i

)
,

∣∣[η
(
2kd(z, y)

) − η(2kd(zQJ
i
, y
))] − [η(2kd(z, y′)) − η(2kd(zQJ

i
, y′))]∣∣ � 2kd

(
y, y′).

(2.94)
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Taking a suitable geometric mean of these estimates, we find that

∣
∣[η
(
2kd(z, y)

) − η(2kd(zQJ
i
, y
))] − [η(2kd(z, y′)) − η(2kd(zQJ

i
, y′))]∣∣

� 2kd
(
y, y′)βd

(
z, zQJ

i

)1−β
.

(2.95)

Using this estimate and the size condition of Sk, we obtain

∣
∣Y5(y) − Y5

(
y′)∣∣ =

∣
∣
∣
∣
∣

∑

i∈Nx
J

∫

Q
J
i

Sk
(
x, zQJ

i

){[
η
(
2kd(z, y)

) − η(2kd(zQJ
i
, y
))]

− [η(2kd(z, y′)) − η(2kd(zQJ
i
, y′))]}dμ(z)

∣
∣∣∣∣

� 2kd
(
y, y′)β2−J(1−β)

1
V2−k(x)

∑

i∈Nx
J

μ
(
Q
J
i

)

� 2kd
(
y, y′)β2−J(1−β).

(2.96)

Thus,

∥∥∥∥∥
λk(x, ·) −

∑

i∈NJ

Sk
(
x, zQJ

i

)
η
(
2kd
(
zQJ

i
, ·))μ(QJ

i

)
∥∥∥∥∥
Ċβ(X)

� 2k(3−β)2−J(1−β) −→ 0, (2.97)

as J → ∞. This establishes (2.85), and hence also (2.86).
We now decompose Y1 into

Y1 =
∫

X
T
(
θ̃
[
f − f(x)][1 − λk(x, ·)

])
(x)ψ(x)dμ(x)

+
∫

X
T
(
θ̃
[
f − f(x)]λk(x, ·)

)
(x)ψ(x)dμ(x)

≡ Y1,1 + Y1,2,

(2.98)

where both integrals have to be interpreted in the sense of “distributions.”
To estimate Y1,1, by (2.86) and (2.84), observe that

Y1,1 = lim
J→∞

∑

i∈NJ

∫

X
T
(
θ̃
[
f − f(x)][1 − η(2kd(zQJ

i
, ·))])(x)Sk

(
x, zQJ

i

)
ψ(x)dμ(x)μ

(
Q
J
i

)

(2.99)
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where the integral has to be interpreted in the sense of “distributions.” However, noticing
that supp θ̃(·)[1 − η(2kd(zQJ

i
, ·))] ∩ suppSk(·, zQJ

i
) = ∅, by (2.48), we then further have

Y1,1 = lim
J→∞

∑

i∈NJ

μ
(
Q
J
i

)
∫∫

X×X
K(x, y)θ̃(y)

[
f(y) − f(x)][1 − η(2kd(zQJ

i
, y
))]

× Sk
(
x, zQJ

i

)
ψ(x)dμ(x)dμ(y).

(2.100)

Notice that

∑

i∈NJ

μ
(
Q
J
i

)
∫∫

X×X

∣
∣K(x, y)θ̃(y)

[
f(y)−f(x)][1−η(2kd(zQJ

i
, y
))]∣∣
∣
∣Sk
(
x, zQJ

i

)
ψ(x)

∣
∣dμ(x)dμ(y)

� μ
(
B
(
x1, 24−k + 10r

))

×
(∫

X

∣∣ψ(x)
∣∣
{∫

d(x,y)≤(r+d(x1,x))/2

∣∣θ̃(y)
∣∣ 1
V (x, y)

(
d(x, y)

r + d
(
x1, x

)
)β

× 1
Vr
(
x1
)
+ V
(
x, x1

)
(

r

r + d
(
x1, x

)
)γ
dμ(y)

+
∫

d(x,y)<50r
d(x,y)>(r+d(x,x1))/2

∣∣θ̃(y)
∣∣
[

1
Vr
(
x1
)
+V
(
x1, y

)
(

r

r+d
(
x1, y

)
)γ

+
1

Vr
(
x1
)
+V
(
x1, x

)
(

r

r+d
(
x1, x

)
)γ]

× 1
V (x, y)

dμ(y)
}
dμ(x)

)

� μ
(
B
(
x1, 24−k + 10r

)) 1
Vr
(
x1
)‖ψ‖L1(X).

(2.101)

Thus, by Lebesgue’s dominated convergence theorem, we have

Y1,1 =
∫∫

X×X
K(x, y)θ̃(y)

[
f(y)−f(x)]ψ(x)

{∫

X

[
1−η(2kd(z, y))]Sk(x, z)dμ(z)

}
dμ(x)dμ(y)

=
∫∫

X×X
K(x, y)θ̃(y)

[
f(y) − f(x)]ψ(x)[1 − λk(x, y)

]
dμ(x)dμ(y),

(2.102)

where the last integral converges absolutely; andmoreover, by (2.82) and an argument similar
to (2.101), we further have |Y1,1| � (1/Vr(x1))‖ψ‖L1(X).
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We next prove that

lim
k→∞

Y1,2 = 0, (2.103)

making use of our assumption that T ∈ WBP(β).
To this end, by (2.85) and (2.84), we have

Y1,2 = lim
J→∞

∑

i∈NJ

μ
(
Q
J
i

)
∫

X
T
(
θ̃
[
f − f(x)]η(2kd(zQJ

i
, ·)))(x)Sk

(
x, zQJ

i

)
ψ(x)dμ(x)

= lim
J→∞

∑

i∈NJ

μ
(
Q
J
i

)
{∫

X
T
(
θ̃
[
f − f(zQJ

i

)]
η
(
2kd
(
zQJ

i
, ·)))(x)Sk(x, zQJ

i
)ψ(x)dμ(x)

+
∫

X
T
(
θ̃η
(
2kd
(
zQJ

i
, ·)))(x)[f(zQJ

i

) − f(x)]Sk
(
x, zQJ

i

)
ψ(x)dμ(x)

}
.

(2.104)

Choose k ∈ N such that 2−k ≤ r/25. We claim that

∣∣∣∣

∫

X
T
(
θ̃
[
f − f(zQJ

i

)]
η
(
2kd
(
zQJ

i
, ·)))(x)Sk

(
x, zQJ

i

)
ψ(x)dμ(x)

∣∣∣∣

� 2−kβ

rβ
1

Vr
(
x1
)‖f‖G(x1,r,β,γ)‖ψ‖Cβ(X),

(2.105)

∣∣∣∣

∫

X
T
(
θ̃η
(
2kd
(
zQJ

i
, ·)))(x)[f(zQJ

i

) − f(x)]Sk
(
x, zQJ

i

)
ψ(x)dμ(x)

∣∣∣∣

� 2−kβ

rβ
1

Vr
(
x1
)‖f‖G(x1,r,β,γ)‖ψ‖Cβ(X).

(2.106)

We only show (2.105), the proof of (2.106) being similar.

To see (2.105), put φ(y) = θ̃(y)[f(y) − f(zQJ
i
)]η(2kd(zQJ

i
, y)) and

g(x) = Sk
(
x, zQJ

i

)
ψ(x). (2.107)

Notice that if f, h ∈ Cβ(X), then

‖fh‖Ċβ(X) � ‖f‖L∞(X)‖h‖Ċβ(X) + ‖f‖Ċβ(X)‖h‖L∞(X). (2.108)

From this, it follows that

‖φ‖Ċβ(X) � ‖f‖G(x1,r,β,γ)
1

rβVr
(
x1
) , (2.109)
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and that

‖g‖Ċβ(X) � ‖ψ‖Cβ(X)
1

V2−k
(
zQJ

i

)2kβ. (2.110)

The estimates (2.109) and (2.110) together with T ∈ WBP(β) imply the claim (2.105).
By (2.105) and (2.106), we know that if 2−k < r/25, then

∣
∣Y1,2
∣
∣ � 2−kβ

rβ
1

Vr
(
x1
)‖f‖G(x1,r,β,γ)‖ψ‖Cβ(X) limJ→∞

∑

i∈NJ

μ
(
Q
J
i

)

� 2−kβ

rβ
‖f‖G(x1,r,β,γ)‖ψ‖Cβ(X),

(2.111)

which implies (2.103).
Thus, we have that for any ψ ∈ C

β

b(X) with suppψ ⊂ B(x1, 10r), |〈Tf, ψ〉| � ‖ψ‖L1(X),
so that Tf agrees with L∞(X) function on B(x1, 10r). Moreover, by (2.102) and Lebesgue’s
dominated convergence theorem, we have

〈Tf, ψ〉 =
∫∫

X×X
K(x, y)ψ(x)θ̃(y)

[
f(y) − f(x)]dμ(y)dμ(x)

+
∫∫

X×X
K(x, y)ψ(x)ω̃(y)f(y)dμ(y)dμ(x)

+
∫

X
T(θ̃)(x)f(x)ψ(x)dμ(x),

(2.112)

as was to be proved.

Proof of Theorem 2.18. By Corollary 2.11(i), we only need to prove Theorem 2.18 for G̊b(x1, r,
β, γ).

Let f ∈ G̊b(x1, r, β, γ). We first verify that Tf(x) satisfies (i) of Definition 2.8 for a.e.
x ∈ X. To this end, we consider two cases.

Case 1 (d(x, x1) < 10r). In this case, let θ̃ and ω̃ be as in Lemma 2.20. By Lemma 2.20, for a.e.
x ∈ B(x1, 10r), we have

Tf(x) =
∫

X
K(x, y)

[
f(y) − f(x)]θ̃(y)dμ(y) +

∫

X
K(x, y)f(y)ω̃(y)dμ(y) + f(x)T

(
θ̃
)
(x)

≡ Z1 + Z2 + Z3.

(2.113)

Lemma 2.15(ii) shows that for a.e. x ∈ B(x1, 10r), |Z3| � |f(x)| � 1/(Vr(x1)+V (x1, x)),which
gives the desired estimate. By (2.78), we have |Z2| � 1/(Vr(x1) + V (x1, x)). For Z1, the facts
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that θ̃(y)/= 0 and d(x, x1) < 10r imply that d(x, y) < 50r. The size condition on K and the
regularity of f yield that

∣
∣Z1
∣
∣ ≤
∫

d(x,y)≤(r+d(x,x1))/2

∣
∣K(x, y)

[
f(y) − f(x)]θ̃(y)∣∣dμ(y)

+
∫

d(x,y)>(r+d(x,x1))/2

∣
∣K(x, y)f(x)θ̃(y)

∣
∣dμ(y)

+
∫

d(x,y)>(r+d(x,x1))/2

∣
∣K(x, y)f(y)θ̃(y)

∣
∣dμ(y)

�
{

1
rβ

1
Vr
(
x1
)
+ V
(
x1, x

)
∫

d(x,y)≤50r

d(x, y)β

V (x, y)
dμ(y)

+
1

Vr
(
x1
)
+ V
(
x1, x

)
∫

50r≥d(x,y)>(r+d(x,x1))/2,
d(x1,y)≤40r

1
V (x, y)

dμ(y)

}

+
∫

50r≥d(x,y)>(r+d(x,x1))/2,
d(x1,y)≤40r

1
V (x, y)

1
Vr
(
x1
)
+ V
(
x1, y

)dμ(y)

≡ Z1,1 + Z1,2.

(2.114)

By Lemma 2.1(i) and (1.2), we obtain

Z1,1 � 1
Vr
(
x1
)
+ V
(
x1, x

)
[
1 +

V (x, 50r)
V (x, r/2)

]
� 1
Vr
(
x1
)
+ V
(
x1, x

) ,

Z1,2 � min

⎧
⎨

⎩
1

Vr
(
x1
) ,
∫

r/2<d(x,y)≤50r,
d(x,x1)/5≤r≤d(x1,y)

1
V (x, y)V

(
x1, y

)dμ(y)

+
1

Vr
(
x1
)
∫

d(x,y)>d(x,x1)/2,
r>d(x1,y)

1
V (x, y)

dμ(y)

⎫
⎬

⎭

� 1
Vr
(
x1
)
+ V
(
x1, x

) .

(2.115)

Combining the estimates for Z1,1 and Z1,2 yields the desired estimate for Z1, which verifies
that Tf(x) satisfies (i) of Definition 2.8 when d(x, x1) < 10r.

Case 2 (d(x, x1) ≡ R ≥ 10r). In this case, for anym ∈ N, let

Bm = B
(
x1, 10(m + 1)r

) \ B(x1, 10mr
)
. (2.116)

For any fixed x0 ∈ Bm, we put Im(y) = θ(10d(x0, y)/37mr), Jm(y) = θ(4d(x1, y)/5mr) and
define Lm(y) by Lm(y) = 1 − Im(y) − Jm(y). Notice that if y ∈ supp Im ∩ supp Jm, then
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d(y, x0) < 37mr/5 and d(y, x1) < 5mr/2, and hence d(x0, x1) ≤ d(x0, y) + d(y, x1) <
(99/10)mr < 10mr, which contracts the choice of x0 ∈ Bm. Therefore, Lm(y) ≥ 0. We also
define f1(y) = f(y)Im(y), f2(y) = f(y)Jm(y) and f3(y) = f(y)Lm(y). We first establish some
estimates on fi with i = 1, 2, 3, when x ∈ Bm.

Obviously f1(y)/= 0 implies that d(y, x0) < 37mr/5, and therefore

d
(
x1, y

) ≥ d(x1, x0
) − d(x0, y

)
>

3
25
R (2.117)

which together with (1.2) and the size condition of f shows that

∣
∣f1(y)

∣
∣ � 1

VR
(
x1
)
(
r

R

)γ
, ∀y ∈ X. (2.118)

We now claim that

∣∣f1(y) − f1
(
y′)∣∣ � 1

VR
(
x1
)
d
(
y, y′)β

Rβ

(
r

R

)γ
, ∀y, y′ ∈ X. (2.119)

To prove (2.119), we consider two cases.

Case 1 (d(y, y′) ≤ (r + d(x1, y))/2). In this case, we divide

f1(y) − f1
(
y′) =

[
f(y) − f(y′)]Im(y)χ0

(
y, y′) + f

(
y′)[Im(y) − Im

(
y′)] = Z4 + Z5, (2.120)

where χ0(y, y′) = χ{y∈X:d(x0,y)<37mr/5}(y) + χ{y′∈X:d(x0,y′)<37mr/5}(y′).
The regularity of f shows that

∣∣Z4
∣∣ �
(

d
(
y, y′)

r + d
(
x1, y

)
)β

1
Vr
(
x1
)
+ V
(
x1, y

)
(

r

r + d
(
x1, y

)
)γ
χ0
(
y, y′). (2.121)

If χ0(y, y′)/= 0, then d(x0, y) < 37mr/5 or d(x0, y′) < 37mr/5. Notice that d(y, y′) ≤ (r +
d(x1, y))/2 implies that 3d(x1, y)/2 ≥ d(x1, y′) − r/2. If d(x0, y′) < 37mr/5, we then further
have 3d(x1, y)/2 ≥ d(x1, x0) − d(x0, y′) − r/2 > 21mr/10 > R/10, and hence d(x1, y) > R/15.
This together with (2.117) implies that if χ0(y, y′)/= 0, then we have

d
(
y, x1

)
>
R

15
. (2.122)

By (2.122) and (1.2), we obtain VR(x1) � V (x1, y). These estimates prove that |Z4| �
(1/VR(x1))(d(y, y′)/R)β(r/R)γ .

The size condition of f implies that

∣∣Z5
∣∣ � 1

Vr
(
x1
)
+ V
(
x1, y′)

(
r

r + d
(
x1, y′)

)γ ∣∣Im(y) − Im
(
y′)∣∣χ0

(
y, y′). (2.123)
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We now claim that

1
Vr
(
x1
)
+ V
(
x1, y′)χ0

(
y, y′) � 1

VR
(
x1
) . (2.124)

To prove (2.124), we consider two subcases.

Subcase 1.1 (r ≥ d(x1, y′)). In this case, (1/(Vr(x1)+V (x1, y′)))χ0(y, y′) � (1/Vr(x1))χ0(y, y′).
If d(x0, y′) < 37mr/5, then d(x1, y′) ≥ d(x1, x0) − d(x0, y′) > 13mr/5 > 2r, which contradicts
the assumption that r ≥ d(x1, y′). Thus, we further have

1
Vr
(
x1
)
+ V
(
x1, y′)χ0

(
y, y′) � 1

Vr
(
x1
)χ{y∈X:d(x0,y)<37mr/5}(y). (2.125)

Since d(x0, y) < 37mr/5 and x ∈ Bm, by (2.117), we have d(y, x1) > 3R/25. Moreover, from
d(y, x1) ≤ d(y, y′) + d(y′, x1) and d(y, y′) ≤ (r + d(x1, y))/2, it follows that d(y, x1) ≤ r +
2d(y′, x1) ≤ 3r. Thus, in this case, R < 25r and hence VR(x1) ≤ Vr(x1). Thus, the claim (2.124)
holds in this case.

Subcase 1.2 (r < d(x1, y′)). In this case, from r < d(x1, y′) and d(y, y′) ≤ (r + d(x1, y))/2, it
follows that d(x1, y) ≤ r + 2d(x1, y′) < 3d(x1, y′), which together with (2.122) implies that
VR(x1) � V (x1, y′). Thus, (1/(Vr(x1) + V (x1, y′)))χ0(y, y′) � 1/VR(x1). Thus, (2.124) also
holds in this case, which completes the proof of claim (2.124).

Notice that if d(x0, y) < 37mr/5, then d(y, x1) ≤ d(x1, x0) + d(x0, y) � R, and if
d(x0, y′) < 37mr/5, since d(y, y′) ≤ (r + d(y, x1))/2, we then have d(y, x1) ≤ r + 2d(y′, x1) ≤
r + 2[d(y′, x0) +d(x0, x1)] � R. These estimates together with d(y, y′) ≤ (r +d(y, x1))/2 again
implies that if χ0(y, y′)/= 0, then d(y, y′) � R and r+d(y, x1) ≤ 2(r+d(x1, y′)), which together
with (2.122) further yields that r + d(x1, y′) � R. All these estimates, (2.124), and the mean
value theorem show that for any β ∈ (0, 1],

∣∣Z5
∣∣ � 1

VR
(
x1
)
(
r

R

)γ ∣∣d(y, x) − d(y′, x
)∣∣

R
� 1
VR
(
x1
)
(
d
(
y, y′)

R

)β(
r

R

)γ
. (2.126)

Case 2 (d(y, y′) ≥ (r + d(y, x1))/2). In this case, notice again that f1(y) − f1(y′)/= 0 implies
that d(x0, y) < 37mr/5 or d(x0, y′) < 37mr/5. If d(x0, y′) < 37mr/5, by d(y, x1) < 2d(y, y′),
we have 10mr ≤ d(x0, x1) ≤ d(x0, y′) + d(y′, y) + d(y, x1) < 37mr/5 + 3d(y, y′). Thus, by
x ∈ Bm, we further have 3R/25 < 13mr/5 < 3d(y, y′), which together with (2.117) and
d(y, x1) < 2d(y, y′) again implies that if f1(y) − f1(y′)/= 0 and d(y, y′) ≥ (r + d(y, x1))/2, then
R < 17d(y, y′). This estimate together with (2.118) yields that for any β > 0,

∣∣f1(y) − f1
(
y′)∣∣ ≤ ∣∣f1(y)

∣∣ +
∣∣f1
(
y′)∣∣ � 1

VR
(
x1
)
(
r

R

)γ
� 1
VR
(
x1
)
(
d
(
y, y′)

R

)β(
r

R

)γ
.

(2.127)

Thus, (2.119) holds.
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As for f3, first observe that obviously, for all y ∈ X,

∣
∣f3(y)

∣
∣ � 1

Vr
(
x1
)
+ V
(
x1, y

)
(

r

r + d
(
y, x1

)
)γ
χ{d(x1,y)>R/16}(y). (2.128)

From (2.128) and Lemma 2.1(i), it follows that

∫

X

∣∣f3(y)
∣∣dμ(y) � rγ

∫

d(y,x1)>R/16

1
V
(
x1, y

)
1

d
(
y, x1
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)γ
. (2.129)

Notice that supp f1 ⊂ B(x1, 137R/50). From this, the estimates (2.118) and (2.129)
together with

∫
Xf(x)dμ(x) = 0 and (1.2), it follows that

∣∣∣∣
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X
f2(y)dμ(y)
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�
(
r
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)γ
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(2.130)

Since x ∈ Bm, we have 1/(Vr(x1) + V (x1, x)) ∼ 1/VR(x1). Now, for any m ∈ N and
y ∈ X, put Um,r(y) = θ(d(x1, y)/42(m + 1)r). Notice that supp f1 ∩ supp (1 −Um,r) = ∅. By
Lemma 2.20, for a.e. x ∈ Bm, we have

Tf1(x) =
∫

X
K(x, y)

[
f1(y) − f1(x)

]
Um,r(y)dμ(y) + f1(x)T

(
Um,r

)
(x)

≡ Z6(x) + Z7(x).

(2.131)

From Lemma 2.15(ii) and (2.118), it follows that for a.e. x ∈ Bm,

∣∣Z7(x)
∣∣ �
∣∣f1(x)

∣∣ � 1
VR
(
x1
)
(
r

R

)γ
. (2.132)

As for Z6(x), notice that x ∈ Bm together with Um,r(y)/= 0 implies that d(x, y) < 18R; hence,
by (2.119), the size condition on K and Lemma 2.1(i), we obtain

∣∣Z6(x)
∣∣ �
∫
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1
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1
VR
(
x1
)
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VR
(
x1
)
(
r

R

)γ
. (2.133)

Combining the estimate for Z6(x)with Z7(x) gives us the desired estimate for Tf1(x) for a.e.
x ∈ Bm.
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Since x /∈ supp f2, we can write

Tf2(x) =
∫

X

[
K(x, y) −K(x, x1

)]
f2(y)dμ(y) +K

(
x, x1

)
∫

X
f2(y)dμ(y)

≡ Z8(x) + Z9(x).

(2.134)

The assumption (ii) of the theorem, the support condition of f2, and the fact that γ < ε
together with Lemma 2.1(i) yield that
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(2.135)

From the size condition on K, and (2.130), it also follows that

∣∣Z9(x)
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)
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)γ
� 1
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(
x1
)
(
r

R

)γ
, (2.136)

which together with the estimate for Z8(x) gives the desired estimate for Tf2(x) for a.e. x ∈
Bm.

Notice that f3(x)/= 0 implies that d(x1, y) > R/16 and d(x0, y) > 37mr/10. If we now
further assume that x ∈ Bm ∩ B(x0, mr/10), then d(x, y) ≥ d(y, x0) − d(x0, x) > 18mr/5 >
9R/50. From this, (1.17), and (1.2), it follows that VR(x1) ∼ VR(x) � V (x, y). This together
with (2.128), the size condition on K and Lemma 2.1(i) yields that

∣∣Tf3(x)
∣∣ =

∣∣∣∣∣∣
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(2.137)

which is the desired estimate.
Thus, we have verified that Tf(x) for a.e. x ∈ Bm ∩ B(x0, mr/10) satisfies the size

condition (i) of Definition 2.8, with constants independent ofm, r, and x1. By the Besicovitch
covering lemma (see, e.g., [13, Theorem 1.16, pages 8-9]), this implies that for a.e. x ∈ Bm,
Tf(x) satisfies the size condition (i) of Definition 2.8, with constants independent of m, r,
and x1. In combination with Case 1, we thus see that for a.e. x ∈ X, Tf(x) satisfies the size
condition (i) of Definition 2.8.



42 Abstract and Applied Analysis

We now turn to verify that Tf(x) for a.e. x ∈ X satisfies the regularity condition (ii) of
Definition 2.8. In what follows, we fix x′ near x and put δ ≡ d(x, x′). We first remark that for
a.e. x, x′ ∈ X such that (1/160)(r + R) < δ ≤ (1/2)(r + R), by the size condition of Tf(x) and
Lemma 2.1(iii), we obtain

∣
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Vr
(
x1
)
+ V
(
x1, x

)
(
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(
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)
)γ
,

(2.138)

which is the desired estimate. In what follows, we only need to estimate |Tf(x) − Tf(x′)|
for a.e. x, x′ ∈ X such that δ ≤ (1/160)(r + R) by considering two cases. Recall that
R ≡ d(x, x1).

Case 1 (R < 10r). In this case, we divide the ball B(x1, 10r) into the union of annuli Bm1 = {x ∈
X : 10r/(m1 + 1) ≤ d(x, x1) < 10r/m1}, wherem1 ∈ N. For any fixed x0 ∈ Bm1 andm2 ∈ N, we
put um1,m2(y) = θ(20m1m2d(x0, y)/(m1 + 10)r) and letwm1,m2(y) = 1 − θm1,m2(y) for all y ∈ X.
By Lemmas 2.15 and 2.20, for a.e. x ∈ B(x0, (m1 + 10)r/40m1m2),

Tf(x) =
∫

X
K(x, y)

[
f(y) − f(x)]um1,m2(y)dμ(y)

+
[∫

X
K(x, y)f(y)wm1,m2(y)dμ(y) + f(x)T

(
um1,m2

)
(x)
]

≡ Γ1(x) + Γ2(x),

(2.139)

∣∣T
(
um1,m2

)
(x)
∣∣ � CT + ‖T‖WBP(β), (2.140)

T
(
um1,m2

)
(x) = Cm1,m2,r −

∫

X

[
K(x, y) −K(x0, y

)]
wm1,m2(y)dμ(y), (2.141)

where Cm1,m2,r is a constant independent of x. For any

x ∈ B
(
x0,

(
m1 + 11

)
r

160
(
m1 + 1

)(
m2 + 1

)
)
, (2.142)

we then consider x′ in the annulus (r + R)/160(m2 + 1) < d(x, x′) ≤ (r + R)/160m2. It is
easy to check x′ ∈ B(x0, (m1 + 10)r/40m1m2). Assume that x, x′ both satisfy (2.139), (2.140),
and (2.141). Notice that um1,m2(y)/= 0 implies that d(y, x0) ≤ (m1 + 10)r/10m1m2, and hence
d(x, y) ≤ d(x, x0) + d(x0, y) < 17(m1 + 11)r/160m1m2 < 68d(x, x′) ≡ 68δ and d(x′, y) ≤ 69δ.
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Therefore, the size condition on K, the regularity of f , and Lemma 2.1(i) show that
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∣
∣
∣
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(2.143)

and a similar estimate also holds for Γ1(x′). Thus, we clearly obtain the desired estimate for
Γ1(x) − Γ1(x′).

Now by (2.141), we have

Γ2(x) − Γ2
(
x′)

=
∫

X

[
K(x, y) −K(x′, y

)][
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{
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≡ Γ2,1 + Γ2,2.
(2.144)

The estimate (2.140) and the regularity of f then show that
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Notice that wm1,m2(y)/= 0 implies that d(x, y) > 6δ. The regularity (2.49) on K, the regularity
and the size condition of f , and Lemma 2.1(i) together with the fact that β < ε give
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(2.146)
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where, in the last inequality, we used that r + d(x1, x) ≤ 11r � r + d(x1, y) and

1
Vr
(
x1
)
+ V
(
x1, y

) ≤ 1
Vr
(
x1
) � 1

Vr
(
x1
)
+ V
(
x1, x

) , (2.147)

which follows from V (x1, x) ≤ μ(B(x1, 10r)) � Vr(x1), by (1.2). Thus, for any x0 ∈ Bm1 , and
a.e. x ∈ B(x0, (m1 + 11)r/160(m1 + 1)(m2 + 1)) and a.e. x′ ∈ X satisfying (r +R)/160(m2 + 1) <
d(x, x′) ≤ (r+R)/160m2, Tf(x)−Tf(x′) has the desired regularity with constants independent
of m1 and m2. Again, by the Besicovitch covering lemma, we further see that for a.e. x ∈ Bm1

and a.e. x′ ∈ X satisfying (r+R)/160(m2+1) < d(x, x′) ≤ (r+R)/160m2, Tf(x)−Tf(x′) has the
desired regularity with constants independent of m1 and m2, which implies that there exists
a measurable set X1 such that μ(X1) = 0 and for all x ∈ B(x1, 10r) \ X1 and all x′ ∈ X \ X1

with d(x, x′) ≤ (1/160)(r + R), Tf(x) − Tf(x′) has the desired regularity.

Case 2 (R ≥ 10r). In this case, we rename Bm in Case 2 of the proof for the size condition of
Tf by B̃m1 . Namely, form1 ∈ N, we consider annuli

B̃m1 = B
(
x1, 10

(
m1 + 1

)
r
) \ B(x1, 10m1r

)
. (2.148)

For any fixed x̃0 ∈ B̃m1 , we define Im1 , Jm1 , and Lm1 in the same way as in Case 1 with m and
x0 replaced, respectively, by m1 and x̃0 here. Let f1(y) = f(y)Im1(y), f2(y) = f(y)Jm1(y) and
f3(y) = f(y)Lm1(y) for all y ∈ X. Then the estimates (2.119) and (2.130) still hold for f1, f2,
and f3 here, when x ∈ B̃m1 .

Now, form2 ∈ N, we put ũm1,m2(y) = θ(20m2d(x̃0, y)/(10m1+11)r) and let w̃m1,m2(y) =
1 − θ̃m1,m2(y) for all y ∈ X. By Lemmas 2.15 and 2.20, for a.e. x ∈ B(x̃0, (10m1 + 11)r/40m2),

Tf1(x) =
∫

X
K(x, y)

[
f1(y) − f1(x)

]
ũm1,m2(y)dμ(y)

+
[∫

X
K(x, y)f1(y)w̃m1,m2(y)dμ(y) + f1(x)T

(
ũm1,m2

)
(x)
]

≡ Γ3(x) + Γ4(x),

(2.149)

∣∣T
(
ũm1,m2

)
(x)
∣∣ � CT + ‖T‖WBP(β), (2.150)

T
(
ũm1,m2

)
(x) = C̃m1,m2,r −

∫

X

[
K(x, y) −K(x̃0, y

)]
w̃m1,m2(y)dμ(y), (2.151)

where C̃m1,m2,r is a constant independent of x. For any x ∈ B(x̃0, (10m1 + 1)r/160(m2 + 1)),
we then consider x′ in the annulus (r + R)/160(m2 + 1) < d(x, x′) ≤ (r + R)/160m2. It is
easy to check x′ ∈ B(x̃0, (10m1 + 11)r/40m2). We also restrict x ∈ B̃m1 . Assume that x, x′ both
satisfy (2.149), (2.150), and (2.151). Notice that ũm1,m2(y)/= 0 implies that d(y, x̃0) ≤ (10m1 +
11)r/10m2, which implies d(x, y) ≤ d(x, x̃0)+d(x̃0, y) < 177(10m1+1)r/160m2 < 354d(x, x′) ≡
354δ and d(x′, y) ≤ 355δ. Therefore, the size condition onK, (2.119), and Lemma 2.1(i) show
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that

|Γ3(x)| �
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,

(2.152)

and a similar estimate also holds for Γ4(x′). Thus, we obtain the desired estimate for Γ3(x) −
Γ4(x′).

Now by (2.151) and some computations similar to Γ2(x) − Γ2(x′), we have

Γ4(x) − Γ4
(
x′) =

∫

X

[
K(x, y) −K(x′, y

)][
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+
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(
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(
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≡ Γ4,1 + Γ4,2.

(2.153)

The estimate (2.150) together with (2.119) then yields
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)γ
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Notice that w̃m1,m2(y)/= 0 implies d(x, y) > 7δ. Then by the regularity (2.49) on K, (2.119),
and Lemma 2.1(i) together with β < ε, we further have
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(2.155)

Thus, for any x̃0 ∈ B̃m1 , and a.e. x ∈ B(x̃0, (10m1 + 1)r/160(m2 + 1)) ∩ B̃m1 and a.e. x′ ∈ X
satisfying (r + R)/160(m2 + 1) < d(x, x′) ≤ (r + R)/160m2, Tf1(x) − Tf1(x′) has the desired
regularity with constants independent ofm1 andm2.

Notice that f2(x) = 0 = f2(x′). We write
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(2.156)
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Since d(x, x′) ≤ (11/1600)R, the regularity (2.49) on K, (2.130), and β < ε prove
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Notice that f2(y)/= 0 implies that d(x1, y) ≤ R/4. Then the regularity (iii) on K together with
the size condition of f , the fact that γ < ε and Lemma 2.1(i) yields that
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(2.158)

Thus, we have also obtained the desired regularity for Tf2(x) − Tf2(x′) for all x ∈ B̃m1 and
d(x, x′) ≤ (1/160)(r + R).

Notice that f3(y)/= 0 implies that d(x1, y) > R/16. Moreover, if

x ∈ B
(
x̃0,

(
10m1 + 1

)
r

160
(
m2 + 1

)
)
∩ B̃m1 , (2.159)

then f3(y)/= 0 also implies that d(x, y) > 7R/40. Since δ ≤ (11/1600)R, we then have δ ≤
(11/280)d(x, y). Then the regularity (2.49) on K, the size condition of f , and Lemma 2.1(i)
show that
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(2.160)

where in the last step, we used the fact that β < ε and d(x, x′) ≤ (11/1600)R, and in the
third-to-last inequality, we used the fact that

VR
(
x1
) ∼ V

(
x, x1

) ≤ μ
(
B

(
x,

40d(x, y)
7

))
� V (x, y). (2.161)

Thus, for all x ∈ B(x̃0, (10m1 +1)r/160(m2 +1))∩ B̃m1 and d(x, x
′) ≤ (1/160)(r +R), we obtain

the desired regularity for Tf3(x) − Tf3(x′).
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Summarizing the above estimates, we see that for any x̃0 ∈ B̃m1 , and a.e. x ∈ B̃m1 ∩
B(x̃0, (10m1 + 1)r/160(m2 + 1)) and a.e. x′ ∈ X satisfying (r + R)/160(m2 + 1) < d(x, x′) ≤
(r + R)/160m2, Tf(x) − Tf(x′) has the desired regularity with constants independent of m1

and m2. By the Besicovitch covering lemma again, similarly to Case 1, we obtain that there
exists a measurable set X2 such that μ(X2) = 0, and for all x ∈ X \ (B(x1, 10r) ∪ X2) and all
x′ ∈ X \ X2 with d(x, x′) ≤ (1/160)(r + R), Tf(x) − Tf(x′) has the desired regularity.

Thus, there exists a measurable set X3 such that for all x, x′ ∈ X \ X3 with d(x, x′) ≤
(1/2)(r+d(x, x1)), Tf(x)−Tf(x′) satisfies the regularity condition (ii) of Definition 2.8, which
implies that for all x, x′ ∈ X \ X3 with d(x, x′) ≤ r/2,

∣
∣Tf(x) − Tf(x′)∣∣ � 1

Vr
(
x1
)
rβ
d
(
x, x′)β. (2.162)

Now, for any x ∈ X, we choose {xn}n∈N
⊂ (X \ X3) such that d(xn, x) → 0 as n → ∞. Then

{Tf(xn)}n∈N
is a Cauchy sequence in C. We then define g(x) = limn→∞Tf(xn). It is easy to

show that g is a well-defined continuous function lying in G(x1, r, β, γ), which agrees with Tf
almost everywhere. We may thus choose g as a representative of Tf , for which we then have

‖Tf‖G(x1,r,β,γ) �
(
CT + ‖T‖WBP(β)

)‖f‖G(x1,r,β,γ). (2.163)

This completes the proof of Theorem 2.18.

Remark 2.21. It was proved in [35] that the condition (iii) of Theorem 2.18 is also necessary
for an operator T with distributional kernelK to be bounded from G̊(x1, r, β, γ) toG(x1, r, β, γ)
for all x1 ∈ X and r > 0; see [35, Theorem 4] or [31].

By Remark 2.14(iii), we immediately obtain the following conclusion, which is conve-
nient in applications.

Corollary 2.22. Let ε ∈ (0, 1], β ∈ (0, ε), and let T be as in Proposition 2.12, with the distributional
kernel K satisfying (i), (ii), and (iii) of Theorem 2.18. If T is bounded on Lp(X) for a certain p ∈
(1,∞) and T(1) = 0 in (C̊β

b(X))′, then T extends to a bounded linear operator from G̊(x1, r, β, γ) to
G(x1, r, β, γ) for all x1 ∈ X, r > 0 and γ ∈ (0, ε). Moreover, there exists a constant Cβ,γ,C0 > 0 such
that for all f ∈ G̊(x1, r, β, γ) with any x1 ∈ X, any r > 0, and any γ ∈ (0, ε),

‖Tf‖G(x1,r,β,γ) ≤ Cβ,γ,C0

(
CT + ‖T‖Lp(X)→Lp(X)

)‖f‖G(x1,r,β,γ). (2.164)

By an argument similar to the proof of Lemma 2.20, we can easily obtain the following
result, which is of independent interest; see also [69, Lemma 2], [71, Lemma 1, page 119] for
R
n, and [34, Lemma (3.12)] for Ahlfors 1-regular metric measure spaces. Moreover, instead

of T ∈ SWBP(β) in [34, Lemma (3.12)], we only need that T ∈ WBP(β).

Corollary 2.23. Let T be as in Lemma 2.20. Then there exists a constant C > 0 such that for all
f ∈ Ċβ

b(X),

‖Tf‖L∞(X) ≤ C
(
CT + ‖T‖WBP(β)

)[
diam (supp f)

]β‖f‖Ċβ(X). (2.165)
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Proof. Assume that supp f ⊂ B(x0, r) for some x0 ∈ X and r > 0. Let θx0,10r be defined in
the same way as in Lemma 2.15. An argument similar to the proof of Lemma 2.20 yields that
when d(x, x0) < 5r,

Tf(x) =
∫

X
K(x, y)

[
f(y) − f(x)]θx0,10r(y)dμ(y) + f(x)

∫

X
K(x, y)θx0,10r(y)dμ(y). (2.166)

From this, Lemma 2.1(i), and Lemma 2.15(ii) together with (2.55), it follows that

∣
∣Tf(x)

∣
∣ � CT‖f‖Ċβ(X)

∫

d(x,y)<25r

1
V (x, y)

d(x, y)βdμ(y) + ‖f‖L∞(X)

(
CT + ‖T‖WBP(β)

)

�
(
CT + ‖T‖WBP(β)

)
rβ‖f‖Ċβ(X).

(2.167)

If d(x, x0) ≥ 5r and d(y, x0) < r, then d(y, x) > 4d(x, x0)/5, and by Lemma 2.1(i) and (2.55),
we also have

∣∣Tf(x)
∣∣ ≤ CT

∫

d(x,y)>4d(x,x0)/5

1
V (x, y)

∣∣f(y)
∣∣dμ(y)

� CT
1

V
(
x0, x

)‖f‖L∞(X)Vr
(
x0
)

� CT

[
diam (supp f)

]β‖f‖Ċβ(X),

(2.168)

which completes the proof of Corollary 2.23.

From Theorem 2.18, it is easy to deduce the following result which is convenient in
applications.

Corollary 2.24. Let T be as in Theorem 2.18 or Corollary 2.22. If ε̃ ∈ (0, ε), then T is bounded from
G̊ε̃
0(x1, r, β, γ) to Gε̃

0(x1, r, β, γ) for all x1 ∈ X, r > 0, and 0 < β, γ < ε̃. Moreover, there exists a
constant C > 0 such that for all f ∈ G̊ε̃

0(x1, r, β, γ) with any x1 ∈ X and any r > 0,

‖Tf‖Gε̃
0(x1,r,β,γ)

≤ Cβ,γ,C0

(
CT + ‖T‖WBP(β)

)‖f‖Gε̃
0(x1,r,β,γ)

(2.169)

(or resp., ‖Tf‖Gε̃
0(x1,r,β,γ)

≤ Cβ,γ,C0(CT + ‖T‖Lp(X)→Lp(X))‖f‖Gε̃
0(x1,r,β,γ)

).

Proof. Let f ∈ G̊ε̃
0(x1, r, β, γ). By the definition of G̊ε̃

0(x1, r, β, γ), there exists

{
fn
}∞
n=1 ⊂ G̊(x1, r, ε̃, ε̃) (2.170)

such that

lim
n→∞
∥∥fn − f

∥∥
G(x1,r,β,γ) = 0. (2.171)
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By Theorem 2.18 or Corollary 2.22, we have Tfn ∈ G(x1, r, ε̃, ε̃) and
∥
∥Tfn − Tf

∥
∥
G(x1,r,β,γ) �

∥
∥f − fn

∥
∥
G(x1,r,β,γ) −→ 0, (2.172)

as n → ∞. Thus, Tf ∈ Gε̃
0(x1, r, β, γ) and

‖Tf‖Gε̃
0(x1,r,β,γ)

= ‖Tf‖G(x1,r,β,γ) � ‖f‖G(x1,r,β,γ) = ‖f‖Gε̃
0(x1,r,β,γ)

, (2.173)

which completes the proof of Corollary 2.24.

2.3. Boundedness of singular integrals on spaces of test functions

In this subsection, we establish the boundedness on G(x1, r, β, γ) of singular integrals. Since
the functions in G(x1, r, β, γ) may have nonvanishing integral, this requires, as usual, some
extra size decay conditions on the integral kernels; see, for example, [71, page 123].

The following result is an inhomogeneous variant of Proposition 2.12.

Proposition 2.25. Let β ∈ (0, 1], σ > 0, r0 > 0, and let T be as in Proposition 2.12 with the
distributional kernel K satisfying the following extra size condition that for all x, y ∈ X with
d(x, y) ≥ r0,

∣∣K(x, y)
∣∣ ≤ CT

1
V (x, y)

rσ0
d(x, y)σ

. (2.174)

Then T can be extended to a continuous linear operator from Cβ(X) to (Cβ

b(X))′.

Proof. Let f ∈ Cβ(X) and g ∈ C
β

b
(X), and suppose supp g ⊂ B(x0, r) for some x0 ∈ X and

r > 0. Choose ψ ∈ Cβ

b
(X) such that ψ(x) = 1 when x ∈ B(x0, 2max{r, r0}) and ψ(x) = 0 when

x /∈ B(x0, 4max{r, r0}). It is easy to see that ψf ∈ C
β

b(X), which implies that 〈T(ψf), g〉 is
well defined. On the other hand, we define

〈
T
(
(1 − ψ)f), g〉 =

∫∫

X×X
K(x, y)

(
1 − ψ(y))f(y)g(x)dμ(y)dμ(x). (2.175)

By the size condition (2.174) and Lemma 2.1(i), it is easy to check that the right-hand side of
the above equality is finite; furthermore, if f has also bounded support, this coincides with
(2.48). Moreover, it is easy to verify that 〈T(ψf), g〉+〈T((1−ψ)f), g〉 is independent of choice
of ψ. Thus we can define Tf by

〈Tf, g〉 =
〈
T(ψf), g

〉
+
〈
T
(
(1 − ψ)f), g〉, (2.176)

so that Tf ∈ (Cβ

b(X))′. It is clear that then T is continuous, which completes the proof of
Proposition 2.25.
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We now establish an inhomogeneous variant of Lemma 2.15. Here, in contrast to
Lemma 2.15, we do not need T ∈ WBP(β).

Lemma 2.26. Let θ be as in Lemma 2.15. For any fixed z ∈ X and r > 0, let θz,max{r,r0} and
ωz,max{r,r0} be defined as in Lemma 2.15. Let T be as in Proposition 2.25. If, for a certain β ∈ (0, ε],
T(1) ∈ (Cβ

b(X))′ is a constant CT(1), then there exists a constant C > 0 such that

(i) for all x ∈ B(z,max{r, r0}/2), |T(ωz,max{r,r0})(x)| ≤ CCT ;

(ii) the restriction of the linear functional T(θz,max{r,r0}) + T(ωz,max{r,r0}) ∈ (Cβ

b(X))′ to the
ball B(z,max{r, r0}/2) is a constant; namely, for all x ∈ B(z,max{r, r0}/2),

T(θz,max{r,r0})(x) + T(ωz,max{r,r0})(x) = CT(1); (2.177)

(iii) for all x ∈ B(z,max{r, r0}/2), |T(θz,max{r,r0})(x)| ≤ C(CT + |CT(1)|).

Proof. By the definitions of θz,max{r,r0} and ωz,max{r,r0}, we know that

ωz,max{r,r0}(y)/= 0 (2.178)

implies that d(y, z) > max{r, r0}, which together with d(x, z) < max{r, r0}/2 shows that
d(x, y) > max{r, r0}/2. Therefore, by (2.174) and Lemma 2.1(i), for all x ∈ X with d(x, z) <
max{r, r0}/2, we have

∣∣T
(
ωz,max{r,r0})(x

)∣∣ =
∣∣∣∣

∫

d(x,y)>max{r,r0}/2
K(x, y)ωz,max{r,r0}(y)dμ(y)

∣∣∣∣

≤ CT

∫

d(x,y)>max{r,r0}/2

1
V (x, y)

rσ0
d(x, y)σ

dμ(y)

≤ CCT ,

(2.179)

which is (i).
To see (ii), for any f ∈ Gb(β, γ) with supp f ⊂ B(z,max{r, r0}/2), by the definition of

T(1) = CT(1) in (Cβ

b
(X))′, we have

CT(1)

∫

X
f(x)dμ(x) =

〈
T
(
θz,max{r,r0}

)
, f
〉
+
〈
T
(
ωz,max{r,r0}

)
, f
〉
, (2.180)

which together with Corollary 2.11(ii) gives the conclusion (ii) of this lemma.
The conclusion (iii) can be deduced from the conclusion (i) and the conclusion (ii),

which completes the proof of Lemma 2.26.

We recall the notion of the space bmo(X), which, when X = R
n and μ is the n-

dimensional Lebesgue measure, was first introduced by Goldberg [73]. A variant in the
setting of spaces of homogeneous type can be found in [74].
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Definition 2.27. Let 1 ≤ q < ∞. The space bmoq(X) is defined to be the set of all f ∈ L
q

loc(X)
such that

‖f‖bmoq(X) = sup
x∈X, 0<r<1

{
1

μ
(
B(x, r)

)
∫

B(x,r)

∣
∣f(y) −mB(x,r)(f)

∣
∣qdμ(y)

}1/q

+ sup
x∈X, r≥1

{
1

μ
(
B(x, r)

)
∫

B(x,r)

∣
∣f(y)

∣
∣qdμ(y)

}1/q
(2.181)

is finite. When q = 1, one denotes bmo1(X) simply by bmo(X).

It was proved in [74] that for any 1 ≤ q1, q2 < ∞, bmoq1(X) = bmoq2(X) with
equivalent norms.

Remark 2.28. From Corollary 2.11(ii), Proposition 5.46, Theorems 5.44(i) and 6.28 below, it is
easy to see that T(1) = CT(1) in (Cβ

b
(X))′ if and only if T(1) = CT(1) in bmo(X).

We can now present the inhomogeneous variant of Theorem 2.18 as follows.

Theorem 2.29. Let ε ∈ (0, 1], σ > 0, r0 > 0, and let T be as in Proposition 2.25 with the distributional
kernel K also satisfying the conditions (i) through (iii) in Theorem 2.18 and the following additional
regularity condition: for all x, x′, y ∈ X with d(x, x′) ≤ d(x, y)/2 and d(x, y) ≥ r0,

∣∣K(x, y) −K(x′, y
)∣∣ ≤ CT

1
V (x, y)

(
d
(
x, x′)

d(x, y)

)ε(
r0

d(x, y)

)σ
. (2.182)

If T ∈ WBP(β) for a certain β ∈ (0, ε) and T(1) = CT(1) in (Cβ

b
(X))′, then T extends to a bounded

linear operator from G(x1, r0, β, γ) to itself for any x1 ∈ X and any γ ∈ (0, σ] ∩ (0, ε). Moreover,
there is a constant Cβ,γ,σ,C0 > 0 such that for all f ∈ G(x1, r0, β, γ) with any x1 ∈ X and any
γ ∈ (0, σ] ∩ (0, ε),

‖Tf‖G(x1,r0,β,γ) ≤ Cβ,γ,σ,C0

(
CT +

∣∣CT(1)
∣∣)‖f‖G(x1,r0,β,γ). (2.183)

Proof. We prove Theorem 2.29 by essentially following the same argument as the proof
of Theorem 2.18, and we only give an outline. We use the notations as in the proof of
Theorem 2.18. By Corollary 2.11(ii), we only need to prove Theorem 2.29 for Gb(x1, r0, β, γ).

Let f ∈ Gb(x1, r0, β, γ). We first verify that Tf(x) for a.e. x ∈ X satisfies Definition 2.8(i)
by considering two cases.

Case 1 (d(x, x1) < 10r0). In this case, let θx1,20r0 and ωx1,20r0 be defined in the same way as
in Lemma 2.15. Instead of Lemma 2.15(ii) by Lemma 2.26(iii), following the procedure of
Lemma 2.20 (here we need T ∈ WBP(β)), for a.e. x0 ∈ B(x110r0), we have

Tf(x) =
∫

X
K(x, y)

[
f(y) − f(x)]θx1,20r0(y)dμ(y)

+
∫

X
K(x, y)f(y)ωx1,20r0(y)dμ(y) + f(x)T

(
θx1,20r0

)
(x).

(2.184)
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Using Lemma 2.26(iii) to replace Lemma 2.15(ii) and following the same proof as that of
Theorem 2.18 give the desired estimate of this case.

Case 2 (d(x, x1) ≡ R ≥ 10r0). In this case, we use all the notation as in the proof of
Theorem 2.18, but with r replaced by r0. The estimates (2.118), (2.119), (2.128), and (2.129)
with r replaced by r0 hold in the current setting. Instead of (2.130), by Lemma 2.1(ii), we now
have

∣
∣
∣
∣

∫

X
f2(y)dμ(y)

∣
∣
∣
∣ � 1. (2.185)

Replacing Lemma 2.15(ii) by Lemma 2.26(iii) and using T ∈ WBP(β), by following the
proof of Lemma 2.20, for a.e. x ∈ Bm, we have

Tf1(x) =
∫

X
K(x, y)

[
f1(y) − f1(x)

]
Um,r0(y)dμ(y) + f1(x)T

(
Um,r0

)
(x). (2.186)

Then Lemma 2.26(iii) together with an argument similar to the proof of Theorem 2.18 gives
the desired estimate for Tf1(x) in this case.

Since x /∈ supp f2, we can write

Tf2(x) =
∫

X

[
K(x, y) −K(x, x1

)]
f2(y)dμ(y) +K

(
x, x1

)
∫

X
f2(y)dμ(y)

≡ Z8(x) + Z9(x).

(2.187)

The estimate for Z8(x) is as in the proof of Theorem 2.18. Since R ≥ 10r0 and γ ≤ σ, by (2.174)
and (2.185), we have

∣∣Z9(x)
∣∣ � 1

VR
(
x1
)
(
r0
R

)σ
� 1
VR
(
x1
)
(
r0
R

)γ
, (2.188)

which is the desired estimate.

The estimate for Tf3(x) in this case is also similar to the proof of Theorem 2.18. Thus,
T(f)(x) for a.e. x ∈ X satisfies Definition 2.2(i).

To verify that T(f)(x) for a.e. x ∈ X satisfies Definition 2.2(ii), similarly to the proof of
Theorem 2.18, we can always assume that d(x, x′) ≤ (1/160)(r0 + d(x, x1)), and we only need
to consider the following two cases.

Case 1 (R < 10r0). In this case, if we replace Lemma 2.15(i) and (ii), respectively, by
Lemma 2.26(ii) and (iii), the same proof as in the proof of Theorem 2.18 gives the desired
estimates.
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Case 2 (R ≥ 10r0). In this case, the same argument as in the proof of Theorem 2.18 together
with Lemma 2.15 replaced by Lemma 2.26 yields the desired estimates for Tf1(x) and Tf3(x).
Noticing that f2(x) = 0 = f2(x′), we now estimate Tf2 by writing

∣
∣Tf2(x) − Tf2

(
x′)∣∣ =

∣
∣
∣
∣

∫

X

[
K(x, y) −K(x′, y

)]
f2(y)dμ(y)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

X

{[
K(x, y) −K(x′, y

)] − [K(x, x1
) −K(x′, x1

)]}
f2(y)dμ(y)

∣
∣
∣
∣

+
∣
∣K
(
x, x1) −K

(
x′, x1

)∣∣
∣
∣
∣
∣

∫

X
f2(y)dμ(y)

∣
∣
∣
∣

≡ Γ5 + Γ6.
(2.189)

The estimate for Γ5 is as in the proof of Theorem 2.18. To estimate Γ6, by (2.182) and (2.185)
together with γ ≤ σ, we have

Γ6 � 1
V
(
x, x1

)
(
d
(
x, x′)

d
(
x, x1

)
)ε(

r0

d
(
x, x1

)
)σ

� 1
VR
(
x1
)
(
d
(
x, x′)

R

)β(
r0
R

)γ
, (2.190)

which is the desired estimate. Then an extension via the Besicovitch covering lemma as in the
proof of Theorem 2.18 completes the proof of Theorem 2.29.

Remark 2.30. A regularity condition similar to (2.182) also appears in [71, page 123]. This
additional regularity assumption is used only in the estimate of Γ6. Instead of (2.182) by
requiring γ ∈ (0, σ(ε − β)/ε], we can obtain a similar conclusion. In fact, since d(x′, x1) ≥
d(x, x1)−d(x, x′) ≥ 189r0/20 ≥ r0 and d(x′, x1) ≥ 189R/200 ≥ R/2, by (2.174) and (2.185), we
have

Γ6 � 1
V
(
x, x1

)
(

r0

d
(
x, x1

)
)σ

+
1

V
(
x′, x1

)
(

r0

d
(
x′, x1

)
)σ

� 1
V
(
x, x1

)
(

r0

d
(
x, x1

)
)σ

. (2.191)

On the other hand, by (2.49) and (2.185), we also have Γ6 � (1/V (x, x1))(d(x, x′)/d(x, x1))
ε.

Combining both estimates yields that

Γ6 � 1
V
(
x, x1

)
(
d
(
x, x′)

d
(
x, x1

)
)β(

r0

d
(
x, x1

)
)σ(1−β/ε)

� 1
VR
(
x1
)
(
d
(
x, x′)

R

)β(
r0
R

)γ
, (2.192)

which is the desired estimate.

By Remark 2.14(iii) again, we can obtain the following conclusion which is convenient
in applications.
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Corollary 2.31. Let ε ∈ (0, 1], σ > 0, r0 > 0, and let T be as in Proposition 2.25 with the
distributional kernel K also satisfying Theorem 2.18(i) through (iii) and (2.182). If T is bounded on
Lp(X) for a certain p ∈ (1,∞) and T(1) = CT(1) in (Cβ

b
(X))′, then T extends to a bounded linear

operator from G(x1, r0, β, γ) to itself for any x1 ∈ X, any β ∈ (0, ε), and any γ ∈ (0, σ] ∩ (0, ε).
Moreover, there is a constant Cβ,γ,σ,C0 > 0 such that for all f ∈ G(x1, r0, β, γ) with any x1 ∈ X and
any γ ∈ (0, σ] ∩ (0, ε),

‖Tf‖G(x1,r0,β,γ) ≤ Cβ,γ,σ,C0

(
CT +

∣
∣CT(1)

∣
∣)‖f‖G(x1,r0,β,γ). (2.193)

The proof of the following corollary is similar to that of Corollary 2.24. We omit the
details.

Corollary 2.32. Let T be as in Theorem 2.29 or Corollary 2.31. If ε̃ ∈ (0, ε), then T is bounded from
Gε̃
0(x1, r0, β, γ) to Gε̃

0(x1, r0, β, γ) for all x1, β, γ as in Theorem 2.29. Moreover, there exists a constant
Cβ,γ,σ,C0 > 0 such that for all f ∈ Gε̃

0(x1, r0, β, γ) with any x1 ∈ X,

‖Tf‖G(x1,r0,β,γ) ≤ Cβ,γ,σ,C0

(
CT +

∣∣CT(1)
∣∣)‖f‖G(x1,r0,β,γ). (2.194)

3. Continuous Calderón reproducing formulae

From now on till the end of this paper, we will always assume that X is an RD-space. In
this section, using Corollaries 2.22 and 2.31, we establish homogeneous and inhomogeneous
Calderón reproducing formulae.

3.1. Homogeneous continuous Calderón reproducing formulae

In this subsection, we always assume that diam(X) = ∞.

Proposition 3.1. Let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI with ε1 ∈ (0, 1], ε2 > 0, and ε3 > 0 and let Stk

be the adjoint operator of Sk for any k ∈ Z. Then the following hold.

(i) For p ∈ (1,∞) and any f ∈ Lp(X), ‖Skf‖Lp(X) → 0 when k → −∞.

(ii) LetDk = Sk −Sk−1 for k ∈ Z. Then
∑∞

k=−∞Dk = I in Lp(X) for p ∈ (1,∞), where I is the
identity on Lp(X).

(iii) Properties (i) and (ii) also hold when Sk is replaced by Stk.

Proof. Let 1/p + 1/q = 1. Then Definition 2.2(i), Hölder’s inequality, (1.2) and (1.3) together
with μ(X) = ∞ yield that

∣∣Skf(x)
∣∣ � 1

V2−k(x)

∫

d(x,y)<2−k

∣∣f(y)
∣∣dμ(y) +

∫

d(x,y)≥2−k
1

V (x, y)
∣∣f(y)

∣∣dμ(y)

�

⎧
⎨

⎩
1

V2−k(x)
1/p

+

[ ∞∑

l=0

∫

2l2−k≤d(x,y)<2l+12−k
1

V (x, y)q
dμ(y)

]1/q
⎫
⎬

⎭
‖f‖Lp(X)

� 1

V2−k(x)
1/p

‖f‖Lp(X)

−→ 0,

(3.1)
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as k → −∞. This together with Proposition 2.7(ii) and Lebesgue’s dominated convergence
theorem implies that ‖Skf‖Lp(X) → 0 when k → −∞.

Property (ii) is a simple corollary of Property (i) together with Proposition 2.7(iv).
Property (iii) follows by symmetry, which completes the proof of Proposition 3.1.

Before we establish the continuous Calderón reproducing formulae, we need a
technical lemma. We recall that we denote min{a, b} by a ∧ b for any a, b ∈ R.

Lemma 3.2. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, {Sk}k∈Z
, and let {Ek}k∈Z

be two (ε1, ε2, ε3)-ATIs. Let
Pk = Sk − Sk−1 and Qk = Ek − Ek−1 for k ∈ Z. Then for any ε′1 ∈ (0, ε1 ∧ ε2), there exist positive
constants C (depending on ε′1, ε1, ε2, and ε3), δ (depending on ε′1, ε1, and ε2), and σ (depending on
ε′1, ε1, ε2, and ε3) such that PlQk(x, y), the kernel of PlQk, satisfies the following estimates that for all
x, y ∈ X and all k, l ∈ Z,

∣
∣PlQk(x, y)

∣
∣ ≤ C2−|k−l|ε′1 1

V2−(k∧l) (x) + V2−(k∧l) (y) + V (x, y)
2−(k∧l)ε2

(
2−(k∧l) + d(x, y)

)ε2 ; (3.2)

for d(y, y′) ≤ (1/4)d(x, y) and all k, l ∈ Z,

∣∣PlQk(x, y) − PlQk

(
x, y′)∣∣

≤ C2−|k−l|δ
(

d
(
y, y′)

2−(l∧k) + d(x, y)

)ε′1 1
V2−(k∧l) (x) + V2−(k∧l) (y) + V (x, y)

2−(k∧l)ε2
(
2−(k∧l) + d(x, y)

)ε2 ;

(3.3)

for d(x, x′) ≤ (1/4)d(x, y) and all k, l ∈ Z,

∣∣PlQk(x, y) − PlQk

(
x′, y
)∣∣

≤ C2−|k−l|δ
(

d
(
x, x′)

2−(l∧k) + d(x, y)

)ε′1 1
V2−(k∧l) (x) + V2−(k∧l) (y) + V (x, y)

2−(k∧l)ε2
(
2−(k∧l) + d(x, y)

)ε2 ;

(3.4)

and for d(x, x′) ≤ (1/8)d(x, y), d(y, y′) ≤ (1/8)d(x, y), and all k, l ∈ Z,

∣∣[PlQk(x, y) − PlQk

(
x′, y
)] − [PlQk

(
x, y′) − PlQk

(
x′, y′)]∣∣

≤ C2−|k−l|δ
(

d(x, x′)
2−(l∧k) + d(x, y)

)ε′1( d(y, y′)
2−(l∧k) + d(x, y)

)ε′1

× 1
V2−(k∧l) (x) + V2−(k∧l) (y) + V (x, y)

2−(k∧l)σ
(
2−(k∧l) + d(x, y)

)σ .

(3.5)

Proof. By symmetry, we may assume that k ≥ l.
Noticing that

∫

X
Qk(x, y)dμ(x) = 0, (3.6)
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we can write

∣
∣PlQk(x, y)

∣
∣ =
∣
∣
∣
∣

∫

X

[
Pl(x, z) − Pl(x, y)

]
Qk(z, y)dμ(z)

∣
∣
∣
∣

≤
∫

d(z,y)≤(2−l+d(x,y))/2

∣
∣Pl(x, z) − Pl(x, y)

∣
∣
∣
∣Qk(z, y)

∣
∣dμ(z)

+
∫

d(z,y)>(2−l+d(x,y))/2

∣
∣Pl(x, z)

∣
∣
∣
∣Qk(z, y)

∣
∣dμ(z)

+
∣
∣Pl(x, y)

∣
∣
∫

d(z,y)>(2−l+d(x,y))/2

∣
∣Qk(z, y)

∣
∣dμ(z)

≡ Z1 + Z2 + Z3.

(3.7)

The regularity of Pl and the size condition of Qk together with Lemma 2.1(i) show that for
any ε′1 ∈ (0, ε1 ∧ ε2),

Z1 � 2−kε
′
1

1
V2−l(x) + V2−l(y) + V (x, y)

2−lε2
(
2−l + d(x, y)

)ε1+ε2

×
∫

d(z,y)≤(2−l+d(x,y))/2
d(z, y)ε1−ε

′
1

1
V (z, y)

dμ(y)

� 2−(k−l)ε
′
1

1
V2−l(x) + V2−l(y) + V (x, y)

2−lε2
(
2−l + d(x, y)

)ε2 .

(3.8)

The size conditions for Pl and Qk together with Lemma 2.1(i) prove that

Z2 � 1
V2−l(x)

2−kε2
(
2−l + d(x, y)

)ε′1

∫

d(z,y)>(2−l+d(x,y))/2

1
V (z, y)

1

d(z, y)ε2−ε
′
1
dμ(z)

� 2−(k−l)ε2
1

V2−l(x)
2−lε2

(
2−l + d(x, y)

)ε2 ,

Z2 � 2−kε2
(
2−l + d(x, y)

)ε2

∫

d(z,y)>(2−l+d(x,y))/2

∣∣Pl(x, z)
∣∣ 1
V (z, y)

dμ(z)

� 2−(k−l)ε2
1

V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2 ,

(3.9)

where in the last step, we used Proposition 2.7(i) and the fact that 1/V (z, y) � 1/(V2−l(y) +
V (x, y)), by d(z, y) > (2−l + d(x, y))/2 together with (1.2). Thus,

Z2 � 2−(k−l)ε
′
1

1
V2−l(x) + V2−l(y) + V (x, y)

2−lε2
(
2−l + d(x, y)

)ε2 . (3.10)
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Similarly, by Lemma 2.1(v),

Z3 � 1
V2−l(x) + V2−l(y) + V (x, y)

∫

d(z,y)>(2−l+d(x,y))/2

1
V2−k(y) + V (z, y)

2−kε2
(
2−k + d(z, y)

)ε2 dμ(z)

� 2−(k−l)ε2
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2 ,

(3.11)

which completes the proof of (3.2).
The proofs for (3.3) and (3.4) are similar andwe only verify (3.3). To this end, it suffices

to prove

∣∣PlQk(x, y) − PlQk

(
x, y′)∣∣ �

(
d
(
y, y′)

2−l + d(x, y)

)ε1 1
V2−l(x) + V2−l(y) + V (x, y)

2−lε2
(
2−l + d(x, y)

)ε2

(3.12)

for d(y, y′) ≤ (1/4)d(x, y). To see this, by (3.2), for any ε′1 ∈ (0, ε1 ∧ ε2),

∣∣PlQk(x, y) − PlQk

(
x, y′)∣∣ � 2−(k−l)ε

′
1

[
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2

+
1

V2−l(x) + V2−l
(
y′) + V

(
x, y′)

2−lε2
(
2−l + d

(
x, y′))ε2

]
.

(3.13)

The assumption that d(y, y′) ≤ (1/4)d(x, y) together with Lemma 2.1(iii) further yields that

∣∣PlQk(x, y) − PlQk

(
x, y′)∣∣ � 2−(k−l)ε

′
1

1
V2−l(x) + V2−l(y) + V (x, y)

2−lε2
(
2−l + d(x, y)

)ε2 . (3.14)

Let σ ∈ (0, 1). Then the geometric mean between (3.12) and (3.14) gives

∣∣PlQk(x, y) − PlQk

(
x, y′)∣∣

=
∣∣PlQk(x, y) − PlQk

(
x, y′)∣∣σ∣∣PlQk(x, y) − PlQk

(
x, y′)∣∣1−σ

� 2−(k−l)ε
′
1(1−σ)

(
d
(
y, y′)

2−l + d(x, y)

)σε1 1
V2−l(x) + V2−l(y) + V (x, y)

2−lε2
(
2−l + d(x, y)

)ε2 ,

(3.15)

which is (3.3).
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We now verify (3.12). By (3.6), we can write

∣
∣PlQk(x, y) − PlQk

(
x, y′)∣∣ =

∣
∣
∣
∣

∫

X

[
Pl(x, z)−Pl(x, y)

][
Qk(z, y) −Qk

(
z, y′)]dμ(z)

∣
∣
∣
∣

≤
3∑

i=1

∫

Wi

∣
∣Pl(x, z)−Pl(x, y)

∣
∣
∣
∣Qk(z, y)−Qk

(
z, y′)∣∣dμ(z)

≡
6∑

i=4

Zi,

(3.16)

where

W1 =
{
z ∈ X : d

(
y, y′) ≤ 2−l + d(x, y)

4
≤ 2−k + d(z, y)

2

}
,

W2 =
{
z ∈ X : d

(
y, y′) ≤ 2−k + d(z, y)

2
≤ 2−l + d(x, y)

4

}
,

W3 =
{
z ∈ X : d

(
y, y′) ≥ 2−k + d(z, y)

2

}
.

(3.17)

The regularity for Qk and the size condition for Pl together with the assumption k ≥ l
implies that

Z4 �
∫

W1

[∣∣Pl(x, z)
∣∣ +

1
V2−l(x) + V2−l(y) + V (x, y)

2−lε2
(
2−l + d(x, y)

)ε2

]

× d
(
y, y′)ε1

(
2−k + d(z, y)

)ε1
1

V2−k(z) + V2−k(y) + V (z, y)
2−kε2

(
2−k + d(z, y)

)ε2 dμ(z)

≡ Z4,1 + Z4,2.

(3.18)

We now claim that if k ≥ l and 2−l + d(x, y) � 2−k + d(z, y), then for all x, y, z ∈ X,

1
V2−k(y) + V (z, y)

� 1
V2−l(y) + V (x, y)

. (3.19)

In fact, if 2−k ≥ d(z, y), then 2−l + d(x, y) � 2−k + d(z, y) � 2−k, and therefore V2−l(y) �
V2−k(y) and V (x, y) ∼ V (y, x) � V2−k(y). Thus, (3.19) holds in this case. If 2−k < d(z, y), then
2−l+d(x, y) � d(z, y) and hence, V2−l(y) � V (y, z) ∼ V (z, y) and V (x, y) ∼ V (y, x) � V (z, y),
which verifies (3.19). Proposition 2.7(i) and the estimate (3.19) together with 2−l + d(x, y) ≤
2(2−k + d(z, y)) and k ≥ l imply that

Z4,1 �
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2

∫

X

∣∣Pl(x, z)
∣∣dμ(z)

�
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2 ,

(3.20)
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and the size condition of Pl together with Lemma 2.1(i) yields that

Z4,1�
d
(
y, y′)ε1

(
2−l+d(x, y)

)ε1
1

V2−l(x)

⎧
⎨

⎩

∫

W1,
d(z,y)≤2−k

+
∫

W1,

d(z,y)>2−k

⎫
⎬

⎭
1

V2−k(y)+V (z, y)
2−kε2

(
2−k+d(z, y)

)ε2 dμ(z)

�
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x)
2−lε2

(
2−l + d(x, y)

)ε2 .

(3.21)

Similarly, using Lemma 2.1(ii), we have

Z4,2 �
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2

×
∫

W1

1
V2−k(y) + V (z, y)

2−kε2
(
2−k + d(z, y)

)ε2 dμ(z)

�
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2 ,

(3.22)

which completes the estimate for Z4.
The regularities of Pl and Qk and Lemma 2.1(ii) show that

Z5 �
∫

W2

d(y, z)ε1
(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2

× d
(
y, y′)ε1

(
2−k + d(y, z)

)ε1
1

V2−k(y) + V2−k(z) + V (z, y)
2−kε2

(
2−k + d(z, y)

)ε2 dμ(z)

�
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2 .

(3.23)

From (1/4)d(x, y) ≥ d(y, y′) ≥ (1/2)(2−k + d(z, y)), it follows that d(z, y) ≤ (1/2)d(x, y) ≤
(1/2)(2−l + d(x, y)). Then the regularity of Pl and the size condition of Qk together with
Proposition 2.7(i) and d(y, z) ≤ 2d(y, y′) prove that

Z6 � 1
V2−l(x) + V2−l(y) + V (x, y)

2−lε2
(
2−l + d(x, y)

)ε2

×
∫

W3

d(y, z)ε1
(
2−l + d(x, y)

)ε1
[∣∣Qk(z, y)

∣∣ +
∣∣Qk

(
z, y′)∣∣]dμ(z)

�
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2 .

(3.24)

Thus, (3.12) holds and this finishes the proof of (3.3).



60 Abstract and Applied Analysis

We finally prove (3.5) in the case k ≥ l. To this end, it suffices to verify that for any
ε′1 ∈ (0, ε1 ∧ ε2), d(x, x′) ≤ (1/8)d(x, y) and d(y, y′) ≤ (1/8)d(x, y),

∣
∣[PlQk(x, y) − PlQk

(
x′, y
)] − [PlQk

(
x, y′) − PlQk

(
x′, y′)]∣∣

�
d
(
x, x′)ε′1

(
2−l+d(x, y)

)ε′1

d
(
y, y′)ε′1

(
2−l+d(x, y)

)ε′1
1

V2−l(x)+V2−l(y)+V (x, y)
2−lσ

(
2−l+d(x, y)

)σ ,
(3.25)

where σ = (ε2 − ε′1) ∧ ε3 > 0. To see this, the estimate (3.4) implies that for any ε′1 ∈ (0, ε1 ∧ ε2),
d(x, x′) ≤ (1/8)d(x, y), and d(y, y′) ≤ (1/8)d(x, y),

∣∣[PlQk(x, y) − PlQk

(
x′, y
)] − [PlQk

(
x, y′) − PlQk

(
x′, y′)]∣∣

� 2−(k−l)δ
d
(
x, x′)ε′1

(
2−l + d(x, y)

)ε′1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2

+ 2−(k−l)δ
d
(
x, x′)ε′1

(
2−l + d

(
x, y′))ε′1

1
V2−l(x) + V2−l

(
y′) + V

(
x, y′)

2−lε2
(
2−l + d

(
x, y′))ε2 ,

(3.26)

where δ > 0 depends only on ε′1, ε1, and ε2. The assumption d(y, y′) ≤ (1/8)d(x, y) together
with Lemma 2.1(iii) further shows that for any ε′1 ∈ (0, ε1 ∧ ε2), d(x, x′) ≤ (1/8)d(x, y) and
d(y, y′) ≤ (1/8)d(x, y),

∣∣[PlQk(x, y) − PlQk

(
x′, y
)] − [PlQk

(
x, y′) − PlQk

(
x′, y′)]∣∣

� 2−(k−l)δ
d
(
x, x′)ε′1

(
2−l + d(x, y)

)ε′1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2 .
(3.27)

By the estimate (3.3) and symmetry, we further obtain that for any ε′1 ∈ (0, ε1 ∧ ε2), d(x, x′) ≤
(1/8)d(x, y) and d(y, y′) ≤ (1/8)d(x, y),

∣∣[PlQk(x, y) − PlQk

(
x′, y
)] − [PlQk

(
x, y′) − PlQk

(
x′, y′)]∣∣

� 2−(k−l)δ
d
(
y, y′)ε′1

(
2−l + d(x, y)

)ε′1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2 ,
(3.28)

where δ > 0 depends only on ε′1, ε1, and ε2. Then the geometric mean among (3.25), (3.27),
and (3.28) gives the desired estimate (3.5).
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Using (3.6), we now prove (3.25) by writing that

∣
∣[PlQk(x, y) − PlQk

(
x′, y
)] − [PlQk

(
x, y′) − PlQk

(
x′, y′)]∣∣

=
∣
∣
∣
∣

∫

X

{[
Pl(x, z) − Pl

(
x′, z
)] − [Pl(x, y) − Pl

(
x′, y
)]}[

Qk(z, y) −Qk

(
z, y′)]dμ(z)

∣
∣
∣
∣

≤
4∑

i=1

∫

Wi

∣
∣[Pl(x, z) − Pl

(
x′, z
)] − [Pl(x, y) − Pl

(
x′, y
)]∣∣
∣
∣Qk(z, y) −Qk

(
z, y′)∣∣dμ(z)

≡
4∑

i=1

Yi,

(3.29)

where

W1 =
{
z ∈ X : d

(
y, y′) ≤ 2−k + d(z, y)

2
≤ 2−l + d(x, y)

8

}
,

W2 =
{
z ∈ X : d

(
y, y′) ≤ 2−l + d(x, y)

8
≤ 2−k + d(z, y)

2
, and d

(
x, x′) ≤ 2−l + d(z, x)

2

}
,

W3 =
{
z ∈ X : d

(
y, y′) ≤ 2−l + d(x, y)

8
≤ 2−k + d(z, y)

2
, and d

(
x, x′) >

2−l + d(z, x)
2

}
,

W4 =
{
z ∈ X : d

(
y, y′) >

2−k + d(z, y)
2

}
.

(3.30)

If z ∈ W1, then d(z, y) ≤ (1/4)(2−l + d(x, y)), d(x, x′) ≤ (1/8)d(x, y) ≤ (1/8)(2−l +
d(x, y)), and d(y, y′) ≤ (1/2)(2−k + d(z, y)), which together with the second difference
condition of Pl, the regularity of Qk and Lemma 2.1(ii) shows

Y1 �
d
(
x, x′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε3

(
2−l + d(x, y)

)ε3

×
∫

W1

d(y, z)ε1
(
2−l + d(x, y)

)ε1
d
(
y, y′)ε1

(
2−k + d(z, y)

)ε1

× 1
V2−k(z) + V2−k(y) + V (z, y)

2−kε2
(
2−k + d(z, y)

)ε2 dμ(z)

�
d
(
x, x′)ε1

(
2−l + d(x, y)

)ε1
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε3

(
2−l + d(x, y)

)ε3 .

(3.31)
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If z ∈ W4, then (1/2)(2−k + d(z, y)) < d(y, y′) ≤ (1/8)d(x, y), and therefore, d(z, y) ≤
2d(y, y′) ≤ (1/4)d(x, y) ≤ (1/4)(2−l + d(x, y)) and d(x, x′) ≤ (1/8)d(x, y) ≤ (1/8)(2−l +
d(x, y)). From this, the regularity of Pl and Proposition 2.7(i), it follows that

Y4 �
d
(
x, x′)ε1

(
2−l + d(x, y)

)ε1
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)

× 2−lε3
(
2−l + d(x, y)

)ε3

∫

X

[∣∣Qk(z, y)
∣
∣ +
∣
∣Qk

(
z, y′)∣∣]dμ(z)

�
d
(
x, x′)ε1

(
2−l + d(x, y)

)ε1
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε3

(
2−l + d(x, y)

)ε3 .

(3.32)

If z ∈ W2, then d(x, x′) ≤ (1/2)(2−l + d(z, x)), d(y, y′) ≤ (1/2)(2−k + d(z, y)), and
d(x, x′) ≤ (1/8)d(x, y) ≤ (1/8)(2−l + d(x, y)), which together with the regularity of Pl and Qk

implies that

Y2 �
∫

W2

[
d
(
x, x′)ε1

(
2−l + d(x, z)

)ε1
1

V2−l(x) + V2−l(z) + V (x, z)
2−lε2

(
2−l + d(x, z)

)ε2

+
d
(
x, x′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2

]

× d
(
y, y′)ε1

(
2−k + d(y, z)

)ε1
1

V2−k(z) + V2−k(y) + V (z, y)
2−kε2

(
2−k + d(z, y)

)ε2 dμ(z)

≡ Y2,1 + Y2,2.

(3.33)

The fact that z ∈ W2, which implies that 2−k + d(z, y) ≥ (1/4)(2−l + d(x, y)), together with
Lemma 2.1(ii) yields that

Y2,2 �
d
(
x, x′)ε1

(
2−l + d(x, y)

)ε1
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)

× 2−lε2
(
2−l + d(x, y)

)ε2

∫

X

1
V2−k(y) + V (z, y)

2−kε2
(
2−k + d(z, y)

)ε2 dμ(z)

�
d
(
x, x′)ε1

(
2−l + d(x, y)

)ε1
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2 .

(3.34)
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Similarly, the fact that 2−k + d(z, y) ≥ (1/4)(2−l + d(x, y)) implies that

Y2,1 �
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1

∫

W2

d
(
x, x′)ε1

(
2−l + d(x, z)

)ε1
1

V2−l(x) + V2−l(z)+ V (x, z)

× 2−lε2
(
2−l+ d(x, z)

)ε2
1

V2−k(z)+ V2−k(y)+ V (z, y)
2−kε2

(
2−k+ d(z, y)

)ε2 dμ(z).

(3.35)

The estimate (3.19) together with the facts that k ≥ l and 2−k + d(z, y) ≥ (1/4)(2−l + d(x, y))
and Lemma 2.1(ii) yields that for any ε′1 ∈ (0, ε1 ∧ ε2),

Y2,1 �
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(y) + V (x, y)
d
(
x, x′)ε′1 2−lε2

(
2−l + d(x, y)

)ε2

×
∫

X

1
V2−l(x) + V (x, z)

2−lε2
(
2−l + d(x, z)

)ε2+ε′1
dμ(z)

�
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(y) + V (x, y)
d
(
x, x′)ε′1

(
2−l + d(x, y)

)ε′1
2−l(ε2−ε

′
1)

(
2−l + d(x, y)

)ε2−ε′1
,

(3.36)

and similarly, Lemma 2.1(i) implies that

Y2,1 �
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x)
d
(
x, x′)ε′12lε

′
1

∫

W2

1
V2−k(y) + V (z, y)

2−kε2
(
2−k + d(z, y)

)ε2 dμ(z)

�
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x)
d
(
x, x′)ε′12lε

′
1

×
⎧
⎨

⎩
2−lε2

(
2−l + d(x, y)

)ε2 + 2−lε2
∫

d(z,y)≥(1/8)(2−l+d(x,y)),
d(z,y)≥2−k

1
V (z, y)

1
d(z, y)ε2

dμ(z)

⎫
⎬

⎭

�
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x)
d
(
x, x′)ε′1

(
2−l + d(x, y)

)ε′1
2−l(ε2−ε

′
1)

(
2−l + d(x, y)

)ε2−ε′1
,

(3.37)

which completes the estimate for Y2.
Finally, to estimate Y3, since d(y, y′) ≤ (1/2)(2−k + d(z, y)) and

d
(
x, x′) ≤ d(x, y)

8
≤ 2−l + d(x, y)

8
, (3.38)
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by the regularities of Pl and Qk, we then have

Y3 �
∫

W3

[
∣
∣Pl(x, z)

∣
∣+
∣
∣Pl
(
x′, z
)∣∣+

d
(
x, x′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x)+V2−l(y)+V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2

]

× d
(
y, y′)ε1

(
2−k + d(z, y)

)ε1
1

V2−k(z) + V2−k(y) + V (z, y)
2−kε2

(
2−k + d(z, y)

)ε2 dμ(z)

≡
3∑

i=1

Y3,i.

(3.39)

The fact that 2−k + d(z, y) ≥ (1/4)(2−l + d(x, y)) and Lemma 2.1(ii) imply that

Y3,3 �
d
(
x, x′)ε1

(
2−l + d(x, y)

)ε1
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)

× 2−lε2
(
2−l + d(x, y)

)ε2

∫

X

1
V2−k(y) + V (z, y)

2−kε2
(
2−k + d(z, y)

)ε2 dμ(z)

�
d
(
x, x′)ε1

(
2−l + d(x, y)

)ε1
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−lε2

(
2−l + d(x, y)

)ε2 .

(3.40)

The facts that k ≥ l, 2−k +d(z, y) ≥ (1/4)(2−l+d(x, y)), (3.19), and Proposition 2.7(i) yield that
for any ε′1 ∈ (0, ε1 ∧ ε2),

Y3,1�
d
(
y, y′)ε1

(
2−l+d(x, y)

)ε1

∫

W3

∣∣Pl(x, z)
∣∣ 1
V2−k(z)+V2−k(y)+V (z, y)

2−kε2
(
2−k+d(z, y)

)ε2 dμ(z)

�
d
(
x, x′)ε′1

(
2−l + d(x, y)

)ε′1

d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(y) + V (x, y)
2−l(ε2−ε

′
1)

(
2−l + d(x, y)

)ε2−ε′1
,

(3.41)

where, in the last step, we used the fact that 2−l < 2d(x, x′) in this case. Similarly, by the size
condition of Pl and Lemma 2.1(i), we further have

Y3,1 �
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x)

∫

W3

1
V2−k(y) + V (z, y)

2−kε2
(
2−k + d(z, y)

)ε2 dμ(z)

�
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x)

×
⎧
⎨

⎩
2−lε2

(
2−l + d(x, y)

)ε2 + 2−lε2
∫

d(z,y)≥(1/8)(2−l+d(x,y)),
d(z,y)≥2−k

1
V (z, y)

1
d(z, y)ε2

dμ(z)

⎫
⎬

⎭

�
d
(
x, x′)ε′1

(
2−l + d(x, y)

)ε′1

d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x)
2−l(ε2−ε

′
1)

(
2−l + d(x, y)

)ε2−ε′1
.

(3.42)
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Notice that in this case, 2−l ≤ 2d(x, x′) ≤ (1/4)d(x, y) and therefore V2−l(x) ≤ V (x, y). Thus,
by (3.19), we have that for z ∈W3, 1/(V2−k(y)+V (z, y)) � 1/(V2−l(y)+V (x, y)) � 1/(V2−l(x)+
V2−l(y) + V (x, y)), which together with Proposition 2.7(i) shows

Y3,2 �
d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
2−lε2

(
2−l + d(x, y)

)ε2

∫

W3

∣
∣Pl
(
x′, z
)∣∣ 1
V2−k(z) + V2−k(y) + V (z, y)

dμ(z)

�
d
(
x, x′)ε′1

(
2−l + d(x, y)

)ε′1

d
(
y, y′)ε1

(
2−l + d(x, y)

)ε1
1

V2−l(x) + V2−l(y) + V (x, y)
2−l(ε2−ε

′
1)

(
2−l + d(x, y)

)ε2−ε′1
.

(3.43)

This completes the proof of (3.25), and hence, the proof of Lemma 3.2.

Remark 3.3. From the proof of (3.2) in Lemma 3.2, it is easy to see that (3.2) still holds if Pl has
the required regularity only in the second variable, andQk the first variable. This observation
is useful in applications.

In what follows, let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI with ε1 ∈ (0, 1], ε2 > 0, and ε3 > 0 as

in Definition 2.2. Set Dk = Sk − Sk−1 for k ∈ Z. To establish continuous Calderón reproducing
formulae, by following Coifman’s idea (see [64]) and Proposition 3.1(ii), we write for any
N ∈ N,

I =

( ∞∑

k=−∞
Dk

)( ∞∑

j=−∞
Dj

)

=
∑

|l|>N

∞∑

k=−∞
Dk+lDk +

∞∑

k=−∞
DN
k Dk

= RN + TN

(3.44)

in Lp(X)with p ∈ (1,∞), whereDN
k

=
∑

|l|≤N Dk+l. To verify that T−1
N exists and is bounded on

any space of test functions, we first prove that RN is bounded on L2(X)with a small operator
norm.

Lemma 3.4. Let N ∈ N and let RN be as in (3.44). Then there exist constants C > 0 and δ > 0,
independent ofN, such that for all f ∈ L2(X),

∥∥RN(f)
∥∥
L2(X) ≤ C2−Nδ‖f‖L2(X). (3.45)

Proof. To prove the lemma, by applying the Cotlar-Stein lemma (see [75, page 280] or [64]),
we see that it suffices to verify that for any σ ∈ (0, 1), ε′1 ∈ (0, ε1 ∧ ε2) with i = 1, 2, 3, and all
k1, l1, k2, l2 ∈ Z,

∥∥Dk1+l1Dk1

(
Dk2+l2Dk2

)t∥∥
L2(X)→L2(X) � 2−|l1|ε

′
1σ2−|l2|ε

′
2σ2−|k1−k2|ε

′
3(1−σ),

∥∥(Dk2+l2Dk2

)t
Dk1+l1Dk1

∥∥
L2(X)→L2(X) � 2−|l1|ε

′
1σ2−|l2|ε

′
2σ2−|k1−k2|ε

′
3(1−σ).

(3.46)
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We only prove (3.46), the proof for the last inequality being similar. In fact, Lemma 3.2 and
Proposition 2.7 yield that

∥
∥Dk1+l1Dk1

(
Dk2+l2Dk2

)t∥∥
L2(X)→L2(X) � 2−|l1|ε

′
12−|l2|ε

′
2 ,

∥
∥Dk1+l1Dk1D

t
k2
Dt
k2+l2

∥
∥
L2(X)→L2(X)

� 2−|k1−k2|ε
′
3 .

(3.47)

Then the geometric mean of the above two estimates gives the estimate (3.46), which
completes the proof of Lemma 3.4.

We now establish some estimates for the kernel, RN(x, y), of the operator RN . To this
end, we first give a technical lemma.

Lemma 3.5. For any σ ≥ s > 0 and x, y ∈ X with x /=y,

∞∑

k=−∞

1
V2−k(x) + V (x, y)

2−ks
(
2−k + d(x, y)

)σ � 1
V (x, y)

1
d(x, y)σ−s

. (3.48)

Proof. For any x, y ∈ X, choose k0 ∈ Z such that 2−k0 < d(x, y) ≤ 2−k0+1. Then if k ≤ k0, by
(1.3), we have

V2−k(x) = μ
(
B
(
x, 2−(k−k0)2−k0

))

≥ 2−κ(k−k0)μ
(
B
(
x, 2−k0

))

� 2−κ(k−k0)V (x, y).

(3.49)

Therefore,

∞∑

k=−∞

1
V2−k(x) + V (x, y)

2−ks
(
2−k + d(x, y)

)σ

≤ 1
d(x, y)σ−s

k0∑

k=−∞

1
V2−k(x)

+
1

V (x, y)d(x, y)σ
∞∑

k=k0+1

2−ks

� 1
V (x, y)

1
d(x, y)σ−s

{
k0∑

k=−∞
2−κ(k−k0) + 1

}

� 1
V (x, y)

1
d(x, y)σ−s

,

(3.50)

which completes the proof of Lemma 3.5.

Lemma 3.6. Let N ∈ N, let RN be as in (3.44), and let RN(x, y) be its kernel. Then for any ε′1 ∈
(0, ε1 ∧ ε2), there exists a constant δ > 0, independent ofN, such that RN satisfies all the conditions
of Corollary 2.22 with ε replaced by ε′1 and CRN � 2−δN . Moreover, R∗

N(1) = 0.



Yongsheng Han et al. 67

Proof. Let ε′1 ∈ (0, ε1 ∧ ε2). Write

RN(x, y) =
∞∑

l=N+1

∞∑

k=−∞

(
Dk+lDk

)
(x, y) +

−N−1∑

l=−∞

∞∑

k=−∞

(
Dk+lDk

)
(x, y)

= R1
N(x, y) + R2

N(x, y).

(3.51)

By (3.2) and Lemma 3.5, we have that for any x, y ∈ Xwith x /=y,

∣
∣RN(x, y)

∣
∣ ≤ ∣∣R1

N(x, y)
∣
∣ +
∣
∣R2

N(x, y)
∣
∣

�
∞∑

l=N+1

2−lε
′
1

∞∑

k=−∞

1
V2−k(x) + V (x, y)

2−kε2
(
2−k + d(x, y)

)ε2

+
−N−1∑

l=−∞
2lε

′
1

∞∑

k=−∞

1
V2−(k+l) (x) + V (x, y)

2−(k+l)ε2
(
2−(k+l) + d(x, y)

)ε2

� 2−Nε′1
1

V (x, y)
.

(3.52)

Thus, RN satisfies (i) of Theorem 2.18.
The estimate (3.3) and Lemma 3.5 show that for any x, y, y′ ∈ X with x /=y and

d(y, y′) ≤ (1/4)d(x, y),

∣∣RN(x, y) − RN

(
x, y′)∣∣

≤ ∣∣R1
N(x, y) − R1

N

(
x, y′)∣∣ +

∣∣R2
N(x, y) − R2

N

(
x, y′)∣∣

�
d
(
y, y′)ε′1

d(x, y)ε
′
1

{ ∞∑

l=N+1

2−lδ
∞∑

k=−∞

1
V2−k(x) + V (x, y)

2−kε2
(
2−k + d(x, y)

)ε2

+
−N−1∑

l=−∞
2lδ

∞∑

k=−∞

1
V2−(k+l) (x) + V (x, y)

2−(k+l)ε2
(
2−(k+l) + d(x, y)

)ε2

}

� 2−Nδ d
(
y, y′)ε′1

d(x, y)ε
′
1

1
V (x, y)

,

(3.53)

and the estimate (3.4) and the symmetry also yield that

∣∣RN(y, x) − RN

(
y′, x
)∣∣ � 2−Nδ d

(
y, y′)ε′1

d(x, y)ε
′
1

1
V (x, y)

, (3.54)

which shows that RN satisfies (2.49) and (ii) of Theorem 2.18.
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Using (3.5) and Lemma 3.5 then gives that for x, x′, y, y′ ∈ X with x /=y and d(x, x′) ≤
(1/8)d(x, y) and d(y, y′) ≤ (1/8)d(x, y),

∣
∣[RN(x, y) − RN

(
x′, y
)] − [RN

(
x, y′) − RN

(
x′, y′)]∣∣

≤ ∣∣[R1
N(x, y) − R1

N

(
x′, y
)] − [R1

N

(
x, y′) − R1

N

(
x′, y′)]∣∣

+
∣
∣[R2

N(x, y) − R2
N

(
x′, y
)] − [R2

N

(
x, y′) − R2

N

(
x′, y′)]∣∣

�
d
(
x, x′)ε′1

d(x, y)ε
′
1

d
(
y, y′)ε′1

d(x, y)ε
′
1

{ ∞∑

l=N+1

2−lδ
∞∑

k=−∞

1
V2−k(x) + V (x, y)

2−kσ
(
2−k + d(x, y)

)σ

+
−N−1∑

l=−∞
2lδ

∞∑

k=−∞

1
V2−(k+l) (x) + V (x, y)

2−(k+l)σ
(
2−(k+l) + d(x, y)

)σ

}

� 2−Nδ d
(
x, x′)ε′1

d(x, y)ε
′
1

d
(
y, y′)ε′1

d(x, y)ε
′
1

1
V (x, y)

,

(3.55)

which shows that RN satisfies (iii) of Theorem 2.18.
Moreover, by the vanishing moments of Dk, we obviously have RN(1) = 0 = R∗

N(1).
Thus, RN satisfies all the conditions of Corollary 2.22 with ε replaced by ε′1 and CRN � 2−δN ,
which completes the proof of Lemma 3.6.

From Lemma 3.6 and Corollary 2.22, it is easy to deduce the boundedness of TN on
spaces of test functions whenN is large enough.

Proposition 3.7. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, and let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI. ForN ∈ N,

let RN and TN be as in (3.44). Then there exist constants C8 > 0 and δ > 0, which are independent of
N, such that for all f ∈ G̊(x1, r, β, γ) with x1 ∈ X, r > 0 and 0 < β, γ < (ε1 ∧ ε2),

∥∥RN(f)
∥∥
G(x1,r,β,γ) ≤ C82−Nδ‖f‖G(x1,r,β,γ). (3.56)

Moreover, ifN is so large that

C82−Nδ < 1, (3.57)

then T−1
N exists and maps any space of test functions to itself. More precisely, there exists a constant

C > 0 such that for all f ∈ G̊(x1, r, β, γ) with x1 ∈ X, r > 0, and 0 < β, γ < (ε1 ∧ ε2),

∥∥T−1
N (f)

∥∥
G(x1,r,β,γ) ≤ C‖f‖G(x1,r,β,γ). (3.58)
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Proof. Applying Corollary 2.22 together with Lemmas 3.4 and 3.6 gives (3.56). Moreover, if
we chooseN ∈ N such that (3.57) holds, then by (3.56), we have that for all f ∈ G̊(x1, r, β, γ),

∥
∥T−1

N (f)
∥
∥
G(x1,r,β,γ) =

∥
∥(I − RN

)−1(f)
∥
∥
G(x1,r,β,γ)

=

∥
∥
∥
∥
∥

∞∑

l=0

(
RN

)l(f)

∥
∥
∥
∥
∥
G(x1,r,β,γ)

≤
∞∑

l=0

(
C82−Nδ)l‖f‖G(x1,r,β,γ)

� ‖f‖G(x1,r,β,γ),

(3.59)

which completes the proof of Proposition 3.7.

Proposition 3.8. Let p ∈ (1,∞), ε1 ∈ (0, 1], ε2 > 0, ε3 > 0 and let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI.

For N ∈ N, let RN and TN be as in (3.44). Then there exist constants C9 > 0 and δ > 0, which are
independent ofN, such that for all f ∈ Lp(X)

∥∥RN(f)
∥∥
Lp(X) ≤ C92−Nδ‖f‖Lp(X). (3.60)

Moreover, ifN is so large that

C92−Nδ < 1, (3.61)

then T−1
N exists and is bounded on Lp(X), and there exists a constant C > 0 such that for all f ∈

Lp(X),

∥∥T−1
N (f)

∥∥
Lp(X) ≤ C‖f‖Lp(X). (3.62)

Proof. We use the same notation as in Lemma 3.6. From Lemma 3.6 together with the
proposition in [75, page 29], it is easy to see that RN is a singular integral satisfying the
condition (10) in [75, page 19] with A � 2−Nδ. This fact and the corollary in [75, page 19]
together with a duality argument and Lemma 3.4 prove that RN is also bounded on Lp(X)
for p ∈ (1,∞) and ‖RN‖Lp(X)→Lp(X) � 2−Nδ. That is, (3.60) holds. If we chooseN ∈ N so large
that (3.61) holds, by an argument similar to the proof of Proposition 3.7, we can prove that
T−1
N is bounded on Lp(X) for p ∈ (1,∞).

Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, and let {Sk}∞k=0 be an (ε1, ε2, ε3)-ATI. Set Dk = Sk − Sk−1
for k ∈ Z. For any f ∈ Lp(X) with p ∈ (1,∞) and x ∈ X, the Littlewood-Paley g-function ġ(f)
is defined by

ġ(f)(x) =

{ ∞∑

k=−∞

∣∣Dk(f)(x)
∣∣2
}1/2

. (3.63)
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Lemma 3.9. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, and let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI. LetDk = Sk−Sk−1

for k ∈ Z and let ġ(f) for f ∈ Lp(X) with p ∈ (1,∞) be as in (3.63). Then there exists a constant
Cp > 0 such that for all f ∈ Lp(X),

∥
∥ġ(f)

∥
∥
Lp(X) ≤ Cp‖f‖Lp(X). (3.64)

Proof. By Khinchin’s inequality (see [76, page 165]) andMinkowski’s inequality, we first have
that for anyN ∈ N,

∥
∥
∥
∥
∥

{
N∑

k=−N

∣
∣Dk(f)

∣
∣2
}1/2∥∥
∥
∥
∥
Lp(X)

�
∥
∥
∥
∥
∥

1
22N
∑

σ−N

· · ·
∑

σN

N∑

k=−N
σkDk(f)

∥
∥
∥
∥
∥
Lp(X)

� 1
22N
∑

σ−N

· · ·
∑

σN

∥
∥
∥
∥∥

N∑

k=−N
σkDk(f)

∥
∥
∥
∥∥
Lp(X)

,

(3.65)

where σk = 1 or −1 for k ∈ {−N, . . . ,N}. For any fixed σ = {σk}Nk=−N , we set TσN =
∑N

k=−N σkDk

and denote its kernel by Kσ
N . Similarly to the proof of Lemma 3.6, it is easy to verify that Kσ

N

and (Kσ
N)∗ are standard Calderón-Zygmund kernels, with constants independent of N and

σ. Then if we can verify that TσN is bounded on L2(X) with ‖TσN‖L2(X)→L2(X) � 1, then by the
corollary in [75, page 22] together with a duality argument, we obtain that for p ∈ (1,∞),
‖TσN‖Lp(X)→Lp(X) � 1. Therefore, for allN ∈ N and all f ∈ Lp(X),

∥∥∥∥∥

{
N∑

k=−N

∣∣Dk(f)
∣∣2
}1/2∥∥∥∥∥

Lp(X)

� ‖f‖Lp(X). (3.66)

Then Fatou’s lemma further shows that ‖ġ(f)‖Lp(X) � ‖f‖Lp(X). To finish the proof of
Lemma 3.9, it remains to verify that TσN is bounded on L2(X). By the Cotlar-Stein lemma,
it suffices to verify that for any ε′1 ∈ (0, ε1 ∧ ε2) and all j, k ∈ Z,

∥∥σkDk

(
σjDj

)t∥∥
L2(X)→L2(X) � 2−|k−j|ε

′
1 ,

∥∥(σjDj

)t
σkDk

∥∥
L2(X)→L2(X) � 2−|k−j|ε

′
1 .

(3.67)

However, these two estimates are a simple corollary of (3.2) in Lemma 3.2. This completes
the proof of Lemma 3.9.

We can now establish a continuous Calderón reproducing formula.

Theorem 3.10. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2) and let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI.

Set Dk = Sk − Sk−1 for k ∈ Z. Then there exists a family of linear operators {D̃k}k∈Z
such that for all

f ∈ G̊ε
0(β, γ) with 0 < β, γ < ε,

f =
∞∑

k=−∞
D̃kDk(f), (3.68)
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where the series converges in both the norm of G̊ε
0(β, γ) and the norm of Lp(X) for p ∈ (1,∞).

Moreover, the kernels of the operators D̃k satisfy the conditions (i) and (ii) of Definition 2.2 with ε1
and ε2 replaced by ε′ ∈ (ε, ε1 ∧ ε2), and

∫
XD̃k(x, y)dμ(y) =

∫
XD̃k(x, y)dμ(x) = 0.

Proof. Fix a large integer N such that (3.57) and (3.61) hold and, therefore, Propositions
3.7 and 3.8 hold. Let DN

k for k ∈ Z be as in (3.44). It is easy to check that DN
k (·, y) ∈

G̊(y, 2−j , ε1, ε2) for all k ∈ Z. Define D̃k(x, y) = T−1
N (DN

k (·, y))(x) for k ∈ Z, where T−1
N is

defined as in Proposition 3.7. Then Proposition 3.7 shows that D̃k for k ∈ Z satisfies all
the conclusions of the theorem, and formally, we also have (3.68). We still need to verify
that the series in (3.68) converges in both the norm of G̊ε

0(β, γ) and the norm of Lp(X) with
p ∈ (1,∞).

Let ε̃ = ε1 ∧ ε2. We first prove that the series in (3.68) converges in the norm of G̊ε
0(β, γ)

with 0 < β, γ < ε. Let f ∈ G̊(β′, γ ′) with β < β′ < ε̃ and γ < γ ′ < ε̃. Then, for L ∈ N, we
write

∑

|k|≤L
D̃kDk(f) = T−1

N

(
∑

|k|≤L
DN
k Dk

)

(f)

= T−1
N

(

TN −
∑

|k|≥L+1
DN
k Dk

)

(f)

= T−1
N TN(f) − T−1

N

(
∑

|k|≥L+1
DN
k Dk

)

(f)

= f − lim
j→∞
(
RN

)j(f) − T−1
N

(
∑

|k|≥L+1
DN
k Dk

)

(f).

(3.69)

We now verify that

lim
L→∞

∥∥∥∥∥
f −
∑

|k|≤L
D̃kDk(f)

∥∥∥∥∥
G(β,γ)

= 0. (3.70)

To see this, we write

∥∥∥∥∥

∑

|k|≤L
D̃kDk(f) − f

∥∥∥∥∥
G(β,γ)

≤ lim
j→∞

∥∥(RN

)j(f)
∥∥
G(β,γ) +

∥∥∥∥∥
T−1
N

(
∑

|k|≥L+1
DN
k Dk

)

(f)

∥∥∥∥∥
G(β,γ)

.

(3.71)

Notice that G̊(β′, γ ′) ⊂ G̊(β, γ). By (3.56) and (3.57), we have

lim
j→∞

∥∥(RN

)j(f)
∥∥
G(β,γ) ≤ lim

j→∞
(
C82−Nδ)j‖f‖G(β,γ) = 0, (3.72)
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we remark that this is also true even when β = β′ and γ = γ ′. We now prove that

lim
L→∞

∥
∥
∥
∥
∥
T−1
N

(
∑

|k|≥L+1
DN
k Dk

)

(f)

∥
∥
∥
∥
∥
G(β,γ)

= 0. (3.73)

To this end, by Proposition 3.7, it suffices to verify that there exists some σ > 0 such that for
all 0 < β < β′ < ε̃ and 0 < γ < γ ′ < ε̃ and all f ∈ G̊(β′, γ ′),

∥
∥
∥
∥
∥

∑

|k|≥L+1
DN
k Dk(f)

∥
∥
∥
∥
∥
G(β,γ)

� 2−σL‖f‖G(β′,γ ′). (3.74)

Similarly to the proof of (3.3), by Lemma 2.1(iii) and the geometric mean, we can reduce the
proof of (3.74) to verifying that there exists some σ > 0 such that for all f ∈ G̊(β′, γ ′) and all
x ∈ X,

∣∣∣∣∣

∑

|k|≥L+1
DN
k Dk(f)(x)

∣∣∣∣∣
� 2−σL‖f‖G(β′,γ ′)

1
V1(x1) + V (x1, x)

1
(
1 + d(x, x1)

)γ , (3.75)

and for all x, x′ ∈ Xwith d(x, x′) ≤ (1/2)(1 + d(x, x1)),

∣∣∣∣∣

∑

|k|≥L+1
DN
k Dk(f)(x) −

∑

|k|≥L+1
DN
k Dk(f)

(
x′)
∣∣∣∣∣

� ‖f‖G(β′,γ ′)
d
(
x, x′)β′

(
1 + d(x, x1)

)β′
1

V1(x1) + V (x1, x)
1

(
1 + d(x, x1)

)γ ′ .

(3.76)

Similarly to the proofs of Lemmas 3.4 and 3.6 and using some estimates similar to (3.2)
and (3.12), we easily obtain that for any L ∈ N, the operator TL =

∑
|k|≥L+1D

N
k
Dk satisfies all

the conditions of Corollary 2.22 with ε replaced by ε̃, CTL � 1 and

∥∥TL
∥∥
L2(X)→L2(X) � 1. (3.77)

Corollary 2.22 then shows that TL is bounded on G̊(β′, γ ′) for any 0 < β′, γ ′ < ε̃. In particular,
we see that (3.76) holds.
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To verify (3.75), we simply denote DN
k Dk by Ek. By Lemma 3.2 and its proof, it

is easy to see that Ek(x, y), the kernel of Ek, still satisfies (i) to (iv) of Definition 2.2
with a constant depending on N; see (3.2) and (3.12). Moreover, Ek(1) = 0. For f ∈
G̊(β′, γ ′),

∣
∣
∣
∣
∣

∞∑

k=L+1

DN
k Dk(f)(x)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∞∑

k=L+1

∫

X
Ek(x, y)

[
f(y) − f(x)]dμ(y)

∣
∣
∣
∣
∣

≤
∞∑

k=L+1

∫

d(x,y)≤(1+d(x1,x))/2

∣
∣Ek(x, y)

∣
∣
∣
∣f(y) − f(x)∣∣dμ(y)

+
∞∑

k=L+1

∫

d(x,y)>(1+d(x1,x))/2

∣
∣Ek(x, y)

∣
∣
∣
∣f(y)

∣
∣dμ(y)

+
∞∑

k=L+1

∫

d(x,y)>(1+d(x1,x))/2

∣∣Ek(x, y)
∣∣∣∣f(x)

∣∣dμ(y)

≡
3∑

i=1

Zi.

(3.78)

The size estimates for Ek and the regularity of f imply together with Lemma 2.1(ii) that

Z1 �
∞∑

k=L+1

∫

d(x,y)≤(1+d(x1,x))/2

1
V2−k(x) + V2−k(y) + V (x, y)

2−kε2
(
2−k + d(x, y)

)ε2

× d(x, y)β
′

(
1 + d

(
x1, x

))β′
1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ dμ(y)

� 2−Lβ
′ 1
V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ .

(3.79)

Similarly, Lemma 2.1(i) yields that

Z3 �
∞∑

k=L+1

∫

d(x,y)>(1+d(x1,x))/2

1
V2−k(x) + V (x, y)

2−kε2
(
2−k + d(x, y)

)ε2 dμ(y)

× 1
V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′

� 2−Lε2
1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ .

(3.80)
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Since d(x, y) > (1 + d(x1, x))/2, we have V (x, x1) � V (x, y). This estimate together with
Lemma 2.1 shows that

Z2 �
∞∑

k=L+1

∫

d(x,y)>(1+d(x1,x))/2

1
V2−k(x) + V2−k(y) + V (x, y)

2−kε2
(
2−k + d(x, y)

)ε2

× 1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ ′ dμ(y)

� 2−Lε2 min
{

1
V1
(
x1
) ,

1
V
(
x, x1

)
}

1
(
1 + d

(
x1, x

))ε2

� 2−Lε2
1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ ,

(3.81)

which completes the proof of (3.75) for the operator
∑∞

k=L+1D
N
k
Dk.

Since
∫
Xf(y)dμ(y) = 0, we can write

∣∣∣∣∣

−L−1∑

k=−∞
DN
k Dk(f)(x)

∣∣∣∣∣
=

∣∣∣∣∣

−L−1∑

k=−∞

∫

X

[
Ek(x, y) − Ek

(
x, x1

)]
f(y)dμ(y)

∣∣∣∣∣

≤
−L−1∑

k=−∞

∫

d(x1,y)≤(2−k+d(x1,x))/2

∣∣Ek(x, y) − Ek
(
x, x1

)∣∣∣∣f(y)
∣∣dμ(y)

+
−L−1∑

k=−∞

∫

d(x1,y)>(2
−k+d(x1,x))/2

∣∣Ek(x, y)
∣∣∣∣f(y)

∣∣dμ(y)

+
−L−1∑

k=−∞

∫

d(x1,y)>(2
−k+d(x1,x))/2

∣∣Ek
(
x, x1

)∣∣∣∣f(y)
∣∣dμ(y)

≡
3∑

i=1

Yi.

(3.82)

The regularity of Ek in the second variable and the size condition of f together with
Lemma 2.1(i) yield that

Y1 �
−L−1∑

k=−∞

∫

d(x1,y)≤(2−k+d(x1,x))/2

d
(
y, x1

)ε1
(
2−k+d

(
x, x1

))ε1
2−kε2

(
2−k+d

(
x, x1

))ε2
1

V2−k(x)+V2−k
(
x1
)
+V
(
x, x1

)

× 1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ ′ dμ(y)

� 2−L(γ
′−γ) 1

V1
(
x1
)
+ V
(
x, x1

)
1

(
1 + d

(
x, x1

))γ .

(3.83)
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Similarly, Lemma 2.1(ii) shows that

Y3 �
−L−1∑

k=−∞

∫

d(x1,y)>(2
−k+d(x1,x))/2

1
V2−k(x) + V2−k

(
x1
)
+ V
(
x, x1

)

× 2−kε2
(
2−k + d

(
x, x1

))ε2
1

V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ ′ dμ(y)

� 2−L(γ
′−γ)/2 1

V1
(
x1
)
+ V
(
x, x1

)
1

(
1 + d

(
x1, x

))γ .

(3.84)

Since k < 0 and d(x1, y) > (2−k+d(x1, x))/2 > (1+d(x1, x))/2, then V (x1, x) � V (x1, y). From
this and Lemma 2.1(ii), it follows that

Y2 �
−L−1∑

k=−∞

∫

d(x1,y)>(2
−k+d(x1,x))/2

1
V2−k(x) + V2−k(y) + V (x, y)

× 2−kε2
(
2−k + d(x, y)

)ε2
1

V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ ′ dμ(y)

� 2−L(γ
′−γ) 1

V1
(
x1
)
+ V
(
x, x1

)
1

(
1 + d

(
x1, x

))γ ,

(3.85)

which completes the proof of (3.75). Hence, we obtain (3.74). Therefore for f ∈ G̊(β′, γ ′) with
β < β′ < ε̃ and γ < γ ′ < ε̃, (3.73) holds. Combining the estimate (3.73) with (3.72) shows
(3.70).

Let now f ∈ G̊ε
0(β, γ) with 0 < β, γ < ε. By definition, there exists a sequence

{fn}∞n=1 ⊂ G̊(ε, ε) such that limn→∞‖f−fn‖G(β,γ) = 0. For any given L ∈ N, using some estimates
similar to (3.2) and (3.12) (see also Remark 3.16), similarly to the proof of Lemma 3.6, we can
easily verify that for any L ∈ N, the operator T̃L =

∑
|k|≤LD

N
k
Dk satisfies all the conditions of

Corollary 2.22 with ε replaced by ε̃, CT̃L
� 1, and ‖T̃L‖L2(X)→L2(X) � 1. Thus T̃L is bounded on

G̊(β, γ) and T̃ ∗
L(1) = 0 by the vanishing moment ofDN

k , which together with the boundedness
of T−1

N on G̊(β, γ) yields

∥∥∥∥∥
f −
∑

|k|≤L
D̃kDk(f)

∥∥∥∥∥
G(β,γ)

�
∥∥f − fn

∥∥
G(β,γ) +

∥∥fn − T−1
N

(
T̃L
(
fn
))∥∥

G(β,γ) +
∥∥T−1

N

(
T̃L
(
fn
)) − T−1

N

(
T̃L(f)

)∥∥
G(β,γ)

�
∥∥f − fn

∥∥
G(β,γ) +

∥∥fn − T−1
N

(
T̃L
(
fn
))∥∥

G(β,γ).

(3.86)
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For any given δ > 0, fix some n ∈ N such that ‖f − fn‖G(β,γ) ≤ δ/4. By (3.70), for this chosen n,
there exists some L0 ∈ N such that if L > L0, then

∥
∥fn − T−1

N

(
T̃L
(
fn
))∥∥

G(β,γ) <
δ

2
. (3.87)

Thus, when L > L0,

∥
∥
∥
∥
∥
f −
∑

|k|≤L
D̃kDk(f)

∥
∥
∥
∥
∥
G(β,γ)

< δ. (3.88)

Since T̃ ∗
L(1) = 0 and R∗

N(1) = 0 and since T̃L and T−1
N are bounded from G̊(x, r, β, γ) to

G(x, r, β, γ) for any x ∈ X, r > 0, and 0 < β, γ < ε̃, it follows that for ε ∈ (0, ε̃),
∑

|k|≤LD̃kDk(fn) = T−1
N T̃L(fn) ∈ G̊(ε, ε).Moreover,

∥∥∥∥∥

{

f −
∑

|k|≤L
D̃kDk(f)

}

−
{

fn −
∑

|k|≤L
D̃kDk

(
fn
)
}∥∥∥∥∥

G(β,γ)
≤ ∥∥f − fn

∥∥
G(β,γ) +

∥∥T−1
N T̃L
(
f − fn

)∥∥
G(β,γ)

�
∥∥f − fn

∥∥
G(β,γ)

−→ 0,
(3.89)

as n → ∞. Thus, f −∑|k|≤L D̃kDk(f) ∈ G̊ε
0(β, γ). By (3.88), we further have that when L > L0,

∥∥∥∥∥
f −
∑

|k|≤L
D̃kDk(f)

∥∥∥∥∥
G̊ε
0(β,γ)

< δ, (3.90)

which implies that (3.68) holds in the norm of G̊ε
0(β, γ).

We now verify that (3.68) also holds in Lp(X) for p ∈ (1,∞). By Proposition 3.8 and
the choice ofN, we have

lim
j→∞

∥∥(RN

)j(f)
∥∥
Lp(X) ≤ lim

j→∞
(
C92−Nδ

)j‖f‖Lp(X) = 0,

∥∥∥∥∥
T−1
N

(
∑

|k|≥L+1
DN
k
Dk

)

(f)

∥∥∥∥∥
Lp(X)

�
∥∥∥∥∥

(
∑

|k|≥L+1
DN
k
Dk

)

(f)

∥∥∥∥∥
Lp(X)

.

(3.91)
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Moreover, by Lemma 3.9 and Hölder’s inequality, we obtain

∥
∥
∥
∥
∥

(
∑

|k|≥L+1
DN
k Dk

)

(f)

∥
∥
∥
∥
∥
Lp(X)

= sup
‖h‖

Lp
′
(X)

≤1

∣∣
∣
∣
∣

〈
∑

|k|≥L+1
DN
k Dk(f), h

〉∣∣
∣
∣
∣

≤ sup
‖h‖

Lp
′
(X)

≤1

∥
∥
∥
∥
∥

(
∑

|k|≥L+1

∣
∣Dk(f)

∣
∣2
)1/2∥∥

∥
∥
∥
Lp(X)

∥
∥
∥
∥
∥

(
∑

|k|≥L+1

∣
∣(DN

k )t(h)
∣
∣2
)1/2∥∥

∥
∥
∥
Lp

′ (X)

�
∥
∥
∥
∥∥

(
∑

|k|≥L+1

∣
∣Dk(f)

∣
∣2
)1/2∥∥

∥
∥∥
Lp(X)

� ‖f‖Lp(X).

(3.92)

Thus,

lim
L→∞

∥∥∥∥∥

(
∑

|k|≥L+1
DN
k Dk

)

(f)

∥∥∥∥∥
Lp(X)

� lim
L→∞

∥∥∥∥∥

(
∑

|k|≥L+1

∣∣Dk(f)
∣∣2
)1/2∥∥∥∥∥

Lp(X)

= 0. (3.93)

From these estimates, we finally deduce that (3.68) holds in Lp(X) with p ∈ (1,∞), which
completes the proof of Theorem 3.10.

By an argument similar to the proof of Theorem 3.10, we obtain another continuous
Calderón reproducing formula (we omit the details).

Theorem 3.11. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1∧ε2), and let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI.

Set Dk = Sk − Sk−1 for k ∈ Z. Then there exists a family of linear operators {Dk}k∈Z
such that for all

f ∈ G̊ε
0(β, γ) with 0 < β, γ < ε,

f =
∞∑

k=−∞
DkDk(f), (3.94)

where the series converges in both the norm of G̊ε
0(β, γ) and the norm of Lp(X) for p ∈ (1,∞).

Moreover, the kernels of the operators Dk satisfy the conditions (i) and (iii) of Definition 2.2 with ε1
and ε2 replaced by ε′ ∈ (ε, ε1 ∧ ε2), and

∫
XDk(x, y)dμ(y) =

∫
XDk(x, y)dμ(x) = 0.

To establish some Calderón reproducing formulae in spaces of distributions, we first
need to understand the action of the operators Dk on spaces of distributions.

To this end, for all x, y ∈ X, let ϕ(x, y) satisfy the conditions (i) through (iii) with
k = 0 of Definition 2.2, and

∫
Xϕ(x, y)dμ(y) = 0 =

∫
Xϕ(x, y)dμ(x). Let ε be as in Theorem 3.10,
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0 < β, γ < ε, and f ∈ G̊ε
0(β, γ). We then define

Ψ(f)(x) =
∫

X
ϕ(x, y)f(y)dμ(y). (3.95)

Let u ∈ (G̊ε
0(β, γ))

′. In analogy with the theory of distributions on R
n, there exist two ways to

define Ψ(u) ∈ (G̊ε
0(β, γ))

′. One way is to define Ψ(u) ∈ (G̊ε
0(β, γ))

′ by duality, that is, for all
f ∈ G̊ε

0(β, γ), we put

〈
Ψ(u), f

〉
=
〈
u,Ψt(f)

〉
, (3.96)

where Ψt denotes the integral operator with the kernel ϕt(x, y) = ϕ(y, x) for all x, y ∈ X.
Alternatively, we define pointwise

Ψ̃(u)(x) =
〈
u, ϕ(x, ·)〉. (3.97)

We now show that both definitions actually coincide.

Lemma 3.12. Let ε be as in Theorem 3.10 and let 0 < β, γ < ε. Let u ∈ (G̊ε
0(β, γ))

′ and let Ψ(u) and
Ψ̃(u) be defined, respectively, as in (3.96) and (3.97). Then Ψ(u) = Ψ̃(u) in (G̊ε

0(β, γ))
′.

Proof. To establish this lemma, it suffices to show that for all f ∈ G̊(ε, ε),
∫

X
Ψ̃(u)(x)f(x)dμ(x) =

〈
u,Ψt(f)

〉
. (3.98)

To this end, for L ∈ N large enough, we define

TL(f)(x) =
∫

B(x1,L)
ϕ(y, x)f(y)dμ(y). (3.99)

Let β, γ be as in the lemma. Using Theorem 2.18 and some routine computations, we have
TL(f) ∈ G̊(ε, ε) and limL→∞‖Ψt(f) − TL(f)‖G(β,γ) = 0. Thus, 〈u,Ψt(f)〉 = limL→∞〈u, TL(f)〉.

Now for fixed L ∈ N large enough, and for any J ∈ N, let NJ = {i ∈ IJ : Q
J
i ∩

B(x1, L)/=∅},where {QJ
i }J∈N, i∈IJ are dyadic cubes ofX as in Lemma 2.19. IfQJ

i ∩B(x1, L)/=∅

and L is large enough, then B(x1, L) ⊂ B(zJi , 3L) and Q
J
i ⊂ B(x1, 2L), where zJi is the center of

Q
J
i as in Lemma 2.19. These facts imply that �NJ � (L2j)n. By Lemma 2.19, we write

TL(f)(x) =
∑

i∈NJ

∫

Q
J
i ∩B(x1,L)

[
ϕ(y, x)−ϕ(yQJ

i
, x
)]
f(y)dμ(y)+

∑

i∈NJ

ϕ
(
yQJ

i
, x
)
∫

Q
J
i ∩B(x1,L)

f(y)dμ(y)

≡ T1
L,J(f)(x) + T

2
L,J(f)(x),

(3.100)
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where yQJ
i
is any point in QJ

i ∩ B(x1, L). For fixed L ∈ N large enough, using Theorem 2.18

and some routine computations again, we have T1
L,J(f) ∈ G̊(ε, ε) and

lim
J→∞

∥
∥T1

L,J(f)
∥
∥
G(β,γ) = 0. (3.101)

Thus,

〈
u,Ψt(f)

〉
= lim
L→∞

lim
J→∞
〈
u, T2

L,J(f)
〉

= lim
L→∞

lim
J→∞

∑

i∈NJ

Ψ̃(u)
(
yQJ

i

)
∫

Q
J
i ∩B(x1,L)

f(y)dμ(y)

=
∫

X
Ψ̃(u)(y)f(y)dμ(y)+ lim

L→∞
lim
J→∞

∑

i∈NJ

∫

Q
J
i ∩B(x1,L)

[
Ψ̃(u)

(
yQJ

i

)−Ψ̃(u)(y)
]
f(y)dμ(y).

(3.102)

It is not so difficult to verify that

∑

i∈NJ

[
ϕ
(·, yQJ

i

) − ϕ(·, y)]χQJ
i ∩B(x1,L)(y) ∈ G̊(ε, ε),

∥∥∥∥∥

∑

i∈NJ

[
ϕ
(·, yQJ

i

) − ϕ(·, y)]χQJ
i ∩B(x1,L)(y)

∥∥∥∥∥
G(β,γ)

≤ C2−Jε1
(3.103)

uniformly in y ∈ X. From this, it follows that |Ψ̃(u)(yQJ
i
) − Ψ̃(u)(y)| ≤ Cu2−Jε1 uniformly in

y ∈ X, which along with Lebesgue’s dominated convergence theorem shows that

lim
J→∞

∑

i∈NJ

∫

Q
J
i ∩B(x1,L)

[
Ψ̃(u)

(
yQJ

i

) − Ψ̃(u)(y)
]
f(y)dμ(y) = 0. (3.104)

Thus, (3.98) is true and this completes the proof of Lemma 3.12.

Theorems 3.10 and 3.11 in combinationwith a duality argument and Lemma 3.12 show
that continuous Calderón reproducing formulae also hold in spaces of distributions.

Theorem 3.13. Let all the notation be as in Theorems 3.10 and 3.11. Then for all f ∈ (G̊ε
0(β, γ))

′ with
0 < β, γ < ε, (3.68) and (3.94) hold in (G̊ε

0(β, γ))
′.

Finally, let us end this subsection by establishing a Littlewood-Paley theorem associated
to ATIs via Theorem 3.10, which is a generalization of [44, Proposition 2.5.1]. However, the
method used here is different from that in [44].

To this end, we need the following Fefferman-Stein vector-valued maximal function
inequality in [77]; see also [44, Equation (2.11)] and [75, Chapter II, Section 1].
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Lemma 3.14. Let 1 < p < ∞, 1 < q ≤ ∞, and letM be the Hardy-Littlewood maximal operator on
X. Let {fk}k∈Z

⊂ Lp(X) be a sequence of measurable functions on X. Then

∥
∥
∥
∥
∥

{ ∞∑

k=−∞

∣
∣M(fk)

∣
∣q
}1/q∥∥
∥
∥
∥
Lp(X)

≤ C
∥
∥
∥
∥
∥

{ ∞∑

k=−∞

∣
∣fk
∣
∣q
}1/q∥∥
∥
∥
∥
Lp(X)

, (3.105)

where C is independent of {fk}k∈Z
.

Proposition 3.15. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, and let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI. Let Dk =

Sk − Sk−1 for k ∈ Z and let ġ(f) for f ∈ Lp(X) with p ∈ (1,∞) be as in (3.63). Then there exists a
constant Cp > 0 such that for all f ∈ Lp(X),

C−1
p ‖f‖Lp(X) ≤

∥∥ġ(f)
∥∥
Lp(X) ≤ Cp‖f‖Lp(X). (3.106)

Proof. By Lemma 3.9, we only need to verify the first inequality. To this end, for any f ∈
Lp(X), Theorem 3.10 shows that there exist operators {D̃k}k∈Z

as in Theorem 3.10 such that

f =
∞∑

k=−∞
D̃kDk(f) (3.107)

in Lp(X). For 1 < p <∞, let 1/p + 1/p′ = 1. We first claim that for any h ∈ Lp′(X),

∥∥∥∥∥

{ ∞∑

k=−∞

∣∣D̃t
k(h)
∣∣2
}1/2∥∥∥∥∥

Lp
′ (X)

� ‖h‖Lp′ (X). (3.108)

Let ε ∈ (0, ε1 ∧ ε2). In fact, by (3.2) of Lemma 3.2 and Remark 3.3, we have that for any
ε′1 ∈ (0, ε1 ∧ ε2),

∣∣D̃t
kD̃l(x, y)

∣∣ � 2−|k−l|ε
′ 1
V2−(k∧l) (x) + V2−(k∧l) (y) + V (x, y)

2−(k∧l)ε
(
2−(k∧l) + d(x, y)

)ε . (3.109)

From this and Lemma 2.1(iv), it follows that for x ∈ X,

∣∣Dt
kD̃l(h)(x)

∣∣ � 2−|k−l|ε
′
∫

X

1
V2−(k∧l) (x) + V2−(k∧l) (y) + V (x, y)

2−(k∧l)ε
(
2−(k∧l) + d(x, y)

)ε
∣∣h(y)

∣∣dμ(y)

� 2−|k−l|ε
′
M(h)(x),

(3.110)
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which together with (3.107), Hölder’s inequality, Lemma 3.14, and Lemma 3.9 yields that

∥
∥
∥
∥
∥

{ ∞∑

k=−∞

∣
∣D̃t

k(h)
∣
∣2
}1/2∥∥
∥
∥
∥
Lp

′ (X)

�
∥
∥
∥
∥
∥

{ ∞∑

k=−∞

[ ∞∑

l=−∞
2−|k−l|ε

′
M
(
Dl(h)

)
]2}1/2∥∥

∥
∥
∥
Lp

′ (X)

�
∥∥
∥
∥
∥

{ ∞∑

l=−∞

[
M
(
Dl(h)

)]2
}1/2∥∥
∥
∥
∥
Lp

′ (X)

� ‖h‖Lp′ (X).

(3.111)

Thus, (3.108) holds.
Using (3.108) and (3.107) together with a duality argument and Hölder’s inequality

gives

‖f‖Lp(X) = sup
‖h‖

Lp
′
(X)

≤1

∣∣∣∣∣

〈 ∞∑

k=−∞
D̃kDk(f), h

〉∣∣∣∣∣

≤ sup
‖h‖

Lp
′
(X)

≤1

∥∥ġ(f)
∥∥
Lp(X)

∥∥∥∥∥

{ ∞∑

k=−∞

∣∣D̃t
k(h)
∣∣2
}1/2∥∥∥∥∥

Lp
′ (X)

�
∥∥ġ(f)

∥∥
Lp(X),

(3.112)

which completes the proof of Proposition 3.15.

Remark 3.16. From the proof of Proposition 3.15, it is easy to see that Lemma 3.9 is still true
if Dk there is replaced by D̃t

k for k ∈ Z, which has regularity only in the second variable; see
(3.108).

3.2. Inhomogeneous continuous Calderón reproducing formulae

In this subsection, we have no restriction on diam(X), which means diam(X) < ∞ or
diam(X) = ∞. We first introduce the following inhomogeneous approximation of the identity
on X.

Definition 3.17. Let ε1 ∈ (0, 1], ε2 > 0, and ε3 > 0. A sequence {Sk}k∈Z+
of linear operators is

said to be an inhomogeneous approximation of the identity of order (ε1, ε2, ε3) (for short, (ε1, ε2, ε3)-
IATI) if Sk for k ∈ Z+ satisfies Definition 2.2.

A sequence {Sk}k∈Z+
of linear operators is said to be an inhomogeneous approximation of

the identity of order ε1 with bounded support (for short, ε1-IATI with bounded support) if Sk for
k ∈ Z+ satisfies Definition 2.3.

The following proposition is a simple corollary of Proposition 2.7(iv) and (v).

Proposition 3.18. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, let {Sk}k∈Z+
be an (ε1, ε2, ε3)-IATI, and let Stk

be the adjoint operator of Sk for any k ∈ Z+. Let Dk = Sk − Sk−1 for k ∈ N and D0 = S0. Then
I =
∑∞

k=0Dk in Lp(X) for p ∈ [1,∞). The same is true for {St
k
}
k∈Z+

.
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To establish the continuous inhomogeneous Calderón reproducing formulae, we need
a technical lemma, which is a variant of Lemma 3.2.

Lemma 3.19. Let ε1 ∈ (0, 1], ε2 > 0, and ε3 > 0, {Sk}k∈Z+
, and let {Ek}k∈Z+

be two (ε1, ε2, ε3)-
IATIs. Let Pk = Sk − Sk−1 and Qk = Ek − Ek−1 for k ∈ N, P0 = S0, and Q0 = E0. Then for any
ε′1 ∈ (0, ε1 ∧ ε2), there exist constants C > 0, δ > 0, and σ > 0 as in Lemma 3.2 such that the
estimates (3.2) to (3.5) are still true for these {Pl}k∈Z+

and {Qk}k∈Z+
.

Proof. The proof of Lemma 3.19 is essentially as in that of Lemma 3.2. The only different
situations are the cases when l = 0 or k = 0. Let us prove (3.2) for l = 0 = k to show the
difference. In this case, by the size condition of P0 and Q0, we have

∣
∣P0Q0(x, y)

∣
∣ =
∣
∣
∣
∣

∫

X
S0(x, z)Q0(z, y)dμ(z)

∣
∣
∣
∣

�
∫

d(x,z)≤(1/2)d(x,y)

1
V1(x) + V1(z) + V (x, z)

1
(
1 + d(x, z)

)ε2

× 1
V1(z) + V1(y) + V (z, y)

1
(
1 + d(z, y)

)ε2 dμ(z)

+
∫

d(x,z)>(1/2)d(x,y)
· · · .

(3.113)

Since d(x, z) > (1/2)d(x, y) implies that d(y, z) ≤ d(x, y)/2, by symmetry, the estimates of
the first and the second terms are similar and we only estimate the first term. To this end,
since d(x, z) ≤ d(x, y)/2 ≤ (1 + d(x, y))/2, by Lemma 2.1(iii), we have 1/(1 + d(z, y)) �
1/(1 + d(x, y)) and 1/(V1(z) + V (z, y)) � 1/(V1(x) + V (x, y)), which further implies that
1/(V1(z) + V1(y) + V (z, y)) � 1/(V1(x) + V1(y) + V (x, y)). These estimates together with
Lemma 2.1(ii) yield that

∣∣P0Q0(x, y)
∣∣ � 1

V1(x) + V1(y) + V (x, y)
1

(
1 + d(x, y)

)ε2 , (3.114)

which is the desired estimate and hence completes the proof of Lemma 3.19.

Now, let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, and {Sk}k∈Z+
be an (ε1, ε2, ε3)-IATI as in

Definition 3.17. Throughout this subsection, we always assume thatDk = Sk − Sk−1 for k ∈ N,
D0 = S0 and Dk = 0 if k ∈ {−1,−2, . . .}. Similar to (3.44), by Proposition 3.18, for anyN ∈ N,
we write

I =

( ∞∑

k=0

Dk

)( ∞∑

j=0

Dj

)

=
∑

|l|>N

∞∑

k=0

Dk+lDk +
∞∑

k=0

DN
k Dk = RN + TN (3.115)

in Lp(X)with p ∈ (1,∞), where DN
k =
∑

|l|≤N Dk+l.
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Repeating the proof of Lemma 3.4, we obtain the following.

Lemma 3.20. Let N ∈ N and let RN be as in (3.115). Then there exist constants C > 0 and δ > 0,
independent ofN, such that for all f ∈ L2(X),

∥
∥RN(f)

∥
∥
L2(X) ≤ C2−Nδ‖f‖L2(X). (3.116)

We now establish some estimates for the kernel, RN(x, y), of the operator RN . To this
end, we first give a technical lemma, which is a simple corollary of Lemma 3.5.

Lemma 3.21. For any σ ≥ s > 0 and x, y ∈ X with x /=y,

∞∑

k=0

1
V2−k(x) + V (x, y)

2−ks
(
2−k + d(x, y)

)σ � 1
V (x, y)

1
d(x, y)σ−s

. (3.117)

Lemma 3.22. Let N ∈ N, let RN be as in (3.115), and let RN(x, y) be its kernel. Then for any
ε ∈ (0, ε1 ∧ ε2), there exists a constant δ > 0, independent of N, such that RN satisfies all the
conditions of Corollary 2.22 and CRN � 2−δN . Moreover, R∗

N(1) = 0.

Replacing Lemmas 3.2 and 3.5, respectively, by Lemmas 3.19 and 3.21, and repeating
the proof of Lemma 3.6, we obtain Lemma 3.22. In combination with Lemma 3.20, this leads
to the following variant of Proposition 3.7. We omit the details.

Proposition 3.23. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, and let {Sk}k∈Z+
be an (ε1, ε2, ε3)-IATI. For

N ∈ N, let RN and TN be as in (3.115). Then there exist constants C8 > 0 and δ > 0, which are
independent ofN, such that RN is bounded on any space of test functions, G̊(x1, r, β, γ) with x1 ∈ X,
r > 0, and 0 < β, γ < (ε1 ∧ ε2), and its operator norm is bounded by C82−Nδ. Moreover, if N is
so large that (3.57) holds, then T−1

N exists and is bounded on G̊(x1, r, β, γ), if x1 ∈ X, r > 0 and
0 < β, γ < (ε1 ∧ ε2).

Via Lemmas 3.20 and 3.22, similar to the proof of Proposition 3.8, we can obtain the
following version of Proposition 3.8.

Proposition 3.24. Let p ∈ (1,∞), ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, and let {Sk}k∈Z+
be an (ε1, ε2, ε3)-

IATI. For N ∈ N, let RN and TN be as in (3.115). Then there exist constants C9 > 0 and δ > 0,
which are independent ofN, such that RN is bounded on Lp(X) with the operator norm bounded by
C92−Nδ. Moreover, ifN is so large that (3.61) holds, then T−1

N exists and is bounded on Lp(X).

Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, and let {Sk}k∈Z+
be an (ε1, ε2, ε3)-IATI. Set Dk = Sk − Sk−1

for k ∈ N and D0 = S0. For any f ∈ Lp(X) with p ∈ (1,∞) and x ∈ X, the inhomogeneous
Littlewood-Paley g-function g(f) is defined by

g(f)(x) =

{ ∞∑

k=0

∣∣Dk(f)(x)
∣∣2
}1/2

. (3.118)

Applying the Cotlar-Stein lemma and using a procedure similar to the proof of Lemma 3.9,
we obtain the boundedness on Lp(X) with p ∈ (1,∞) for the Littlewood-Paley g-function as
below.
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Lemma 3.25. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, and let {Sk}k∈Z+
be an (ε1, ε2, ε3)-IATI. Let Dk =

Sk − Sk−1 for k ∈ N, D0 = S0, and g(f) for f ∈ Lp(X) with p ∈ (1,∞) being as in (3.118). Then
there exists a constant Cp > 0 such that for all f ∈ Lp(X),

∥
∥g(f)

∥
∥
Lp(X) ≤ Cp‖f‖Lp(X). (3.119)

We can now establish an inhomogeneous continuous Calderón reproducing formula.

Theorem 3.26. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z+
be an (ε1, ε2, ε3)-

IATI. Set Dk = Sk − Sk−1 for k ∈ Z and D0 = S0. Then there exist N ∈ N and a family of linear
operators {D̃k}k∈Z+

such that for all f ∈ Gε
0(β, γ) with 0 < β, γ < ε,

f =
∞∑

k=0

D̃kDk(f), (3.120)

where the series converges both in the norm of Gε
0(β, γ) and the norm of Lp(X) for p ∈ (1,∞).

Moreover, the kernels of the operators D̃k satisfy the conditions (i) and (ii) of Definition 2.2 with ε1
and ε2 replaced by ε′ ∈ (ε, ε1∧ε2), and

∫
XD̃k(x, y)dμ(y) =

∫
XD̃k(x, y)dμ(x) = 1 when 0 ≤ k ≤N;

= 0 when k > N.

Proof. We prove this theorem by an argument similar to that of Theorem 3.10. Fix a large
integer N ∈ N such that (3.57) and (3.61) hold and, therefore, Propositions 3.23 and 3.24
hold. Let DN

k
be as in (3.115). Then,

DN
k =

∑

|j|≤N
Dk+j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k+N∑

j=0

Dj, for 0 ≤ k ≤N;

k+N∑

j=k−N
Dj, for k > N.

(3.121)

Thus, for k > N, DN
k
(·, y) ∈ G̊(y, 2−k, ε1, ε2), and we then define

D̃k(x, y) = T−1
N

(
DN
k (·, y))(x). (3.122)

By Proposition 3.23, we know that for k > N and any 0 < β, γ < (ε1 ∧ ε2), D̃k(·, y) ∈
G(y, 2−k, β, γ). Moreover, (T−1

N )
∗
(1) =

∑∞
i=0(R

∗
N)i(1) = 1, which implies that

∫

X
D̃k(x, y)dμ(x) =

∫

X
DN
k (x, y)dμ(x) = 0. (3.123)

Obviously, we have

∫

X
D̃k(x, y)dμ(y) = T−1

N

{∫

X
DN
k (·, y)dμ(y)

}
(x) = 0. (3.124)
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Thus, D̃k for k > N satisfies all the conditions of Theorem 3.26. If k ∈ {0, . . . ,N}, then
∫

X
DN
k (x, y)dμ(x) = 1 =

∫

X
DN
k (x, y)dμ(y). (3.125)

Thus, in this case, we cannot directly apply Proposition 3.23. Notice that

T−1
N =

∞∑

i=0

(
RN

)i
. (3.126)

Using Lemma 3.19, we easily show that for ε′1 ∈ (0, ε1 ∧ ε2), there exist positive constants
C̃ and δ depending on ε′1 such that RN(x, y) satisfies (2.174) and (2.185) with r0 = 1 and
CT � C̃2−Nδ. Thus, by Corollary 2.31, we know that RN(S0(·, y)) ∈ G(y, 1, ε′1, ε2) and

∥∥RN

(
S0(·, y)

)∥∥
G̊(y,1,ε′1,ε2)

≤ C̃2−Nδ. (3.127)

Notice that R∗
N(1) = 0. Applying Proposition 3.23 yields that there exist two positive

constants C8 and δ, which are independent of N, such that for all j ∈ N and all y ∈ X,
R
j

N(S0(·, y)) ∈ G̊(y, 1, β, γ) and

∥∥R
j

N

(
S0(·, y)

)∥∥
G̊(y,1,β,γ) ≤

(
C82−Nδ)j , (3.128)

where β, γ ∈ (0, ε1 ∧ ε2). Thus, if we choose N so large that (3.57) holds, then by (3.126),
we know that D̃k for k ∈ {0, 1, . . . ,N} satisfies the conditions (i) and (ii) of Definition 2.2
with ε1 and ε2 replaced by ε ∈ (0, ε1 ∧ ε2). Moreover, from (3.126) together with RN(1) =
0 = R∗

N(1),
∫
XS0(x, y)dμ(y) = 1 =

∫
XS0(x, y)dμ(x) and for k ∈ N,

∫
XDk(x, y)dμ(y) =

0 =
∫
XDk(x, y)dμ(x), it follows that for k ∈ {0, 1, . . . ,N}, ∫XD̃k(x, y)dμ(y) = 1 =

∫
XD̃k(x, y)dμ(x).

Now it remains to prove that the series in (3.120) converges in both the norm of G̊ε
0(β, γ)

with 0 < β, γ < ε and the norm of Lp(X)with p ∈ (1, γ).
To verify (3.120) converges in Gε

0(β, γ) with β, γ ∈ (0, ε), similarly to (3.69), for f ∈
Gε
0(β

′, γ ′) with β′ ∈ (β, ε̃ ) and γ ′ ∈ (γ, ε̃ ), and L ∈ N with L > N + 1, we have

L∑

k=0

D̃kDk(f) = f − lim
j→∞
(
RN

)j(f) − T−1
N

( ∞∑

k=L+1

DN
k Dk

)

(f). (3.129)

Thus,

∥∥∥∥∥

L∑

k=0

D̃kDk(f) − f
∥∥∥∥∥
G(β,γ)

≤ lim
j→∞

∥∥(RN)j(f)
∥∥
G(β,γ) +

∥∥∥∥∥
T−1
N

( ∞∑

k=L+1

DN
k Dk

)

(f)

∥∥∥∥∥
G(β,γ)

. (3.130)
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Applying Corollary 2.31 again, we obtain that there exists δ > 0 such that for all x ∈ X,

∣
∣RN(f)(x)

∣
∣ � 2−Nδ 1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d(x1, x)

)γ ′ , (3.131)

and for any β ∈ (0, β′), and x, x′ ∈ Xwith d(x, x′) ≤ (1 + d(x1, x))/2,

∣
∣RN(f)(x) − RN(f)

(
x′)∣∣ � 2−Nδ

(
d
(
x, x′)

1 + d
(
x1, x

)
)β

1
V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ .

(3.132)

Notice that R∗
N(1) = 0, which together with (3.131) and (3.132) shows that RN(f) ∈ G̊(β, γ).

From this and Proposition 3.23, it follows that

lim
j→∞

∥∥(RN

)j(f)
∥∥
G(β,γ) ≤ lim

j→∞
(
C82−Nδ)j‖f‖G(β,γ) = 0. (3.133)

To prove that the second term on the right-hand side of (3.130) tends to 0 as L → ∞,
by (DN

k
)∗(1) = 0 when L ≥ N (see (3.121)), and Proposition 3.24, we only need to verify that

for a certain σ > 0,

∥∥∥∥∥

∞∑

k=L+1

DN
k Dk(f)

∥∥∥∥∥
G(β,γ)

� 2−σL‖f‖G(β′,γ ′). (3.134)

In fact, (3.134) can be deduced from the following two estimates that for all x ∈ X,

∣∣∣∣∣

∞∑

k=L+1

DN
k Dk(f)(x)

∣∣∣∣∣
� 2−(β

′∧γ ′)L‖f‖G(β′,γ ′)
1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ , (3.135)

and for x, x′ ∈ X with d(x, x′) ≤ (1 + d(x1, x))/2,

∣∣∣∣∣

∞∑

k=L+1

DN
k Dk(f)(x) −

∞∑

k=L+1

DN
k Dk(f)

(
x′)
∣∣∣∣∣

� 2−(1−θ)(β
′∧γ ′)L‖f‖G(β′,γ ′)

(
d
(
x, x′)

1 + d
(
x1, x

)

)θβ′
1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ ,

(3.136)

where θ ∈ (0, 1).
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Let Ek = DN
k Dk. It is easy to check that Ek for k ∈ N satisfies all estimates of

Definition 2.2 with ε replaced by ε̃ and a coefficient depending on N. Moreover, for k ∈ N,
Ek(1) = 0 = E∗

k
(1). Thus, by Lemma 2.1(ii),

∣
∣DN

k Dk(f)(x)
∣
∣

≤
∫

d(x,y)≤(1+d(x1,x))/2

∣
∣Ek(x, y)

∣
∣
∣
∣f(y) − f(x)∣∣dμ(y)

+
∫

d(x,y)>(1+d(x1,x))/2

∣∣Ek(x, y)
∣∣[∣∣f(y)

∣∣ +
∣∣f(x)

∣∣]dμ(y)

≤ ‖f‖G(β′,γ ′)
{∫

d(x,y)≤(1+d(x1,x))/2

∣
∣Ek(x, y)

∣
∣
(

d(x, y)
1 + d

(
x1, x

)
)β′

× 1
V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ dμ(y)

+
∫

d(x,y)>(1+d(x1,x))/2

∣∣Ek(x, y)
∣∣
[

1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ ′

+
1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′

]

dμ(y)

}

≤ ‖f‖G(β′,γ ′)
{

2−kβ
′ 1
V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ + Z

}

,

(3.137)

and by Lemma 2.1(i) and (ii), we further have

Z �
∫

d(x,y)>(1+d(x1,x))/2

1
V2−k(x)+V (x, y)

2−kε2
(
2−k+d(x, y)

)ε2
1

V1
(
x1
)
+V
(
x1, y

)
1

(
1+d
(
x1, y

))γ ′ dμ(y)

� min

{
2−kγ

′

V1
(
x1
)
∫

d(x,y)>(1+d(x1,x))/2

1
V (x, y)

1

d(x, y)γ
′ dμ(y),

2−kγ ′

V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′

∫

X

1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ ′ dμ(y)

}

� 2−kγ
′ 1
V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ .

(3.138)

From this, it is easy to deduce that (3.135) holds.
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On the other hand, similarly to the proof of (3.12), we can verify that for x, x′ ∈ Xwith
d(x, x′) ≤ (1 + d(x, x1))/4,

∣
∣DN

k Dk(f)(x) −DN
k Dk(f)

(
x′)∣∣

� ‖f‖G(β′,γ ′)
(

d
(
x, x′)

1 + d
(
x1, x

)
)β′

1
V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ ,
(3.139)

and by (3.137) together with Lemma 2.1(iii),

∣
∣DN

k Dk(f)(x) −DN
k Dk(f)(x′)

∣
∣ � 2−k(β

′∧γ ′)‖f‖G(β′,γ ′)
1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ ′ .

(3.140)

These estimates together with the geometric means yield (3.136). Thus,

lim
L→∞

∥∥∥∥∥

L∑

k=0

D̃kDk(f) − f
∥∥∥∥∥
G(β,γ)

= 0. (3.141)

Then repeating the proof of Theorem 3.10 further shows that (3.120) holds in the norm
of Gε

0(β, γ). Its convergence in Lp(X) for p ∈ (1,∞) can be proved in a way similar
to Theorem 3.10 if instead of Lemma 3.9 by Lemma 3.25, which completes the proof of
Theorem 3.26.

Remark 3.27. From the proof of Theorem 3.26, it is easy to see thatN in Theorem 3.26 can be
chosen so that both (3.57) and (3.61) are satisfied. In order to defray our notation and simplify
our presentation, we will assume in the sequel thatN = 0.

A similar argument as for the proof of Theorem 3.26 leads to the following variant of
the inhomogeneous continuous Calderón reproducing formula (we omit the details).

Theorem 3.28. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z+
be an (ε1, ε2, ε3)-

IATI. Set Dk = Sk − Sk−1 for k ∈ Z and D0 = S0. Then there exists a family of linear operators
{Dk}k∈Z+

such that for all f ∈ Gε
0(β, γ) with 0 < β, γ < ε,

f =
∞∑

k=0

DkDk(f), (3.142)

where the series converges in both the norm of Gε
0(β, γ) and the norm of Lp(X) for p ∈ (1,∞).

Moreover, the kernels of the operators Dk satisfy the conditions (i) and (iii) of Definition 2.2 with ε1
and ε2 replaced by ε′ ∈ (ε, ε1 ∧ ε2), and

∫
XDk(x, y)dμ(y) =

∫
XDk(x, y)dμ(x) = 1 when k = 0; = 0

when k ∈ N.

Theorems 3.26 and 3.28 in combinationwith a duality argument and Lemma 3.12 show
that the inhomogeneous Calderón reproducing formulae also hold in spaces of distributions.
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Theorem 3.29. Let all the notation be as in Theorems 3.26 and 3.28. Then for all f ∈ (Gε
0(β, γ))

′ with
0 < β, γ < ε, (3.120) and (3.142) hold in (Gε

0(β, γ))
′.

Finally, we have the following analogue of Proposition 3.15 for the inhomogeneous
Littlewood-Paley g-function, based on Theorem 3.26 (we omit the proof).

Proposition 3.30. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, and let {Sk}k∈Z+
be an (ε1, ε2, ε3)-IATI. Set

Dk = Sk − Sk−1 for k ∈ Z, D0 = S0 and g(f) for f ∈ Lp(X) with p ∈ (1,∞) be as in (3.118). Then
there exists a constant Cp > 0 such that for all f ∈ Lp(X),

Cp‖f‖Lp(X) ≤
∥
∥g(f)

∥
∥
Lp(X) ≤ Cp‖f‖Lp(X). (3.143)

Remark 3.31. Similarly as in Remark 3.16, it is easy to see that Lemma 3.25 is still true if Dk

therein is replaced by the kernel D̃t
k
for k ∈ Z+, which has regularity only in the second

variable.

4. Discrete Calderón reproducing formulae

In this section, we will establish some discrete Calderón reproducing formulae which play
a key role in the theory of function spaces, especially in obtaining a frame characterization.
To obtain these discrete Calderón reproducing formulae, we mainly use Corollaries 2.22 and
2.31 again.

In the following, for k ∈ Z and τ ∈ Ik, we denote by Qk, ν
τ , ν = 1, 2, . . . ,N(k, τ), the set

of all cubesQk+j
τ ′ ⊂ Qk

τ , whereQk
τ is the dyadic cube as in Lemma 2.19 and j is a positive large

integer such that

2−jC6 <
1
3
. (4.1)

Denote by zk, ντ the “center” of Qk, ν
τ as in Lemma 2.19 and by yk, ντ a point in Qk, ν

τ .

4.1. Homogeneous discrete Calderón reproducing formulae

In this subsection, we always assume that diam(X) = ∞, ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, and
{Sk}k∈Z

is an (ε1, ε2, ε3)-ATI. Set Dk = Sk − Sk−1 for k ∈ Z.
Let all the notation be as in (3.44). We now introduce the following discrete Riemann

sum operator on X,

S(f)(x) =
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (x, y)dμ(y)Dk(f)

(
yk,ντ
)
. (4.2)

We first verify that S is well defined and bounded on L2(X) via the Littlewood-Paley
theorem for the homogeneous g-function as in (3.63), Proposition 3.15. To do so, let us first
establish the following estimate by using Proposition 3.15.
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Lemma 4.1. There exists a constant C > 0 such that for all yk,ντ ∈ Qk,ν
τ and all f ∈ L2(X),

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣2 ≤ C‖f‖2

L2(X). (4.3)

Proof. By Theorem 3.10, there exists a family of linear operators {D̃k}
∞
k=−∞ as in Theorem 3.10

such that for all f ∈ L2(X), f =
∑∞

l=−∞D̃lDl(f). By Lemma 3.2 together with Remark 3.3, we
have that for any ε′1 ∈ (0, ε1 ∧ ε2) and any ε′′1 ∈ (0, ε′1), all x, z ∈ X and all k, l ∈ Z,

∣
∣DkD̃l(z, x)

∣
∣ � 2−|k−l|ε

′′
1

1
V2−(k∧l) (x) + V2−(k∧l) (z) + V (z, x)

2−(k∧l)ε
′
1

(
2−(k∧l) + d(z, x)

)ε′1
. (4.4)

Notice that for all x ∈ X and any z, y ∈ Qk, ν
τ , by Lemma 2.19(iv), we have that d(y, z) ≤

C62−j2−k ≤ C62−j2−(k∧l) ≤ C62−j(2
−(k∧l) + d(x, y)), where j ∈ N satisfies (4.1). Thus, for all

x ∈ X, any y, z ∈ Qk,ν
τ and all k, l ∈ Z, Lemma 2.1(iii) shows that

∣∣DkD̃l(z, x)
∣∣χQk, ν

τ
(z)

� 2−|k−l|ε
′′
1

1
V2−(k∧l) (x) + V2−(k∧l) (y) + V (y, x)

2−(k∧l)ε
′
1

(
2−(k∧l) + d(y, x)

)ε′1
χQk, ν

τ
(y).

(4.5)

From this and Lemma 2.1(iv), it follows that for k ∈ Z,

∣∣Dk(f)
(
yk,ντ
)∣∣ ≤

∞∑

l=−∞

∫

X

∣∣(DkD̃l

)(
yk, ντ , x

)∣∣∣∣Dl(f)(x)
∣∣dμ(x)

�
∞∑

l=−∞
2−|k−l|ε

′′
1M
(
Dl(f)

)
(y)χQk, ν

τ
(y),

(4.6)

whereM is the Hardy-Littlewood maximal function on X. By (4.6), the construction of Qk,ν
τ

(see Lemma 2.19), Lemmas 3.14 and 3.9, we obtain

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣2 �

∞∑

k=−∞

∫

X

[ ∞∑

l=−∞
2−|k−l|ε

′′
1M
(
Dl(f)

)
(y)

]2
dμ(y)

�
∞∑

l=−∞

∥∥M
(
Dl(f)

)∥∥2
L2(X)

� ‖f‖2
L2(X),

(4.7)

which proves Lemma 4.1.

The next lemma can be proved in away similar as in the proof of Theorem (1.14) in [78,
page 12]. The main idea is to combine Theorem 3.10, Lemma 2.19, and Hölder’s inequality
with a duality argument. We omit the details here; see also [36].
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Lemma 4.2. Suppose that a sequence {ak,ντ : k ∈ Z, τ ∈ Ik, ν = 1, . . . ,N(k, τ)} of numbers satisfies
∑∞

k=−∞
∑

τ∈Ik
∑N(k,τ)

ν=1 |ak,ντ |2 <∞. Then the function defined by

f(x) =
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

[
μ
(
Qk,ν
τ

)]−1/2
ak,ντ

∫

Qk,ν
τ

DN
k (x, y)dμ(y) (4.8)

is in L2(X). Moreover,

‖f‖2
L2(X) ≤ C

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

∣∣ak,ντ
∣∣2. (4.9)

Lemmas 4.1 and 4.2 yield the boundedness of the discrete Riemann sum operator S on
L2(X).

Proposition 4.3. Let the notation be the same as above with j satisfying (4.1). Then the discrete
Riemann sum operator S in (4.2) is bounded on L2(X). That is, there is a constant C > 0, only
depending onN, such that for all f ∈ L2(X),

‖S(f)‖L2(X) ≤ C‖f‖L2(X). (4.10)

Next we prove that the discrete Riemann sum operator S is invertible and S−1 maps
G̊(x1, r, β, γ) into itself. To do this, we define R = I − S and first establish some estimates on
the kernel, R(x, y), of the operator R. To this end, by (3.44), we write

R(f)(x) = (I − S)(f)(x)

=
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (x, y)

[
Dk(f)(y)−Dk(f)

(
yk,ντ
)]
dμ(y)+

∑

|l|>N

∞∑

k=−∞
Dk+lDk(f)(x)

≡
∞∑

k=−∞
Gk(f)(x) + RN(f)(x)

≡ G(f)(x) + RN(f)(x).
(4.11)

Let Gk(x, y) be the kernel of Gk for k ∈ Z. We now verify that Gk(x, y), and hence G(x, y),
satisfies all the desired estimates. Clearly,

G(x, y) =
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (x, z)

[
Dk(z, y) −Dk

(
yk,ντ , y

)]
dμ(z)

=
∞∑

k=−∞
Gk(x, y).

(4.12)

We need the following two technical lemmas.
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Lemma 4.4. Let 0 ≤ λ, μ ≤ 1, ε1 ∈ (0, 1], με1 < ν1, λε1 < ν2, and k ∈ Z. Then there exists a
constant C > 0 such that for all x, y ∈ X and all k ∈ Z,

∫

X

d
(
x, x′)λε1

(
2−k + d(x, z)

)λε1
1

V2−k(x) + V2−k(z) + V (x, z)
2−kν1

(
2−k + d(x, z)

)ν1

× d
(
y, y′)με1

(
2−k + d(z, y)

)με1
1

V2−k(z) + V2−k(y) + V (z, y)
2−kν2

(
2−k + d(z, y)

)ν2 dμ(z)

≤ C d
(
x, x′)λε1

(
2−k + d(x, y)

)λε1
d
(
y, y′)με1

(
2−k + d(x, y)

)με1
1

V2−k(x) + V2−k(y) + V (x, y)

×
{

2−k(ν2−λε1)

(
2−k + d(x, y)

)ν2−λε1 +
2−k(ν1−με1)

(
2−k + d(x, y)

)ν1−με1

}

.

(4.13)

Proof. Write

∫

X

d
(
x, x′)λε1

(
2−k + d(x, z)

)λε1
1

V2−k(x) + V2−k(z) + V (x, z)
2−kν1

(
2−k + d(x, z)

)ν1

× d
(
y, y′)με1

(
2−k + d(z, y)

)με1
1

V2−k(z) + V2−k(y) + V (z, y)
2−kν2

(
2−k + d(z, y)

)ν2 dμ(z)

=
∫

d(x,z)≥d(x,y)/2

d
(
x, x′)λε1

(
2−k + d(x, z)

)λε1
1

V2−k(x) + V2−k(z) + V (x, z)

× 2−kν1
(
2−k + d(x, z)

)ν1
d(y, y′)με1

(
2−k + d(z, y)

)με1
2−kν2

(
2−k + d(z, y)

)ν2

× 1
V2−k(z) + V2−k(y) + V (z, y)

dμ(z) +
∫

d(x,z)<d(x,y)/2
· · ·

≡ Z1 + Z2.

(4.14)

For Z1, the fact d(x, z) ≥ d(x, y)/2 implies that V (x, y) ≤ |B(x, 2d(x, z))| � V (x, z), which
together with Lemma 2.1(ii) shows that

Z1 �
d
(
x, x′)λε1

(
2−k + d(x, y)

)λε1
1

V2−k(x) + V (x, y)
2−kν1

(
2−k + d(x, y)

)ν1

× d(y, y′)με1
∫

X

1
V2−k(y) + V (z, y)

2−kν2
(
2−k + d(z, y)

)ν2+με1 dμ(z)

�
d
(
x, x′)λε1

(
2−k + d(x, y)

)λε1
d
(
y, y′)με1

(
2−k + d(x, y)

)με1
1

V2−k(x) + V (x, y)
2−k(ν1−με1)

(
2−k + d(x, y)

)ν1−με1 .

(4.15)
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For Z2, the fact d(x, z) < d(x, y)/2 implies that d(z, y) > d(x, y)/2 and therefore,
V (x, y) ∼ V (y, x) � V (y, z) ∼ V (z, y). From these facts and Lemma 2.1(ii), it follows that

Z2 � d
(
x, x′)λε1 d

(
y, y′)με1

(
2−k + d(x, y)

)με1
2−kν2

(
2−k + d(x, y)

)ν2

×min

{
1

V (x, y)

∫

X

1
V2−k(x) + V (x, z)

2−kν1
(
2−k + d(x, z)

)ν1+λε1 dμ(z),

1
V2−k(x)

1
V (x, y)

2kλε1μ
(
B

(
x,
d(x, y)

2

))}

�
d
(
x, x′)λε1

(
2−k + d(x, y)

)λε1
d
(
y, y′)με1

(
2−k + d(x, y)

)με1
1

V2−k(x) + V (x, y)
2−k(ν2−λε1)

(
2−k + d(x, y)

)ν2−λε1 .

(4.16)

Moreover, by symmetry, we also have

∫

X

d
(
x, x′)λε1

(
2−k + d(x, z)

)λε1
1

V2−k(x) + V2−k(z) + V (x, z)
2−kν1

(
2−k + d(x, z)

)ν1

× d
(
y, y′)με1

(
2−k + d(z, y)

)με1
1

V2−k(z) + V2−k(y) + V (z, y)
2−kν2

(
2−k + d(z, y)

)ν2 dμ(z)

� d(x, x′)λε1

(
2−k + d(x, y)

)λε1
d(y, y′)με1

(
2−k + d(x, y)

)με1
1

V2−k(y) + V (x, y)

×
{

2−k(ν2−λε1)

(
2−k + d(x, y)

)ν2−λε1 +
2−k(ν1−με1)

(
2−k + d(x, y)

)ν1−με1

}

.

(4.17)

Combining these estimates completes the proof of Lemma 4.4.

Lemma 4.5. Let Gk(x, y) for k ∈ Z be as above. Then for any λ, μ ∈ (0, 1) satisfying that λε1 < ε2,
there exists a constant CN > 0, independent of j, such that

(i)
∣∣Gk(x, y)

∣∣ ≤ CN2−jε1(1/(V2−k(x) + V2−k(y) + V (x, y)))(2−kε2/
(
2−k + d(x, y))ε2);

(ii) for y, y′ ∈ X with d(y, y′) ≤ (2−k + d(x, y))/2,

∣∣Gk(x, y)−Gk

(
x, y′)∣∣≤CN2−jε1

d
(
y, y′)με1

(
2−k+d(x, y)

)με1
1

V2−k(x)+V2−k(y)+V (x, y)

×
{

2−kε3
(
2−k + d(x, y)

)ε3 +
2−k(ε2−με1)

(
2−k + d(x, y)

)ε2−με1

}

;

(4.18)
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(iii) |Gk(x, y) −Gk(x′, y)| ≤ CN2−jε1(d(x, x′)λε1/(2−k + d(x, y))
λε1)(1/(V2−k(x) + V2−k(y) +

V (x, y)))(2−k(ε2−λε1)/(2−k + d(x, y))
ε2−λε1) for x, x′ ∈ X with d(x, x′) ≤ (2−k +

d(x, y))/2;

(iv)
∫
XGk(x, y)dμ(y) = 0 =

∫
XGk(x, y)dμ(x).

Proof. Since
∫
XDk(x, y)dμ(y) = 0 =

∫
XD

N
k
(x, y)dμ(x), by the definition of Gk in (4.12), we

easily see that (iv) holds.
By the construction of dyadic cubes in Lemma 2.19, we also easily see that for any

z ∈ Qk,ν
τ ,

d
(
z, yk, ντ

) ≤ C62−(k+j) = C62−j2−k ≤ C62−j
(
2−k + d(y, z)

)
. (4.19)

We recall that j always satisfies (4.1). Then, the regularity of Dk and the size estimates of DN
k

together with Lemma 4.4 in the case λ = μ = 0 yield that

∣∣Gk(x, y)
∣∣ =

∣∣∣∣∣

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk, ν
τ

DN
k (x, z)

[
Dk(z, y) −Dk

(
yk,ντ , y

)]
dμ(z)

∣∣∣∣∣

≤ CN2−jε1
1

V2−k(x) + V2−k(y) + V (x, y)
2−kε2

(
2−k + d(x, y)

)ε2 ,

(4.20)

which shows Gk(x, y) satisfies (i).
Write

Gk(x, y) −Gk

(
x, y′)

=
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (x, z)

{[
Dk(z, y) −Dk

(
yk,ντ , y

)] − [Dk

(
z, y′) −Dk

(
yk,ντ , y′)]}dμ(z).

(4.21)

We now verify that Gk(x, y) satisfies (ii) by considering the following two cases.

Case 1 (d(y, y′) ≤ (2−k + d(z, y))/3). In this case, from (4.19) with j satisfying (4.1), the size
estimates of DN

k
and the second difference regularity of Dk and Lemma 4.4 with λ = 0, μ ∈

(0, 1), ν1 = ε2, and ν2 = ε3, it follows that

∣∣Gk(x, y) −Gk

(
x, y′)∣∣

� 2−jε1
∫

X

∣∣DN
k (x, z)

∣∣ d
(
y, y′)με1

(
2−k + d(z, y)

)με1
1

V2−k(z) + V2−k(y) + V (z, y)
2−kε3

(
2−k + d(z, y)

)ε3 dμ(z)

≤CN2−jε1
d
(
y, y′)με1

(
2−k+d(x, y)

)με1
1

V2−k(x)+V2−k(y)+V (x, y)

{
2−kε3

(
2−k+d(x, y)

)ε3 +
2−k(ε2−με1)

(
2−k+d(x, y)

)ε2−με1

}

.

(4.22)
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Case 2 ((2−k + d(z, y))/3 < d(y, y′) ≤ (2−k + d(x, y))/2). In this case, the estimate
(i), Lemma 2.1(iii) together with the fact that 2−k < 3d(y, y′) show that for any μ ∈
(0, 1),

∣
∣Gk(x, y) −Gk

(
x, y′)∣∣

≤ ∣∣Gk(x, y)
∣
∣ +
∣
∣Gk

(
x, y′)∣∣

≤ CN2−jε1
{

1
V2−k(x) + V2−k(y) + V (x, y)

2−kε2
(
2−k + d(x, y)

)ε2

+
1

V2−k(x) + V2−k
(
y′) + V

(
x, y′)

2−kε2
(
2−k + d

(
x, y′))ε2

}

≤ CN2−jε1
d(y, y′)με1

(
2−k+d(x, y)

)με1
1

V2−k(x)+V2−k(y)+V (x, y)
2−k(ε2−με1)

(
2−k+d(x, y)

)ε2−με1 ,

(4.23)

which completes the proof of (ii).
We verify (iii) by writing

Gk(x, y) −Gk

(
x′, y
)

=
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

[
DN
k (x, z) −DN

k

(
x′, z
)][

Dk(z, y) −Dk

(
yk,ντ , y

)]
dμ(z).

(4.24)

If d(x, x′) ≤ (2−k + d(x, z))/2, the estimate (4.19) with j satisfying (4.1), the regularity of DN
k

and Dk, Lemma 4.4 with λ ∈ (0, 1), μ = 0, and ν1 = ν2 = ε2 show that

∣∣Gk(x, y) −Gk

(
x′, y
)∣∣

≤ CN2−jε1
∫

X

d
(
x, x′)λε1

(
2−k + d(x, z)

)λε1
1

V2−k(x) + V2−k(z) + V (x, z)

× 2−kε2
(
2−k + d(x, z)

)ε2
1

V2−k(z) + V2−k(y) + V (z, y)
2−kε2

(
2−k + d(z, y)

)ε2 dμ(z)

≤ CN2−jε1
d(x, x′)λε1

(
2−k + d(x, y)

)λε1
1

V2−k(x) + V2−k(y) + V (x, y)
2−k(ε2−λε1)

(
2−k + d(x, y)

)ε2−λε1 .

(4.25)
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If (2−k + d(x, z))/2 < d(x, x′) ≤ (2−k + d(x, y))/2, the estimate (i), Lemma 2.1(iii)
together with the fact 2−k < 2d(x, x′) yield that

∣
∣Gk(x, y)−Gk

(
x′, y
)∣∣≤CN2−jε1

{
1

V2−k(x) + V2−k(y) + V (x, y)
2−kε2

(
2−k + d(x, y)

)ε2

+
1

V2−k
(
x′) + V2−k(y) + V

(
x′, y
)

2−kε2
(
2−k + d

(
x′, y
))ε2

}

≤CN2−jε1
d
(
x, x′)λε1

(
2−k+d(x, y)

)λε1
1

V2−k(x)+V2−k(y)+V (x, y)
2−k(ε2−λε1)

(
2−k+d(x, y)

)ε2−λε1 ,

(4.26)

which completes the proof of (iii), and hence the proof of Lemma 4.5.

Lemma 4.6. LetN ∈ N and G be as in (4.12). Then there exist a constant CN > 0 independent of j
such that

‖G‖L2(X)→L2(X) ≤ CN2−jε1 . (4.27)

Proof. Using Lemma 4.5 and repeating the proof of (3.2) in Lemma 3.2 yield that for any ε′1 ∈
(0, ε1 ∧ ε2) and all k, j ∈ Z,

∥∥GkG
t
j

∥∥
L2(X)→L2(X) ≤ CN2−jε12−|k−j|ε

′
1 ,

∥∥Gt
jGk

∥∥
L2(X)→L2(X) ≤ CN2−jε12−|k−j|ε

′
1 ,

(4.28)

where CN > 0 is a constant depending on ε′1, but, independent of j and k. These estimates
together with the Cotlar-Stein lemma and G =

∑∞
k=−∞Gk yields the conclusion of Lemma 4.6.

The following lemma is a key lemma to establish the discrete Calderón reproducing
formula.

Lemma 4.7. Let S be as in (4.2) and R = I − S. Then R is a Calderón-Zygmund singular integral
operator, R(1) = 0 = R∗(1). Moreover, for any ε′1 ∈ (0, ε1∧ε2), there exist positive constants C10, CN ,
and δ, depending on ε′1, such that the kernel, R(x, y), of R satisfies all the conditions of Corollary 2.22
with ε replaced by ε′1 and

CR + ‖R‖L2(X)→L2(X) ≤ C102−δN + CN2−jε1 , (4.29)

where CR is the Calderón-Zygmund constant as in Theorem 2.18, C10 and δ are independent of N
and j, and CN is independent of j.
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Proof. From (4.11), it is easy to see that R(1) = 0 = R∗(1). Moreover, Lemma 3.6 shows that
RN(x, y), the kernel of RN , satisfies all the conditions of Corollary 2.22 with ε replaced by
ε′1 and CRN + ‖RN‖L2(X)→L2(X) ≤ C102−δN , where C10 and δ are independent of N and j.
This combining the formula (4.11) implies that to prove Lemma 4.7, it suffices to verify that
G(x, y), the kernel of G, satisfies (2.49) and Theorem 2.18(i), (ii), and (iii) with ε replaced by
ε′1 and CG ≤ CN2−jε1 , where CN is independent of N. In fact, combining Lemma 4.5(i) with
Lemma 3.5 and (4.12) yields that for all x, y ∈ Xwith x /= y,

∣
∣G(x, y)

∣
∣ ≤

∞∑

k=−∞

∣
∣Gk(x, y)

∣
∣

≤ CN2−jε1
∞∑

k=−∞

1
V2−k(x) + V (x, y)

2−kε2
(
2−k + d(x, y)

)ε2

≤ CN2−jε1
1

V (x, y)
,

(4.30)

which shows G(x, y) satisfies Theorem 2.18(i).
Lemma 4.5(ii) and (iii) and Lemma 3.5 together with (4.12), respectively, show that

for any μ ∈ (0, 1), all x, y, y′ ∈ Xwith x /= y and d(y, y′) ≤ d(x, y)/2,

∣∣G(x, y) −G(x, y′)∣∣ ≤
∞∑

k=−∞

∣∣Gk(x, y) −Gk

(
x, y′)∣∣

≤ CN2−jε1
d
(
y, y′)με1

d(x, y)με1
∞∑

k=−∞

1
V2−k(x) + V (x, y)

×
{

2−kε3
(
2−k + d(x, y)

)ε3 +
2−k(ε2−με1)

(
2−k + d(x, y)

)ε2−με1

}

≤ CN2−jε1
d
(
y, y′)με1

d(x, y)με1
1

V (x, y)
,

(4.31)

and for any λ ∈ (0, 1), all x, x′, y ∈ X with x /= y and d(x, x′) ≤ d(x, y)/2,

∣∣G(x, y) −G(x′, y
)∣∣ ≤

∞∑

k=−∞

∣∣Gk(x, y) −Gk

(
x′, y
)∣∣

≤ CN2−jε1
d
(
x, x′)λε1

d(x, y)λε1

∞∑

k=−∞

1
V2−k(x) + V (x, y)

2−k(ε2−λε1)

(
2−k + d(x, y)

)ε2−λε1

≤ CN2−jε1
d
(
x, x′)λε1

d(x, y)λε1
1

V (x, y)
,

(4.32)

which proves that G(x, y) satisfies Theorem 2.18(ii) and (2.49).
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By (2.49) and Theorem 2.18(ii), it is easy to see that it suffices to establish
Theorem 2.18(iii) only for d(x, x′) ≤ d(x, y)/6 and d(y, y′) ≤ d(x, y)/6. To this end, we write

[
G(x, y) −G(x′, y

)] − [G(x, y′) −G(x′, y′)]

=
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

[
DN
k (x, z) −DN

k

(
x′, z
)]

× {[Dk(z, y) −Dk

(
yk,ντ , y

)] − [Dk

(
z, y′) −Dk

(
yk,ντ , y′)]}dμ(z).

(4.33)

If d(x, x′) > (2−k + d(x, z))/2 and d(y, y′) > (2−k + d(y, z))/3, then

d
(
x, x′) + d

(
y, y′) ≥

(
21−k + d(x, z) + d(z, y)

)

3
>
d(x, y)

3
, (4.34)

which contradicts the assumptions that d(x, x′) ≤ d(x, y)/6 and d(y, y′) ≤ d(x, y)/6. Thus,
we still have the following three cases:

(i) d(x, x′) ≤ (2−k + d(x, z))/2 and d(y, y′) ≤ (2−k + d(y, z))/3;

(ii) d(x, x′) ≤ (2−k + d(x, z))/2 and d(y, y′) > (2−k + d(y, z))/3;

(iii) d(x, x′) > (2−k + d(x, z))/2 and d(y, y′) ≤ (2−k + d(y, z))/3.

In the case (i), by (4.19) with j satisfying (4.1), the second difference regularity of DN
k and

Dk, Lemma 4.4 with λ, μ ∈ (0, 1), ν1 = ε2, and ν2 = ε1 + ε3, and Lemma 3.5, we obtain

∣∣[G(x, y) −G(x′, y
)] − [G(x, y′) −G(x′, y′)]∣∣

≤CN2−jε1
∞∑

k=−∞

∫

X

d
(
x, x′)λε1

(
2−k+d(x, z)

)λε1
1

V2−k(x)+V2−k(z)+V (x, z)
2−kε2

(
2−k+d(x, z)

)ε2
d
(
y, y′)με1

(
2−k+d(z, y)

)με1

× 1
V2−k(z) + V2−k(y) + V (z, y)

2−k(ε1+ε3)
(
2−k + d(z, y)

)ε1+ε3 dμ(z)

≤CN2−jε1
d
(
x, x′)λε1

d(x, y)λε1
d
(
y, y′)με1

d(x, y)με1
1

V (x, y)
.

(4.35)

In the case (ii), we also have (2−k+d(z, y′))/2 ≤ (2−k+d(z, y))/2+d(y, y′)/2 ≤ 2d(y, y′). From
this, (4.19) with j satisfying (4.1), the regularity of DN

k
and Dk, Lemma 4.4 with λ, μ ∈ (0, 1)
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and ν1 = ν2 = ε2, Lemmas 2.1(iii) and 3.5, it follows that

∣
∣[G(x, y) −G(x′, y

)] − [G(x, y′) −G(x′, y′)]∣∣

≤ CN2−jε1
∞∑

k=−∞

∫

X

d
(
x, x′)λε1

(
2−k + d(x, z))

λε1

1
V2−k(x) + V2−k(z) + V (x, z)

2−kε2
(
2−k + d(x, z)

)ε2

×
[

d
(
y, y′)με1

(
2−k + d(z, y)

)με1
1

V2−k(z) + V2−k(y) + V (z, y)
2−kε2

(
2−k + d(z, y)

)ε2

+
d
(
y, y′)με1

(
2−k+d

(
z, y′)

)με1
1

V2−k(z)+V2−k
(
y′)+V

(
z, y′)

2−kε2
(
2−k+d(z, y′))ε2

]
dμ(z)

≤ CN2−jε1
d
(
x, x′)λε1

d(x, y)λε1
d
(
y, y′)με1

d(x, y)με1
1

V (x, y)
.

(4.36)

For the last case (iii), we have (2−k + d(x′, z))/2 ≤ (2−k + d(x, z))/2 + d(x, x′)/2 ≤ 3d(x, x′)/2.
This estimate, (4.19) with j satisfying (4.1), the size condition of DN

k
, the second difference

regularity of Dk, Lemma 4.4 with λ, μ ∈ (0, 1), ν1 = ε2, and ν2 = ε1 + ε3, Lemmas 2.1(iii) and
3.5 show that

∣∣[G(x, y) −G(x′, y
)] − [G(x, y′) −G(x′, y′)]∣∣

≤ CN2−jε1
∞∑

k=−∞

∫

X

[∣∣DN
k (x, z)

∣∣ +
∣∣DN

k

(
x′, z
)∣∣]

× d
(
y, y′)με1

(
2−k+d(z, y)

)με1
1

V2−k(z)+V2−k(y)+V (z, y)
2−k(ε1+ε3)

(
2−k+d(z, y)

)ε1+ε3 dμ(z)

≤ CN2−jε1
d
(
x, x′)λε1

d(x, y)λε1
d
(
y, y′)με1

d(x, y)με1
1

V (x, y)
.

(4.37)

Thus, G(x, y) satisfies Theorem 2.18(iii). This finishes the proof of Lemma 4.7.

By Lemmas 4.6 and 4.7, we obtain the boundedness ofR on G̊(x1, r, β, γ) for any x1 ∈ X,
r > 0 and 0 < β, γ < (ε1 ∧ ε2), and in Lp(X) for p ∈ (1,∞). We omit the details.

Proposition 4.8. Let R and the notation be as in Lemma 4.7. Then R is bounded on Lp(X) for p ∈
(1,∞) and on G̊(x1, r, β, γ) for any x1 ∈ X, r > 0 and 0 < β, γ < (ε1 ∧ ε2). That is, there exists a
constant C11 > 0, only depending on p, β, and γ such that for all f ∈ Lp(X),

‖R(f)‖Lp(X) ≤ C11
(
C102−δN + CN2−jε1

)‖f‖Lp(X),

‖R(f)‖G(x1,r,β,γ) ≤ C11
(
C102−δN + CN2−jε1

)‖f‖G(x1,r,β,γ).
(4.38)
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By using Proposition 4.8 and repeating the proof of Propositions 3.7 and 3.8, we can
obtain the boundedness of S−1 on G̊(x1, r, β, γ) for any x1 ∈ X, r > 0 and 0 < β, γ < ε, and in
Lp(X) for p ∈ (1,∞). We also omit the details.

Corollary 4.9. Let S be as in (4.2). LetN, j ∈ N such that (4.1) and

C11
(
C102−δN + CN2−jε1

)
< 1 (4.39)

hold. Then S has a bounded inverse in G̊(x1, r, β, γ) for any x1 ∈ X, r > 0, and 0 < β, γ < (ε1 ∧ ε2),
and in Lp(X) for p ∈ (1,∞). Namely, there exists a constant C > 0 depending only on β, γ, and p
such that for all f ∈ G̊(x1, r, β, γ),

∥∥S−1(f)
∥∥
G(x1,r,β,γ) ≤ C‖f‖G(x1,r,β,γ) (4.40)

and for all f ∈ Lp(X),

∥∥S−1(f)
∥∥
Lp(X) ≤ C‖f‖Lp(X). (4.41)

To establish the discrete Calderón reproducing formulae, we still need the following
technical lemma.

Lemma 4.10. Let j satisfy (4.1). For k ∈ Z, any fixed yk,ντ ∈ Qk,ν
τ with τ ∈ Ik and ν ∈ {1, . . . ,

N(k, τ)}, and any x ∈ X, let

Ek(x, y) =
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (x, z)dμ(z)Dk

(
yk,ντ , y

)
. (4.42)

Then for any λ, μ ∈ (0, 1), there exists a constant CN > 0 depending only onN, λ and μ such that

(i) for all k ∈ Z and all x, y ∈ X,

∣∣Ek(x, y)
∣∣ ≤ CN

1
V2−k(x) + V2−k(y) + V (x, y)

2−kε2
(
2−k + d(x, y)

)ε2 ; (4.43)

(ii) for all k ∈ Z and all x, y, y′ ∈ X with d(y, y′) ≤ (2−k + d(x, y))/2,

∣∣Ek(x, y) − Ek
(
x, y′)∣∣

≤CN

d
(
y, y′)με1

(
2−k+d(x, y)

)με1
1

V2−k(x)+V2−k(y)+V (x, y)
2−k(ε2−με1)

(
2−k+d(x, y)

)ε2−με1 ;
(4.44)

(iii) property (ii) also holds with x and y interchanged and μ replaced by λ;



Yongsheng Han et al. 101

(iv) for all k ∈ Z and all x, x′, y, y′ ∈ X with d(x, x′) ≤ (2−k + d(x, y))/4 and d(y, y′) ≤
(2−k + d(x, y))/4,

∣
∣[Ek(x, y) − Ek

(
x′, y
)] − [Ek

(
x, y′) − Ek

(
x′, y′)]∣∣

≤ CN

d
(
x, x′)λε1

(
2−k + d(x, y)

)λε1
d
(
y, y′)με1

(
2−k + d(x, y)

)με1
1

V2−k(x) + V2−k(y) + V (x, y)

×
[

2−k(ε2−λε1)

(
2−k + d(x, y)

)ε2−λε1 +
2−k(ε2−με1)

(
2−k + d(x, y)

)ε2−με1

]

.

(4.45)

Proof. The main idea for the proof of this lemma is to combine the techniques used in the
proof of Lemma 3.2 with Lemma 2.1(iii). By (4.19) and Lemma 2.1(iii), for any z ∈ Qk,ν

τ and
y ∈ X,

1

2−k + d
(
yk,ντ , y

) ∼ 1
2−k + d(z, y)

, (4.46)

1

V2−k
(
yk,ντ
)
+ V2−k(y) + V

(
yk,ντ , y

) ∼ 1
V2−k(z) + V2−k(y) + V (z, y)

. (4.47)

To see (i), by the size condition of Dk together with (4.46) and (4.47), and Lemma 4.4 with
λ = μ = 0 and ν1 = ν2 = ε2, we have

∣∣Ek(x, y)
∣∣ �
∫

X

∣∣DN
k (x, z)

∣∣ 1
V2−k(z) + V2−k(y) + V (z, y)

2−kε2
(
2−k + d(z, y)

)ε2 dμ(z)

� 1
V2−k(x) + V2−k(y) + V (x, y)

2−kε2
(
2−k + d(x, y)

)ε2 ,

(4.48)

which verifies (i).
To verify (ii), we write

∣∣Ek(x, y) − Ek
(
x, y′)∣∣

≤
∑

τ∈Ik

N(k,τ)∑

ν=1

∣∣∣∣

∫

Qk,ν
τ

DN
k (x, z)dμ(z)

[
Dk

(
yk,ντ , y

) −Dk

(
yk,ντ , y′)]

∣∣∣∣

× [χ{d(y,y′)≤(2−k+d(yk,ντ ,y))/2}
(
y, y′) + χ{d(y,y′)>(2−k+d(yk,ντ ,y))/2}

(
y, y′)]

≡ Y1 + Y2.

(4.49)
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For Y1, by the regularity of Dk and the size condition of DN
k together with (4.46), (4.47) and

Lemma 4.4 with λ = 0, μ ∈ (0, 1), and ν1 = ν2 = ε2, we obtain

Y1 �
∫

X

1
V2−k(x) + V2−k(z) + V (x, z)

2−kε2
(
2−k + d(x, z)

)ε2
d
(
y, y′)με1

(
2−k + d(z, y)

)με1

× 1
V2−k(z) + V2−k(y) + V (z, y)

2−kε2
(
2−k + d(z, y)

)ε2 dμ(z)

�
d
(
y, y′)με1

(
2−k + d(x, y)

)με1
1

V2−k(x) + V2−k(y) + V (x, y)
2−k(ε2−με1)

(
2−k + d(x, y)

)ε2−με1 .

(4.50)

The property (i), Lemma 2.1(iii), and the fact that 2−k ≤ 2d(y, y′) yield that

Y2 � 1
V2−k(x) + V2−k(y) + V (x, y)

2−kε2
(
2−k + d(x, y)

)ε2

+
1

V2−k(x) + V2−k
(
y′) + V

(
x, y′)

2−kε2
(
2−k + d

(
x, y′))ε2

�
d
(
y, y′)με1

(
2−k + d(x, y)

)με1
1

V2−k(x) + V2−k(y) + V (x, y)
2−k(ε2−με1)

(
2−k + d(x, y)

)ε2−με1 ,

(4.51)

which completes the proof of (ii).
By symmetry, we can deduce (iii) from (ii).
To prove (iv), we write

[
Ek(x, y) − Ek

(
x′, y
)] − [Ek

(
x, y′) − Ek

(
x′, y′)]

=
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

[
DN
k (x, z) −DN

k

(
x′, z
)][

Dk

(
yk,ντ , y

) −Dk

(
yk,ντ , y′)]dμ(z).

(4.52)

Notice that if d(x, x′) > (2−k + d(x, z))/2 with z ∈ Qk,ν
τ and d(y, y′) > (2−k + d(yk,ντ , y))/2,

then d(x, x′)+d(y, y′) > (21−k +d(x, z)+d(yk,ντ , y))/2,which contradicts the assumptions that
d(x, x′) ≤ (2−k+d(x, y))/4 and d(y, y′) ≤ (2−k+d(x, y))/4, since these estimates together with
(4.1) and Lemma 2.19 prove that for z ∈ Qk,ν

τ , d(x, x′)+d(y, y′) < (21−k+d(x, z)+d(yk,ντ , y))/2.
Thus, if we let

W1 =
{
z ∈ Qk,ν

τ : d
(
x, x′) ≤ 2−k + d(x, z)

2
and d

(
y, y′) ≤ 2−k + d

(
yk,ντ , y

)

2

}
,

W2 =
{
z ∈ Qk,ν

τ : d
(
x, x′) ≤ 2−k + d(x, z)

2
and d

(
y, y′) >

2−k + d
(
yk,ντ , y

)

2

}
,

W3 =
{
z ∈ Qk,ν

τ : d
(
x, x′) >

2−k + d(x, z)
2

and d
(
y, y′) ≤ 2−k + d

(
yk,ντ , y

)

2

}
,

(4.53)
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we then have

[
Ek(x, y) − Ek

(
x′, y
)] − [Ek

(
x, y′) − Ek

(
x′, y′)]

=
3∑

i=1

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ ∩Wi

[
DN
k (x, z)−DN

k

(
x′, z
)][

Dk

(
yk,ντ , y

)−Dk

(
yk,ντ , y′)]dμ(z)

=
3∑

i=1

Zi.

(4.54)

For Z1, the regularity of DN
k and Dk together with the estimates (4.46) and (4.47) and

Lemma 4.4 yield that for any λ, μ ∈ (0, 1),

∣∣Z1
∣∣ �
∫

X

d
(
x, x′)λε1

(
2−k + d(x, z)

)λε1
1

V2−k(x) + V2−k(z) + V (x, z)
2−kε2

(
2−k + d(x, z)

)ε2

× d
(
y, y′)με1

(
2−k + d(z, y)

)με1
1

V2−k(z) + V2−k(y) + V (z, y)
2−kε2

(
2−k + d(z, y)

)ε2 dμ(z)

�
d
(
x, x′)λε1

(
2−k + d(x, y)

)λε1
d
(
y, y′)με1

(
2−k + d(x, y)

)με1
1

V2−k(x) + V2−k(y) + V (x, y)

×
{

2−k(ε2−λε1)

(
2−k + d(x, y)

)ε2−λε1 +
2−k(ε2−με1)

(
2−k + d(x, y)

)ε2−με1

}

.

(4.55)

Similarly, for Z2, from d(y, y′) > (2−k + d(yk,ντ , y))/2, (4.46) and Lemma 2.1(iii) with d(y, y′)
≤ (2−k + d(x, y))/4, it follows that for z ∈ Qk,ν

τ , 1/2με1 < d(y, y′)με1/(2−k + d(yk,ντ , y))
με1 ∼

d(y, y′)με1/(2−k + d(z, y))
με1
,which together with the regularity ofDN

k
and the size condition

of Dk, (4.46), (4.47), Lemmas 4.4, and 2.1(iii) shows for any λ, μ ∈ (0, 1),

∣∣Z2
∣∣ �
∫

X

d
(
x, x′)λε1

(
2−k + d(x, z)

)λε1
1

V2−k(x) + V2−k(z) + V (x, z)
2−kε2

(
2−k + d(x, z)

)ε2

×
[

d
(
y, y′)με1

(
2−k + d(z, y)

)με1
1

V2−k(z) + V2−k(y) + V (z, y)
2−kε2

(
2−k + d(z, y)

)ε2

+
1

V2−k(z) + V2−k
(
y′) + V

(
z, y′)

2−kε2
(
2−k + d

(
z, y′))ε2

]

dμ(z)

�
d
(
x, x′)λε1

(
2−k + d(x, y)

)λε1
d
(
y, y′)με1

(
2−k + d(x, y)

)με1
1

V2−k(x) + V2−k(y) + V (x, y)

×
{

2−k(ε2−λε1)

(
2−k + d(x, y)

)ε2−λε1 +
2−k(ε2−με1)

(
2−k + d(x, y)

)ε2−με1

}

.

(4.56)
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From Z2 and the symmetry, we can deduce the desired estimate for Z3, which completes the
proof of Lemma 4.10.

We can now establish discrete Calderón reproducing formulae.

Theorem 4.11. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}∞k=−∞ be an
(ε1, ε2, ε3)-ATI. SetDk = Sk − Sk−1 for any k ∈ Z. Then for any fixed j ∈ N as in Corollary 4.9, there
exists a family of linear operators {D̃k}k∈Z

such that for any fixed yk,ντ ∈ Qk,ν
τ with k ∈ Z, τ ∈ Ik,

and ν = 1, . . . ,N(k, τ), and all f ∈ G̊ε
0(β, γ) with 0 < β, γ < ε,

f(x) =
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

D̃k(x, y)dμ(y)Dk(f)
(
yk,ντ
)

=
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

D̃k

(
x, yk,ντ

)
∫

Qk,ν
τ

Dk(f)(y)dμ(y)

=
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
D̃k

(
x, yk,ντ

)
Dk(f)

(
yk,ντ
)
,

(4.57)

where the series converges in both the norm of G̊ε
0(β, γ) and the norm of Lp(X) with p ∈ (1,∞).

Moreover, D̃k satisfies the conditions as in Theorem 3.10.

Proof. We only prove the first formula in (4.57), the proof of the second formula in (4.57) being
similar. Fix N, j ∈ N such that (4.1) and (4.39) hold. Thus, for such N and j, Corollary 4.9
holds. Let DN

k
for k ∈ Z be as in (3.44). For k ∈ Z, let D̃k(x, y) = S−1[DN

k
(·, y)](x). By (4.2)

and Corollary 4.9, similarly to the proof of Theorem 3.10, it is easy to see that we obtain all
the conclusions of the theorem except for the convergence of the series in the first formula
in (4.57). To prove this, we need to verify that all the series in the first summation and the
second summation of the first formula in (4.57) converges in the desired ways. To simplify
the presentation, by similarity, we prove this only for the series in the first summation of the
first formula in (4.57).

Similarly to the proof of Theorem 3.10, for L ∈ N, we write

∑

|k|≤L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

D̃k(x, y)dμ(y)Dk(f)
(
yk,ντ
)

= S−1
[
∑

|k|≤L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (·, y)dμ(y)Dk(f)

(
yk,ντ
)
]

(x)

= S−1
{

S(f)(·) −
∑

|k|>L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (·, y)dμ(y)Dk(f)

(
yk,ντ
)
}

(x)

= f(x) − lim
m→∞

Rm(f)(x) − S−1
{
∑

|k|>L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (·, y)dμ(y)Dk(f)

(
yk,ντ
)
}

(x).

(4.58)
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Corollary 2.24 together with Lemmas 4.6 and 4.7 shows that for all f ∈ G̊ε
0(β, γ) with 0 < β,

γ < ε,

lim
m→∞

∥
∥Rm(f)

∥
∥
G̊ε
0(β,γ)

≤ lim
m→∞

Cm
11

(
C102−δN + CN2−jε

)m‖f‖G̊ε
0(β,γ)

= 0, (4.59)

and for all f ∈ Lp(X)with p ∈ (1,∞),

lim
m→∞

∥
∥Rm(f)

∥
∥
Lp(X) ≤ lim

m→∞
Cm

11

(
C102−δN + CN2−jε

)m‖f‖Lp(X) = 0. (4.60)

To finish the proof of the theorem, we still need to verify that for all f ∈ G̊ε
0(β, γ) with 0 <

β, γ < ε,

lim
L→∞

∥∥∥∥∥
S−1
{
∑

|k|>L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (·, y)dμ(y)Dk(f)

(
yk,ντ
)
}∥∥∥∥∥

G̊ε
0(β,γ)

= 0, (4.61)

and for all f ∈ Lp(X)with p ∈ (1,∞),

lim
L→∞

∥∥∥∥∥
S−1
{
∑

|k|>L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (·, y)dμ(y)Dk(f)

(
yk,ντ
)
}∥∥∥∥∥

Lp(X)

= 0. (4.62)

We first verify (4.61). To this end, letting ε̃ = ε1 ∧ ε2, similarly to the proof of Theorem 3.10,
by Corollary 4.9, it suffices to prove that there exists some σ > 0 such that for all 0 < β < β′ <
ε̃, 0 < γ < γ ′ < ε̃, all L ∈ N, and all f ∈ G̊(β′, γ ′),

∥∥∥∥∥

∑

|k|>L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (·, y)dμ(y)Dk(f)

(
yk,ντ
)
∥∥∥∥∥
G(β,γ)

≤ C2−σL‖f‖G(β′,γ ′), (4.63)

where C > 0 is independent of L and f . An argument similar to the proof of (3.3), via
Lemma 2.1(iii) and geometric mean, reduces the proof of this estimate to verifying the
following two estimates that there exists some σ > 0 such that for all f ∈ G̊(β′, γ ′) and
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all x ∈ X,

∣∣
∣
∣
∣

∑

|k|>L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (x, y)dμ(y)Dk(f)

(
yk,ντ
)
∣∣
∣
∣
∣

� 2−σL‖f‖G(β′,γ ′) 1
V1
(
x1) + V

(
x1, x

)
1

(
1 + d(x, x1)

)γ ,

(4.64)

and for all x, x′ ∈ X with d(x, x′) ≤ (1/2)(1 + d(x, x1)),

∣
∣
∣
∣
∣

∑

|k|>L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (x, y)dμ(y)Dk(f)

(
yk,ντ
)

−
∑

|k|>L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k

(
x′, y
)
dμ(y)Dk(f)

(
yk,ντ
)
∣∣∣∣∣

� ‖f‖G(β′,γ ′)
d
(
x, x′)β′

(
1 + d

(
x, x1

))β′
1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x, x1

))γ ′ .

(4.65)

For L ∈ N, let TL be the operator associated with the kernel

KL(x, y) =
∑

|k|>L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (x, z)dμ(z)Dk

(
yk,ντ , y

)
(4.66)

with x, y ∈ X. By an argument similar to the proof of Lemma 4.7 together with Lemmas 4.10
and 3.5, we know TL satisfies all the conditions of Corollary 2.22 with ε replaced by ε̃ and
CTL + ‖TL‖L2(X)→L2(X) � 1. Thus, Corollary 2.22 then shows that TL is bounded on G̊(β′, γ ′) for
any 0 < β′, γ ′ < ε̃. In particular, (4.65) holds. Using Lemma 4.10 and an argument similar to
the proof of (3.75) also gives (4.64). Thus, (4.61) holds.

We now prove (4.62). To this end, Corollary 4.9 shows that it suffices to verify that for
all f ∈ Lp(X) with p ∈ (1,∞), limL→∞‖TL(f)‖Lp(X) = 0. By Theorem 3.10, for f ∈ Lp(X) and
h ∈ Lp

′
(X), f =

∑∞
l=−∞D̃lDl(f) and h =

∑∞
l=−∞D̃lDl(h), respectively, in Lp(X) and Lp

′
(X),

where D̃k for k ∈ Z are as in Theorem 3.10. From Remark 3.3, it is easy to deduce that there
exists ε′1 ∈ (0, ε1 ∧ ε2) such that for all y ∈ Qk,ν

τ and z ∈ X,

∣∣DkD̃l

(
yk,ντ , z

)∣∣ � 2−|k−l|ε
′
1

1
V2−k(y) + V2−k(z) + V (y, z)

2−(k∧l)ε
′
1

(
2−(k∧l) + d(y, z)

)ε′1
,

∣∣(DN
k

)t
D̃l(y, z)

∣∣ � 2−|k−l|ε
′
1

1
V2−k(y) + V2−k(z) + V (y, z)

2−(k∧l)ε
′
1

(
2−(k∧l) + d(y, z)

)ε′1
.

(4.67)
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These estimates and Lemma 2.1(iv) together with Hölder’s inequality, Lemma 3.14, and
Proposition 3.15 yield that

∥
∥TL(f)

∥
∥
Lp(X) = sup

‖h‖
Lp

′
(X)

≤1

∣
∣〈TL(f), h

〉∣∣

= sup
‖h‖

Lp
′
(X)

≤1

∣
∣
∣
∣
∣

∑

|k|>L

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

Dk(f)
(
yk,ντ
)(
DN
k

)t(h)(y)dμ(y)

∣
∣
∣
∣
∣

� sup
‖h‖

Lp
′
(X)

≤1

∥
∥
∥
∥
∥

{
∑

|k|>L

[ ∞∑

l=−∞
2−|k−l|ε

′
1M
(∣∣Dl(f)

∣∣)
]2}1/2∥∥

∥
∥
∥
Lp(X)

×
∥
∥
∥
∥∥

{
∑

|k|>L

[ ∞∑

l=−∞
2−|k−l|ε

′
1M
(∣∣(DN

k

)t(h)
∣
∣)
]2}1/2∥∥

∥
∥∥
Lp

′ (X)

� 2−ε
′
1L/2

∥∥∥∥∥

{
∑

|l|<L/2

[
M
(∣∣Dl(f)

∣∣)]2
}1/2∥∥∥∥∥

Lp(X)

+

∥∥∥∥∥

{
∑

|l|≥L/2

[
M
(∣∣Dl(f)

∣∣)]2
}1/2∥∥∥∥∥

Lp(X)

−→ 0,

(4.68)

as L → ∞. That is, (4.62) also holds, which completes the proof of Theorem 4.11.

By an argument similar to the proof of Theorem 4.11, we can establish the following
variants of the discrete Calderón reproducing formulae (we omit the details).

Theorem 4.12. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}∞k=−∞ be an
(ε1, ε2, ε3)-ATI. SetDk = Sk − Sk−1 for any k ∈ Z. Then for any fixed j ∈ N as in Corollary 4.9, there
exists a family of linear operators {Dk}k∈Z

such that for any fixed yk,ντ ∈ Qk,ν
τ with k ∈ Z, τ ∈ Ik,

and ν = 1, . . . ,N(k, τ), and all f ∈ G̊ε
0(β, γ) with 0 < β, γ < ε,

f(x) =
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

Dk(x, y)dμ(y)Dk(f)
(
yk,ντ
)

=
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

Dk

(
x, yk,ντ

)
∫

Qk,ν
τ

Dk(f)(y)dμ(y)

=
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
Dk

(
x, yk,ντ

)
Dk(f)

(
yk,ντ
)
,

(4.69)

where the series converges in both the norm of G̊ε
0(β, γ) and the norm of Lp(X) with p ∈ (1,∞).

Moreover, Dk satisfies the conditions as in Theorem 3.11.
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Theorems 4.11 and 4.12 in combination with a duality argument show that discrete
Calderón reproducing formulae on spaces of distributions.

Theorem 4.13. Let all the notation be as in Theorems 4.11 and 4.12. Then for all f ∈ (G̊ε
0(β, γ))

′ with
0 < β, γ < ε, (4.57) and (4.69) hold in (G̊ε

0(β, γ))
′.

4.2. Inhomogeneous discrete Calderón reproducing formulae

Similarly to Subsection 3.2, we can establish the following inhomogeneous discrete Calderón
reproducing formulae (we omit the details). Here, again, we have no restriction on diam(X).

Theorem 4.14. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z+
be an

(ε1, ε2, ε3)-IATI. Set D0 = S0 and Dk = Sk − Sk−1 for k ∈ N. Then for any fixed j,N ∈ N such
that (4.1) and (4.39) hold, there exists a family of functions {D̃k(x, y)}k∈Z+

such that for any fixed

yk,ντ ∈ Qk,ν
τ with k ∈ N, τ ∈ Ik and ν = 1, . . . ,N(k, τ) and all f ∈ Gε

0(β, γ) with 0 < β, γ < ε,

f(x)=
N∑

k=0

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

D̃k(x, y)dμ(y)D
k,ν
τ,1 (f)+

∞∑

k=N+1

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

D̃k(x, y)dμ(y)Dk(f)
(
yk,ντ
)

=
∑

τ∈I0

N(0,τ)∑

ν=1

∫

Q0,ν
τ

D̃0(x, y)dμ(y)D
0,ν
τ,1(f) +

∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
D̃k(x, y

k,ν
τ

)
Dk,ν
τ,1 (f)

=
∑

τ∈I0

N(0,τ)∑

ν=1

∫

Q0,ν
τ

D̃0(x, y)dμ(y)D
0,ν
τ,1(f) +

N∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
D̃k

(
x, yk,ντ

)
Dk,ν
τ,1 (f)

+
∞∑

k=N+1

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
D̃k

(
x, yk,ντ

)
Dk(f)

(
yk,ντ
)
,

(4.70)

where the series converges in both the norm of Gε
0(β, γ) and the norm of Lp(X) with p ∈ (1,∞), and

Dk,ν
τ,1 for k ∈ Z+, τ ∈ Ik, and ν = 1, . . . ,N(k, τ) is the corresponding integral operator with the kernel

Dk,ν
τ,1 (z) = (1/μ(Qk,ν

τ ))
∫
Qk,ν
τ
Dk(u, z)dμ(u). Moreover, D̃k for k ≥ N + 1 satisfies the conditions (i)

and (ii) of Definition 2.2 with ε1 and ε2 replaced by ε′ ∈ (ε, ε1 ∧ ε2); and there exists a constant C > 0
depending on ε′ such that the function D̃k(x, y) for k = 0, 1, . . . ,N satisfies that

(i) for all x, y ∈ X, |D̃k(x, y)| ≤ C((1/(V1(x) + V1(y) + V (x, y)))(1/(1 + d(x, y))ε
′
)),

(ii) for all x, x′, y ∈ X with d(x, x′) ≤ (1 + d(x, y))/2,

∣∣D̃k(x, y) − D̃k

(
x′, y
)∣∣

≤ C
(

d
(
x, x′)

1 + d(x, y)

)ε′ 1
V1(x) + V1(y) + V (x, y)

1
(
1 + d(x, y)

)ε′ ;
(4.71)

and
∫
XD̃k(x, y)dμ(x) =

∫
XD̃k(x, y)dμ(y) = 1 when 0 ≤ k ≤N; = 0 when k > N.
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Theorem 4.15. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z+
be an

(ε1, ε2, ε3)-IATI. Set D0 = S0 and Dk = Sk − Sk−1 for k ∈ N. Then for any fixed j,N ∈ N such
that (4.1) and (4.39) hold, there exists a family of functions {Dk(x, y)}k∈Z+

such that for any fixed

yk,ντ ∈ Qk,ν
τ with k ∈ N, τ ∈ Ik, and ν = 1, . . . ,N(k, τ) and all f ∈ Gε

0(β, γ) with 0 < β, γ < ε,

f(x)=
N∑

k=0

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

Dk(x, y)dμ(y)D
k,ν
τ,1 (f)+

∞∑

k=N+1

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

Dk(x, y)dμ(y)Dk(f)
(
yk,ντ
)

=
∑

τ∈I0

N(0,τ)∑

ν=1

∫

Qo,ν
τ

D0(x, y)dμ(y)D
0,ν
τ,1(f) +

∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
Dk

(
x, yk,ντ

)
Dk,ν
τ,1 (f)

=
∑

τ∈I0

N(0,τ)∑

ν=1

∫

Qo,ν
τ

D0(x, y)dμ(y)D
0,ν
τ,1(f) +

N∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
Dk

(
x, yk,ντ

)
Dk,ν
τ,1 (f)

+
∞∑

k=N+1

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
Dk

(
x, yk,ντ

)
Dk(f)

(
yk,ντ
)
,

(4.72)

where the series converges in both the norm of Gε
0(β, γ) and the norm of Lp(X) with p ∈ (1,∞),

and Dk,ν
τ,1 for k ∈ Z+, τ ∈ Ik, and ν = 1, . . . ,N(k, τ) is the corresponding integral operator with

the kernel Dk,ν
τ,1 (z) as in (4.70) with Dk replaced by Dk. Moreover, Dk for k ≥ N + 1 satisfies the

conditions (i) and (iii) of Definition 2.2 with ε1 and ε2 replaced by ε′ ∈ (ε, ε1 ∧ ε2); and there exists
a constant C > 0 depending on ε′ such that the function Dk(x, y) for k = 0, 1, . . . ,N satisfies
that

(i) for all x, y ∈ X, |Dk(x, y)| ≤ C((1/(V1(x) + V1(y) + V (x, y)))(1/(1 + d(x, y))ε
′
)),

(ii) for all x, x′, y ∈ X with d(x, x′) ≤ (1 + d(x, y))/2,

∣∣Dk(x, y) −Dk

(
x′, y
)∣∣

≤ C
(

d
(
x, x′)

1 + d(x, y)

)ε′ 1
V1(x) + V1(y) + V (x, y)

1
(
1 + d(x, y)

)ε′ ;
(4.73)

and
∫
XDk(x, y)dμ(x) =

∫
XDk(x, y)dμ(y) = 1 when 0 ≤ k ≤N; = 0 when k > N.

Theorem 4.16. Use the same notation as in Theorems 4.14 and 4.15. Then for all f ∈ (Gε
0(β, γ))

′

with 0 < β, γ < ε, (4.70) and (4.72) hold in (Gε
0(β, γ))

′.

Remark 4.17. Similarly to Remark 3.27, in the sequel, to simplify the representation of the
results, we will always assume thatN = 0 in Theorems 4.14, 4.15, and 4.16.
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5. Besov spaces and Triebel-Lizorkin spaces

In this section, we consider Besov and Triebel-Lizorkin spaces on RD-spaces and study
their relations. As applications, we obtain boundedness results on these spaces for singular
integrals considered by Nagel and Stein [44]. Finally, we establish a variant of the T(1)-
theorem of David and Journé in these settings, and a variant of the T(1)-theorem of Stein
in [75] is also presented.

To develop a theory of these function spaces, we need two basic tools: the Calderón
reproducing formulae from Sections 3 and 4 and Plancherel-Pôlya inequalities, which will be
established in this section.

5.1. Plancherel-Pôlya inequalities and definition of Ḃsp,q(X) and Ḟsp,q(X)

Throughout this and the next subsection, we will always assume that μ(X) = ∞. We first
introduce the norms in Ḃsp,q(X) and Ḟsp,q(X) via certain ATIs. We then prove that they are
independent of the choices of ATIs and spaces of distributions. To this end, we need to
establish homogeneous Plancherel-Pôlya inequalities; see also [79].

Adapting Triebel’s approach to homogeneous Besov and Triebel-Lizorkin spaces on
R
n in [3], we make the following.

Definition 5.1. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z
be an (ε1, ε2, ε3)-

ATI. For k ∈ Z, set Dk = Sk − Sk−1.

(i) For all f ∈ (G̊ε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p ≤ ∞, and 0 < q ≤ ∞,

one sets ‖f‖Ḃsp,q(X) ≡ {∑k∈Z
2ksq‖Dk(f)‖qLp(X)}

1/q
with the usual modification made

when p = ∞ or q = ∞.

(ii) For all f ∈ (G̊ε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p < ∞, and

p(s, ε) < q ≤ ∞, one defines ‖f‖Ḟsp,q(X) ≡ ‖{∑k∈Z
2ksq|Dk(f)|q}1/q‖Lp(X) with the

usual modification made when q = ∞.

To verify that the definitions of ‖·‖Ḃsp,q(X) and ‖·‖Ḟsp,q(X) are independent of the choice of
ATIs, we need two technical lemmas, which have independent interest.

Lemma 5.2. Let ε > 0, k′, k ∈ Z, and yk,ντ be any point in Qk,ν
τ for τ ∈ Ik and ν = 1, . . . , N(k, τ).

If n/(n + ε) < p ≤ ∞, then for any x ∈ X,

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[

1

V2−(k′∧k) (x)+V
(
x, yk,ντ

)

](p∧1)[
2−(k∧k

′)

2−(k∧k′)+d
(
x, yk,ντ

)

]ε(p∧1)
≤C[V2−(k′∧k) (x)

]1−(p∧1)
,

(5.1)

where C > 0 is independent of x ∈ X, k, k′, τ , and ν.
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Proof. Notice that for any z ∈ Qk,ν
τ , by Lemma 2.1(iii), we have

V2−(k′∧k)
(
yk,ντ
)
+ V
(
x, yk,ντ

) ∼ V2−(k′∧k) (z) + V (x, z),

2−(k∧k
′) + d

(
x, yk,ντ

) ∼ 2−(k∧k
′) + d(x, z).

(5.2)

These estimates together with Lemma 2.19 and the second inequality in (1.3) yield that the
left-hand side of (5.1) is, up to a bounded multiplicative constant, controlled by

∫

X

[
1

V2−(k′∧k) (x) + V (x, z)

](p∧1)[
2−(k∧k

′)

2−(k∧k′) + d(x, z)

]ε(p∧1)
dμ(z)

�
[
V2−(k′∧k) (x)

]1−(p∧1) ∞∑

l=0

2l[n−n(p∧1)−ε(p∧1)]

�
[
V2−(k′∧k) (x)

]1−(p∧1)
,

(5.3)

which completes the proof of Lemma 5.2.

Lemma 5.3. Let ε > 0, k′, k ∈ Z, and yk,ντ be any point in Qk,ν
τ for τ ∈ Ik and ν = 1, . . . , N(k, τ).

If n/(n + ε) < r ≤ 1, then there exists a constant C > 0 depending on r such that for all ak,ντ ∈ C and
all x ∈ X,

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

) 1

V2−(k′∧k) (x) + V
(
x, yk,ντ

)
2−(k∧k

′)ε

(
2−(k∧k

′) + d
(
x, yk,ντ

))ε
∣∣ak,ντ

∣∣

≤ C2[(k∧k′)−k]n(1−1/r)
{

M

(
∑

τ∈Ik

N(k,τ)∑

ν=1

∣∣ak,ντ
∣∣rχQk,ν

τ

)

(x)

}1/r

,

(5.4)

where C > 0 is also independent of k, k′, τ , and ν.

Proof. We first recall the following well-known inequality that for all r ∈ (0, 1] and all aj ∈ C

with j in some countable set of indices,

(
∑

j

∣∣aj
∣∣
)r

≤
∑

j

∣∣aj
∣∣r . (5.5)

From this inequality, the fact that for all τ ∈ Ik and ν = 1, . . . , N(k, τ), and all z ∈ X,
μ(Qk,ν

τ )χQk,ν
τ
(z) ∼ V2−k(z)χQk,ν

τ
(z), and the fact that for all z ∈ X and all k, k′ ∈ Z, by (1.3),

V2−(k∧k′) (z) � 2[k−(k∧k
′)]nV2−k(z), together with (5.2), Lemma 2.1(vi), and the second inequality

of (1.3), it follows that the left-hand side of (5.4) is, up to a bounded multiplicative constant,
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controlled by

{
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)r
(

1

V2−(k′∧k) (x) + V
(
x, yk,ντ

)

)r
2−(k∧k

′)rε

(
2−(k∧k

′) + d
(
x, yk,ντ

))rε
∣
∣ak,ντ

∣
∣r
}1/r

� 2[(k∧k
′)−k]n(1−1/r)

{
1

V2−(k′∧k) (x)

∫

d(x,z)<2−(k
′∧k)

(
∑

τ∈Ik

N(k,τ)∑

ν=1

∣
∣ak,ντ

∣
∣rχQk,ν

τ
(z)

)

dμ(z)

+
∞∑

l=0

1
2l[rε+n(r−1)]

1
V2l+12−(k′∧k) (x)

×
∫

d(x,z)<2l+12−(k′∧k)

(
∑

τ∈Ik

N(k,τ)∑

ν=1

|ak,ντ |rχQk,ν
τ
(z)

)

dμ(z)

}1/r

,

(5.6)

which implies the desired conclusion.

Using these technical lemmas and the discrete Calderón reproducing formulae, we can
now establish the Plancherel-Pôlya inequality.

Proposition 5.4. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z
and {Pk}k∈Z

be
two (ε1, ε2, ε3)-ATIs. For k ∈ Z, set Dk = Sk − Sk−1 and Qk = Pk − Pk−1.

(i) For all f ∈ (G̊ε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p ≤ ∞, and 0 < q ≤ ∞,

{
∑

k∈Z

2ksq
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[

sup
z∈Qk,ν

τ

∣∣Dk(f)(z)
∣∣
]p)q/p}1/q

∼
{
∑

k∈Z

2ksq
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[
inf

z∈Qk,ν
τ

∣∣Qk(f)(z)
∣∣
]p)q/p}1/q

.

(5.7)

(ii) For all f ∈ (G̊ε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p <∞, and p(s, ε) < q ≤ ∞,

∥∥∥∥∥

{
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[

sup
z∈Qk,ν

τ

∣∣Dk(f)(z)
∣∣
]q
χQk,ν

τ

}1/q∥∥∥∥∥
Lp(X)

∼
∥∥∥∥∥

{
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[
inf

z∈Qk,ν
τ

∣∣Qk(f)(z)
∣∣
]q
χQk,ν

τ

}1/q∥∥∥∥∥
Lp(X)

.

(5.8)

Proof. We first verify (5.7). By Theorem 4.13, there exist functions {D̃k}k∈Z
such that for all

f ∈ (G̊ε
0(β, γ))

′ with 0 < β, γ < ε and all z ∈ X,

f(z) =
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)
D̃k′
(
z, yk

′,ν′

τ ′
)
Qk′(f)

(
yk

′,ν′

τ ′
)

(5.9)
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holds in (G̊ε
0(β, γ))

′, where D̃k′ satisfies the same conditions as D̃k in Theorem 4.13 and yk
′,ν′

τ ′

is any point in Qk′,ν′

τ ′ . For any ε′ ∈ (0, ε), by Lemma 3.2 (see also Remark 3.3), for all z ∈ X,

∣
∣(DkD̃k′

)(
z, yk

′,ν′

τ ′
)∣∣

� 2−|k−k
′ |ε′ 1

V2−(k∧k′) (z) + V2−(k∧k′)
(
yk

′,ν′
τ ′
)
+ V
(
z, yk

′,ν′
τ ′
)

2−(k∧k
′)ε

(
2−(k∧k

′) + d
(
z, yk

′,ν′
τ ′
))ε .

(5.10)

If p(s, ε) < p ≤ 1, by applying Dk to (5.9), and making use of (5.10), (5.5), and (5.2) together
with Lemma 5.2, we obtain

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[

sup
z∈Qk,ν

τ

∣
∣Dk(f)(z)

∣
∣
]p

�
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−|k−k
′ |ε′pμ
(
Qk′,ν′

τ ′
)p[

V2−(k∧k′)
(
yk

′,ν′

τ ′
)]1−p∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣p.

(5.11)

From this and the fact that

V2−(k∧k′)
(
yk

′,ν′

τ ′
)

� 2[k
′−(k∧k′)]nV2−k′

(
yk

′,ν′

τ ′
) ∼ 2[k

′−(k∧k′)]nμ
(
Qk′,ν′

τ ′
)

(5.12)

together with Hölder’s inequality when q/p ≥ 1 and (5.5)when q/p < 1, it follows that if we
choose ε′ ∈ (0, ε) such that max{n/(n + ε′), n/(n + ε′ + s)} < p ≤ 1 and |s| < ε′, the left-hand
side of (5.7) is, up to a bounded multiplicative constant, dominated by

{
∑

k∈Z

[
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−|k−k
′ |ε′p2(k−k

′)spμ
(
Qk′,ν′

τ ′
)p[

V2−(k∧k′)
(
yk

′,ν′

τ ′
)]1−p

2k
′sp∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣p
]q/p}1/q

�
{
∑

k′∈Z

2k
′sq

(
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣p
)q/p}1/q

,

(5.13)

which together with the arbitrary choice of yk
′,ν′

τ ′ yields

{
∑

k∈Z

2ksq
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[

sup
z∈Qk,ν

τ

∣∣Dk(f)(z)
∣∣
]p)q/p}1/q

�
{
∑

k∈Z

2ksq
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[

inf
z∈Qk,ν

τ

∣∣Qk(f)(z)
∣∣
]p)q/p}1/q

.

(5.14)

By symmetry, we then obtain (5.7) when p(s, ε) < p ≤ 1.
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If p ∈ (1,∞] and if we choose ε′ ∈ (0, ε) such that |s| < ε′, by Hölder’s inequality and
Lemma 5.2, we obtain

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[

sup
z∈Qk,ν

τ

∣
∣Dk(f)(z)

∣
∣
]p

�
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−|k−k
′ |ε′2(k

′−k)s(p−1)μ
(
Qk′,ν′

τ ′
)∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣p,

(5.15)

which together with Hölder’s inequality when q/p ≥ 1 and (5.5) when q/p < 1 yields that
the left-hand side of (5.7) is, up to a bounded multiplicative constant, controlled by

{
∑

k∈Z

[
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−|k−k
′ |ε′2(k−k

′)sμ
(
Qk′,ν′

τ ′
)
2k

′sp∣∣Qk′(f)
(
yk

′,ν′

τ ′
)∣∣p
]q/p}1/q

�
{
∑

k′∈Z

2k
′sq

(
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣p
)q/p}1/q

.

(5.16)

Then, since yk
′,ν′

τ ′ was an arbitrary point in Qk′,ν′

τ ′ , we see that the estimate (5.14) also holds
when p ∈ (1,∞], which by symmetry then completes the proof of (5.7).

We now verify (5.8). By applying Dk to (5.9), and making use of (5.10) together with
(5.2), and Lemma 5.3, we obtain that for ε′ > |s| and r > max{p, p(s, ε′), q},

{
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[

sup
z∈Qk,ν

τ

∣∣Dk(f)(z)
∣∣
]q
χQk,ν

τ
(x)

}1/q

�
{
∑

k∈Z

[
∑

k′∈Z

2(k−k
′)s−|k−k′ |ε′2[(k∧k

′)−k′]n(1−1/r)

×
{

M

(
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sr∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣rχ

Qk′ ,ν′
τ ′

)

(x)

}1/r]q}1/q

,

(5.17)

which together with Hölder’s inequality when q ∈ (1,∞] or (5.5) when q ≤ 1, and
Lemma 3.14 further implies that the left-hand side of (5.8) is, up to a bounded multiplicative
constant, dominated by

∥∥∥∥∥

{
∑

k′∈Z

[

M

(
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sr∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣rχ

Qk′ ,ν′
τ ′

)]q/r}r/q∥∥∥∥∥

1/r

Lp/r(X)

�
∥∥∥∥∥

{
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣qχ

Qk′ ,ν′
τ ′

}1/q∥∥∥∥∥
Lp(X)

.

(5.18)
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Then, by symmetry and the fact that yk
′,ν′

τ ′ was an arbitrary point in Qk′,ν′

τ ′ , we obtain (5.8),
which completes the proof of Proposition 5.4.

The following remark is useful in applications.

Remark 5.5. Let all the notation be as in Proposition 5.4, except that Sk (and therefore Dk) for
k ∈ Z has regularity only in the second variable. Then, there exists a constant C > 0 such that

(i) for all f ∈ (G̊ε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p ≤ ∞, and 0 < q ≤ ∞,

{
∑

k∈Z

2ksq
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[

sup
z∈Qk,ν

τ

∣
∣Dk(f)(z)

∣
∣
]p)q/p}1/q

≤ C
{
∑

k∈Z

2ksq
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[

inf
z∈Qk,ν

τ

∣
∣Qk(f)(z)

∣
∣
]p)q/p}1/q

;

(5.19)

(ii) for all f ∈ (G̊ε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p <∞, and p(s, ε) < q ≤ ∞,

∥∥∥∥∥

{
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[

sup
z∈Qk,ν

τ

∣∣Dk(f)(z)
∣∣
]q
χQk,ν

τ

}1/q∥∥∥∥∥
Lp(X)

≤ C
∥∥∥∥∥

{
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[

inf
z∈Qk,ν

τ

∣∣Qk(f)(z)|
]q
χQk,ν

τ

}1/q∥∥∥∥∥
Lp(X)

.

(5.20)

Using Proposition 5.4, we can easily verify that the definitions of ‖·‖Ḃsp,q(X) and ‖·‖Ḟsp,q(X)
are independent of the choices of ATIs. We omit the details.

Proposition 5.6. Let all the notation be as in Proposition 5.4.

(i) For all f ∈ (G̊ε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p ≤ ∞, and 0 < q ≤ ∞,

{
∑

k∈Z

2ksq
∥∥Dk(f)

∥∥q
Lp(X)

}1/q

∼
{
∑

k∈Z

2ksq
∥∥Qk(f)

∥∥q
Lp(X)

}1/q

. (5.21)

(ii) For all f ∈ (G̊ε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p <∞, and p(s, ε) < q ≤ ∞,

∥∥∥∥∥

{
∑

k∈Z

2ksq
∣∣Dk(f)

∣∣q
}1/q∥∥∥∥∥

Lp(X)

∼
∥∥∥∥∥

{
∑

k∈Z

2ksq
∣∣Qk(f)

∣∣q
}1/q∥∥∥∥∥

Lp(X)

. (5.22)

We now verify that the definition of the norm ‖·‖Ḃsp,q(X) and the norm ‖·‖Ḟsp,q(X) is
independent of the choice of the underlying space of distributions. We recall that a+ =
max{a, 0} for any a ∈ R.
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Proposition 5.7. Let all the notation be as in Definition 5.1.

(i) Let |s| < ε, p(s, ε) < p ≤ ∞, and 0 < q ≤ ∞. If f ∈ (G̊ε
0(β1, γ1))

′ with

max

{

0,− s+n
(
1
p
− 1
)

+

}

< β1<ε, max

{

n

(
1
p
− 1
)

+
, s − κ

p

}

<γ1<ε, (5.23)

and if ‖f‖Ḃsp,q(X) <∞, then f ∈ (G̊ε
0(β2, γ2))

′ for every β2, γ2 satisfying (5.23).

(ii) Let |s| < ε, p(s, ε) < p < ∞, and p(s, ε) < q ≤ ∞. If f ∈ (G̊ε
0(β1, γ1))

′ with β1, γ1 as in
(5.23), and if ‖f‖Ḟsp,q(X) <∞, then f ∈ (G̊ε

0(β2, γ2))
′ for every β2, γ2 satisfying (5.23).

Proof. Let ψ ∈ G̊(ε, ε). Adopting the notation fromTheorem 4.11, we first claim that for k ∈ Z+,

∣∣〈D̃k(·, y), ψ
〉∣∣ � 2−kβ2‖ψ‖G(β2,γ2)

1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ2 , (5.24)

and that for k = −1,−2, . . .,

∣∣〈D̃k(·, y), ψ
〉∣∣ � 2kγ

′
2‖ψ‖G(β2,γ2)

1
V2−k
(
x1
)
+ V
(
x1, y

)
2−kγ2

(
2−k + d

(
x1, y

))γ2 , (5.25)

where γ ′2 can be any positive number in (0, γ2).
In fact, to verify (5.24), by the vanishing moment of D̃k, Lemma 2.1(ii), we have

∣∣〈D̃k(·, y), ψ
〉∣∣

=
∣∣∣∣

∫

X
D̃k(z, y)

[
ψ(z) − ψ(y)]dμ(z)

∣∣∣∣

� ‖ψ‖G(β2,γ2)
{∫

d(z,y)≤(1+d(y,x1))/2

∣∣D̃k(z, y)
∣∣ 1
V1
(
x1
)
+ V
(
x1, y

)
d(z, y)β2

(
1 + d

(
x1, y

))β2+γ2 dμ(z)

+
∫

d(z,y)>(1+d(y,x1))/2

∣∣D̃k(z, y)
∣∣
[

1
V1
(
x1
)
+ V
(
x1, z
)

1
(
1 + d

(
x1, z
))γ2

+
1

V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ2

]

dμ(z)

}

� 2−kβ2‖ψ‖G(β2,γ2)
1

V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ2

×
{

1 +
∫

X

1
V1
(
x1
)
+ V
(
x1, z
)

1
(
1 + d

(
x1, z
))γ2 dμ(z)

+
∫

X

1
V2−k(y) + V (z, y)

2−k(ε−β2)

(
2−k + d(z, y)

)ε−β2 dμ(z)

}

,

(5.26)
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where the last quantity is, up to a bounded multiplicative constant, controlled by the right-
hand side of (5.24), and in the last inequality, we used the fact that for d(z, y) > (1 +
d(y, x1))/2, V (z, y) � V1(y) + V (x1, y) ∼ V1(x1) + V (x1, y); see also Lemma 2.1(vii). Thus,
(5.24) holds.

To see (5.25), by
∫
Xψ(z)dμ(z) = 0, (i) and (ii) of Lemma 2.1, and the fact that for

d(z, x1) > (2−k + d(x1, y))/2, V (x1, z) � V2−k(x1) + V (x1, y), we obtain that for k = −1,
−2, . . .,

∣
∣〈D̃k(·, y), ψ

〉∣∣

=
∣
∣
∣
∣

∫

X

[
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(
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)]
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∣
∣
∣

� ‖ψ‖G(β2,γ2)
{∫
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d
(
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)ε

(
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(
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))ε
2−kε
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(
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))ε

× 1
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(
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)
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(
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)

× 1
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(
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)
+ V
(
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)

1
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(
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))γ2 dμ(z)

+
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[
1
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2−k + d(z, y)

)ε

+
1
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(
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)
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(
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]

× 1
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(
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)
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(
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)

1
(
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(
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))γ2 dμ(z)

}

� 1
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(
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)
+ V
(
x1, y

)

×
{

1
(
2−k + d

(
x1, y

))γ2 +
2−kε

(
2−k + d

(
x1, y

))ε
1

(
2−k + d

(
x1, y

))γ ′2

}

,

(5.27)

where the last quantity is, up to a bounded multiplicative constant, dominated by the right-
hand side of (5.25); namely, (5.25) holds.
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Thus, Theorem 4.13 together with (5.24), (5.25), and Lemma 2.1(iii) yield that

∣
∣〈f, ψ〉∣∣ =

∣
∣
∣
∣
∣

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑
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(
Qk,ν
τ

)
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(
yk,ντ
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)
, ψ
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∣
∣
∣
∣
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(
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τ
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(
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)∣∣
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k,ν
τ

)
1
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(
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τ
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∑

τ∈Ik
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′
2μ
(
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τ
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(
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)∣∣
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(
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)
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(
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k,ν
τ

)
2−kγ2

(
2−k+d

(
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τ

))γ2

}

.

(5.28)

If p ≤ 1, by (5.5),

∣∣〈f, ψ〉∣∣ � ‖ψ‖G(β2,γ2)
{ ∞∑

k=0

2−k(β2+s)
[
∑
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τ

)p∣∣Dk(f)
(
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)∣∣p

× 1
(
V1
(
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)
+ V
(
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τ

))p
1

(
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(
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τ

))γ2p

]1/p
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k=−∞
2k(γ
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[
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)p
2ksp
∣∣Dk(f)

(
yk,ντ
)∣∣p

× 1
(
V2−k
(
x1
)
+V
(
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k,ν
τ

))p
2−kγ2p

(
2−k+d

(
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k,ν
τ

))γ2p

] 1/p}

.

(5.29)

Notice that when p ≤ 1, by Lemma 2.1(vii) and γ2 > n(1/p − 1), for k ∈ Z+, τ ∈ Ik and
ν = 1, . . . ,N(k, τ) ,

μ
(
Qk,ν
τ

)p−1

(
V1
(
x1
)
+ V
(
x1, y

k,ν
τ

))p
1

(
1 + d

(
x1, y

k,ν
τ

))γ2p

� 1
V1
(
x1
)
[
V1
(
yk,ντ
)
+V
(
x1, y

k,ν
τ

)

μ
(
Qk,ν
τ

)

]1−p
1

(
1+d
(
x1, y

k,ν
τ

))γ2p �2kn(1−p)
1

V1
(
x1
) ;

(5.30)

and similarly, by the first inequality of (1.3), for k = −1,−2, . . . , τ ∈ Ik and ν = 1, . . . ,N(k, τ),

μ
(
Qk,ν
τ

)p−1

(
V2−k
(
x1
)
+ V
(
x1, y

k,ν
τ

))p
2−kγ2p

(
2−k + d

(
x1, y

k,ν
τ

))γ2p

�2kκ
1

V1
(
x1
)
[
V2−k
(
yk,ντ
)
+V
(
x1, y

k,ν
τ

)

μ
(
Qk,ν
τ

)

]1−p
2−kγ2p

(
2−k+d

(
x1, y

k,ν
τ

))γ2p � 2kκ
1

V1
(
x1
) .

(5.31)
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Thus, if p ≤ 1, then by Hölder’s inequality when q ≥ 1 or (5.5) when q < 1 together with
Proposition 5.4,

∣
∣〈f, ψ〉∣∣ � 1

V1
(
x1
)1/p ‖ψ‖G(β2,γ2)

{ ∞∑

k=0

2k[n(1/p−1)−(β2+s)] +
−1∑

k=−∞
2k[κ/p+γ

′
2−s]
}

×
[
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
2ksp
∣
∣Dk(f)

(
yk,ντ
)∣∣p
]1/p

� 1

V1(x1)
1/p

‖ψ‖G(β2,γ2)‖f‖Ḃsp,q(X),

(5.32)

where we used the assumption that β2 > −s + n(1/p − 1) and we chose γ ′2 ∈ ((s − κ/p)+, γ2).
Similarly, if p > 1, by Lemma 2.1(ii), we have

∣∣〈f, ψ〉∣∣ � 1

V1
(
x1
)1/p ‖ψ‖G(β2,γ2)

×
{ ∞∑
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2−k(β2+s)
[∫

X

1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ2p′ dμ(y)

]1/p′

+
∞∑

k=0

2k(κ/p−γ
′
2−s)
[∫

X

1
V2−k
(
x1
)
+ V
(
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)
2−kγ2p

′
2

(
2−k + d

(
x1, y

))γ2p′ dμ(y)

]1/p′}

×
[
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
2ksp|Dk(f)

(
yk,ντ
)|p
]1/p

� 1

V1(x1)
1/p

‖ψ‖G(β2,γ2)‖f‖Ḃsp,q(X),

(5.33)

where we used β2 > −s and chose γ ′2 > max{0, s − κ/p}.
Let now h ∈ G̊ε

0(β2, γ2). Then there exists {hn}∞n=1 ⊂ G̊(ε, ε) such that as n → ∞, ‖h −
hn‖G(β2,γ2) → 0. By (5.32) and (5.33), we obtain

∣∣〈f, hn − hm
〉∣∣ � ‖f‖Ḃsp,q(X)

∥∥hn − hm
∥∥
G(β2,γ2), (5.34)

which shows that limn→∞〈f, hn〉 exists and the limit is independent of the choice of {hn}.
Thus, if we define 〈f, h〉 = limn→∞〈f, hn〉, by (5.32) and (5.33), we have |〈f, h〉| �
‖f‖Ḃsp,q(X)‖h‖G̊ε

0(β2,γ2)
. That is, f ∈ (G̊ε

0(β2, γ2))
′, which completes the proof of (i).

The conclusion (ii) can be deduced from (i) and the fact that ‖f‖Ḃs
p,max(p,q)(X) � ‖f‖Ḟsp,q(X);

see [3, Proposition 2.3.2/2] or Proposition 5.10(ii) below.

Now we can introduce the Besov spaces, Ḃsp,q(X), and the Triebel-Lizorkin spaces,
Ḟsp,q(X).
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Definition 5.8. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z
be an (ε1, ε2, ε3)-

ATI. For k ∈ Z, set Dk = Sk − Sk−1.

(i) Let |s| < ε, p(s, ε) < p ≤ ∞, and 0 < q ≤ ∞. The space Ḃsp,q(X) is defined to be the set
of all f ∈ (G̊ε

0(β, γ))
′, for some β, γ satisfying

max

{

s, 0,−s + n
(
1
p
− 1
)

+

}

< β < ε,

max

{

s − κ

p
, n

(
1
p
− 1
)

+
,−s + n

(
1
p
− 1
)

+
− κ
(
1 − 1

p

)

+

}

< γ < ε

(5.35)

such that ‖f‖Ḃsp,q(X) = {∑∞
k=−∞ 2ksq‖Dk(f)‖qLp(X)}1/q < ∞ with the usual modifica-

tions made when p = ∞ or q = ∞.

(ii) Let |s| < ε, p(s, ε) < p < ∞, and p(s, ε) < q ≤ ∞. The space Ḟsp,q(X) is defined to
be the set of all f ∈ (G̊ε

0(β, γ))
′ for some β, γ satisfying (5.35) such that ‖f‖Ḟsp,q(X) =

‖{∑∞
k=−∞ 2ksq|Dk(f)|q}1/q‖Lp(X) <∞with the usual modification made when q = ∞.

Propositions 5.6 and 5.7 show that the definitions of the spaces Ḃsp,q(X) and Ḟsp,q(X) are
independent of the choice of the approximations of the identity and the distribution space,
(G̊ε

0(β, γ))
′, with β, γ as in (5.35).

Remark 5.9. To guarantee that the definitions of the spaces Ḃsp,q(X) and Ḟsp,q(X) are
independent of the choice of the distribution space (G̊ε

0(β, γ))
′, we only need the restriction

that β, γ satisfy (5.23); see Proposition 5.7. Moreover, if we assume that max{s, 0} < β < ε and
max{n(1/p − 1)+,−s + n(1/p − 1)+ − κ(1 − 1/p)+} < γ < ε, we can verify that the space of test
functions G̊(β, γ) is contained in Ḃsp,q(X) and Ḟsp,q(X); see Proposition 5.10 below. Thus, the
spaces Ḃsp,q(X) and Ḟsp,q(X) are nonempty if we restrict β, γ as in (5.35).

5.2. Properties of Ḃsp,q(X) and Ḟsp,q(X) and boundedness of singular integrals

In this subsection, we first present some basic properties of Ḃsp,q(X) and Ḟsp,q(X). Then we
establish a Lusin-area characterization of Ḟsp,q(X), and as an application, we discuss the
relation between the spaces Ḟsp,q(X) and the atomic Hardy spaces Hp

at(X) of Coifman and
Weiss in [28] and the Hardy spacesHp(X) in [48]. Finally, we show that the singular integrals
considered by Nagel and Stein in [44] act boundedly on Ḃsp,q(X) and Ḟsp,q(X).

Proposition 5.10. Let ε1 ∈ (0, 1], ε2 > 0, ε ∈ (0, ε1 ∧ ε2), and |s| < ε.

(i) For p(s, ε) < p ≤ ∞ and 0 < q0 ≤ q1 ≤ ∞, Ḃsp,q0(X) ⊂ Ḃsp,q1(X); and for p(s, ε) < p < ∞
and p(s, ε) < q0 ≤ q1 ≤ ∞, Ḟsp,q0(X) ⊂ Ḟsp,q1(X).

(ii) If p(s, ε) < p <∞ and p(s, ε) < q ≤ ∞, then Ḃs
p,min(p,q)(X) ⊂ Ḟsp,q(X) ⊂ Ḃs

p,max(p,q)(X).

(iii) If β, γ as in (5.23), then Ḃsp,q(X) ⊂ (G̊ε
0(β, γ))

′ when p(s, ε) < p ≤ ∞ and 0 < q ≤ ∞, and
Ḟsp,q(X) ⊂ (G̊ε

0(β, γ))
′ when p(s, ε) < p <∞ and p(s, ε) < q ≤ ∞.
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(iv) If max{s, 0} < β < ε andmax{n(1/p − 1)+, − s+n(1/p − 1)+ −κ(1 − 1/p)+} < γ < ε,
then G̊(β, γ) ⊂ Ḃsp,q(X) when p(s, ε) < p ≤ ∞ and 0 < q ≤ ∞, and G̊(β, γ) ⊂ Ḟsp,q(X)
when p(s, ε) < p <∞ and p(s, ε) < q ≤ ∞.

(v) If 1 < p <∞, then Ḟ0
p,2(X) = Lp(X) with equivalent norms.

(vi) The spaces Ḃsp,q(X)/N with p(s, ε) < p ≤ ∞ and 0 < q ≤ ∞ and the spaces Ḟsp,q(X)/N
with p(s, ε) < p <∞ and p(s, ε) < q ≤ ∞ are complete.

Proof. Property (i) is a simple corollary of (5.5). Property (ii) can be deduced from
Minkowski’s inequality, (5.5), and the following generalized Minkowski inequality that for
all 1 ≤ q ≤ ∞,

{ ∞∑

k=−∞

[∫

X

∣∣ak(x)
∣∣dμ(x)

]q}1/q

�
∫

X

{ ∞∑

k=−∞

∣∣ak(x)
∣∣q
}1/q

dμ(x); (5.36)

see also [3, Proposition 2.3.2/2] and [6, Proposition 2.3].
Property (iii) is implied by the proof of Proposition 5.7 and Property (vi) can be easily

deduced from Property (iii).
To verify (iv), similarly to the proofs of (5.24) and (5.25), for f ∈ G̊(β, γ), we have that

for k ∈ Z+,

∣∣Dk(f)(x)
∣∣ � 2−kβ‖f‖G(β,γ) 1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ , (5.37)

and that for k = −1,−2, . . . ,

∣∣Dk(f)(x)
∣∣ � 2kγ

′ ‖f‖G(β,γ) 1
V2−k
(
x1
)
+ V
(
x1, x

)
2−kγ

(
2−k + d

(
x1, x

))γ , (5.38)

where γ ′ can be any positive number in (0, γ). Moreover, since γ > n(1/p − 1)+,

{∫

X

1
(
V1
(
x1
)
+V
(
x1, x

))p
1

(
1 + d

(
x1, x

))γp dμ(x)

}1/p

�
{

1

V1
(
x1
)p−1 +

∞∑

l=0

1

V2lr
(
x1
)p−1

1
2lγp

}1/p

� 1

V1
(
x1
)1−1/p ,

(5.39)

and for k = −1,−2, . . .,
{∫

X

1
(
V2−k
(
x1
)
+ V
(
x1, x

))p
2−kγp

(
2−k + d

(
x1, x

))γp dμ(x)

}1/p

�
{

1

V2−k
(
x1
)p−1 +

∞∑

l=0

1

V2l2−k
(
x1
)p−1

1
2lγp

}1/p

�2kκ(1−1/p)+−kn(1/p−1)+V1
(
x1
)1/p−1

.

(5.40)
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Choose γ ′ ∈ (0, γ) such that γ ′ > n(1/p − 1)+ − s − κ(1 − 1/p)+. From the above estimates, it
follows that

‖f‖Ḃsp,q(X) � ‖f‖G(β,γ) 1

V1
(
x1
)1−1/p

{ ∞∑

k=0

2k(s−β)q +
−1∑

k=−∞
2k[s+γ

′−n(1/p−1)++κ(1−1/p)+]q
}1/q

� ‖f‖G(β,γ).
(5.41)

Thus, G̊(β, γ) ⊂ Ḃsp,q(X), which together with (ii) implies that G̊(β, γ) ⊂ Ḟsp,q(X).
Property (v) is a simple conclusion of Proposition 3.15, which completes the proof of

Proposition 5.10.

We next give a Lusin-area characterization for Triebel-Lizorkin spaces Ḟsp,q(X), which
will allow to establish some relations between the Triebel-Lizorkin spaces Ḟsp,q(X), the atomic
Hardy spaces of Coifman and Weiss in [28], and the Hardy spacesHp(X) in [48].

Definition 5.11. Let s ∈ R, a > 0, q ∈ (0,∞], and let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2].
Let {Sk}k∈Z

be an (ε1, ε2, ε3)-ATI. For k ∈ Z, set Dk = Sk − Sk−1. The Lusin-area function (also
called the Littlewood-Paley S-function) Ṡsq,a(f) for any f ∈ (G̊ε

0(β, γ))
′ with 0 < β, γ ≤ ε and

x ∈ X is given by

Ṡsq,a(f)(x) =

{
∑

k∈Z

∫

d(x,y)<a2−k
2ksq
∣∣Dk(f)(y)

∣∣q dμ(y)
Va2−k(x)

}1/q

, (5.42)

where the usual modification is made when q = ∞.

Remark 5.12. (i) By Lemma 2.1(vi), if we replace Va2−k(x), respectively, by Va2−k(y), Va2−k(y) +
Va2−k(x), V2−k(x), V2−k(y), or V2−k(x) + V2−k(y) in the definition of Ṡsq,a(f), then the
corresponding Littlewood-Paley S-functions Ṡsq,a(f) are pointwise equivalent. This is often
useful in applications.

(ii) It is easy to see that Ṡ0
2,a(f) is a discrete version of the corresponding Littlewood-

Paley S-function in [48].

Theorem 5.13. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z
be an (ε1, ε2, ε3)-

ATI. For k ∈ Z, set Dk = Sk − Sk−1. Let a > 0, |s| < ε, p(s, ε) < p < ∞, p(s, ε) < q ≤ ∞, and let
Ṡsq,a(f) be as in Definition 5.11 for any f ∈ (G̊ε

0(β, γ))
′ with β, γ as in (5.35). Then f ∈ Ḟsp,q(X) if

and only if f ∈ (G̊ε
0(β, γ))

′ for some β, γ as in (5.35), and Ṡsq,a(f) ∈ Lp(X). Moreover, in this case,
‖f‖Ḟsp,q(X) ∼ ‖Ṡsq,a(f)‖Lp(X).

Proof. We use the notation as in the proof of Proposition 5.4. It is easy to check that for any
fixed constant C > 0,

sup
z∈B(zk,ντ ,C2−k)

∣∣(DkD̃k′
)(
z, yk

′,ν′

τ ′
)∣∣

�2−|k−k
′ |ε′ 1

V2−(k∧k′)
(
zk,ντ
)
+V2−(k∧k′)

(
yk

′,ν′
τ ′
)
+V
(
zk,ντ , yk

′,ν′
τ ′
)

2−(k∧k
′)ε

(
2−(k∧k

′)+d
(
zk,ντ , yk

′,ν′
τ ′
))ε .

(5.43)
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Using this to replace (5.10) and then repeating the proof of (5.8) in Proposition 5.4 yield

∥
∥
∥
∥
∥

{
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[

sup
z∈B(zk,ντ ,C2−k)

∣∣Dk(f)(z)
∣∣
]q
χQk,ν

τ

}1/q∥∥
∥
∥
∥
Lp(X)

∼
∥
∥
∥
∥
∥

{
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[

inf
z∈Qk,ν

τ

∣
∣Dk(f)(z)

∣
∣
]q
χQk,ν

τ

}1/q∥∥
∥
∥
∥
Lp(X)

∼ ‖f‖Ḟsp,q(X),

(5.44)

which shows that

∥
∥Ṡsq,a(f)

∥
∥
Lp(X)

≤
∥∥∥∥∥

{
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[

sup
z∈B(zk,ντ ,C2−k)

∣∣Dk(f)(z)
∣∣
]q
χQk,ν

τ

}1/q∥∥∥∥∥
Lp(X)

∼ ‖f‖Ḟsp,q(X).
(5.45)

On the other hand, noticing that if x ∈ B(zk,ντ ,min{a, 1}C72−(k+j)), then

B
(
zk,ντ ,min{a, 1}C72−(k+j)

) ⊂ {y ∈ X : d(x, y) < a2−k
}
, (5.46)

therefore, by Lemma 2.19,

Ṡsq,a(f)(x) =

{
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

d(x,y)<a2−k
2ksq
∣∣Dk(f)(y)

∣∣qχQk,ν
τ
(x)

dμ(y)
Va2−k(x)

}1/q

≥
{
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[

inf
y∈B(zk,ντ ,min{a,1}C72−(k+j))

∣∣Dk(f)(y)
∣∣
]q
χB(zk,ντ ,min{a,1}C72−(k+j))

(x)

}1/q

,

(5.47)

which together with the following estimate

∥∥∥∥∥

{
∑

k∈Z

2ksq
∣∣Dk(f)

∣∣q
}1/q∥∥∥∥∥

Lp(X)

�
∥∥∥∥∥

{
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[

inf
y∈B(zk,ντ ,min{a,1}C72−(k+j))

∣∣Dk(f)(y)
∣∣
]q
χB(zk,ντ ,min{a,1}C72−(k+j))

}1/q∥∥∥∥∥
Lp(X)

(5.48)

yields that ‖Ṡsq,a(f)‖Lp(X) � ‖f‖Ḟsp,q(X). Using the notation as in Lemma 5.3, we can verify the
estimate (5.48) by repeating the proof of (5.8) in Proposition 5.4 and replacing Lemma 5.3 by
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the following estimate that for any fixed constant C > 0,

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

) 1

V2−(k′∧k) (x)+V2−(k′∧k)
(
yk,ντ
)
+V
(
x, yk,ντ

)
2−(k∧k

′)ε

(
2−(k∧k

′)+d
(
x, yk,ντ

))ε
∣
∣ak,ντ

∣
∣

� 2[(k∧k
′)−k]n(1−1/r)

{

M

(
∑

τ∈Ik

N(k,τ)∑

ν=1

|ak,ντ |rχB(zk,ντ ,C2−k)

)

(x)

}1/r

,

(5.49)

which can be proved by the same way as the proof of Lemma 5.3 via the following facts
μ(B(zk,ντ , C2−k)) ∼ μ(Qk,ν

τ ) and

μ
(
B
(
zk,ντ , C2−k

))
χB(zk,ντ ,C2−k)(z) ∼ V2−k(z)χB(zk,ντ ,C2−k)(z). (5.50)

This finishes the proof of Theorem 5.13.

Definition 5.14. Let all the notation be as in Definition 5.8. TheHardy spaceHp(X)when n/(n+
ε) < p ≤ 1 is defined to be the Triebel-Lizorkin spaces Ḟ0

p,2(X), with norm ‖f‖Hp(X) ≡ ‖f‖Ḟ0
p,2(X).

We now recall the definition of atoms on spaces of homogeneous type in [28].

Definition 5.15. A function a on X is called anHp(X)-atom if

(i) suppa ⊂ B(x0, r) for some x0 ∈ X and some r > 0;

(ii) ‖a‖L2(X) ≤ [μ(B(x0, r))]
1/2−1/p;

(iii)
∫
Xa(x)dμ(x) = 0.

If (i) to (iii) apply, we also say that a is anHp(X)-atom supported on B(x0, r).

Theorem 5.16. Assume that ε and β, γ are as in Definition 5.8. If n/(n + ε) < p ≤ 1, then
f ∈ Hp(X) if and only if there exist a sequence of numbers {λk}∞k=0 ⊂ C with

∑∞
k=0 |λk|p < ∞

and a sequence of Hp(X)-atoms {ak}∞k=0 such that f =
∑∞

k=0 λkak in (G̊ε
0(β, γ))

′. Moreover, in this
case, ‖f‖Hp(X) ∼ inf{(∑∞

k=0|λk|p)1/p}, where the infimum is taken over all the above decompositions
of f .

This theorem can be proved by a literal repetition of Theorem 2.21 in [48], with Lemma
2.22 therein replaced by Theorem 2.6 in this paper. We omit the details.

Remark 5.17. Theorem 5.16 shows that the Hardy spaces defined here are the same as those
in [48]. Moreover, by [48, Remark 2.27], we know that the Hardy spaceH1(X) also coincides
with the atomic Hardy space H1

at(X) of Coifman and Weiss in [28]. Moreover, when n/(n +
ε) < p < 1 andX is an Ahlfors n-regular metric measure space,Hp(X) also coincides with the
atomic Hardy space Hp

at(X) of Coifman and Weiss in [28]. However, if X is a general space
of homogeneous type, it is still unclear so far to us if Hp(X) = H

p
at(X) when p < 1; see [48,

Remark 2.30].

We now recall the definition of the Lipschitz space L̇ips(X)with s > 0; see [28].
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Definition 5.18. Let s > 0. The Lipschitz (or Hölder) space L̇ips(X) is defined to be the set of all
functions f on X such that

‖f‖L̇ips(X) = sup
x /= y

∣
∣f(x) − f(y)∣∣
V (x, y)s

<∞. (5.51)

Observe that these classes are rather Lipschitz (or Hölder) classes with respect to the
measure distance ρ(x, y) ≡ inf{μ(B) : x, y ∈ B, B a ball}, not the distance d.

Following Coifman and Weiss [28], we immediately obtain from Theorem 5.16 in this
paper and [48, Remark 2.27] the duality between H1(X) and BMO(X) and between Hp

at(X)
and L̇ip1/p−1(X)when p < 1, which is [48, Corollary 2.29].

Theorem 5.19. (i) The space BMO(X)/N is the dual space of H1(X), in the following
sense: if f =

∑∞
k=0 λkak ∈ H1(X) is as in Theorem 5.16, then for each g ∈ BMO(X),

limN→∞
∑N

k=0λk
∫
Xak(x)g(x)dμ(x) is a well-defined continuous linear functional Lg : f �→ 〈f, g〉

with norm � ‖g‖BMO(X).
Conversely, each continuous linear functional L on H1(X)has the form L = Lg for some

g ∈ BMO(X) with ‖g‖BMO(X) � ‖L‖.
Moreover, Lg = 0 if and only if g ∈ N.
(ii) Assume that ε is as in Definition 5.8, n/(n + ε) < p < 1, and s = 1/p − 1. Then L̇ips(X)

(more precisely, L̇ips(X)/N) is the dual space ofHp(X) in the sense of (i).

Remark 5.20. It is easy to see that if X = R
n and μ is the n-dimensional Lebesgue measure,

then Ċns(X) = L̇ips(X)with equivalent norms. Thus,

Ḃns∞,∞(X) = Ḟns∞,∞(X) = L̇ips(X) (5.52)

with equivalent norms. Therefore, the dual space ofHp(X)with n/(n+ε) < p < 1 is the space

Ḃ
n(1/p−1)
∞,∞ (X); see also [3, Theorem 2.11.3(ii)]. However, for a general spaceX of homogeneous

type, it seems that Ċns(X)/= L̇ips(X), unless μ(B(x, r)) ∼ rn for all x ∈ X and r > 0, namely,
X is an Ahlfors n-regular metric measure space. Thus, one cannot expect that [3, Theorem
2.11.3] still holds when X is a general space of homogeneous type considered in this paper,
which demonstrates an essential difference between function spaces on general spaces of
homogeneous type considered in this paper and those on Ahlfors regular metric measure
space.

Using Proposition 5.10 and Theorem 2.6, we obtain the following density property of
Ḃsp,q(X) and Ḟsp,q(X).

Proposition 5.21. Let ε1, ε2, ε, and let |s| < ε be as in Definition 5.8. Then G̊b(ε1, ε2) is dense in
Ḃsp,q(X) when p(s, ε) < p <∞ and 0 < q <∞, and in Ḟsp,q(X) when p(s, ε) < p, q <∞.

Proof. By similarity, we only verify the conclusion on Ḃsp,q(X). Let f ∈ Ḃsp,q(X) with s, p, q as
in the proposition. By Proposition 5.10(iii), we know f ∈ (G̊ε

0(β, γ))
′ with β, γ as in (5.23). Let



126 Abstract and Applied Analysis

{Dk}k∈Z
be an ATI with bounded support as constructed in Theorem 2.6. By Theorem 4.13

and using the notation as in Theorem 4.12, we have

f(x) =
∞∑

k′=−∞

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)
Dk′
(
x, yk

′,ν′

τ ′
)
Dk′(f)

(
yk

′,ν′

τ ′
)

(5.53)

in (G̊ε
0(β, γ))

′. It is easy to check that for any fixed k′ ∈ Z and τ ′ ∈ Ik′ , N(k′, τ ′) is a finite set of
indices. For any fixed k′ ∈ Z, choose {INk′ }N∈N

such that INk′ ⊂ IN+1
k′ , INk′ is a finite set of indices,

and IN
k′ → Ik′ asN → ∞. If for anyN ∈ N, setting

fN(x) =
∑

|k′ |≤N

∑

τ ′∈IN
k′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)
Dk′
(
x, yk

′,ν′

τ ′
)
Dk′(f)

(
yk

′,ν′

τ ′
)
, (5.54)

then it is easy to check fN ∈ G̊b(ε1, ε2). From the proof of Proposition 5.4 together with
Remark 5.5, it is easy to see that ‖f − fN‖Ḃsp,q(X) → 0, as N → ∞ (here we need p, q < ∞).
Thus, G̊b(ε1, ε2) is dense in Ḃsp,q(X) with s, p, q as in the proposition, which completes the
proof of Proposition 5.21.

We now discuss the boundedness on Ḃsp,q(X) and Ḟsp,q(X) of the singular integral
operators introduced by Nagel and Stein in [44]. To state their definition, we need first to
recall the notion of a normalized bump function on X. A function ϕ on X is said to be an
ε-bump function associated to a ball B(x0, δ) for some x0 ∈ X and δ > 0, if it is supported in
that ball, and if there exists a constant C > 0 independent of ϕ such that ‖ϕ‖Ċη(X) ≤ Cδ−η for
all η ∈ (0, ε]. Notice that then ‖ϕ‖L∞(X) ≤ C (see Remark 2.14(ii)). If C = 1 in this definition,
then such a bump function is called a normalized ε-bump function for the ball B(x0, δ).

Let ε ∈ (0, 1]. A linear operator T , which is initially assumed to be continuous from
C
η

b(X) to (Cη

b(X))′ for all η ∈ (0, ε), is called a singular integral of order ε if T has a distributional
kernel K(x, y) which is locally integrable away from the diagonal of X ×X, and satisfies the
following conditions.

(I-1) If ϕ, ψ ∈ Cη

b
(X) have disjoint supports, then

〈
Tϕ, ψ

〉
=
∫∫

X×X
K(x, y)ϕ(y)ψ(x)dμ(x)dμ(y). (5.55)

(I-2) If ϕ is a normalized ε-bump function associated to a ball of radius r, then
‖Tϕ‖Ċη(X) ≤ Cr−η for all η ∈ (0, ε), where C > 0 is independent of ϕ. More precisely,
for each η ∈ (0, ε), there is another η̃ ∈ (0, ε) and a constant Cη,η̃ > 0 so that

whenever ϕ is a Cη̃

b(X) function supported in a ball B(x0, r), then rη‖Tϕ‖Ċη(X) ≤
Cη,η̃ supη0≤η̃ r

η0‖ϕ‖Ċη0 (X).

(I-3) There exists a constant C > 0 such that

(I-3)1 for all x, y ∈ Xwith x /=y, |K(x, y)| ≤ C(1/V (x, y));



Yongsheng Han et al. 127

(I-3)2 for all x, x′, y ∈ Xwith d(x, x′) ≤ d(x, y)/2 and x /=y,

∣
∣K(x, y) −K(x′, y

)∣∣ +
∣
∣K(y, x) −K(y, x′)∣∣ ≤ C d

(
x, x′)ε

V (x, y)d(x, y)ε
. (5.56)

(I-4) Properties (I-1) through (I-3) also hold with x and y interchanged. That is, these
properties also hold for the adjoint operator Tt defined by 〈Ttϕ, ψ〉 = 〈ϕ, Tψ〉.

Remark 5.22. We remark that if T is a singular integral operator of order ε, then T extends
to a continuous linear operator from Cη(X) to (G̊b(η, γ))

′ for all η ∈ (0, ε] and all γ > 0 by
Proposition 2.12.

We also claim that for f ∈ G̊b(η, δ) with η ∈ (0, ε] and δ > 0, Tf can be defined as a
distribution in (G̊ε

0(β, γ))
′ with 0 < β, γ ≤ ε. We first define Tf as a distribution in (G̊(β, γ))′

with 0 < β ≤ ε and γ > 0. In fact, for any given β ∈ (0, ε], noticing that G̊b(η1, δ) ⊂ G̊b(η2, δ)
when η1 ≥ η2, without loss of generality, we may assume that η ≤ β. Assume that supp f ⊂
B(x0, r) for some x0 ∈ X and r > 0. Let ψ ∈ Cη

b
(X) such that ψ(x) = 1 when x ∈ B(x0, 2r) and

ψ(x) = 0 when x /∈ B(x0, 4r). Choose any g ∈ G̊(β, γ) with 0 < β ≤ ε and γ > 0. It is easy to
check that ψg ∈ C

η

b
(X). Notice that G̊b(η, δ) ⊂ C

η

b
(X). Both facts show that 〈Tf, ψg〉 is well

defined. On the other hand, we define 〈Tf, (1 − ψ)g〉 by

〈
Tf, (1 − ψ)g〉 =

∫∫

X×X

[
K(x, y) −K(x, x0

)]
f(y)

(
1 − ψ(x))g(x)dμ(x)dμ(y). (5.57)

By (I-3)2 and Lemma 2.1(i), it is easy to check that

∣∣〈Tf, (1 − ψ)g〉∣∣ � ‖f‖L1(X)‖g‖L∞(X) � ‖f‖G(η,δ)‖g‖G(β,γ). (5.58)

Moreover, if g ∈ G̊b(β, γ), since
∫
Xf(y)dμ(y) = 0, we then obtain

〈
Tf, (1 − ψ)g〉 =

∫∫

X×X
K(x, y)f(y)

(
1 − ψ(x))g(x)dμ(x)dμ(y), (5.59)

which coincides with (I-1). Furthermore, it is easy to verify that 〈Tf, ψg〉 + 〈Tf, (1 − ψ)g〉 is
independent of the choice of ψ. Thus, we can define Tf by

〈Tf, g〉 = 〈Tf, ψg〉 + 〈Tf, (1 − ψ)g〉. (5.60)

In this sense, we have Tf ∈ (G̊(β, γ))′ with 0 < β ≤ ε and γ > 0. Now for any g ∈ G̊ε
0(β, γ)with

0 < β, γ ≤ ε, let {gn}n∈N
⊂ G̊(ε, ε) such that ‖gn − g‖G(β,γ) → 0 as n → ∞. We then define

Tf ∈ (G̊ε
0(β, γ))

′ with 0 < β, γ ≤ ε by 〈Tf, g〉 = limn→∞〈Tf, gn〉. It is easy to check that 〈Tf, g〉
is independent of the choice of {gn}n∈N

⊂ G̊(ε, ε). In this sense, we have Tf ∈ (G̊ε
0(β, γ))

′ with
0 < β, γ ≤ ε.

In what follows, for any ε ∈ (0, 1] and 0 < β, γ ≤ ε, we set

G̊ε
0,b(β, γ) =

{
f ∈ G̊ε

0(β, γ) : f has bounded support
}
. (5.61)
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Theorem 5.23. Let ε1, ε2, ε, and |s| < ε be as in Definition 5.8. Let T be a singular integral of
order ε satisfying (I-1) through (I-4). Then T is bounded on Ḃsp,q(X) when p(s, ε) < p < ∞ and
0 < q < ∞ and bounded from Ḃsp,q(X) ∩ G̊b(ε1, ε2) to Ḃsp,q(X) when max{p, q} = ∞, and T is also
bounded on Ḟsp,q(X) when p(s, ε) < p, q < ∞, and bounded from Ḟsp,q(X) ∩ G̊b(ε1, ε2) to Ḟsp,q(X)
when p(s, ε) < p <∞ and q = ∞.

Proof. By Propositions 5.21 and 5.10(vi) together with a density argument, to prove the
theorem, it suffices to verify the conclusions of the theorem only for all f ∈ G̊ε

0,b(β, γ) with
0 < β, γ < ε as in (5.35). Let {Sk}k∈Z

be an ATI with bounded support as constructed in
Theorem 2.6. PutDk = Sk −Sk−1 for k ∈ Z. We then interpretDkT = Tt(Dt

k
), whereDt

k
(x, y) =

Dk(y, x) for all x, y ∈ X (cf. Lemma 3.12). By Remark 5.22, we haveDkT ∈ (G̊ε
0(β, γ))

′. On the
other hand, let f ∈ G̊ε

0,b(β, γ). By Theorem 4.12, we have

f(z) =
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)
Dk′
(
z, yk

′,ν′

τ ′
)
Dk′(f)

(
yk

′,ν′

τ ′
)
, (5.62)

where the series converges in G̊ε
0(β, γ) and all the notation is as in Theorem 4.12. Thus, for all

x ∈ X, we have

DkTf(x) =
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)(
DkTDk′

(·, yk′,ν′τ ′
))
(x) Dk′(f)

(
yk

′,ν′

τ ′
)
. (5.63)

For k, k′ ∈ Z, τ ′ ∈ Ik′ , ν′ = 1, . . . ,N(k′, τ ′), yk
′,ν′

τ ′ ∈ Qk′,ν′

τ ′ , and x ∈ X, let

J
(
x, yk

′,ν′

τ ′
) ≡ (DkTDk′

(·, yk′,ν′τ ′
))
(x). (5.64)

We now claim that for any fixed η ∈ (0, ε),

∣∣J
(
x, yk

′,ν′

τ ′
)∣∣

� 2−|k−k
′ |η
(

2−(k∧k
′)

2−(k∧k′) + d
(
x, yk

′,ν′
τ ′
)

)η
1

V2−(k∧k′) (x) + V2−(k∧k′)
(
yk

′,ν′
τ ′
)
+ V
(
x, yk

′,ν′
τ ′
) .

(5.65)

To verify (5.65), by symmetry, we only need to verify that if k ≤ k′, then

∣∣J
(
x, yk

′,ν′

τ ′
)∣∣ � 2(k−k

′)η 1
V2−k(x)

, (5.66)

and moreover, if d(x, yk
′,ν′

τ ′ ) ≥ 25−k, then

∣∣J
(
x, yk

′,ν′

τ ′
)∣∣ �

(
2−k

′

d
(
x, yk

′,ν′
τ ′
)

)η
1

V
(
x, yk

′,ν′
τ ′
) . (5.67)
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To see this, for y ∈ X, set

Ψ(y) =
∫

X
K(z, y)Dk(x, z)dμ(z). (5.68)

Notice that for any fixed x ∈ X, Dk(x, z) is an adjusted bump function in z associated with
the ball B(x, 22−k). Conditions (I-2) and (I-4) show that for any fixed η ∈ (0, ε),

2−kη‖Ψ‖Ċη(X) � 1
V2−k(x)

, (5.69)

which further implies that for all y ∈ X,

∣∣Ψ(y) −Ψ
(
yk

′,ν′

τ ′
)∣∣ �

d
(
y, yk

′,ν′

τ ′
)η

2−kη
1

V2−k(x)
. (5.70)

Thus,

∣∣J
(
x, yk

′,ν′

τ ′
)∣∣ =

∣∣∣∣

∫

X
Ψ(y)Dk′

(
y, yk

′,ν′

τ ′
)
dμ(y)

∣∣∣∣

=
∣∣∣∣

∫

X

[
Ψ(y) −Ψ

(
yk

′,ν′

τ ′
)]
Dk′
(
y, yk

′,ν′

τ ′
)
dμ(y)

∣∣∣∣

� 2(k−k
′)η 1
V2−k(x)

.

(5.71)

That is, (5.66) holds.
On the other hand, when k ≤ k′, z ∈ B(x, 22−k), y ∈ B(yk

′,ν′

τ ′ , 22−k
′
), and d(x, yk

′,ν′

τ ′ ) ≥
25−k, then by Condition (I-3), we have

∣∣K(z, y) −K(z, yk′,ν′τ ′
)∣∣ � 2−k

′ε

d
(
x, yk

′,ν′
τ ′
)ε
V
(
x, yk

′,ν′
τ ′
) , (5.72)

which yields that

∣∣J
(
x, yk

′,ν′

τ ′
)∣∣ =

∣∣∣∣

∫∫

X×X

[
K(z, y) −K(z, yk′,ν′τ ′

)]
Dk(z, x)Dk′

(
y, yk

′,ν′

τ ′
)
dμ(y)dμ(z)

∣∣∣∣

�
(

2−k
′

d
(
x, yk

′,ν′
τ ′
)

)η
1

V
(
x, yk

′,ν′
τ ′
) ,

(5.73)

namely, (5.67) holds. Thus, (5.65) holds.
Notice that the estimate (5.65) is analogous to the estimate (5.10) in the proof of

Proposition 5.4. We can further proceed from here on exactly as in the proof of Proposition 5.4
in order to obtain the boundedness of T on Ḃsp,q(X) and Ḟsp,q(X). This finishes the proof of
Theorem 5.16.
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5.3. Inhomogeneous Plancherel-Pôlya inequalities and
definition of Bsp,q(X) and Fsp,q(X)

Throughout this and the next subsection, μ(X) can be finite or infinite. We first introduce
the norms in Bsp,q(X) and Fsp,q(X) via certain IATI and then verify that these norms are
independent of the choices of IATIs and spaces of distributions; see [37]. To this end, we
need to establish inhomogeneous Plancherel-Pôlya inequalities; see [80]. In what follows, for
any dyadic cube Q, we setmQ(f) = (1/μ(Q))

∫
Qf(x)dμ(x).

Definition 5.24. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1∧ε2), and let {Sk}k∈Z+
be an (ε1, ε2, ε3)-

IATI. Set D0 = S0 and Dk = Sk − Sk−1 for k ∈ N. Let {Q0,ν
τ : τ ∈ I0, ν = 1, . . . ,N(0, τ)} with a

fixed large j ∈ N be dyadic cubes as in Section 4.

(i) For all f ∈ (Gε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p ≤ ∞, and 0 < q ≤ ∞, we
define

‖f‖Bsp,q(X) =

{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣D0(f)
∣∣)]p
}1/p

+

{ ∞∑

k=1

2ksq
∥∥Dk(f)

∥∥q
Lp(X)

}1/q

(5.74)

with the usual modification made when p = ∞ or q = ∞.

(ii) For all f ∈ (Gε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p < ∞, and p(s, ε) < q ≤
∞, we define

‖f‖Fsp,q(X) =

{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣D0(f)
∣∣)]p
}1/p

+

∥∥∥∥∥

{ ∞∑

k=1

2ksq
∣∣Dk(f)

∣∣q
}1/q∥∥∥∥∥

Lp(X)

(5.75)

with the usual modification made when q = ∞.

The following theorem is the inhomogeneous Plancherel-Pôlya inequalities.

Proposition 5.25. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z+
and {Pk}k∈Z+

be two (ε1, ε2, ε3)-IATIs. Set D0 = S0 and Q0 = P0, and Dk = Sk − Sk−1 and Qk = Pk − Pk−1
for k ∈ N. Let {Q0,ν

τ : τ ∈ I0, ν = 1, . . . ,N(0, τ)} with a fixed large j ∈ N be dyadic cubes as in
Section 4.

(i) For all f ∈ (Gε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p ≤ ∞, and 0 < q ≤ ∞,

{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣D0(f)
∣∣)]p
}1/p

+

{ ∞∑

k=1

2ksq
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[

sup
z∈Qk,ν

τ

∣∣Dk(f)(z)
∣∣
]p)q/p}1/q
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∼
{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣Q0(f)
∣
∣)]p
}1/p

+

{ ∞∑

k=1

2ksq
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[
inf

z∈Qk,ν
τ

∣
∣Qk(f)(z)

∣
∣
]p)q/p}1/q

(5.76)

with the usual modification made when p = ∞ or q = ∞.

(ii) For all f ∈ (Gε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, p(s, ε) < p <∞, and p(s, ε) < q ≤ ∞,

{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣D0(f)
∣∣)]p
}1/p

+

∥∥∥∥∥

{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[

sup
z∈Qk,ν

τ

∣∣Dk(f)(z)
∣∣
]q
χQk,ν

τ

}1/q∥∥∥∥∥
Lp(X)

∼
{
∑

τ∈I0

N(0,τ)∑

ν=1

μ(Q0,ν
τ )
[
mQ0,ν

τ

(∣∣Q0(f)
∣∣)]p
}1/p

+

∥∥∥∥∥

{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[
inf

z∈Qk,ν
τ

∣∣Qk(f)(z)
∣∣
]q
χQk,ν

τ

}1/q∥∥∥∥∥
Lp(X)

(5.77)

with the usual modification made when q = ∞.

Proof. We first verify (5.76). By Theorem 4.16 together with Remark 4.17, there exists a family
of functions {D̃k′(x, y)}k′∈Z+

such that for all f ∈ (Gε
0(β, γ))

′ with 0 < β, γ < ε and all z ∈ X,

f(z) =
∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∫

Q0,ν′
τ ′

D̃0(x, y)dμ(y)Q
0,ν′

τ ′,1(f)

+
∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)
D̃k′
(
z, yk

′,ν′

τ ′
)
Qk′(f)

(
yk

′,ν′

τ ′
)
,

(5.78)

where Q0,ν′

τ ′,1 denotes the integral operator with kernel

Q0,ν′

τ ′,1(z) =
1

μ
(
Q0,ν′
τ ′
)

∫

Q0,ν′
τ ′

Q0(u, z)dμ(u) (5.79)
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and {D̃k′ }k′∈Z+
satisfy the same conditions as {D̃k}k∈Z+

in Theorem 4.14. From (5.78) together
with

∣
∣Q0,ν′

τ ′,1(f)
∣
∣ =
∣
∣
∣
∣

∫

X
Q0,ν′

τ ′,1(z)f(z)dμ(z)
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1

μ
(
Q0,ν′
τ ′
)

∫

Q0,ν′
τ ′

Q0(f)(u)dμ(u)

∣
∣
∣
∣
∣

≤ m
Q0,ν′
τ ′

(∣∣Q0(f)
∣
∣),

(5.80)

it follows that

mQ0,ν
τ

(∣∣D0(f)
∣∣) =

1

μ(Q0,ν
τ )

∫

Q0,ν
τ

∣∣D0(f)(z)
∣∣dμ(z)

≤
∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

m
Q0,ν′
τ ′

(∣∣Q0(f)
∣∣) 1

μ(Q0,ν
τ )

∫

Q0,ν
τ

∫

Q0,ν′
τ ′

∣∣(D0D̃0
)
(z, y)

∣∣dμ(y)dμ(z)

+
∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

|Qk′(f)
(
yk

′,ν′

τ ′
)|μ(Qk′,ν′

τ ′
) 1

μ
(
Q0,ν
τ

)

∫

Q0,ν
τ

∣∣(D0D̃k′
)(
z, yk

′,ν′

τ ′
)∣∣dμ(z)

≡ Z1 + Z2.

(5.81)

By Lemma 3.19 together with Remark 3.3, we have that for any ε ∈ (0, ε1 ∧ ε2), all k′ ∈ Z+ and
all z, y ∈ X,

∣∣(D0D̃k′
)
(z, y)

∣∣ � 2−k
′ε 1
V1(z) + V1(y) + V (z, y)

1
(
1 + d(z, y)

)ε . (5.82)

From this together with Lemma 2.1(iii), it follows that

sup
z∈Q0,ν

τ

sup
y∈Q0,ν′

τ ′

∣∣(D0D̃0)(z, y
)∣∣ � inf

z∈Q0,ν
τ

inf
y∈Q0,ν′

τ ′

1
V1(z) + V1(y) + V (z, y)

1
(
1 + d(z, y)

)ε . (5.83)

Thus,

Z1 �
∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

m
Q0,ν′
τ ′

(∣∣Q0(f)
∣∣)μ
(
Q0,ν′

τ ′
)
inf
z∈Q0,ν

τ

inf
y∈Q0,ν′

τ ′

1
V1(z) + V1(y) + V (z, y)

1
(
1 + d(z, y)

)ε .

(5.84)
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Therefore, if n/(n + ε) < p ≤ 1, by (5.5) and Lemma 5.2, we then have
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(5.85)

where in the last step, we used the fact that for any y0,ν′

τ ′ ∈ Q0,ν′

τ ′ ,

V1
(
y0,ν′

τ ′
)∼μ(Q0,ν′

τ ′
)
. (5.86)

If 1 < p ≤ ∞, by Hölder’s inequality and Lemma 5.2, we have
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(5.87)

which together with Lemma 5.2 again yields that
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This is the desired estimate.
From (5.82), it also follows that
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(5.89)

which proves that
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Notice also that by Lemma 2.19 and (1.3), for any yk
′,ν′

τ ′ ∈ Qk′,ν′

τ ′ , V1(y
k′,ν′

τ ′ ) � 2−k
′nμ(Qk′,ν′

τ ′ ). If
p(s, ε) < p ≤ 1, then this fact together with (5.5) and Lemma 5.2 proves that
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(5.91)

where in the last step, we used (5.5)when q/p ≤ 1 or Hölder’s inequality when q/p > 1.
If 1 < p ≤ ∞, then by Hölder’s inequality and Lemma 5.2, we first have
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(5.92)

where max{−s, 0} < ε′ < ε. This together with Lemma 5.2 again shows that
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(5.93)

where we used (5.5)when q/p ≤ 1 or Hölder’s inequality when q/p > 1.
All the above estimates together with the arbitrary choice of yk

′,ν′

τ ′ yield that the first
term in the left-hand side of (5.76) is controlled by its right-hand side.

We now verify that the second term of the left-hand side of (5.76) is also controlled by
its right-hand side. To this end, by (5.78),
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The estimate for Y2 is as in (5.7), and we only need to estimate Y1. In this case, by Lemma 3.19
together with Remark 3.3, for any ε ∈ (0, ε1 ∧ ε2), we have
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1
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(5.95)

and therefore, if n/(n + ε) < p ≤ 1 and s < ε, by (5.5) and Lemma 5.2 together with (5.86), we
obtain
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(5.96)

while when 1 < p ≤ ∞, by Hölder’s inequality and Lemma 5.2,
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(5.97)

All these estimates imply that the left-hand side of (5.76) is controlled by its right-hand
side, which together with the symmetry verifies (5.76).

Similarly, to establish (5.77), we only need to verify that its left-hand side is controlled
by its right-hand side. To this end, the estimates for Z1 are still valid for the current case. To
estimate Z2, by Lemma 5.3 and (5.5) when q ≤ 1 or Hölder’s inequality when 1 < q ≤ ∞, we
have that for p(s, ε) < r < min{1, p, q},
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(5.98)

where in the last step, we used Lemma 3.14. This is the desired estimate.
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The estimation for Y2 is as in the proof of (5.8). To finish the proof of (5.77), we still
need to estimate Y1. In what follows, we set a = 1 when p/q ≤ 1 and a = q/p when p/q > 1.
The estimates (5.95) and (5.5) when p/q ≤ 1 or Hölder’s inequality when p/q > 1 show that
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(5.99)

If n/(n + ε) < p ≤ 1, by (5.5), s < ε, and Lemma 5.2 together with (5.82),
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and if 1 < p ≤ ∞, by Hölder’s inequality and Lemma 5.2,
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which completes the proof of (5.77), and hence, that of Proposition 5.25.

Remark 5.26. We point out that Remark 5.5 applies in a similar way to Proposition 5.25.

Similarly to Proposition 5.6, using Proposition 5.4, we can verify that the definitions of
‖·‖Bsp,q(X) and ‖·‖Fsp,q(X) are independent of the choices of IATIs. We omit the details.

Proposition 5.27. Let all the notation be as in Proposition 5.25.
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(5.102)

with the usual modification made when p = ∞ or q = ∞.
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(ii) For all f ∈ (Gε
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with the usual modification made when q = ∞.

We now verify that the definitions of the norm ‖·‖Bsp,q(X) and the norm ‖·‖Fsp,q(X) are
independent of the choice of the underlying space of distributions as follows.

Proposition 5.28. Let all the notation be as in Definition 5.24.

(i) Let |s| < ε, p(s, ε) < p ≤ ∞, and 0 < q ≤ ∞. If f ∈ (Gε
0(β1, γ1))

′ with
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and if ‖f‖Bsp,q(X) <∞, then f ∈ (Gε
0(β2, γ2))

′ for every β2, γ2 satisfying (5.104).

(ii) Let |s| < ε, p(s, ε) < p < ∞, and p(s, ε) < q ≤ ∞. If f ∈ (Gε
0(β1, γ1))

′ with β1, γ1 as in
(5.104), and if ‖f‖Fsp,q(X) <∞, then f ∈ (Gε

0(β2, γ2))
′ for every β2, γ2 satisfying (5.104).

Proof. Similarly to the proof of Proposition 5.7, we only need to verify (i). Let ψ ∈ G(ε, ε) and
all the notation as in Theorem 4.14 withN = 0. We first claim that for k ∈ Z+,
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In fact, if k ∈ N, (5.105) is just (5.24). If k = 0, then
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Notice that V1(x1) + V (x1, z) ∼ V1(x1) + V1(z) + V (x1, z). By Lemma 4.4, we have
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(5.107)

which shows that (5.105) also holds when k = 0.
From Theorem 4.16 together with (5.80), (5.105), and Lemma 2.1(iii), it follows that
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(5.108)

Notice that if p ≤ 1 and γ2 > n(1/p − 1), then (5.30) with β2 = 0 still holds. Thus, when
p ≤ 1, by this fact and (5.5), we have
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(5.109)

where in the last inequality, we used the assumption that β2 > −s + n(1/p − 1) when p ≤ 1,
and (5.5) when q/p ≤ 1 or Hölder’s inequality when q/p > 1.
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If 1 < p ≤ ∞, by Hölder’s inequality, we have
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(5.110)

here, again, we used the assumption β2 > −s in this case, and (5.5) when q ≤ 1 or Hölder’s
inequality when q > 1.

Using (5.109) and (5.110) together with an argument similar to that used in the proof
of Proposition 5.7 then completes the proof of Proposition 5.28.

We can now introduce the Besov spaces Bsp,q(X) and Triebel-Lizorkin spaces Fsp,q(X).

Definition 5.29. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z+
be an (ε1, ε2, ε3)-

IATI. Set D0 = S0 and Dk = Sk − Sk−1 for k ∈ N. Let {Q0,ν
τ : τ ∈ I0, ν = 1, . . . ,N(0, τ)} with a

fixed large j ∈ N be dyadic cubes as in Section 4.
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+
< γ < ε (5.111)

such that

‖f‖Bsp,q(X) =

{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣D0(f)
∣∣)]p
}1/p

+

{ ∞∑

k=1

2ksq
∥∥Dk(f)

∥∥q
Lp(X)

}1/q

<∞

(5.112)

with the usual modifications made when p = ∞ or q = ∞.
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(ii) Let |s| < ε, p(s, ε) < p < ∞, and p(s, ε) < q ≤ ∞. The space Fsp,q(X) is defined to be
the set of all f ∈ (Gε

0(β, γ))
′ for some β, γ satisfying (5.111) such that

‖f‖Fsp,q(X) =

{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣D0(f)
∣
∣)]p
}1/p

+

∥
∥
∥
∥
∥

{ ∞∑

k=1

2ksq
∣
∣Dk(f)

∣
∣q
}1/q∥∥
∥
∥
∥
Lp(X)

<∞

(5.113)

with the usual modification made when q = ∞.

Remark 5.30. Propositions 5.27 and 5.28 show that the definitions of the spaces Bsp,q(X) and
Fsp,q(X) are independent of the choice of inhomogeneous approximations of the identity as
in Definition 2.2 and the distribution space (Gε

0(β, γ))
′ with β and γ satisfying (5.111). We

also remark that to guarantee that the definitions of the spaces Bsp,q(X) and Fsp,q(X) are
independent of the choice of the distribution space (Gε

0(β, γ))
′, we only need the restriction

that β and γ satisfy (5.104). Moreover, if we assume that max{0, s} < β < ε and n(1/p − 1)+ <
γ < ε, then we can verify that G(β, γ) is contained in Bsp,q(X) and Fsp,q(X); see Proposition 5.31
below.

5.4. Properties of Bsp,q(X) and Fsp,q(X) and boundedness of singular integrals

In this subsection, we first present some basic properties of Bsp,q(X) and Fsp,q(X). Then we
establish a Lusin-area characterization of the spaces Fsp,q(X) and the relations between the
spaces Ḃsp,q(X) and Bsp,q(X) and between the spaces Ḟsp,q(X) and Fsp,q(X). Using the Lusin-area
characterization of Fsp,q(X), we also obtain the relation between the spaces Fsp,q(X) and the
local Hardy spaces hp(X) in the sense of Goldberg [73]. Finally, we obtain the boundedness
on Bsp,q(X) and Fsp,q(X) of singular integrals with some natural extra size and regularity
conditions of Nagel-Stein type in [44].

The following proposition is an inhomogeneous version of Proposition 5.10.

Proposition 5.31. Let ε1 ∈ (0, 1], ε2 > 0, ε ∈ (0, ε1 ∧ ε2), and |s| < ε.

(i) For p(s, ε) < p ≤ ∞ and 0 < q0 ≤ q1 ≤ ∞, Bsp,q0(X) ⊂ Bsp,q1(X); and for p(s, ε) < p < ∞
and p(s, ε) < q0 ≤ q1 ≤ ∞, Fsp,q0(X) ⊂ Fsp,q1(X).

(ii) Let −ε < s + θ < ε and θ > 0. Then for p(s, ε) < p ≤ ∞ and 0 < q0, q1 ≤ ∞, Bs+θp,q0(X) ⊂
Bsp,q1(X); and for p(s, ε) < p <∞ and p(s, ε) < q0, q1 ≤ ∞, Fs+θp,q0(X) ⊂ Fsp,q1(X).

(iii) If p(s, ε) < p <∞ and p(s, ε) < q ≤ ∞, then Bs
p,min(p,q)(X) ⊂ Fsp,q(X) ⊂ Bs

p,max(p,q)(X).

(iv) If β, γ as in (5.104), then Bsp,q(X) ⊂ (Gε
0(β, γ))

′ when p(s, ε) < p ≤ ∞ and 0 < q ≤ ∞,
and Fsp,q(X) ⊂ (Gε

0(β, γ))
′ when p(s, ε) < p <∞ and p(s, ε) < q ≤ ∞.

(v) If max{s, 0} < β < ε and n(1/p − 1)+ < γ < ε, then G(β, γ) ⊂ Bsp,q(X) when p(s, ε) <
p ≤ ∞ and 0 < q ≤ ∞, and G(β, γ) ⊂ Fsp,q(X) when p(s, ε) < p <∞ and p(s, ε) < q ≤ ∞.

(vi) If 1 < p <∞, then F0
p,2(X) = Lp(X) with equivalent norms.

(vii) The spaces Bsp,q(X) with p(s, ε) < p ≤ ∞ and 0 < q ≤ ∞ and the spaces Fsp,q(X) with
p(s, ε) < p <∞ and p(s, ε) < q ≤ ∞ are complete.
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Proof. Property (i) is a simple corollary of (5.5). To see (ii), we notice that

{ ∞∑

k=0

2skq1
∣
∣bk
∣
∣q1
}1/q1

≤ sup
k∈Z+

2(s+θ)k
∣
∣bk
∣
∣
{ ∞∑

l=0

2−θlq1
}1/q1

� sup
k∈Z+

2(s+θ)k
∣
∣bk
∣
∣, (5.114)

which combined with (i) verifies (ii); see also [3, the proof of Proposition 2.3.2/2].
The proof of (iii) is similar to that of Property (ii) in Proposition 5.10; see also [3, 6].
Property (iv) is implied by the proof of Proposition 5.28, and Property (vii) can be

easily deduced from Property (iv) and Property (vi) is just Proposition 3.30.
To see Property (v), similarly to the proof of (5.105), for f ∈ G(β, γ), we have that for

all k ∈ Z+ and x ∈ X,

∣
∣Dk(f)(x)

∣
∣ � 2−kβ‖f‖G(β,γ) 1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ . (5.115)

Notice that (5.39) with β = 0 is still true when γ > n(1/p − 1)+. From this fact and β > s, it
follows that

‖f‖Bsp,q(X) ∼
{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣D0(f)
∣∣)]p
}1/p

+

{ ∞∑

k=1

2ksq
∥∥Dk(f)

∥∥q
Lp(X)

}1/q

� ‖f‖G(β,γ)
{[
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

) 1
(
V1
(
x1) + V (x1, y

0,ν
τ

))p
1

(
1 + d

(
x1, y

0,ν
τ

))γp

]1/p

+

[ ∞∑

k=1

2ksq2−kβq
]1/q}

� ‖f‖G(β,γ).
(5.116)

Thus, G(β, γ) ⊂ Bsp,q(X), which together with (i) also proves that G(β, γ) ⊂ Fsp,q(X). This
verifies (v) and hence, finishes the proof of Proposition 5.31.

When p, q ≥ 1, the following theorem implies that the norms of ‖·‖Bsp,q(X) and ‖·‖Fsp,q(X)

have the following equivalent and simple version.

Proposition 5.32. Let all the notation be as in Proposition 5.25.

(i) For all f ∈ (Gε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞,

{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣D0(f)
∣∣)]p
}1/p

+

{ ∞∑

k=1

2ksq
∥∥Dk(f)

∥∥q
Lp(X)

}1/q

∼
{ ∞∑

k=0

2ksq
∥∥Dk(f)

∥∥q
Lp(X)

}1/q
(5.117)

with the usual modification made when p = ∞ or q = ∞.
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(ii) For all f ∈ (Gε
0(β, γ))

′ with 0 < β, γ < ε, |s| < ε, 1 ≤ p <∞, and p(s, ε) < q ≤ ∞,

{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣D0(f)
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∣)]p
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+

∥
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∥

{ ∞∑

k=1

2ksq
∣
∣Dk(f)

∣
∣q
}1/q∥∥
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∥
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Lp(X)

∼
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∥
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∥
∥

{ ∞∑

k=0

2ksq
∣∣Dk(f)

∣∣q
}1/q∥∥
∥
∥
∥
Lp(X)

(5.118)

with the usual modification made when q = ∞.

Proof. We first verify (5.117). To see this, by p ≥ 1, Hölder’s inequality, and Lemma 2.19, we
have

{
∑

τ∈I0

N(0,τ)∑

ν=1
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(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣D0(f)
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)
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τ

(∣∣D0(f)
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}1/p

=
∥∥D0(f)

∥∥
Lp(X),

(5.119)

which shows that the left-hand side of (5.117) is controlled by its right-hand side.
To see the converse, by Lemma 2.19 and Theorem 4.16 together with a proof similar to

that of (5.76) in Proposition 5.25, we have that for all f ∈ (Gε
0(β, γ))

′ with 0 < β, γ < ε, and
|s| < ε,

∥∥D0(f)
∥∥
Lp(X) =

{
∑

τ∈I0

N(0,τ)∑

ν=1

∫
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�
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mQ0,ν

τ
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+

{ ∞∑

k=1

2ksq
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
[
inf

z∈Qk,ν
τ

∣∣Dk(f)(z)
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]p)q/p}1/q

,

(5.120)

which is, up to a bounded multiplicative constant, controlled by the left-hand side of (5.117).
This completes the proof of (5.117).

The estimate (5.119) also proves that the left-hand side of (5.118) is controlled by its
right-hand side. The converse inequality can be proved by a way similar to that of (5.77) in
Proposition 5.25, which completes the proof of Proposition 5.32.

We next give an inhomogeneous Lusin-area characterization for the Triebel-Lizorkin
spaces Fsp,q(X).
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Definition 5.33. Let s ∈ R, a > 0, q ∈ (0,∞], and let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2]. Let
{Sk}k∈Z+

be an (ε1, ε2, ε3)-IATI. Set D0 = S0 and Dk = Sk − Sk−1 for k ∈ N. The inhomogeneous
Lusin-area function (also called the inhomogeneous Littlewood-Paley S-function) Ssq,a(f)(x) for
any f ∈ (Gε

0(β, γ))
′ with 0 < β, γ ≤ ε and x ∈ X is given by

Ssq,a(f)(x) =

{ ∞∑

k=0

∫

d(x,y)<a2−k
2ksq
∣
∣Dk(f)(y)

∣
∣q dμ(y)
Va2−k(x)

}1/q

, (5.121)

where the usual modification is made when q = ∞.

Theorem 5.34. Let a > 0, ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z+
be

an (ε1, ε2, ε3)-IATI with C621−j ≤ a. Set D0 = S0 and Dk = Sk − Sk−1 for k ∈ Z. Let |s| < ε,
p(s, ε) < p < ∞, 1 ≤ q ≤ ∞, and let Ssq,a(f) be as in Definition 5.33 for any f ∈ (Gε

0(β, γ))
′ with

β, γ as in (5.111). Then f ∈ Fsp,q(X) if and only if f ∈ (Gε
0(β, γ))

′ for some β, γ as in (5.111) and
Ssq,a(f) ∈ Lp(X). Moreover, in this case,

‖f‖Fsp,q(X) ∼
∥∥Ssq,a(f)

∥∥
Lp(X). (5.122)

Proof. Similarly to the proof of Theorem 5.13, there exists a constant C > 0 such that

∥∥Ssq,a(f)
∥∥
Lp(X) =
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Lp(X)

∼ ‖f‖Fsp,q(X),

(5.123)

where the last inequality can be proved by a way similar to the proof of (5.76) in
Proposition 5.25; see also the proof of Theorem 5.13.
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On the other hand, since 1 ≤ q ≤ ∞, by Hölder’s inequality and Lemma 2.19 together
with C621−j ≤ a, we have that for x ∈ Qk,ν

τ with k ∈ Z+, Q
k,ν
τ ⊂ {y ∈ X : d(y, x) ≤ a2−k} and

Va(x) ∼ μ(Q0,ν
τ ), and

{∫
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(5.124)

Therefore, similarly to the proof of Theorem 5.13, by the estimate as above and Lemma 2.19
again,

Ssq,a(f)(x)=
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(5.125)

which together with Proposition 5.25 and Lemma 2.19 proves that

∥∥Ssq,a(f)
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Lp(X)

�
{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
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+
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∣∣Dk(f)
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Lp(X)

∼ ‖f‖Fsp,q(X).

(5.126)

This finishes the proof of Theorem 5.34.

Remark 5.35. Comparing Theorem 5.34 with Theorem 5.13, we here need to require that 1 ≤
q ≤ ∞ and C621−j ≤ a due to the inhomogeneity of Triebel-Lizorkin spaces Fsp,q(X).

From Theorem 2.29, we immediately obtain the following technical lemma, which will
be useful in applications.

Lemma 5.36. Let S0 be as in Definition 2.2 and ε ∈ (0, ε1 ∧ ε2]. Let 0 < β, γ ≤ ε, and let St0 be the
integral operator with the kernel St0(x, y) = S0(y, x) for all x, y ∈ X. Then St0 is bounded on G(β, γ),
namely, there exists a constant C > 0 such that for all g ∈ G(β, γ), St0(g) ∈ G(β, γ), and

∥∥St0(g)
∥∥
G(β,γ) ≤ C‖g‖G(β,γ). (5.127)
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We now establish some relations between homogeneous Besov and Triebel-Lizorkin
spaces with the corresponding inhomogeneous ones.

Proposition 5.37. Let all the notation be as in Definition 5.29 and μ(X) = ∞. Then there exists a
constant C > 0 such that if f ∈ Bsp,q(X) or Fsp,q(X), then f − S0(f) ∈ Ḃsp,q(X) or Ḟsp,q(X), and

∥
∥f − S0(f)

∥
∥
Ḃsp,q(X) ≤ C‖f‖Bsp,q(X) (5.128)

or

∥
∥f − S0(f)

∥
∥
Ḟsp,q(X) ≤ C‖f‖Fsp,q(X), (5.129)

respectively.

Proof. Let f ∈ Bsp,q(X) or f ∈ Fsp,q(X). By Proposition 5.28, without loss of generality, we may
assume that f ∈ (Gε

0(β, γ))
′ with β, γ as in (5.35). From G̊(β, γ) ⊂ G(β, γ), it follows that f ∈

(G̊ε
0(β, γ))

′. On the other hand, for any g ∈ G̊ε
0(β, γ), we have 〈S0(f), g〉 = 〈f, St0(g)〉, which

together with Lemma 5.36 also shows that S0(f) ∈ (G̊ε
0(β, γ))

′. Thus, f − S0(f) ∈ (G̊ε
0(β, γ))

′

with β, γ as in (5.35).
To verify the norm inequalities in the proposition, in what follows, we let I be the

identity operator on Bsp,q(X) or Fsp,q(X). Let β and γ be as in (5.35), let {Dk}k∈Z
be as in

Definition 5.8, and let {D̃k′ }k′∈Z+
be as in Theorem 4.14. We first claim that for all k ∈ Z and

k′ ∈ Z+,

∣∣(Dk

(
I − S0

)
D̃k′
)
(x, y)
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� 2−|k−k
′ |ε 1
V2−(k∧k′) (x) + V2−(k∧k′) (y) + V (x, y)

2−(k∧k
′)ε

(
2−(k∧k

′) + d(x, y)
)ε .

(5.130)

We verify (5.130) by considering the following three cases.

Case 1 (k′ ≥ 0 ≥ k). In this case, we have

∣∣(Dk

(
I − S0

)
D̃k′
)
(x, y)

∣∣

=
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∫

X
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]((
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∫

X

[
Dk(x, z)−Dk(x, y)

]
D̃k′(z, y)dμ(z)
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[
Dk(x, z)−Dk(x, y)

](
S0D̃k′
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(z, y)dμ(z)

∣∣∣∣.

(5.131)

On the first term, an argument similar to the proof of (3.2) in Lemma 3.2 gives the desired
estimate. For the second term, by Lemma 3.19, we first have

∣∣(S0D̃k′
)
(z, y)

∣∣ � 2−k
′ε 1
V1(z) + V1(y) + V (z, y)

1
(
1 + d(z, y)

)ε , (5.132)
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which together with an argument similar to the proof of (3.2) in Lemma 3.2 also gives the
desired estimate for the second term.

Case 2 (k′ ≥ k > 0). In this case, we write

∣
∣(Dk(I − S0)D̃k′

)
(x, y)

∣
∣ ≤ ∣∣(DkD̃k′

)
(x, y)

∣
∣ +
∣
∣(DkS0D̃k′

)
(x, y)

∣
∣. (5.133)

The estimate (3.2) in Lemma 3.2 directly gives the desired estimate for the first term. Denote
the second term by J and write

J ≡
∣
∣
∣
∣
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X×X
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∣
∣
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∣∣dμ(u)dμ(z)

+
∫

X

∫

d(u,y)>(1+d(z,y))/2

∣∣Dk(x, z)
∣∣∣∣S0(z, y)D̃k′(u, y)

∣∣dμ(u)dμ(z)

≡ J1 + J2 + J3.

(5.134)

The regularity of S0 together with Lemma 2.1(ii) yields that

J1 �
∫

X

∫

d(u,y)≤(1+d(z,y))/2

∣∣Dk(x, z)
∣∣
(

d(u, y)
1 + d(z, y)

)ε 1
V1(z) + V1(y) + V (z, y)

× 1
(
1 + d(z, y)

)ε
∣∣D̃k′(u, y)

∣∣dμ(u)dμ(z)

� 2−k
′ε
∫

X

∣∣Dk(x, z)
∣∣ 1
V1(z) + V1(y) + V (z, y)

1
(
1 + d(z, y)

)ε dμ(z).

(5.135)

If d(x, y) ≤ 2−k, then by Lemma 2.1(ii) again, J1 � 2−k
′ε(1/V2−k(x)), which is the desired

estimate. When d(x, y) > 2−k, we further control J1 by

J1 � 2−k
′ε

{∫

d(x,z)≥d(x,y)/2

1
V2−k(x) + V2−k(z) + V (x, z)

2−kε
(
2−k + d(x, z)

)ε

× 1
V1(z) + V1(y) + V (z, y)

1
(
1 + d(z, y)

)ε dμ(z) +
∫

d(x,z)<d(x,y)/2
· · ·
}

.

(5.136)
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Notice that d(x, z) < d(x, y)/2 also implies that d(z, y) ≥ d(x, y)/2. From this together with
Lemma 2.1(ii), it follows that

J1 � 2−k
′ε

{
1

V (x, y)
2−kε

d(x, y)ε
+

1
V (x, y)

1
d(x, y)ε

}

� 2−(k
′−k)ε 1

V (x, y)
2−kε

d(x, y)ε
, (5.137)

which is also the desired estimate.
The estimate for J3 is similar to that for J1.
To estimate J2, choosing ε′ > ε and using Lemma 2.1(ii), we first have

∫

d(u,y)>(1+d(z,y))/2

∣
∣S0(z, u)D̃k′(u, y)

∣
∣dμ(u) � 1

V1(z)
2−k

′ε

(
1 + d(z, y)

)ε ; (5.138)

and by the fact that for d(u, y) > (1 + d(z, y))/2, V (u, y) ∼ V (y, u) � V1(y) +V (y, z), we also
obtain

∫

d(u,y)>(1+d(z,y))/2

∣∣S0(z, u)D̃k′(u, y)
∣∣dμ(u) � 1

V1(y) + V (y, z)
2−k

′ε

(
1 + d(z, y)

)ε . (5.139)

Therefore, combining these estimates gives

J2 � 2−k
′ε
∫

X

∣∣Dk(x, z)
∣∣ 1
V1(z) + V1(y) + V (z, y)

1
(
1 + d(z, y)

)ε dμ(z), (5.140)

which together with some computations the same as for J1 gives the desired estimate for J2.

Case 3 (k > k′ ≥ 0). The proof for this case is similar to Case 2 by symmetry. We omit the
details for simplicity, which completes the proof of (5.130).

Theorem 4.16 together with (5.80), (5.130), and Lemma 5.3 yields that for n/(n + ε) <
r ≤ 1, k ∈ Z, and x ∈ X,

∣∣Dk

(
f − S0(f)

)
(x)
∣∣

� 2−|k|ε2(k∧0)n(1−1/r)
{

M

(
∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

[
m
Q0,ν′
τ ′

(∣∣D0(f)
∣∣)]rχ

Q0,ν′
τ ′

)

(x)

}1/r

+
∞∑

k′=1

2−|k−k
′ |ε2[(k∧k

′)−k′]n(1−1/r)
{

M

(
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

∣∣Dk′(f)
(
yk

′,ν′

τ ′
)∣∣rχ

Qk′ ,ν′
τ ′

)

(x)

}1/r

≡ Z1 + Z2.

(5.141)
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We now first consider the case of Besov spaces. Choosing p(s, ε) < r < min{1, p} and
using s < ε and the boundedness ofM yield

{
∑

k∈Z

2ksq
∥
∥Z1
∥
∥q
Lp(X)

}1/q

�
{
∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

μ
(
Q0,ν′

τ ′
)[
m
Q0,ν′
τ ′

(∣∣D0(f)
∣
∣)]p
}1/p

� ‖f‖Bsp,q(X),

(5.142)

which is the desired estimate.
Similarly, choosing r as above, when 1 ≤ p ≤ ∞, by Minkowski’s inequality and the

boundedness ofM together with the assumption s < ε, we have

{
∑

k∈Z

2ksq
∥∥Z2
∥∥q
Lp(X)

}1/q

�
{
∑

k∈Z

∥∥∥∥∥

∞∑

k′=1

2(k−k
′)s−|k−k′ |ε2[(k∧k

′)−k′]n(1−1/r)2k
′s

×
{

M

(
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

∣∣Dk′(f)
(
yk

′,ν′

τ ′
)∣∣rχ

Qk′ ,ν′
τ ′

)}1/r∥∥∥∥∥

q

Lp(X)

}1/q

�
{ ∞∑

k′=1

2k
′sq∥∥Dk′(f)

∥∥q
Lp(X)

}1/q

� ‖f‖Bsp,q(X),

(5.143)

where in the second-to-last inequality, we used (5.5) when q ≤ 1 and Hölder’s inequality
when q > 1, while when r < p < 1, instead of Minkowski’s inequality by (5.5), we have

{
∑

k∈Z

2ksq
∥∥Z2
∥∥q
Lp(X)

}1/q

�
{ ∞∑

k′=1

2k
′sq∥∥Dk′(f)

∥∥q
Lp(X)

}1/q

� ‖f‖Bsp,q(X),

(5.144)

where in the second-to-last inequality, we used (5.5) when q/p ≤ 1 and Hölder’s inequality
when q/p > 1. Combining the above estimates completes the proof of Besov spaces.

We now turn to the case of Triebel-Lizorkin spaces. In this case, we also choose p(s, ε) <
r < min{1, p} and use s < ε and the boundedness ofM to obtain

∥∥∥∥∥

{
∑

k∈Z

2ksq
∣∣Z1
∣∣q
}1/q∥∥∥∥∥

Lp(X)

�
{
∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

μ
(
Q0,ν′

τ ′
)[
m
Q0,ν′
τ ′

(∣∣D0(f)
∣∣)]p
}1/p

� ‖f‖Fsp,q(X),

(5.145)
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while some computations similar to the proof of (5.8) in Proposition 5.4 also show that

∥
∥
∥
∥
∥

{
∑

k∈Z

2ksq
∣
∣Z2
∣
∣q
}1/q∥∥
∥
∥
∥
Lp(X)

�
∥
∥
∥
∥
∥

{ ∞∑

k′=1

2k
′sq∣∣Dk′(f)

∣
∣q
}1/q∥∥
∥
∥
∥
Lp(X)

� ‖f‖Fsp,q(X), (5.146)

which completes the proof of Proposition 5.37.

Remark 5.38. Obviously, S0 in Proposition 5.37 can be replaced by Sk0 with k0 ∈ Z or any
integral operator with a kernel having similar properties.

Proposition 5.39. Let ε be as in Definition 5.29, 0 < s < ε, and μ(X) = ∞. Then,

(i) if 1 ≤ p ≤ ∞ and 0 < q ≤ ∞, then Bsp,q(X) = Ḃsp,q(X) ∩ Lp(X) and moreover, for any
f ∈ Bsp,q(X),

‖f‖Bsp,q(X) ∼ ‖f‖Ḃsp,q(X) + ‖f‖Lp(X); (5.147)

(ii) if 1 ≤ p <∞ and p(s, ε) < q ≤ ∞, then Fsp,q(X) = Ḟsp,q(X) ∩ Lp(X) and moreover, for any
f ∈ Fsp,q(X),

‖f‖Fsp,q(X) ∼ ‖f‖Ḟsp,q(X) + ‖f‖Lp(X). (5.148)

Proof. We use the same notation as in Definition 5.8. Let f ∈ Bsp,q(X) or f ∈ Fsp,q(X). Then, by
Proposition 5.28, it is easy to see that f ∈ (G̊ε

0(β, γ))
′ with β, γ as in (5.35).

To verify (i), let f ∈ Bsp,q(X). If 1 ≤ p < ∞, Proposition 3.18, Minkowski’s inequality,
and Hölder’s inequality when 1 ≤ q ≤ ∞ or (5.5) when 0 < q < 1 show that

‖f‖Lp(X) ≤
∥∥S0(f)

∥∥
Lp(X) +

∞∑

k=1

∥∥Dk(f)
∥∥
Lp(X)

�
{
∥∥S0(f)

∥∥q
Lp(X) +

∞∑

k=1

2ksq
∥∥Dk(f)

∥∥q
Lp(X)

}1/q

� ‖f‖Bsp,q(X).

(5.149)

If p = ∞, by Theorem 3.29, we have that f = D̃0S0(f) +
∑∞

k=1D̃kDk(f) holds in (G(β, γ))′
with s < β < ε and 0 < γ < ε, where D̃k with k ∈ Z+ is as in Theorem 3.26. From this and
f ∈ Bs∞,q(X), it follows that for almost all x ∈ X,

∣∣f(x)
∣∣ � ‖f‖Bs∞,q(X)

{∫

X

∣∣D̃0(x, y)
∣∣dμ(y) +

∞∑

k=1

2−ks
∫

X

∣∣D̃k(x, y)
∣∣dμ(y)

}

� ‖f‖Bs∞,q(X).

(5.150)



150 Abstract and Applied Analysis

Moreover, when 1 ≤ p ≤ ∞, Proposition 2.7(iii) further yields

‖f‖Ḃsp,q(X) ∼
{ ∞∑

k=−∞
2ksq
∥
∥Dk(f)

∥
∥q
Lp(X)

}1/q

�
{

0∑

k=−∞
2ksq
∥
∥Dk(f)

∥
∥q
Lp(X)

}1/q

+

{ ∞∑

k=1

2ksq
∥
∥Dk(f)

∥
∥q
Lp(X)

}1/q

� ‖f‖Bsp,q(X).

(5.151)

Thus, f ∈ Ḃsp,q(X) ∩ Lp(X) and ‖f‖Lp(X) + ‖f‖Ḃsp,q(X) � ‖f‖Bsp,q(X).
Conversely, if f ∈ Ḃsp,q(X) ∩ Lp(X), it is obvious that f ∈ (G(β, γ))′ with β, γ as in

(5.111); and moreover, Proposition 2.7(iii) also proves

‖f‖Bsp,q(X) ∼
{
∥∥S0(f)

∥∥q
Lp(X) +

∞∑

k=1

2ksq
∥∥Dk(f)

∥∥q
Lp(X)

}1/q

� ‖f‖Lp(X) + ‖f‖Ḃsp,q(X),

(5.152)

which completes the proof of (i).
To prove (ii), let f ∈ Fsp,q(X). From Proposition 3.18 and Hölder’s inequality when

1 ≤ q ≤ ∞ or (5.5)when p(s, ε) < q < 1, it follows that

‖f‖Lp(X) ≤
∥∥∥∥∥

∣∣S0(f)
∣∣ +

∞∑

k=1

∣∣Dk(f)
∣∣
∥∥∥∥∥
Lp(X)

�
∥∥∥∥∥

{
∣∣S0(f)

∣∣ +
∞∑

k=1

2ksq
∣∣Dk(f)

∣∣q
}1/q∥∥∥∥∥

Lp(X)

� ‖f‖Fsp,q(X),

‖f‖Ḟsp,q(X) ∼
∥∥∥∥∥

{
∑

k∈Z

2ksq
∣∣Dk(f)

∣∣q
}1/q∥∥∥∥∥

Lp(X)

�
∥∥∥∥∥

{
0∑

k=−∞
2ksq
∣∣Dk(f)

∣∣q
}1/q∥∥∥∥∥

Lp(X)

+

∥∥∥∥∥

{ ∞∑

k=1

2ksq
∣∣Dk(f)

∣∣q
}1/q∥∥∥∥∥

Lp(X)

� Z + ‖f‖Fsp,q(X).

(5.153)

If p/q ≤ 1, by (5.5), Proposition 2.7(iii), and s > 0,

(Z)p �
0∑

k=−∞
2ksp
∥∥Dk(f)

∥∥p
Lp(X) � ‖f‖p

Lp(X)

0∑

k=−∞
2ksp � ‖f‖p

Lp(X), (5.154)
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while when p/q > 1, by Minkowski’s inequality, Proposition 2.7(iii), and s > 0,

Z �
{

0∑

k=−∞
2ksq
∥
∥Dk(f)

∥
∥q
Lp(X)

}1/q

� ‖f‖Lp(X)

{
0∑

k=−∞
2ksq
}1/q

� ‖f‖Lp(X). (5.155)

Thus, f ∈ Ḟsp,q(X) ∩ Lp(X) and ‖f‖Lp(X) + ‖f‖Ḟsp,q(X) � ‖f‖Fsp,q(X).
Conversely, if f ∈ Ḟsp,q(X) ∩Lp(X), it is again obvious that f ∈ (G(β, γ))′ with β, γ as in

(5.111); and moreover, Proposition 2.7(iii) yields that

‖f‖Fsp,q(X) ∼
∥
∥
∥
∥
∥

{
∣
∣S0(f)

∣
∣q +

∞∑

k=1

2ksq
∣
∣Dk(f)

∣
∣q
}1/q∥∥
∥
∥
∥
Lp(X)

� ‖f‖Lp(X) + ‖f‖Ḟsp,q(X),

(5.156)

which completes the proof of (ii) and hence, the proof of Proposition 5.39.

We now introduce the local Hardy spaces in the sense of Goldberg [73].

Definition 5.40. Let all the notation be as in Definition 5.29. The local Hardy space hp(X), for
n/(n + ε) < p ≤ 1, is defined to be the inhomogeneous Triebel-Lizorkin space F0

p,2(X), with
norm ‖f‖hp(X) ≡ ‖f‖F0

p,2(X).

We now introduce the definitions of hp(X)-atoms and hp(X)-blocks.

Definition 5.41. Let j ∈ N be as in Theorem 5.34 and 0 < p ≤ 1. A function a on X is called an
hp(X)-atom if a satisfies (i) through (iii) of Definition 5.15 with r < C62−j , and a is called an
hp(X)-block if a satisfies (i) and (ii) of Definition 5.15 with r ≥ C62−j .

Applying Theorem 5.34 and Proposition 5.37, we obtain the following atomic and
block decomposition characterization for the local Hardy spaces hp(X), which is similar to
Theorem 5.16.

Theorem 5.42. Let ε and β, γ be as in Definition 5.29. If n/(n + ε) < p ≤ 1, then f ∈ hp(X) if
and only if there exist two sequences of numbers {λk}k∈Z+

and {μk}k∈Z+
with

∑∞
k=0|λk|p < ∞ and∑∞

k=0|μk|p < ∞, a sequence of hp(X)-atoms {ak}k∈Z+
and a sequence of hp(X)-blocks {bk}k∈Z+

such
that f =

∑∞
k=0λkak +

∑∞
k=0μkbk in (Gε

0(β, γ))
′. Moreover, in this case,

‖f‖hp(X) ∼ inf

{( ∞∑

k=0

|λk|p
)1/p

+

( ∞∑

k=0

|μk|p
)1/p}

, (5.157)

where the infimum is taken over all the above decompositions of f .

Proof. Let f ∈ hp(X). In order to derive the decomposition of f into atoms and blocks, we
will assume for simplicity that μ(X) = ∞. The case where μ(X) < ∞ can be proved by using
Theorems 5.34, 2.6, and 3.29 together with an argument similar to that used for the proof of
the necessity of Theorem 2.21 in [48].
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By Proposition 5.37, we have f − S0(f) ∈ Hp(X) and moreover,

∥
∥f − S0(f)

∥
∥
Hp(X) � ‖f‖hp(X), (5.158)

where S0 is as in Definition 5.29. By Theorem 5.16, there exist a sequence of numbers {λk}∞k=0 ⊂
C with

∑∞
k=0|λk|p <∞ and a sequence ofHp(X)-atoms {ak}∞k=0 such that in (G̊ε

0(β, γ))
′,

f − S0(f) =
∞∑

k=0

λkak,

( ∞∑

k=0

|λk|p
)1/p

�
∥
∥f − S0(f)

∥
∥
Hp(X).

(5.159)

Let St0 denote the adjoint operator to S0 with integral kernel St0(x, y) = S0(y, x). Notice that
if g ∈ Gε

0(β, γ), then g − St0(g) ∈ G̊ε
0(β, γ) by Lemma 5.36, which together with (5.159) shows

that

〈f, g〉 =
〈
2S0(f) − S0S0(f), g

〉
+

∞∑

k=0

λk
〈
ak − S0

(
ak
)
, g
〉
. (5.160)

Using Lemma 2.19, we have

2S0(f)(x) − S0S0(f)(x) =
∑

τ∈I0

N(0,τ)∑

ν=1

[
2S0(f)(x) − S0S0(f)(x)

]
χQ0,ν

τ
(x)

≡
∑

τ∈I0

N(0,τ)∑

ν=1

λ0,ντ b0,ντ (x),

(5.161)

where

λ0,ντ ≡ [μ(Q0,ν
τ

)]1/p
sup
z∈Q0,ν

τ

∣∣2S0(f)(z) − S0S0(f)(z)
∣∣, (5.162)

and b0,ντ (x) ≡ 0 when λ0,ντ = 0, otherwise,

b0,ντ (x) ≡ 1

λ0,ντ

[
2S0(f)(x) − S0S0(f)(x)

]
χQ0,ν

τ
(x). (5.163)

It is easy to see that supp b0,ντ ⊂ Q0,ν
τ ⊂ B(z0,ντ , C62−j) and

∥∥b0,ντ
∥∥
L2(X) ≤

[
μ
(
Q0,ν
τ

)]1/2 1

λ0,ντ
sup
z∈Q0,ν

τ

∣∣2S0(f)(z) − S0S0(f)(z)
∣∣

�
[
μ
(
B
(
z0,ντ , C62−j

))]1/2−1/p
.

(5.164)
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Thus, b0,ντ is an hp(X)-block multiplied with a normalizing constant. Moreover, noticing that
the kernel of S0S0 has the properties similar to S0 by Lemma 3.19, applying Theorem 4.16,
and using an argument similar to the proof of (5.77) in Proposition 5.25, we obtain

{
∑

τ∈I0

N(0,τ)∑

ν=1

∣
∣λ0,ντ
∣
∣p
}1/p

�
{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)
[

sup
z∈Q0,ν

τ

∣
∣2S0(f)(z) − S0S0(f)(z)

∣
∣
]p}1/p

�
{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ
(
∣
∣D0(f)

∣
∣)
]p
}1/p

+

∥
∥
∥
∥
∥

{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[
inf

z∈Qk,ν
τ

∣
∣Dk(f)(z)

∣
∣
]2
χQk,ν

τ

}1/2∥∥
∥
∥
∥
Lp(X)

∼ ‖f‖hp(X).

(5.165)

We next show that

〈
2S0(f) − S0S0(f), g

〉
=
∑

τ∈I0

N(0,τ)∑

ν=0

λ0,ντ
〈
b0,ντ , g

〉
, (5.166)

which can be deduced by |〈b0,ντ , g〉| � 1. To see this, by Hölder’s inequality, Lemma 2.1(iii),
and (5.30) in the proof of Proposition 5.7 together with the assumption γ > n(1/p − 1), we
have

∣∣〈b0,ντ , g
〉∣∣ ≤ ∥∥b0,ντ

∥∥
L2(X)

∥∥gχQ0,ν
τ

∥∥
L2(X)

≤ [μ(Q0,ν
τ

)]1/2−1/p
{∫

Q0,ν
τ

[
1

V1
(
x1
)
+ V
(
x1, x

)
1

(
1 + d

(
x1, x

))γ

]2
dμ(x)

}1/2

� 1
[
V1
(
x1
)]1/p

� 1.

(5.167)

Notice that by (5.168) below, we have ‖ak‖hp(X) � 1. We can obtain a desired hp(X)-
block decomposition of S0(ak) in the same way as 2S0(f) − S0S0(f), which completes the
proof of the necessity.

We now use Theorem 5.34 to verify the sufficiency of the condition in the theorem. To
this end, by Fatou’s lemma, it suffices to prove that for any hp(X)-atom or any hp(X)-block b,

∥∥S0
2,a(b)

∥∥
Lp(X) � 1, (5.168)

where a ≥ C621−j is as in Theorem 5.34. If b is an hp(X)-atom, the estimate (5.168) can be
established by an argument similar to the proof of the sufficiency of Theorem 2.21 in [48].
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We omit the details. Now, we suppose b is an hp(X)-block supported on B(x0, r) with r ≥
C62−j . ChooseN ∈ N such thatN ≥ max{2, 2/a} and write

∥
∥S0

2,a(b)
∥
∥p
Lp(X) =

∫

B(x0,Nar)

[
S0
2,a(b)(x)

]p
dμ(x) +

∫

X\B(x0,Nar)
. . .

≡ J1 + J2.
(5.169)

Hölder’s inequality together with the size condition of b shows that

J1 ≤
[
μ
(
B
(
x0,Nar

))]1−p/2∥∥S0
2,a(b)

∥
∥p
L2(X) �

[
μ
(
B
(
x0, r
))]1−p/2‖b‖p

L2(X) � 1. (5.170)

Now if x ∈ X \ B(x0,Nar), d(y, x) ≤ a2−k with k ∈ Z+ and u ∈ B(x0, r), we then
have d(u, x0) ≤ (1/2)(2−k + d(y, x0)), which together with the size conditions of Dk and b,
Lemma 2.1(iii), and Hölder’s inequality yields that

∣∣Dk(b)(y)
∣∣ �
[
μ
(
B
(
x0, r
))]1−1/p 1

V2−k(y) + V2−k
(
x0
)
+ V
(
y, x0

)
2−kε

(
2−k + d

(
y, x0

))ε . (5.171)

From this, it follows that

S0
2,a(b)(x) �

[
μ
(
B
(
x0, r
))]1−1/p

{ ∞∑

k=0

[
1

V2−k(x) + V2−k(x0) + V (x, x0)
2−kε

(2−k + d(x, x0))
ε

]2}1/2

.

(5.172)

Therefore, if we choose ε′ ∈ (0, ε) such that p > n/(n + ε′), by (5.5), we then have

J2 � 1
r(ε−ε′)p

[
μ
(
B
(
x0, r
))]p−1 ∞∑

k=0

2−k(ε−ε
′)p

×
∫

X\B(x0,Nar)

(
1

V2−k(x) + V2−k
(
x0
)
+ V
(
x, x0

)

)p
2−kε

′p

(
2−k + d

(
x, x0

))ε′p dμ(x)

� 1
r(ε−ε′)p

[μ(B(x0, r
))
]p−1

∞∑

k=0

2−k(ε−ε
′)p

×
∞∑

l=k

∫

2l2−kNar≤d(x,x0)<2l+12−kNar

(
1

V2−k(x) + V2−k
(
x0
)
+ V
(
x, x0

)

)p
2−kε

′p

(
2−k + d

(
x, x0

))ε′p dμ(x)

� 1,
(5.173)

which completes the proof of Theorem 5.42.

We now recall the definition of the Lipschitz space Lips(X)with s > 0; see [74].
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Definition 5.43. Let s > 0. The Lipschitz (or Hölder) space Lips(X) is defined to be the set of all
functions f on X such that

‖f‖Lips(X) = sup
x∈B, rB≥1

|f(x)|
μ(B)s

+ sup
x /=y

|f(x) − f(y)|
V (x, y)s

<∞, (5.174)

where the first supremum is taken over all balls B of Xwith radius rB ≥ 1.

Observe that these classes are rather Lipschitz (or Hölder) classes with respect to the
measure distance ρ(x, y) ≡ inf{μ(B) : x, y ∈ B, B a ball}, not the distance d.

The dual spaces of h1(X) and hp(X)when p < 1 are proved, respectively, to be bmo(X)
and Lip1/p−1(X) in [74] as follows.

Theorem 5.44. (i) The space bmo(X) is the dual space of h1(X), in the following sense: if f =∑∞
k=0 λkak +

∑∞
k=0 μkbk ∈ h1(X), with atom’s ak and block’s bk, is as in Theorem 5.42, then for each

g ∈ bmo(X),

lim
N→∞

{
N∑

k=0

λk

∫

X
ak(x)g(x)dμ(x) +

N∑

k=0

μk

∫

X
bk(x)g(x)dμ(x)

}

(5.175)

is a well-defined continuous linear functional Lg : f �→ 〈f, g〉 with norm � ‖g‖bmo(X).
Conversely, each continuous linear functional L on h1(X) has the form L = Lg for some

g ∈ bmo(X) with ‖g‖bmo(X) � ‖L‖.
(ii) Assume that ε is as in Definition 5.29, n/(n+ε) < p < 1, and s = 1/p−1. Then Lips(X)

is the dual space of hp(X) in the sense of (i).

Remark 5.45. We point out that Remark 5.20 applies in a similar way to Theorem 5.44.

In what follows, for any β, γ > 0, we let

Gb(β, γ) =
{
f ∈ G(β, γ) : f has bounded support

}
. (5.176)

Using Proposition 5.31, by an argument similar to the proof of Proposition 5.21, we
establish the following density result for Bsp,q(X) and Fsp,q(X). We omit the details.

Proposition 5.46. Let ε1, ε2, ε, and let |s| < ε be as in Definition 5.29. Then Gb(ε1, ε2) is dense in
Bsp,q(X) when p(s, ε) < p <∞ and 0 < q <∞, and in Fsp,q(X) when p(s, ε) < p, q <∞.

We now turn to boundedness results for singular integral operators on Bsp,q(X) and
Fsp,q(X) spaces. In what follows, it will be convenient to put ‖f‖Ċη(X) ≡ ‖f‖L∞(X) when
η = 0.

Let ε > 0 and σ > 0. A linear operator T , which is initially assumed to be continuous
from C

η

b(X) to (Cη

b(X))′ for all η ∈ (0, ε), is called an inhomogeneous singular integral of order
(ε, σ) if T has a distributional kernel K which satisfies the conditions (I-1) through (I-4) of
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the kernel of a singular integral of order ε in Subsection 5.2, and the following additional
“vanishing” condition that

(I-2)1 the property (I-2) also holds in the limiting case η = η̃ = 0, for T and its adjoint
operator Tt, that is, there exists a constant C > 0 such that for every normalized
ε-bump function ϕ, ‖Tϕ‖L∞(X) + ‖Ttϕ‖L∞(X) � C, as well as the following additional
size condition that

(I-3)3 for all x, y ∈ X with d(x, y) ≥ 1, |K(x, y)| ≤ C(1/V (x, y))(1/d(x, y)σ).

Remark 5.47. We point out that if T is a singular integral operator of order (ε, σ), then T
extends to a continuous linear operator from Cη(X) to (Gb(η, γ))

′ for all η ∈ (0, ε] and all
γ > 0; see Proposition 2.25.

We also claim that for f ∈ Gb(η, δ) with η ∈ (0, ε] and δ > 0, Tf can be defined as a
distribution in (Gε

0(β, γ))
′ with 0 < β, γ ≤ ε. We first define Tf as a distribution in (G(β, γ))′

with 0 < β ≤ ε and γ > 0. In fact, for any given β ∈ (0, ε], noticing that Gb(η1, δ) ⊂ Gb(η2, δ)
when η1 ≥ η2, without loss of generality, we may assume that η ≤ β. Assume that supp f ⊂
B(x0, r) for some x0 ∈ X and r > 0. Let ψ ∈ Cη

b(X) such that ψ(x) = 1 when x ∈ B(x0, 2r) and
ψ(x) = 0 when x /∈ B(x0, 4r). For any g ∈ G(β, γ) with η ≤ β ≤ ε and γ > 0, it is easy to see
that ψg ∈ Cη

b
(X). From this and Gb(η, δ) ⊂ Cη

b
(X), it follows that 〈Tf, ψg〉 is well defined. On

the other hand, we define 〈Tf, (1 − ψ)g〉 by

〈
Tf, (1 − ψ)g〉 =

∫∫

X×X
K(x, y)f(y)(1 − ψ(x))g(x)dμ(x)dμ(y). (5.177)

Clearly, if supp f ∩ supp{(1 − ψ)g} = ∅, this definition coincides with (I-1). Moreover, by
(I-3)3 and Lemma 2.1(i), we have

∣∣〈Tf, (1 − ψ)g〉∣∣ � ‖f‖L∞(X)‖g‖L1(X) � ‖f‖G(η,δ)‖g‖G(β,γ). (5.178)

It is also easy to verify that 〈Tf, ψg〉 + 〈Tf, (1 − ψ)g〉 is independent of the choice of ψ. Thus,
we can define Tf by 〈Tf, g〉 = 〈Tf, ψg〉 + 〈Tf, (1 − ψ)g〉, so that Tf ∈ (G̊(β, γ))′ with 0 <
β ≤ ε and γ > 0. Now for any g ∈ Gε

0(β, γ) with 0 < β, γ ≤ ε, let {gn}n∈N
⊂ G(ε, ε) such

that ‖gn − g‖G(β,γ) → 0 as n → ∞. We then define Tf ∈ (Gε
0(β, γ))

′ with 0 < β, γ ≤ ε by
〈Tf, g〉 = limn→∞〈Tf, gn〉. It is easy to check that 〈Tf, g〉 is independent of the choice of
{gn}n∈N

⊂ G(ε, ε). In this sense, we have Tf ∈ (Gε
0(β, γ))

′ with 0 < β, γ ≤ ε.

In what follows, for ε ∈ (0, 1] and 0 < β, γ ≤ ε, put

Gε
0,b(β, γ) =

{
f ∈ Gε

0(β, γ) : f has bounded support
}
. (5.179)

Theorem 5.48. Let ε1, ε2, ε, and |s| < ε be as in Definition 5.29. Let σ > 0 and let T be a singular
integral of order (ε, σ) with σ > n(1/p − 1)+. Then T is bounded on Bsp,q(X) when p(s, ε) < p < ∞
and 0 < q < ∞ and bounded from Bsp,q(X) ∩ Gb(ε1, ε2) to Bsp,q(X) when max{p, q} = ∞, and T is
also bounded on Fsp,q(X)when p(s, ε) < p, q <∞, and bounded from Fsp,q(X)∩Gb(ε1, ε2) to Fsp,q(X)
when p(s, ε) < p <∞ and q = ∞.
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Proof. By Propositions 5.46 and 5.31(vii) together with a density argument, it suffices to verify
the conclusions of the theorem for all f ∈ Gε

0,b(β, γ) with β, γ as in (5.111).
Let {Sk}k∈Z+

be an IATI with bounded support as constructed in Theorem 2.6. PutD0 =
S0 and Dk = Sk − Sk−1 for k ∈ N. Using Remark 5.47 and Theorem 4.15 together with an
argument similar to the proof of Theorem 5.23, we see that for all k ∈ Z+ and x ∈ X,

DkTf(x) =
∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

D
0,ν′

τ ′,1 (f)
∫

Q0,ν′
τ ′

(
DkTD0(·, y)

)
(x)dμ(y)

+
∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)(
DkTDk′

(·, yk′,ν′τ ′
))
(x)Dk′(f)

(
yk

′,ν′

τ ′
)
,

(5.180)

where all the notation is as in Theorem 4.15.
For k, k′ ∈ Z+, τ ′ ∈ Ik′ , ν′ = 1, . . . ,N(k′, τ ′), y ∈ Qk′,ν′

τ ′ , and x ∈ X, let Z(x, y) ≡
(DkTDk′(·, y))(x). We now claim that when k = k′ = 0,

∣∣Z(x, y)
∣∣ �
(

1
1 + d(x, y)

)σ 1
V1(x) + V1(y) + V (x, y)

; (5.181)

when k = 0 and k′ ∈ N, for any fixed η ∈ (0, ε),

∣∣Z(x, y)
∣∣ � 2−k

′η
(

1
1 + d(x, y)

)η 1
V1(x) + V1(y) + V (x, y)

; (5.182)

when k ∈ N and k′ = 0, for any fixed η ∈ (0, ε),

|Z(x, y)| � 2−kη
(

1
1 + d(x, y)

)η 1
V1(x) + V1(y) + V (x, y)

; (5.183)

and when k, k′ ∈ N, for any fixed η ∈ (0, ε),

∣∣Z(x, y)
∣∣ � 2−|k−k

′ |η
(

2−(k∧k
′)

2−(k∧k′) + d(x, y)

)η
1

V2−(k∧k′) (x) + V2−(k∧k′) (y) + V (x, y)
. (5.184)

Obviously, (5.184) is just (5.65). The estimate (5.183) is easily deduced from (5.182) by
symmetry. Thus, we only need to verify (5.181) and (5.182). Assume that k′ ∈ Z+. To prove
(5.181) and (5.182), it suffices to prove that

∣∣Z(x, y)
∣∣ � 2−k

′η1 1
V1(x)

, (5.185)

and that when d(x, y) ≥ 25, then

∣∣Z(x, y)
∣∣ �
(

2−k
′

d(x, y)

)η2
1

V (x, y)
, (5.186)
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where when k′ = 0, η1 = 0, and η2 = σ, and when k′ ∈ N, η1 = η2 = η. To see (5.185),
for z ∈ X, set Ψ(z) ≡ ∫XK(w, z)D0(w,x)dμ(w). From the properties of S0 in Theorem 2.6,
Condition (I-2), Condition (I-4), and Condition (I-2)1, it follows that for any fixed η ∈ [0, ε),
‖Ψ‖Ċη(X) � 1/V1(x), which shows that for all z ∈ X, |Ψ(z)| � 1/V1(x), and for η ∈ (0, ε) and
all z, y ∈ X,

∣
∣Ψ(z) −Ψ(y)

∣
∣ � d(z, y)η

1
V1(x)

. (5.187)

Thus, when k′ = 0, by size conditions of both Ψ and S0, then

∣
∣Z(x, y)

∣
∣ =
∣
∣
∣
∣

∫

X
Ψ(z)S0(z, y)dμ(z)

∣
∣
∣
∣ �

1
V1(x)

, (5.188)

while when k′ ∈ N, by the vanishing moment and the size condition of Dk′ together with the
regularity of Ψ, for any fixed η ∈ (0, ε),

∣∣Z(x, y)
∣∣ =
∣∣∣∣

∫

X

[
Ψ(z) −Ψ(y)

]
Dk′(z, y)dμ(z)

∣∣∣∣ � 2−k
′η 1
V1(x)

, (5.189)

which verifies (5.185).
To see (5.186), we first notice that when d(z, y) < 22−k

′
, d(w,x) < 22, and d(x, y) ≥ 25,

then d(w, z) ≥ d(x, y) − d(w,x) − d(z, y) > max{d(x, y)/2, 8, 8d(z, y)}, d(w,y) > d(x, y)/2,
and d(w, z) ≥ d(w,y) − d(z, y) > d(w,y)/2. Therefore,

V (w, z) � V (w,y) � V (y, x) ∼ V (x, y). (5.190)

Thus, if k′ = 0, by (I-3)3, we have

∣∣Z(x, y)
∣∣ �
∫∫

X×X

∣∣D0(w,x)
∣∣ 1
V (w, z)

1
d(z, y)σ

∣∣D0(z, y)
∣∣dμ(w)dμ(z)

� 1
V (x, y)

1
d(x, y)σ

,

(5.191)

while when k′ ∈ N, by the regularity on K and the vanishing moment of Dk′ , for any fixed
η ∈ (0, ε), we have

∣∣Z(x, y)
∣∣ �
∫∫

X×X

∣∣D0(w,x)
∣∣ d(z, y)ε

V (w, z)d(w, z)ε
∣∣Dk′(z, y)

∣∣dμ(w)dμ(z)

�
(

2−k
′

d(x, y)

)ε
1

V (x, y)
,

(5.192)

which implies (5.186). Thus, the estimates (5.181) and (5.182) hold.
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Using these estimates and Remark 5.26, by a procedure essentially similar to the proof
of Proposition 5.25, we then obtain the boundedness on Bsp,q(X) and Fsp,q(X) of T . The details
are left to the reader.

5.5. T(1)-theorems

In this subsection, we will establish analogues of David and Journé’s T(1)-theorem [68] and
of Stein’s variant of this theorem in [75] for RD-spaces.

We begin with generalizing [71, Theorem 1, page 114] on R
n to the setting of spaces of

homogeneous type which is of independent of interest; see also [69, Proposition 2].

Theorem 5.49. Let ε ∈ (0, 1], β ∈ (0, ε), and let T be as in Proposition 2.12 with a distributional
kernel K satisfying the size condition (2.59). Then T can be extended as a continuous linear operator
on Ċβ(X) if and only if T ∈ WBP(β) and T(1) = 0 in (C̊β

b
(X))′.

Proof. We first prove the sufficiency. To this end, for any k1 ∈ Z, let

Bk1 =
{
x ∈ X: 2k1−1 ≤ d(x, x1

)
< 2k1

}
. (5.193)

Fix any x0 ∈ Bk1 . Let θ be as in Lemma 2.15. For any k2 ∈ Z, put θk2(y) = θ(d(x0, y)/3·2k2), and
define ωk2 = 1−θk2 . For any f ∈ Cβ(X), following an argument as in the proof of Lemma 2.20
(see also [69, the proof of Proposition 2]), for a.e. x ∈ B(x0, (3/2)2k2), we have

Tf(x) =
∫

X
K(x, y)

[
f(y) − f(x)]θk2(y)dμ(y)

+
[∫

X
K(x, y)f(y)ωk2(y)dμ(y) + f(x)T(θk2)(x)

]

= Γ1(x) + Γ2(x).

(5.194)

By Lemma 2.15, for a.e. x ∈ B(x0, (3/2)2k2), we also have

∣∣T
(
θk2
)
(x)
∣∣ � CT + ‖T‖WBP(β), (5.195)

T
(
θk2
)
(x) = Ck2 −

∫

X

[
K(x, y) −K(x0, y

)]
ωk2(y)dμ(y), (5.196)

where Ck2 is a constant independent of x.
For any x ∈ B(x0, 2k2/2), we then consider x′ ∈ X satisfying 2k2−1 ≤ d(x, x′) < 2k2 .

Notice that if x ∈ B(x0, 2k2/2) and d(x, x′) < 2k2 , then x′ ∈ B(x0, (3/2)2k2), and that θk2(y)/= 0
implies d(x, y) < 14d(x, x′). Thus, if x, x′ satisfy (5.194), (5.195), and (5.196), by the size
condition (2.59) of the kernel K, the definition of Ċβ(X) and Lemma 2.1(i), we then have

∣∣Γ1(x)
∣∣ ≤
∫

d(x,y)<14d(x,x′)

∣∣K(x, y)
∣∣∣∣f(y) − f(x)∣∣dμ(y) � d

(
x, x′)βCT‖f‖Ċβ(X) (5.197)
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and a similar estimate also holds for Γ1(x′), which clearly implies

∣
∣Γ1(x) − Γ1

(
x′)∣∣ ≤ ‖f‖Ċβ(X)CTd

(
x, x′)β. (5.198)

Moreover, by (5.196), we also have

Γ2(x) − Γ2
(
x′) =

∫

X

[
K(x, y) −K(x′, y

)][
f(y) − f(x)]ωk2(y)dμ(y)

+
[
f(x) − f(x′)]

∫

X
K
(
x′, y
)
θk2(y)dμ(y)

= Γ2,1 + Γ2,2.

(5.199)

The estimate (5.195) yields

∣∣Γ2,2
∣∣ � d

(
x, x′)β(CT + ‖T‖BMO(β)

)‖f‖Ċβ(X). (5.200)

Notice that ωk2(y)/= 0 implies that d(x, y) > 2d(x, x′). The regularity (2.49) on K and the
definition of Ċβ(X) together with Lemma 2.1(i) and β < ε then yield

∣∣Γ2,1
∣∣ � CT‖f‖Ċβ(X)

∫

d(x,y)>2d(x,x′)

d
(
x, x′)ε

V (x, y)d(x, y)ε
d(x, y)βdμ(y)

� d
(
x, x′)βCT‖f‖Ċβ(X).

(5.201)

Combining all the above estimates shows that for a.e. x ∈ B(x0, 2k2/4) and a.e. x′ ∈ X
satisfying 2k2−1 ≤ d(x, x′) < 2k2 , we have

∣∣Tf(x) − Tf(x′)∣∣ � d
(
x, x′)β(CT + ‖T‖WBP(β)

)‖f‖Ċβ(X). (5.202)

Then an argument via the Besicovitch covering lemma further shows that there exists an
extension of Tf such that

‖Tf‖Ċβ(X) �
(
CT + ‖T‖WBP(β)

)‖f‖Ċβ(X), (5.203)

which completes the proof of the sufficiency.
We now prove the necessity. Since T is extended as a continuous linear operator on

Ċβ(X) and 1 = 0 in Ċβ(X). Thus, T(1) = 0 in Ċβ(X). Since Ċβ(X) = Ḃ
β
∞,∞(X) = (Ḃ−β

1,1(X))′ by

Theorems 6.11 and 8.11(i), and C̊
β

b
(X) ⊂ Ḃ

−β
1,1(X) by Proposition 5.10(iv), we then have that

for all f ∈ C̊β

b
(X), 〈T(1), f〉 = 0, which just means that T(1) = 0 in (C̊β

b
(X))′.
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Let now φ, ψ ∈ C
β

b
(X) as in Definition 2.13. Fix x′

0 ∈ X such that 2r ≤ d(x′
0, x0) < 3r.

Since x′
0 /∈ suppφ, by the size condition (2.59) of the kernel K and (2.55), we then have

∣
∣T(φ)

(
x′
0
)∣∣ =

∣
∣
∣
∣

∫

B(x0,r)
K
(
x′
0, y
)
φ(y)dμ(y)

∣
∣
∣
∣

� 1
Vr
(
x′
0

)‖φ‖L∞(X)μ
(
B
(
x0, r
))

� 1.

(5.204)

Since T is bounded on Ċβ(X), when d(x, x′
0) ≤ 5r, we then have

∣
∣T(φ)(x)

∣
∣ �
∣
∣T(φ)

(
x′
0
)∣∣ + d

(
x, x′

0
)β‖φ‖Ċβ(X) � 1. (5.205)

When d(x, x′
0) > 5r, by the size condition (2.59) of the kernel K and (2.55) again, we also

have

∣∣T(φ)(x)
∣∣ =
∣∣∣∣

∫

B(x0,r)
K(x, y)φ(y)dμ(y)

∣∣∣∣ �
1

V (x, x′
0)
‖φ‖L∞(X)μ

(
B
(
x0, r
))

� 1. (5.206)

Thus, ‖T(φ)‖L∞(X) � 1, which gives that |〈T(φ), ψ〉| � ‖ψ‖L1(X) � μ(B(x0, r)). That is, T ∈
WBP(β), which completes the proof of Theorem 5.49.

Remark 5.50. (i) The proof of Theorem 5.49 in combination with Corollary 2.23 shows that if
T is bounded on Ċβ(X), then there exists a constant C > 0 such that for all φ ∈ Ċβ

b
(X) and all

x ∈ X,

∣∣T(φ)(x)
∣∣ ≤ C(CT + ‖T‖Ċβ(X)→ Ċβ(X)

)
[diam(suppφ)]β‖φ‖Ċβ(X). (5.207)

(ii) Let T be as in Theorem 5.49 and T(1) = 0 in (C̊β

b
(X))′. Then from (i) and

Theorem 5.49, it is easy to see that T ∈ WBP(β) if and only if (5.207) holds.

Now we recall the notion of Carleson measures and establish their connection with
BMO(X) functions.

Definition 5.51. A positive measure ν on X × (0,∞) is said to be a Carleson measure if there
exists a constant C > 0 such that for every ball B(x, r) for some x ∈ X and r > 0,

ν(B(x, r) × (0, r)) ≤ Cμ(B(x, r)). (5.208)

The smallest bound C as above is defined to be the Carleson norm of ν and is denoted by
‖ν‖C.

For any given open set E of X, let

Ê =
{
(x, t) ∈ X × (0,∞) : B(x, t) ⊂ E}. (5.209)
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We first establish a basic property of Carleson measures; see [75, pages 59-60] or [81,
page 198] for the case of R

n.

Lemma 5.52. If ν is a Carleson measure inX× (0,∞) and E ⊂ X is open, then ν(Ê) ≤ C‖ν‖Cμ(E).

Proof. Without loss of generality, we may assume that E is a bounded open set of X. By the
Whitney-type covering lemma (see [28, Theorem (3.2)]), there exist a constant C > 0 and a
sequence of balls {B(yj, rj)}j satisfying E = ∪jB(yj, rj),

∑
jχB(yj ,rj ) ≤ C and B(yj , 3rj) ∩ (X \

E)/=∅ for each j. If (x, t) ∈ Ê, then there exists j0 such that x ∈ B(yj0 , rj0), B(x, t) ⊂ E, and
B(yj0 , 3rj0) ∩ (X \ E)/=∅. From this, it follows that t < 6rj0 , and therefore, (x, t) ∈ B(yj0 , rj0) ×
(0, 6rj0). Thus, Ê ⊂ ∪j{B(yj , rj) × (0, 6rj)}, which together with the definition of Carleson
measures implies that

ν(Ê) ≤
∑

j

ν
(
B
(
yj, rj

) × (0, 6rj
))

� ‖ν‖C

∑

j

μ
(
B
(
yj , rj

))
. (5.210)

On the other hand, from E = ∪jB(yj , rj) and
∑

jχB(yj ,rj ) ≤ C, it follows that

μ(E) = μ

(
⋃

j

B
(
yj, rj

)
)

�
∫

X

∑

j

χB(yj ,rj )(y)dμ(y) ∼
∑

j

μ
(
B
(
yj , rj

))
. (5.211)

Combining both estimates yields ν (Ê) � ‖ ν‖C μ (E), which completes the proof of
Lemma 5.52.

Let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI as in Definition 2.2. For (x, t) ∈ X × (0,∞), we define

S(f)(x, t) =
∞∑

j=−∞
Sj(f)(x)χ(2−j−1,2−j ](t). (5.212)

Proposition 5.53. Let S be as in (5.212). For any p ∈ (1,∞), there exists a constant Cp > 0 such
that for all f ∈ Lp(X) and all Carleson measures ν,

∫

X×(0,∞)

∣∣S(f)(x, t)
∣∣pdν(x, t) ≤ Cp‖ν‖C

∫

X

∣∣f(x)
∣∣pdμ(x). (5.213)

Proof. Let S be as in above. For any x ∈ X, we define

MSf(x) = sup
{∣∣S(f)(y, t)

∣∣ : d(x, y) < t
}
. (5.214)
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We first claim that for all x ∈ X, MSf(x) � Mf(x), where M is the Hardy-Littlewood
maximal function. To see this, for any (y, t) ∈ X × (0,∞) satisfying d(x, y) < t, assuming
2−j0−1 < t ≤ 2−j0 for some j0 ∈ Z, by Lemma 2.1(vi), we then have

∣
∣S(f)(y, t)

∣
∣

�
∫

d(y,z)<2−j0

1
V2−j0 (y)+V2−j0 (z)+V (y, z)

(
2−j0

2−j0+d(y, z)

)ε2∣
∣f(z)

∣
∣dμ(z)+

∞∑

l=1

∫

2l−12−j0≤d(y,z)<2l2−j0
· · ·

� Mf(x),
(5.215)

which implies the claim.
Notice that

∫

X×(0,∞)

∣∣S(f)(x, t)
∣∣pdν(x, t) = p

∫∞

0
λp−1ν

({
(x, t) ∈ X × (0,∞) :

∣∣S(f)(x, t)
∣∣ > λ

})
dλ.

(5.216)

Let Eλ = {x ∈ X : MSf(x) > λ}. We then claim

{
(x, t) ∈ X × (0,∞) : |S(f)(x, t)| > λ} ⊂ Êλ. (5.217)

In fact, for any (x, t) ∈ X × (0,∞) such that |S(f)(x, t)| > λ, assume that 2−j0−1 < t ≤ 2−j0 for
some j0 ∈ Z. Then |S(f)(x, t)| > λ if and only if |Sj0(f)(x)| > λ. If d(y, x) < t, thenMSf(y) > λ
and hence B(x, t) ⊂ Eλ, which implies the claim.

From this claim and Lemma 5.52, it follows that

ν
({

(x, t) ∈ X × (0,∞) : |S(f)(x, t)| > λ}) ≤ ν(Êλ
)

� ‖ν‖Cμ
(
Eλ
)
, (5.218)

which together with the Lp(X)-boundedness for p ∈ (1,∞) ofM yields

∫

X×(0,∞)

∣∣S(f)(x, t)
∣∣pdν(x, t) � ‖ν‖C

∫∞

0
λp−1μ

(
Eλ
)
dλ

∼ ‖ν‖C

∫

X

∣∣MS(f)(x)
∣∣pdμ(x)

� ‖ν‖C

∫

X

∣∣M(f)(x)
∣∣pdμ(x)

� ‖ν‖C

∫

X

∣∣f(x)
∣∣pdμ(x),

(5.219)

which completes the proof of Proposition 5.53.

The relation between Carleson measures and BMO(X) functions can be stated as
below.
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Proposition 5.54. Let b ∈ BMO(X) and let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI as in Definition 2.2. For

k ∈ Z, let Dk = Sk − Sk−1. Then the measure ν defined by

dν(x, t) =
∞∑

j=−∞

∣
∣Dj(b)(x)

∣
∣2χ(2−j−1,2−j ](t)dμ(x)

dt

t
(5.220)

is a Carleson measure such that ‖ν‖C is dominated by ‖b‖2BMO(X).

Proof. For any ball B = B(x0, r) with some x0 ∈ X and r > 0, assume that 2−j0−1 < r ≤ 2−j0 for
some j0 ∈ Z. We then have

ν
(
B(x0, r

) × (0, r)) =
∫

B(x0,r)

∫ r

0
dν(x, t)

=
∞∑

j=−∞

∫

B(x0,r)

∫ r

0

∣∣Dj(b)(x)
∣∣2χ(2−j−1,2−j ](t)dμ(x)

dt

t

�
∞∑

j=j0−1

∫

B(x0,r)

∣∣Dj(b)(x)
∣∣2dμ(x).

(5.221)

Let B̃ = B(x0, 3r), B̃0 = B̃, and B̃k = B(x0, 2k3r) for k ∈ N. Set also

bB̃ =
1

μ(B̃)

∫

B̃

b(y)dμ(y). (5.222)

Since
∫
XDj(x, y)dμ(y) = 0, we then have

ν
(
B
(
x0, r
) × (0, r)

)
�

∞∑

j=j0−1

∫

B(x0,r)

∣∣Dj

((
b − bB̃

)
χB̃
)
(x)
∣∣2dμ(x)

+
∞∑

j=j0−1

∫

B(x0,r)

∣∣Dj

((
b − bB̃

)
χX\B̃

)
(x)
∣∣2dμ(x)

≡ Y1 + Y2.

(5.223)

By Lemma 3.9, we have

Y1 �
∞∑

j=j0−1

∫

X

∣∣Dj

((
b − bB̃

)
χB̃
)
(x)
∣∣2dμ(x)

�
∫

X

∣∣((b(x) − bB̃
)
χB̃(x)

)∣∣2dμ(x)

� ‖b‖2BMO(X)μ
(
B
(
x0, r
))
.

(5.224)
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To estimate Y2, we first notice that if d(x, x0) < r and y /∈ B̃k for k ∈ Z+, then d(y, x) ≥
2k3r − r> 2k−13r and hence

∣
∣Dj(x, y)

∣
∣ � 1

V2−j (x) + V2−j (y) + V (x, y)

(
2−j

2−j + d(x, y)

)ε2

� 1
V2k+23r(x)

(
2−j

2kr

)ε2
.

(5.225)

From this, it follows that

Y2 �
∞∑

j=j0−1

∫

B(x0,r)

[ ∞∑

k=0

∫

B̃k+1\B̃k

∣
∣b(y) − bB̃

∣
∣
∣
∣Dj(x, y)

∣
∣dμ(y)

]2
dμ(x)

� 1
r2ε2

∞∑

j=j0−1
2−2jε2

∫

B(x0,r)

[ ∞∑

k=0

1
2kε2

1
V2k+23r(x)

∫

B(x,2k+23r)
|b(y) − bB̃|dμ(y)

]2
dμ(x)

� ‖b‖2BMO(X)μ
(
B
(
x0, r
))
,

(5.226)

where we used the well-known fact that

‖b‖BMO(X) ∼ inf
C∈C

sup
x∈X, r>0

1
μ(B(x, r))

∫

B(x,r)
|f(y) − C|dμ(y). (5.227)

This finishes the proof of Proposition 5.54.

Combining Proposition 5.53 with Proposition 5.54 yields the following conclusion,
which will be used in the proof of T(1)-theorem.

Corollary 5.55. Let all the notation be as in Propositions 5.53 and 5.54. For any p ∈ (1,∞), there
exists a constant Cp > 0 such that for all f ∈ Lp(X) and b ∈ BMO(X),

∞∑

j=−∞

∫

X

∣∣Sj(f)(x)
∣∣p∣∣Dj(b)(x)

∣∣2dμ(x) ≤ Cp‖b‖2BMO(X)

∫

X

∣∣f(x)
∣∣pdμ(x). (5.228)

Proof. From Propositions 5.53 and 5.54, it follows that

∫

X×(0,∞)

∣∣S(f)(x, t)
∣∣pdν(x, t) � ‖b‖2BMO(X)

∫

X

∣∣f(x)
∣∣pdμ(x), (5.229)

where S(f) is as in Proposition 5.53 and dν(x, t) is as in Proposition 5.54. Moreover,
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we have

∫

X×(0,∞)

∣
∣S(f)(x, t)

∣
∣pdν(x, t)

=
∞∑

k=−∞

∫

X

∫2−k

2−k−1

∣
∣S(f)(x, t)

∣
∣pdν(x, t)

=
∞∑

k=−∞

∫

X

∣
∣Sk(f)(x)

∣
∣p
∫∞

0
χ(2−k−1,2−k](t)

( ∞∑

j=−∞

∣
∣Dj(b)(x)

∣
∣2χ(2−j−1,2−j ](t)

)

dμ(x)
dt

t

= log 2

{ ∞∑

k=−∞

∫

X

∣
∣Sk(f)(x)

∣
∣p∣∣Dk(b)(x)

∣
∣2dμ(x)

}

.

(5.230)

Combining both estimates completes the proof of Corollary 5.55.

We now can state a variant of David-Journé T(1)-theorem on spaces of homogeneous
type. In what follows, for any ε ∈ (0, 1], a continuous function on X × X \ {(x, x) : x ∈ X}
is said to be a standard kernel of order ε if it satisfies (I-3) in Subsection 5.2. Let β ∈ (0, ε). A
continuous linear operator T from C

β

b
(X) to (Cβ

b
(X))′ is said to have a standard distributional

kernel K of order ε if T and K satisfy (2.48). Also, the adjoint T ∗ of T is given by that for all
f, g ∈ C

β

b(X), (Tf, g) = (f, T ∗g). Then T ∗ : Cβ

b(X) → (Cβ

b(X))′ is a continuous mapping;
moreover, T ∗ is associated to the kernel K∗(x, y) = K(y, x) for all x, y ∈ X.

Theorem 5.56. Let ε ∈ (0, 1], β ∈ (0, ε), and let T be a continuous linear operator from C
β

b
(X)

to (Cβ

b(X))′. Assume that T has a standard distributional kernel K of order ε as in (2.48). Then T
extends to a bounded operator on L2(X) if and only if the following conditions are true:

(i) T(1) ∈ BMO(X),

(ii) T ∗(1) ∈ BMO(X),

(iii) T ∈ WBP(β).

Proof. We first verify the sufficiency. By Proposition 2.12, both T and T ∗ can be extended to
a continuous linear operator from Cβ(X) to (C̊β

b
(X))′. If T(1) = T ∗(1) = 0 in (C̊β

b
(X))′, then

by Theorem 5.49, T and T ∗ can be extended as continuous linear operators on Ċβ(X). By this
fact, Theorem 5.23 and Proposition 5.10(v), we know that T extends to a bounded operator
on L2(X).

We now consider the general case. Let {Sj}j∈Z
be as in Definition 2.2 andDj = Sj −Sj−1

for j ∈ Z. Let {D̃j}j∈Z
be as in Theorem 3.10. Let b ∈ BMO(X). For any f ∈ Cβ

b
(X), we define

the paraproduct

Pb(f)(x) =
∞∑

j=−∞
D̃j

(
Dj(b)Sj(f)

)
(x). (5.231)

Wewill show that the kernel of Pb is a standard kernel of order ε, that Pb is bounded on L2(X),
and that Pb(1) = b and P ∗

b
(1) = 0. In order to be rigorous in the following calculations, we
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should consider
∑N

j=−N instead of
∑∞

j=−∞ and then letN → ∞. However, we will omit these
details; see [75, pages 302–305].

(1) The size of the kernel. The kernel of Pb is

K(x, y) =
∞∑

j=−∞

∫

X
D̃j(x, z)Dj(b)(z)Sj(z, y)dμ(z). (5.232)

Let Bk = B(z, 2k+12−j), for k ∈ Z+, and bB0 = (1/μ(B0))
∫
B0
b(z)dμ(z). Since

∫

X
Dj(z, y)dμ(y) = 0, (5.233)

by the size condition of Dj and (5.227), for any z ∈ X, we have

∣∣Dj(b)(z)
∣∣ ≤
∫

B0

∣∣Dj(z, y)
∣∣∣∣b(y) − bB0

∣∣dμ(y) +
∞∑

k=1

∫

Bk\Bk−1

∣∣Dj(z, y)
∣∣∣∣b(y) − bB0

∣∣dμ(y)

�
∞∑

k=0

1
2kε2

1
μ(Bk)

∫

Bk

∣∣b(y) − bB0

∣∣dμ(y)

� ‖b‖BMO(X).

(5.234)

Let ε′ ∈ (ε, ε1 ∧ ε2). By the size conditions of D̃j and Sj , (5.234), Lemmas 4.4, and 3.5, we have

∣∣K(x, y)
∣∣ � ‖b‖BMO(X)

∞∑

j=−∞

∫

X

1
V2−j (x) + V2−j (z) + V (x, z)

(
2−j

2−j + d(x, z)

)ε′

× 1
V2−j (z) + V2−j (y) + V (z, y)

(
2−j

2−j + d(z, y)

)ε2

dμ(z)

� ‖b‖BMO(X)

∞∑

j=−∞

1
V2−j (x) + V2−j (y) + V (x, y)

(
2−j

2−j + d(x, y)

)ε′

� ‖b‖BMO(X)
1

V (x, y)
,

(5.235)

which verifies the size condition of the kernel K.
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If d(x, x′) ≤ d(x, y)/2 with x /=y, by (5.234),

∣
∣K(x, y) −K(x′, y)

∣
∣

=

∣
∣
∣
∣
∣

∞∑

j=−∞

∫

X

[
D̃j(x, z) − D̃j

(
x′, z
)]
Dj(b)(z)Sj(z, y)dμ(z)

∣
∣
∣
∣
∣

� ‖b‖BMO(X)

∞∑

j=−∞

{∫

d(x,x′)≤(2−j+d(x,z))/2

∣
∣D̃j(x, z) − D̃j(x′, z)

∣
∣
∣
∣Sj(z, y)

∣
∣dμ(z)

+
∫

d(x,x′)>(2−j+d(x,z))/2

∣
∣D̃j(x, z)

∣
∣
∣
∣Sj(z, y)

∣
∣dμ(z)

+
∫

d(x,x′)>(2−j+d(x,z))/2

∣
∣D̃j(x′, z)

∣
∣
∣
∣Sj(z, y)

∣
∣dμ(z)

}

≡ ‖b‖BMO(X)
{
Y1 + Y2 + Y3

}
.

(5.236)

The regularity of D̃j and the size condition of Sj together with Lemmas 4.4 and 3.5 give

Y1 �
∞∑

j=−∞

∫

X

(
d(x, x′)

2−j + d(x, z)

)ε′
1

V2−j (x) + V2−j (z) + V (x, z)

(
2−j

2−j + d(x, z)

)ε′

× 1
V2−j (z) + V2−j (y) + V (z, y)

(
2−j

2−j + d(z, y)

)ε2

dμ(z)

�
∞∑

j=−∞

(
d(x, x′)

2−j + d(x, y)

)ε
1

V2−j (x) + V2−j (y) + V (x, y)

(
2−j

2−j + d(x, y)

)ε′−ε

� d(x, x′)ε

V (x, y)d(x, y)ε
.

(5.237)

The size conditions of D̃j and Sj together with Lemmas 4.4 and 3.5 also yield

Y2 �
∞∑

j=−∞

∫

d(x,x′)>(2−j+d(x,z))/2

1
V2−j (x) + V2−j (z) + V (x, z)

(
2−j

2−j + d(x, z)

)ε′

× 1
V2−j (z) + V2−j (y) + V (z, y)

(
2−j

2−j + d(z, y)

)ε2

dμ(z)

�
∞∑

j=−∞

1
V2−j (x) + V2−j (y) + V (x, y)

d
(
x, x′)ε2−j(ε

′−ε)

(2−j + d(x, y))
ε′

� d(x, x′)ε

V (x, y)d(x, y)ε
.

(5.238)
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Similarly, we have

Y3 �
d
(
x, x′)ε

V (x, y)d(x, y)ε
, (5.239)

which shows that K has the desired regularity on the first variable.
An argument similar to above also proves that if d(y, y′) ≤ d(x, y)/2 with x /=y,

∣
∣K(x, y) −K(x, y′)∣∣ � ‖b‖BMO(X)

d
(
y, y′)ε

V (x, y)d(x, y)ε
. (5.240)

Thus, K is a standard kernel of order ε.
(2) Boundedness of Pb on L2(X). For any f, g ∈ L2(X), by Hölder’s inequality,

Corollary 5.55, and Lemma 3.9 together with Remark 3.16, we have

∣∣〈Pb(f), g
〉∣∣ =

∣∣∣∣∣

∞∑

j=−∞

∫

X
Dj(b)(x)Sj(f)(x)D̃∗

j (g)(x)dμ(x)

∣∣∣∣∣

�
{ ∞∑

j=−∞

∫

X

∣∣Dj(b)(x)
∣∣2∣∣Sj(f)(x)

∣∣2dμ(x)

}1/2{ ∞∑

j=−∞

∫

X

∣∣D̃t
j(g)(x)

∣∣2dμ(x)

}1/2

� ‖b‖BMO(X)‖f‖L2(X)‖g‖L2(X),

(5.241)

which together with a duality argument yields that

∥∥Pb(f)
∥∥
L2(X) � ‖b‖BMO(X)‖f‖L2(X). (5.242)

(3) Pb(1) = b and P ∗
b
(1) = 0 in (C̊β

b
(X))′. Since

∫
XD̃j(x, z)dμ(x) = 0, from this, it follows

that P ∗
b
(1) = 0 in (C̊β

b
(X))′. Also, since

∫
XSj(y, z)dμ(z) = 1, from this and Theorem 3.29, it

follows that Pb(1) = b.
We can now finish the proof of the sufficiency. For any given operator T which satisfies

(i), (ii), and (iii), let b1 = T(1) and b2 = T ∗(1). Then, there exist paraproducts Pbi such that
Pbi(1) = bi and P ∗

bi
(1) = 0 for i = 1, 2. Then the operator T̃ = T − Pb1 − P ∗

b2
lies in WBP(β)

and T̃(1) = T̃ ∗(1) = 0. Thus, by Theorem 5.23, we know that T̃ is bounded on L2(X), which
together with the boundedness of Pb1 and P

∗
b2
on L2(X) also yields the boundedness of T on

L2(X). This completes the proof of the sufficiency.
We now check the necessity. By Remark 2.14(iii), we know T ∈ WBP(β). To verify

T(1), T ∗(1) ∈ BMO(X), we first claim that if T is as in Proposition 2.12 and T is bounded on
L2(X), then T is also bounded from L∞

b (X) to BMO(X), namely, for all f ∈ L∞
b (X),

‖T(f)‖BMO(X) � ‖f‖L∞(X). (5.243)

The proof of this claim is standard; see, for example, [75, pages 156-157] or [81, pages 118-
119]. For any ball B = B(x0, r) with some x0 ∈ X and r > 0, let CB = T(fχX\B(x0,2r))(x0). Since
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f ∈ L∞
b (X) and K is locally integrable away from the diagonal of X ×X, it is easy to see that

|CB| <∞. By the boundedness of T on L2(X) and (2.49) together with Lemma 2.1(i), we have

1
μ(B)

∫

B

∣
∣T(f)(x) − CB

∣
∣dμ(x)

≤ 1
μ(B)

∫

B

∣
∣T
(
fχB(x0,2r)

)
(x)
∣
∣dμ(x) +

1
μ(B)

∫

B

∣
∣T
(
fχX\B(x0,2r))(x) − CB

∣
∣dμ(x)

� ‖T‖L2(X)→L2(X)‖f‖L∞(X) +
1

μ(B)

∫

B

∫

X\B(x0,2r)

∣
∣K(x, y) −K(x0, y)

∣
∣
∣
∣f(y)

∣
∣dμ(y)dμ(x)

�
(‖T‖L2(X)→L2(X) + CT )‖f‖L∞(X),

(5.244)

which proves (5.243).
Using (5.243), we then can verify that if T is bounded on L2(X), then T(1) ∈ BMO(X).

To see this, for any g ∈ C̊
β

b
(X) with supp g ⊂ B(x0, r) for some x0 ∈ X and r > 0, let ψ ∈

C
β

b(X) be as in the proof of Proposition 2.12. By (5.243), T(ψ) ∈ BMO(X), which together
with Theorem 5.19(i) below yields that

∣∣〈T(ψ), g
〉∣∣ ≤ ‖T(ψ)‖BMO(X)‖g‖H1(X) �

(‖T‖L2(X)→L2(X) + CT

)‖g‖H1(X). (5.245)

On the other hand, by (2.49) and Lemma 2.1(i), we also have

|〈T(1 − ψ), g〉∣∣ =
∣∣∣∣

∫

X

∫

d(y,x0)≥2r

[
K(x, y) −K(x0, y

)](
1 − ψ(y))g(x)dμ(y)dμ(x)

∣∣∣∣

� CT

∫

X

{∫

d(y,x0)≥2r

rε

V
(
x0, y

)
d
(
x0, y

)ε dμ(y)
}∣∣g(x)

∣∣dμ(x)

� CT‖g‖L1(X)

� CT‖g‖H1(X).

(5.246)

Thus, |〈T(1), g〉| � (‖T‖L2(X)→L2(X) + CT )‖g‖H1(X), which together with Corollary 2.11(i),
Proposition 5.21, Theorems 6.11, and 5.19(i) implies that T(1) ∈ BMO(X) and ‖T(1)‖BMO(X) �
‖T‖L2(X)→L2(X) + CT . An argument similar to this also proves that T ∗(1) ∈ BMO(X) and
‖T ∗(1)‖BMO(X) � ‖T‖L2(X)→L2(X) + CT , which completes the proof of Theorem 5.56.

We now state a variant of the T(1)-theorem in the sense of Stein [75, page 294]. Let ε ∈
(0, 1], β ∈ (0, ε), and let T be a continuous linear operator from C

β

b
(X) to (Cβ

b
(X))′. We assume

that associated to T , there is a standard kernel of order ε, in the sense that if f ∈ Cβ

b
(X), then,

outside the support of f , the distribution Tf agrees with the function

T(f)(x) =
∫

X
K(x, y)f(y)dμ(y). (5.247)



Yongsheng Han et al. 171

Similarly to [75, page 294], we assume that T and T ∗ are restrictedly bounded. Whenever
φR,x0 is a normalized bump function for the ball B(x0, R) with some x0 ∈ X and R > 0, the
distributions T(φR,x0) and T ∗(φR,x0) belong to L2(X), and the estimates

∥
∥T
(
φR,x0

)∥∥
L2(X) ≤ A

[
μ
(
B
(
x0, R

))]1/2
, (5.248)

‖T ∗(φR,x0
)‖L2(X) ≤ A

[
μ
(
B
(
x0, R

))]1/2 (5.249)

hold with an A > 0 that is independent of R, x0 and φR,x0 .

Theorem 5.57. Let ε ∈ (0, 1], β ∈ (0, ε), and let T be a continuous linear operator from C
β

b
(X) to

(Cβ

b(X))′ associated with a standard kernel of order ε in the sense of (5.247). Then T extends to a
bounded linear operator on L2(X) if and only if both T and T ∗ are restrictedly bounded in the sense of
(5.248) and (5.249).

Proof. The necessity is obvious. We only need to prove the sufficiency. We first make the
following claim that if f ∈ C̊β

b(X), then

Tf ∈ L1(X). (5.250)

In fact, assume that supp f ⊂ B(x0, r) for some x0 ∈ X and r > 0. Since f is a multiple of a
bump function, Tf ∈ L2(X) by (5.248), and hence

∫
B(x0,2r)

|Tf(x)|dμ(x) < ∞. If x /∈ B(x0, 2r),
then by (5.247),

∫
Xf(x)dμ(x) = 0, and the regularity on K, we have

∣∣Tf(x)
∣∣ =
∣∣∣∣

∫

X
K(x, y)f(y)dμ(y)

∣∣∣∣

=
∣∣∣∣

∫

X

[
K(x, y) −K(x, x0

)]
f(y)dμ(y)

∣∣∣∣

� CT

∫

B(x0,r)

d
(
y, x0

)ε

V
(
x, x0

)
d
(
x, x0

)ε
∣∣f(y)

∣∣dμ(y)

� CT‖f‖L∞(X)μ
(
B
(
x0, r
)) rε

V
(
x, x0

)
d
(
x, x0

)ε ,

(5.251)

which implies that
∫
X\B(x0,2r)|Tf(x)|dμ(x) <∞. Thus, the claim (5.250) holds.

We now verify that T(1) ∈ BMO(X). To this end, we first prove that there exists a
constant A > 0 such that whenever φR,x0 is a normalized bump function for the ball B(x0, R)
with x0 ∈ X and R > 0, then T(φR,x0) ∈ BMO(X)with

∥∥T
(
φR,x0

)∥∥
BMO(X) ≤ A. (5.252)
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Let B̃1 = B(x̃0, R̃) with some x̃0 ∈ X and R̃ > 0 be any ball, and let B̃2 = B(x̃0, 2R̃) and
B̃3 = B(x̃0, 3R̃). Fix a function θ ∈ C

β

b
(X) with θ(x) = 1 for d(x, x̃0) ≤ 2R̃ and θ(x) = 0 for

d(x, x̃0) ≥ 3R̃. Write

φR,x0(x) = φR,x0(x)θ(x) + φR,x0(x)(1 − θ(x)) = f1(x) + f2(x). (5.253)

Observe that f1 is, up to a bounded multiplicative constant, a normalized bump function for
either the ball B(x0, R) or the ball B̃3, whichever has the smaller radius. Thus, by (5.248), we
have

∫

B̃1

∣
∣Tf1(x)

∣
∣2dμ(x) ≤ ∥∥Tf1

∥
∥2
L2(X)

≤ A2 min
{
μ
(
B
(
x0, R

))
, μ
(
B
(
x̃0, 3R̃

))}

≤ A′μ
(
B
(
x̃0, R̃

))
.

(5.254)

Since supp f2 ⊂ (X \ B̃2), for x ∈ B̃1, by (5.247), we have

Tf2(x) =
∫

X
K(x, y)f2(y)dμ(y). (5.255)

Let CB̃1
=
∫
XK(x̃0, y)f2(y)dμ(y). Then |CB̃1

| < ∞, and for x ∈ B̃1, by the regularity on K on
the first variable and Lemma 2.1(i),

∣∣Tf2(x) − CB̃1

∣∣ �
∫

d(x̃0,y)>2R̃

∣∣K(x, y) −K(x̃0, y
)∣∣dμ(y)

�
∫

d(x̃0,y)>2R̃

d
(
x, x̃0

)ε

V
(
x̃0, y

)
d
(
x̃0, y

)ε dμ(y)

� 1.

(5.256)

Combining the estimates for f1 and f2 gives that for any ball B̃1,

∫

B̃1

∣∣T
(
φR,x0

) − CB̃1

∣∣2dμ(x) ≤ Aμ(B̃1
)
, (5.257)

which shows (5.252).
Let θ ∈ C1

b
(R) and θ(0) = 1. For any ν > 0 and x ∈ X, set θν(x) = θ(νd(x, x1)).

By (5.252), {T(θν)}ν>0 is uniformly bounded in BMO(X). Since BMO(X) = (H1(X))′ (see
Theorem 5.19(i)), as is well known, BMO(X) is weakly∗ compact in the dual topology. Thus,
every sequence {T(θνk)}k∈N

has a subsequence which weakly∗ converges. Let f ∈ C̊
β

b(X). By
(5.250) and 〈T(θν), f〉 = 〈θν, T ∗(f)〉, we know that whatever limit (denote it by a), we extract
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from a subsequence of {T(θν)}ν>0, then 〈a, f〉 = 〈1, T ∗(f)〉. This shows that the limit a is
independent of the subsequence, and we are justified in setting a = T(1) = limν→ 0T(θν) and

〈T(1), f〉 =
∫

X
T ∗(f)(x)dμ(x), (5.258)

with a similar statement when the roles of T and T ∗ are reversed. Thus, T(1), T ∗(1) ∈
BMO(X). Moreover, if T is restrictedly bounded, then T ∈ WBP(β). Thus, by Theorem 5.56,
we know T is bounded on L2(X), which completes the proof of Theorem 5.57.

Remark 5.58. From (5.258), we see that if T is bounded on L2(X), then T(1) ∈ (C̊β

b
(X))′ for a

certain β ∈ (0, 1] is constant if and only if for any f ∈ C̊β

b
(X),

∫

X
T ∗(f)(x)dμ(x) = 0. (5.259)

6. Triebel-Lizorkin spaces with p = ∞

In this section, we will develop a theory for Triebel-Lizorkin spaces with p = ∞ by using
the Carleson characterizations. We again distinguish between the homogeneous and the
inhomogeneous cases and examine the relations between these cases as well as with BMO-
type spaces.

6.1. Plancherel-Pôlya inequality and definition of Ḟs∞,q(X)

Throughout this and the next subsection, we will assume that μ(X) = ∞. In this subsection,
we introduce the norm in Ḟs∞,q(X) in a similar way as in [82] and, using the homogeneous
discrete Calderón reproducing formulae, Theorem 4.13, we will prove that the norm ‖·‖Ḟs∞,q(X)

is independent of the choices of ATIs and spaces of distributions via some Plancherel-Pôlya
inequality; see also [83, 84].

Definition 6.1. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI.

For k ∈ Z, set Dk = Sk − Sk−1. Let |s| < ε and p(s, ε) < q ≤ ∞. For any f ∈ (G̊ε
0(β, γ))

′ with
0 < β, γ < ε, define

‖f‖Ḟs∞,q(X) = sup
l∈Z

sup
α∈Il

{
1

μ(Ql
α)

∫

Ql
α

∞∑

k=l

2ksq
∣∣Dk(f)(x)

∣∣qdμ(x)

}1/q

, (6.1)

where the supremum is taken over all dyadic cubes as in Lemma 2.19 and the usual
modification is made when q = ∞.

Remark 6.2. (i) From Lemma 2.19 and the doubling property (1.2), it is easy to see that an
equivalent norm is obtained if the supremum in Definition 6.1 is taken with respect to all
balls with positive radius instead of all dyadic cubes as in Lemma 2.19.
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(ii) Let l0 ∈ Z. It is easy to see that there exists a constant Cl0 > 0 such that for all
f ∈ (G̊ε

0(β, γ))
′,

sup
l∈Z

sup
α∈Il

{
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l+l0

2ksq
∣
∣Dk(f)(x)

∣
∣qdμ(x)

}1/q

� Cl0‖f‖Ḟs∞,q(X). (6.2)

Thus,

‖f‖Ḟs∞,q(X) ∼ sup
l∈Z

sup
α∈Il

{
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l+l0

2ksq
∣
∣Dk(f)(x)

∣
∣qdμ(x)

}1/q

. (6.3)

We now establish the following useful Plancherel-Pôlya inequality, which complements
Proposition 5.4(ii) for the case p = ∞.

Proposition 6.3. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2), and let {Sk}k∈Z
and {Pk}k∈Z

be two
(ε1, ε2, ε3)-ATIs. For k ∈ Z, setDk = Sk −Sk−1 andQk = Pk −Pk−1. Let |s| < ε and p(s, ε) < q ≤ ∞.
Then for all f ∈ (G̊ε

0(β, γ))
′ with 0 < β, γ < ε,

sup
l∈Z

sup
α∈Il

{
1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)
χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

[

sup
x∈Qk,ν

τ

∣∣Dk(f)(x)
∣∣
]q}1/q

∼ sup
l∈Z

sup
α∈Il

{
1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)
χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

[
inf

x∈Qk,ν
τ

∣∣Qk(f)(x)
∣∣
]q}1/q

.

(6.4)

Proof. To prove Proposition 6.3, it suffices to show that for all f ∈ (G̊ε
0(β, γ))

′ with 0 < β, γ < ε,
the left-hand side of (6.4) is controlled by its right-hand side.

Let all the notation be as in the proof of Proposition 5.4. Then, by (5.9) and (5.10), we
have

1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ(Qk,ν
τ )χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

[

sup
x∈Qk,ν

τ

∣∣Dk(f)(x)
∣∣
]q

� 1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)
χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

×
[ ∞∑

k′=l

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−|k−k
′ |ε′μ
(
Qk′,ν′

τ ′
)∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣

× 1

V2−(k∧k′)
(
yk,ντ
)
+V2−(k∧k′)

(
yk

′,ν′
τ ′
)
+V
(
yk,ντ , yk

′,ν′
τ ′
)

(
2−(k∧k

′)

2−(k∧k′)+d
(
yk,ντ , yk

′,ν′
τ ′
)

)ε]q
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+
1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)
χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

×
[

l−1∑

k′=−∞

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−|k−k
′ |ε′μ
(
Qk′,ν′

τ ′
)∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣ · · ·

]q

≡ Y1 + Y2.

(6.5)

Then by Lemma 2.19, if x /∈ B(zlα, 4C62−l) and y ∈ Ql
α, then d(x, y) ≥ 3C62−l, where and in

what follows, zlα is the “center” of Ql
α as in Lemma 2.19. By Lemma 2.19 again, we can find

m1 ∈ N such that B(zlα, 4C62−l) ⊂ ⋃m1
i=1Q

l
τi
, τi ∈ Il, B(zlα, 4C62−l) ∩ Ql

τi /=∅ and m1 is no more
than a constant which is independent of α and l; see the details for a proof of the last fact in
[85, pages 1385-1386]. Moreover,

μ
(
Ql
τi

) ∼ μ(Ql
α). (6.6)

With these choices, we further control Y1 by

Y1 � 1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)
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τ ⊂Ql
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τ ′∈Ik′
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ν′=1

2−|k−k
′ |ε′μ(Qk′,ν′
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τ ′ ⊂∪m1

i=1Q
l

τi
}
(
τ ′, ν′

)
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(
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yk,ντ , yk
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)ε]q
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α
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k=l
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τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)
χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

×
[ ∞∑

k′=l

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−|k−k
′ |ε′μ
(
Qk′,ν′

τ ′
)
χ{(τ ′,ν′):Qk′ ,ν′

τ ′ ∩(∪m1
i=1Q

l

τi
)=∅}
(
τ ′, ν′
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× ∣∣Qk′(f)
(
yk
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)∣∣ 1

V2−(k∧k′)
(
yk,ντ
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(
yk
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(
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τ ′
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2−(k∧k′) + d
(
yk,ντ , yk
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)ε]q

≡ Y1,1 + Y1,2.

(6.7)
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We first estimate Y1,1. If q ≤ 1, by (5.5), Lemma 5.2, (5.12), (6.6), and choosing ε′ ∈ (0, ε) such
that ε′ > s and q > p(s, ε′),

Y1,1� 1

μ
(
Ql
α

)
m1∑

i=1

∞∑

k′=l

∑

τ ′∈Ik′
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τ ′ ⊂Ql

τi
}
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)
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yk
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τ ′
)∣∣]q2−|k−k

′ |ε′q
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τ∈Ik

N(k,τ)∑
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τ )χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

×
[

1
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(
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τ ′
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τ ′
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)ε]q

�
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,

(6.8)

which together with the arbitrary choice of yk
′,ν′

τ ′ ∈ Qk′,ν′

τ ′ shows that (Y1,1)
1/q is controlled by

the right-hand side of (6.4) in this case.
If 1 < q ≤ ∞, choosing ε′ > |s| together with Hölder’s inequality and Lemma 5.2 yields
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τ ′
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,

(6.9)



Yongsheng Han et al. 177

which together with Minkowski’s inequality, (6.6), and Lemma 5.2 yields that

(
Y1,1
)1/q �

m1∑

i=1

{
1

μ
(
Ql
τi

)
∞∑

k′=l

∑

τ ′∈Ik′
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′sqμ
(
Qk′,ν′

τ ′
)
χ{(τ ′,ν′):Qk′ ,ν′

τ ′ ⊂Ql

τi
}
(
τ ′, ν′

)∣∣Qk′(f)
(
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′,ν′

τ ′
)∣∣q
}1/q

,

(6.10)

which completes the estimate for Y1,1.
We now estimate Y1,2. To this end, for j ∈ Z+, let

I
j

l
=
{
α′ ∈ Il : α′ /= τ1, . . . , τm1 , 3C62j−l ≤ d

(
zlα′ , z

l
α

)
< 3C62j−l+1

}
. (6.11)

We first claim that there existsm2 ∈ N which is no more than a constant independent of l and
j such that

⋃

α′∈Ij
l

Ql
α′ ⊂

⋃

i=1,...,m2
αi∈Il−j

Q
l−j
αi
, Q

l−j
αi

∩
(
⋃

α′∈Ij
l

Ql
α′

)

/=∅ (6.12)

for i = 1, . . . , m2, and moreover, if Qk′,ν′

τ ′ ⊂ ∪
α′∈Ij

l
Ql
α′ , then

μ

⎛

⎜⎜
⎝
⋃

i=1,...,m2
αi∈Il−j

Q
l−j
αi

⎞

⎟⎟
⎠ � V2j−l

(
yk

′,ν′

τ ′
)
. (6.13)

In fact, by Lemma 2.19, there exists m2 ∈ N such that (6.12) holds. Notice that for any fixed
i0 ∈ {1, . . . , m2}, ∪α′∈Ij

l
Ql
α′ ⊂ B(zj−l

αi0
, 14C62j−l). By an argument in [85, pages 1385-1386], we

know that the number of α ∈ Il−j such that Ql−j
α ∩ B(zj−l

αi0
, 14C62j−l)/=∅ is no more than a

constant which is independent of j and l. Thus, the claim (6.12) holds.
To see the claim (6.13), we only need to notice that

⋃

i=1,...,m2
αi∈Il−j

Q
l−j
αi

⊂ B(yk′,ν′τ ′ , 9C62j−l
)
, (6.14)

which implies the claim (6.13).
We also notice that if Qk′,ν′

τ ′ ⊂ Ql
α′ with α′ ∈ Ii

l
, then for all y ∈ Ql

α,

d
(
y, yk

′,ν′

τ ′
) ≥ C62j−l. (6.15)



178 Abstract and Applied Analysis

Using these properties, we now estimate Y1,2 by first considering the case q ≤ 1. In fact,
in this case, from (5.5), (6.15), (6.12), and (6.13), it follows that

Y1,2 �
∞∑

j=0

2−j[εq−n(1−q)]
m2∑
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1
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(
Q
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}
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τ ′
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2−|k−k
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′)sq2−(k∧k
′)εq2k

′n(1−q)2−ln(1−q)+lεq
)

,

(6.16)

which together with q > n/(n + ε) and choosing ε′ > s further implies that

Y1,2 �
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(
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)∣∣q.

(6.17)

From this, it is easy to deduce the desired estimate for Y1,2 in this case.
If 1 < q ≤ ∞, by Hölder’s inequality and Lemma 5.2, we have
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)
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,

(6.18)

which together with (6.15), (6.12), and (6.13) yields that

Y1,2 �
∞∑

j=0

2−jε
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1
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(
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(6.19)
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where we choose ε′ > s. From this, we deduce the desired estimate for Y1,2 when 1 < q ≤ ∞,
which completes the estimate for Y1.

We now estimate Y2 by using the following trivial estimate that

{
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣q
}1/q

� RHS of (6.4), (6.20)

where and in the sequel, RHS stands for “right-hand side.” From this, it follows that if q ≤ 1,
by choosing ε′ > s, we then have

Y2 � 1

μ(Ql
α)
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τ∈Ik
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)

�
(
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)q;

(6.21)

if 1 < q ≤ ∞, by Hölder’s inequality, Lemma 5.2, and (6.20),
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V2−(k∧k′)
(
yk,ντ
)
+ V2−(k∧k′)

(
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×
(

2−(k∧k
′)

2−(k∧k′) + d
(
yk,ντ , yk

′,ν′
τ ′
)

)ε}

�
(
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)q
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(6.22)

which completes the proof of Proposition 6.3.

Remark 6.4. We point out that Remark 5.5 applies in a similar way to Proposition 6.3.

From Proposition 6.3, it is easy to deduce that the definition of the norm ‖·‖Ḟs∞,q(X) is
independent of the choice of ATIs. We omit the details.
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Proposition 6.5. Adopting the notation from Proposition 6.3, one has for all f ∈ (G̊ε
0(β, γ))

′ with
0 < β, γ < ε,

sup
l∈Z

sup
α∈Il

{
1

μ
(
Ql
α
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∫
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}1/q

.

(6.23)

The following theorem will show that the definition of the norm ‖·‖Ḟs∞,q(X) is
independent of the choice of the space of distributions.

Proposition 6.6. Let all the notation be as in Definition 6.1. Let |s| < ε and p(s, ε) < q ≤ ∞. If
f ∈ (G̊ε

0(β1, γ1))
′ with max{0,−s} < β1 < ε and max{0, s} < γ1 < ε, and if ‖f‖Ḟs∞,q(X) < ∞, then

f ∈ (G̊ε
0(β2, γ2))

′ for everymax{0,−s} < β2 < ε and max{0, s} < γ2 < ε.

Proof. We use the same notation as in the proof of Proposition 5.7. Let ψ ∈ G̊(ε, ε). For any f ∈
(G̊ε

0(β1, γ1))
′ with max{0,−s} < β1 < ε and max{0, s} < γ1 < ε, when q ≤ 1, by Theorem 4.13

together with (5.24), (5.25), and (5.5), we have
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(6.24)

Notice that for k ∈ Z+, when d(x1, y
k,ν
τ ) < 1, then V1(x1) ∼ V1(y

k,ν
τ ) � 2kκV2−k(y

k,ν
τ ) �

μ(Qk,ν
τ ), while when 2l ≤ d(x1, y

k,ν
τ ) < 2l+1 for some l ∈ Z+, then V (x1, y
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τ ) � V2l(y

k,ν
τ ) �
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τ ). Therefore, for k ∈ Z+,
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(
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)
+ V
(
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) � 1. (6.25)

When k ∈ Z \ Z+, noticing that if d(x1, y
k,ν
τ ) < 2−k, then

V2−k
(
x1
)

� V2−k
(
yk,ντ
)

� μ
(
Qk,ν
τ

)
; (6.26)
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if 2l2−k ≤ d(x1, yk,ντ ) < 2l+12−k for some l ∈ Z+, then

V
(
x1, y

k,ν
τ

)
� V2l2−k

(
yk,ντ
)

� 2lκV2−k
(
yk,ντ
)

� μ(Qk,ν
τ

)
, (6.27)

we also have

μ
(
Qk,ν
τ

)

V2−k
(
x1
)
+ V
(
x1, y

k,ν
τ

) � 1. (6.28)

We also need the following trivial estimate that

∑
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N(k,τ)∑

ν=1

2ksq|Dk(f)
(
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)|q � ‖f‖q
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. (6.29)

Using (6.25), (6.28), and (6.29) yields that
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(6.30)

where we chose s < γ ′2 < γ2.
If 1 < q ≤ ∞, Hölder’s inequality, (6.25), (6.28), (6.29), and Lemma 2.1(ii) prove that
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(6.31)
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Combining (6.30) and (6.31) with an argument similar to the proof of Proposition 5.7
then completes the proof of Proposition 6.6.

Now we can introduce the homogeneous Triebel-Lizorkin spaces Ḟs∞,q(X).

Definition 6.7. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ε2) and let {Sk}k∈Z
be an (ε1, ε2, ε3)-ATI.

For k ∈ Z, set Dk = Sk − Sk−1. Let |s| < ε and p(s, ε) < q ≤ ∞. The space Ḟs∞,q(X) is defined to
be the set of all f ∈ (G̊ε

0(β, γ))
′, for some β, γ satisfying

|s| < β < ε, max{s, 0,−s − κ} < γ < ε (6.32)

such that

‖f‖Ḟs∞,q(X) = sup
l∈Z

sup
α∈Il

{
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq
∣∣Dk(f)(x)

∣∣qdμ(x)

}1/q

<∞, (6.33)

where the supremum is taken over all dyadic cubes as in Lemma 2.19 and the usual
modification is made when q = ∞.

Propositions 6.5 and 6.6 show that the definition of the spaces Ḟs∞,q(X) is independent
of the choice of the ATI and the distribution space (G̊(β, γ))′, with β and γ satisfying (6.32).

Remark 6.8. To guarantee that the definition of the space Ḟs∞,q(X) is independent of the choice
of the distribution space (G̊(β, γ))′, we only need the restriction that max{0,−s} < β < ε and
max{0, s} < γ < ε. Moreover, if we assume that max{0, s} < β < ε and max{0, s − κ} < γ < ε,
we can then verify that G̊(β, γ) ⊂ Ḟs∞,q(X); see Proposition 6.9 below.

6.2. Properties of Ḟs∞,q(X) and boundedness of singular integrals

In this subsection, we first present some basic properties of Ḟs∞,q(X). By establishing a
maximal function characterization of Ḟs∞,q(X), we then establish some relations between the
spaces Ḟs∞,q(X) and the spaces Ċs(X) and between the spaces Ḟs∞,q(X) and the space BMO(X).
Finally, we obtain the boundedness on Ḟs∞,q(X) of the singular integrals considered by Nagel
and Stein in [44].

Proposition 6.9. Let ε be as in Definition 6.7, |s| < ε, and p(s, ε) < q ≤ ∞. Then,

(i) Ḟs∞,q0(X) ⊂ Ḟs∞,q1(X) if p(s, ε) < q0 ≤ q1 ≤ ∞;

(ii) Ḃs∞,q(X) ⊂ Ḟs∞,q(X) ⊂ Ḃs∞,∞(X);

(iii) ifmax{0,−s} < β < ε and max{0, s} < γ < ε, then Ḟs∞,q(X) ⊂ (G̊ε
0(β, γ))

′;

(iv) ifmax{s, 0} < β < ε and max{0,−s − κ} < γ < ε, then G̊(β, γ) ⊂ Ḟs∞,q(X);

(v) the spaces Ḟs∞,q(X)/N are complete.
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Proof. Property (i) is a simple corollary of (5.5).
To see (ii), Ḃs∞,q(X) ⊂ Ḟs∞,q(X) is obvious by the definitions of the both spaces Ḃs∞,q(X)

and Ḟs∞,q(X), while Ḟs∞,q(X) ⊂ Ḃs∞,∞(X) can be obtained by their definitions together with the
Lebesgue differential theorem; we omit the details.

Property (iii) is a consequence of the second inclusion in Property (ii) of this
proposition and Proposition 5.10(iii) on Ḃs∞,∞(X), while Property (v) can be easily deduced
from Property (iii), Property (iv) is a conclusion of the first inclusion in Property (ii) of
this proposition and Proposition 5.10(iv) on Ḃs∞,q(X), which completes the proof of this
proposition.

To obtain some relations between the spaces Ḟs∞,q(X) and the space BMO(X), we need
the following technical result which in fact gives a new characterization of Triebel-Lizorkin
space Ḟs∞,q(X). We first introduce a maximal function.

For any x ∈ X and l ∈ Z, using Lemma 2.19, it is easy to prove that there exists a finite
number of α ∈ Il such that

Ql
α ∩ B

(
x, 2−l+1

)
/=∅, (6.34)

whichwill denote byQl
αi
l

with i = 1, . . . , ml(x), andmoreover,ml(x) is nomore than a positive

integerm ∈ N which is independent of l and x; see [85, pages 1385-1386] for a detailed proof.
In what follows, for convenience sake, we will always assume that ml(x) = m by letting
Ql
αi
l

= ∅ for i = ml(x) + 1, . . . , m when ml(x) < m. Let {Dk}k∈Z
be as in Definition 6.7. Now

for any s ∈ R, q ∈ (0,∞], f ∈ (G̊(β, γ))′ with 0 < β, γ < ε and x ∈ X, we define the maximal
function Ċsq(f)(x) by

Ċsq(f)(x) = sup
l∈Z

[
1

μ
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)

∫

∪mi=1Ql
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l

∞∑

k=l

2ksq
∣∣Dk(f)(y)

∣∣qdμ(y)

]1/q
, (6.35)

where the usual modification is made when q = ∞.

Proposition 6.10. Let ε, s, and q be as in Definition 6.7. Then f ∈ Ḟs∞,q(X) if and only if f ∈
(G̊(β, γ))′ with β, γ as in (6.32) and Ċsq(f) ∈ L∞(X). Moreover, in this case,

‖f‖Ḟs∞,q(X) ∼
∥∥Ċsq(f)

∥∥
L∞(X). (6.36)

Proof. For any s ∈ R, q ∈ (0,∞], f ∈ (G̊(β, γ))′ with β, γ as in (6.32) and x ∈ X, let

Ċsq,1(f)(x) = sup
l∈Z

sup
Ql
α�x
α∈Il

[
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq
∣∣Dk(f)(y)

∣∣qdμ(y)

]1/q
, (6.37)

where the usual modification is made when q = ∞. Obviously,

‖f‖Ḟs∞,q(X) ∼
∥∥Ċsq,1(f)

∥∥
L∞(X). (6.38)
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To prove the conclusion of this proposition, it suffices to verify that when

ml(x)⋃

i=1

Ql
αi
l

⊃ B(x, 2−l+1), (6.39)

for any i1, i2 ∈ {1, . . . , ml(x)},

μ
(
Ql

α
i1
l

)
∼ μ
(
Ql

α
i2
l

)
. (6.40)

To verify (6.40), by symmetry, it suffices to verify that

μ
(
Ql

α
i1
l

)
� μ
(
Ql

α
i2
l

)
. (6.41)

To this end, suppose zk ∈ B(x, 2−l+1) ∩Ql

α
ik
l

with k = 1, 2. Then for any w ∈ B(zl
α
i1
l

, C62−l), we

have

d
(
w, zl

α
i2
l

)
≤ d
(
w, zl

α
i1
l

)
+ d
(
zl
α
i1
l

, z1
)
+ d(z1, x) + d

(
x, z2
)
+ d
(
z2, z

l

α
i2
l

)

≤ 3C62−l + 2−l+2.
(6.42)

Thus, Ql

α
i1
l

⊂ B(zl
α
i1
l

, C62−l) ⊂ B(zl
α
i2
l

, (3C6 + 4)2−l), which together with Lemma 2.19 and the

double property of μ gives (6.41), and hence, completes the proof of Proposition 6.10.

Using Theorem 5.19(i) and Proposition 6.10, and an argument similar to that in [86],
we can establish the connections between Ḟs∞,q(X) with BMO(X) and Ċs(X) with s > 0 as
follows.

Theorem 6.11. Let ε be as in Definition 6.7. Then,

(i) if 0 < s < ε, then Ċs(X) = Ḟs∞,∞(X) = Ḃs∞,∞(X) with equivalent norms;

(ii) BMO(X) = Ḟ0
∞,2(X) with equivalent norm.

Proof. We first verify (i). Let f ∈ Ċs(X) and let {Dk}k∈Z
be as in Definition 6.7. We first claim

that f ∈ (G̊ε
0(β, γ))

′ when 0 < β < ε and s < γ < ε. In fact, from f ∈ Ċs(X), it follows that for
all x ∈ X,

∣∣f(x) − f(x1
)∣∣ � ‖f‖Ċs(X)d

(
x, x1

)s
, (6.43)



Yongsheng Han et al. 185

which implies that for any g ∈ G̊(β, γ) with 0 < β < ε and s < γ < ε,

∣
∣〈f, g〉∣∣ =

∣
∣
∣
∣

∫

X

[
f(x) − f(x1

)]
g(x)dμ(x)

∣
∣
∣
∣

� ‖f‖Ċs(X)‖g‖G(β,γ)
∫

X
d
(
x, x1

)s 1
V1
(
x1
)
+ V
(
x1, x

)
(

1
1 + d

(
x1, x

)
)γ
dμ(x)

� ‖f‖Ċs(X)‖g‖G(β,γ),

(6.44)

where in the last step, we used Lemma 2.1(ii).
Moreover, for all k ∈ Z and x ∈ X, by Lemma 2.1(ii) and 0 < s < ε < ε2, we then have

∣∣Dk(f)(x)
∣∣ =
∣
∣∣∣

∫

X
Dk(x, y)f(y)dμ(y)

∣
∣∣∣

=
∣∣∣∣

∫

X
Dk(x, y)

[
f(y) − f(x)]dμ(y)

∣∣∣∣

� ‖f‖Ċs(X)

∫

X

1
V2−k(x) + V2−k(y) + V (x, y)

(
2−k

2−k + d(x, y)

)ε2
d(x, y)sdμ(y)

� 2−ks‖f‖Ċs(X),

(6.45)

which proves that

‖f‖Ḟs∞,∞(X) = sup
k∈Z

sup
x∈X

2ks
∣∣Dk(f)(x)

∣∣ � ‖f‖Ċs(X). (6.46)

Thus, Ċs(X) ⊂ Ḟs∞,∞(X).
Conversely, let f ∈ Ḟs∞,∞(X). By Proposition 6.6, without loss of generality, we may

assume that f ∈ (G̊(β, γ))′ with β, γ as in (6.32). Let all the notation as in Theorem 3.10. Then,
by Theorem 3.13, for any g ∈ G̊(β, γ) with β, γ as in (6.32), since

∫
Xg(x)dμ(x) = 0, we then

have

〈f, g〉 =
∞∑

k=−∞

〈
D̃kDk(f)(·), g(·)

〉
=

∞∑

k=−∞

〈
D̃kDk(f)(·) − D̃kDk(f)

(
x1
)
, g(·)〉, (6.47)

which means that in (G̊(β, γ))′, f(x) =
∑∞

k=−∞[D̃kDk(f)(·) − D̃kDk(f)(x1)]. For x ∈ X, we
now let h(x) ≡ ∑∞

k=−∞[D̃kDk(f)(x) − D̃kDk(f)(x1)] and we first verify that h is a function
satisfying the following growth condition that

∣∣h(x)
∣∣ � ‖f‖Ḟs∞,∞(X)d

(
x, x1

)s
. (6.48)
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In fact, for any x ∈ X, assume that 2−l0−1 < d(x, x1) ≤ 2−l0 with some l0 ∈ Z and write that

h(x) =
∞∑

k=−∞

∫

X

[
D̃k(x, z) − D̃k

(
x1, z
)]
Dk(f)(z)dμ(z)

=
l0−1∑

k=−∞

∫

X

[
D̃k(x, z) − D̃k

(
x1, z
)]
Dk(f)(z)dμ(z) +

∞∑

k=l0

· · ·

≡ J1 + J2.

(6.49)

For J1, by the regularity of D̃k, Lemma 2.1(ii) and s < ε < ε1, we have

∣
∣J1
∣
∣�

l0−1∑

k=−∞

∫

X

(
d
(
x, x1

)

2−k+d(x, z)

)ε1 1
V2−k(x)+V2−k(z)+V (x, z)

(
2−k

2−k+d(x, z)

)ε2
|Dk(f)(z)|dμ(z)

� ‖f‖Ḟs∞,∞(X)d
(
x, x1

)s
.

(6.50)

To estimate J2, by s > 0 and Proposition 2.7(i), we obtain

J2 � ‖f‖Ḟs∞,∞(X)

∞∑

k=l0

2−ks
∫

X

[∣∣D̃k(x, z)
∣∣ +
∣∣D̃k

(
x1, z
)∣∣]dμ(z)

� ‖f‖Ḟs∞,∞(X)d
(
x, x1

)s
.

(6.51)

Thus, our claim is true.
Notice that for any x, y ∈ X,

h(x) − h(y) =
∞∑

k=−∞

[
D̃kDk(f)(x) − D̃kDk(f)(y)

]
. (6.52)

Repeating the above proof yields that for all x, y ∈ X,

∣∣h(x) − h(y)∣∣ � ‖f‖Ḟs∞,∞(X)d(x, y)
s. (6.53)

Thus, h ∈ Ċs(X) and

‖h‖Ċs(X) � ‖f‖Ḟs∞,∞(X). (6.54)

In this sense, we say that Ḟs∞,∞(X) ⊂ Ċs(X),which finishes the proof of (i).
To see (ii), let f ∈ BMO(X) and {Dk}k∈Z

be as in Definition 6.7. Proposition 5.10(iv)
and Theorem 5.19(i) immediately imply that f ∈ (G̊ε

0(β, γ))
′ with 0 < β, γ < ε. Let nowQl

α for
l ∈ Z and α ∈ Il be a dyadic cube as in Lemma 2.19. Set Blα = B(zlα, 2C62−l) and write

f =
(
f −mBlα

(f)
)
χBlα +

(
f −mBlα

(f)
)
χ{X\Blα} +mBlα

(f) ≡ f1 + f2 + f3. (6.55)
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Obviously, μ(Ql
α) ∼ μ(Blα) and Dk(f3) = 0; in combination with Proposition 3.15, this shows

that

{
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

∣
∣Dk

(
f1
)
(x)
∣
∣2dμ(x)

}1/2

�
{

1

μ
(
Ql
α

)

∫

X

∣
∣f1(x)

∣
∣2dμ(x)

}1/2

�
{

1

μ
(
Blα
)

∫

Blα

∣
∣f −mBlα

(f)
∣
∣2dμ(x)

}1/2

� ‖f‖BMO(X).

(6.56)

To estimate f2, notice that for x ∈ Ql
α and y ∈ X \ Blα, then d(x, y) � 2−l + d(y, zlα), which

together with the size condition of Dk yields that for x ∈ Ql
α and k ≥ l,

∣∣Dk

(
f2
)
(x)
∣∣ =
∣∣∣∣

∫

X\Blα
Dk(x, y)

[
f(y) −mBlα

(f)
]
dμ(y)

∣∣∣∣

� 2(l−k)ε2
∞∑

j=0

1
2jε2

1

V
(
zlα, 2C62j−l+1

)

∫

d(y,zlα)<2C62j−l+1

∣∣f(y) −mBlα
(f)
∣∣dμ(y).

(6.57)

The definition of BMO(X) together with the double property of μ gives that

∣∣mB(zlα,2C62j−l+1)(f) −mBlα
(f)
∣∣ � (j + 1)‖f‖BMO(X), (6.58)

which further implies that for x ∈ Ql
α and k ≥ l,

∣∣Dk

(
f2
)
(x)
∣∣

� 2(l−k)ε2
∞∑

j=0

1
2jε2

{
1

V
(
zlα, 2C62j−l+1

)

∫

d(y,zlα)<2C62j−l+1

∣∣f(y) −mB(zlα,2C62j−l+1)(f)
∣∣dμ(y)

+
∣∣mB(zlα,2C62j−l+1)(f) −mBlα

(f)
∣∣
}

� 2(l−k)ε2‖f‖BMO(X).

(6.59)

From this, it follows that

{
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

∣∣Dk(f2)(x)
∣∣2dμ(x)

}1/2

� ‖f‖BMO(X)

{ ∞∑

k=l

22(l−k)ε2
}1/2

� ‖f‖BMO(X).

(6.60)

Combining the above estimates, we know that f ∈ Ḟ0
∞,2(X) and

‖f‖Ḟ0
∞,2(X) � ‖f‖BMO(X). (6.61)
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We now prove the converse. Let f ∈ Ḟ0
∞,2(X). By Proposition 6.6, without loss of

generality, we may assume that f ∈ (G̊(β, γ))′ with β, γ as in (6.32). In the rest of the proof of
this theorem, we denote Ċ0

2 and Ṡ
0
2,1 simply by Ċ and Ṡ. Moreover, for j ∈ Z, f as above and

x ∈ X, we define

Ṡj(f)(x) =

{ ∞∑

k=j

∫

d(x,y)<2−k

∣
∣Dk(f)(y)

∣
∣2 dμ(y)
V2−k(x)

}1/2

. (6.62)

Obviously, Ṡ∞(f)(x) = Ṡ(f)(x). Let the notation as in Theorem 3.11. For any f as above and
x ∈ X, we also set

Ṡ(f)(x) =

{ ∞∑

k=−∞

∫

d(x,y)<2−k

∣∣Dk(f)(y)
∣∣2 dμ(y)
V2−k(x)

}1/2

. (6.63)

Theorem 5.13 together with Remark 5.5 shows that for all f ∈ H1(X),

∥∥Ṡ(f)
∥∥
L1(X) � ‖f‖H1(X). (6.64)

For any fixed f as above and x ∈ X, we define the “stopping-time” j(x) by

j(x) = inf
{
j ∈ Z : Ṡj(f)(x) ≤ AĊ(f)(x)

}
, (6.65)

where A > 0 is a large constant to be determined later. We first claim that for any y ∈ X and
l ∈ Z, if we choose A to be large enough, then there exists a constant C12 > 0 such that

μ
({
x ∈ X : d(x, y) < 2−l, l ≥ j(x)}) ≥ C12μ

(
B
(
y, 2−l

))
. (6.66)

In fact, let B0 = B(y, 2−l). Then
⋃
x∈B0

B(x, 2−l) ⊂ B(y, 2−l+1). Let

B
(
y, 2−l+1

) ⊂
m⋃

i=1

Ql
αi
l

≡ P (6.67)

as in the definition of Ċ. Let w ∈ B(y, 2−l+1) ∩ Ql
αi
l

. Then for any x ∈ Ql
αi
l

, d(x, y) ≤ d(x,w) +

d(w,y) ≤ C62−l + 2−l+1,which shows that

P ⊂ B(y, (C6 + 2
)
2−l
)
. (6.68)
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Thus, μ(B0) ∼ μ(P). From this, it follows that

1
μ(B0)

∫

B0

[
Ṡl(f)(x)

]2
dμ(x) =

∞∑

k=l

1
μ
(
B0
)
∫

B0

∫

d(x,z)<2−k

∣
∣Dk(f)(z)

∣
∣2 dμ(z)
V2−k(x)

dμ(x)

≤ C 1
μ(P)

∞∑

k=l

∫

P

∫

B0

∣
∣Dk(f)(z)

∣
∣2χB(z,2−k)(x)

dμ(x)
V2−k(x)

dμ(z)

≤ C13
1

μ(P)

∫

P

∞∑

k=l

∣
∣Dk(f)(z)

∣
∣2dμ(z)

≤ C13

[
inf
x∈B0

Ċ(f)(x)
]2
,

(6.69)

where C,C13 > 0 are constants independent of l and x. Thus, if A2 > C13, then

μ
({
x ∈ B0 : Sl(f)(x) > AĊ(f)(x)

}) ≤ C13

A2
μ
(
B0
)
, (6.70)

which in turn shows (6.66)with C12 = 1 − C13/A
2 > 0 if A2 > C13.

Let g ∈ G̊b(ε1, ε2) and ‖g‖H1(X) ≤ 1. By Theorem 3.11, (6.66), the Fubini theorem,
Hölder’s inequality, (6.64), and Proposition 6.10, we then have

∣∣〈f, g〉∣∣ =
∣∣∣∣∣

〈

f,
∞∑

k=−∞
DkDk(g)

〉∣∣∣∣∣

=

∣∣∣∣∣

∞∑

k=−∞

〈
Dt
k(f), Dk(g)

〉
∣∣∣∣∣

≤
∞∑

k=−∞

∫

X

∣∣Dt
k(f)(y)Dk(g)(y)

∣∣dμ(y)

�
∫

X

[ ∞∑

k=l(x)

∫

d(x,y)<2−k

∣∣Dt
k(f)(y)Dk(g)(y)

∣∣ dμ(y)
V2−k(x)

]

dμ(x)

�
∫

X
Ṡl(x)(f)(x)Ṡ(g)(x)dμ(x)

�
∫

X
Ċ(f)(x)Ṡ(g)(x)dμ(x)

� ‖Ċ(f)‖L∞(X)‖g‖H1(X)

� ‖f‖Ḟ0
∞,2(X),

(6.71)
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which together with Theorem 5.19(i) further implies that f ∈ BMO(X) and

‖f‖BMO(X) � ‖f‖Ḟ0
∞,2(X). (6.72)

This finishes the proof of Theorem 6.11.

We end this subsection by the boundedness on Ḟs∞,q(X) of singular integral operators
of order ε, which satisfy (I-1) through (I-4) in Subsection 5.2.

Theorem 6.12. Let ε and q be as in Definition 6.7. If T is a singular integral operator of order ε, then
T is bounded from G̊b(β, γ) (with 0 < β ≤ ε and γ > 0) to Ḟs∞,q(X). Moreover, there exists a constant
C > 0 such that for all f ∈ G̊b(β, γ) with 0 < β ≤ ε and γ > 0,

‖Tf‖Ḟs∞,q(X) ≤ C‖f‖Ḟs∞,q(X). (6.73)

Proof. Combining some estimates and technics used in the proof of Proposition 5.25 with
those used in the proof of Proposition 6.3 gives the desired conclusions. The details are left to
the reader.

Remark 6.13. By Theorem 8.15 below, if p(s, ε) < q ≤ ∞, then Ḟs∞,q(X) is the dual space of
Ḟ−s
1,q′(X). In this case, Theorem 6.12 can be deduced from Theorem 5.23 together with a duality

argument. This provides another proof of Theorem 6.12.

6.3. Inhomogeneous Plancherel-Pôlya inequality and definition of Fs∞,q(X)

In this and the next subsection, μ(X) can be finite or infinite. We first introduce the norm
in ‖·‖Fs∞,q(X) via some IATI and then verify that this norm is independent of the choices of
IATIs and the distribution spaces; see also [84]. Similarly to the case of the space Ḟs∞,q(X),
we need also first to establish an inhomogeneous Plancherel-Pôlya inequality related to the
norm ‖·‖Fs∞,q(X).

Definition 6.14. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2) and let {Sk}k∈Z+
be an (ε1, ε2, ε3)-

IATI. Set Dk = Sk − Sk−1 for k ∈ N, and D0 = S0. Let {Q0,ν
τ : τ ∈ I0, ν = 1, . . . ,N(0, τ)} with

a fixed large j ∈ N be dyadic cubes as in Section 4. Let |s| < ε and p(s, ε) < q ≤ ∞. For any
f ∈ (Gε

0(β, γ))
′ with 0 < β, γ < ε, define

‖f‖Fs∞,q(X)

= max

⎧
⎪⎨

⎪⎩
sup
τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(∣∣D0(f)
∣∣), sup

l∈N

sup
α∈Il

[
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq
∣∣Dk(f)(x)

∣∣qdμ(x)

]1/q
⎫
⎪⎬

⎪⎭
,

(6.74)

where the supremum is taken over all dyadic cubes as in Lemma 2.19 and Section 4, and the
usual modification is made when q = ∞.



Yongsheng Han et al. 191

To verify that the definition of ‖·‖Fs∞,q(X) is independent of the choice of IATIs, we need
the following inequality of Plancherel-Pôlya type.

Proposition 6.15. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2) and let {Sk}k∈Z
and {Pk}k∈Z

be
two (ε1, ε2, ε3)-ATIs. Set Dk = Sk − Sk−1 and Qk = Pk − Pk−1 for k ∈ N, D0 = S0, and Q0 = S0.
Let {Q0,ν

τ : τ ∈ I0, ν = 1, . . . ,N(0, τ)} with a fixed large j ∈ N be dyadic cubes as in Section 4. Let
|s| < ε and p(s, ε) < q ≤ ∞. Then for all f ∈ (Gε

0(β, γ))
′ with 0 < β, γ < ε,

max

⎧
⎪⎨

⎪⎩
sup
τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(|D0(f)|
)
,

sup
l∈N

sup
α∈Il

[
1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)
χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

(

sup
x∈Qk,ν

τ

|Dk(f)(x)|
)q]1/q

⎫
⎬

⎭

∼max

⎧
⎪⎨

⎪⎩
sup
τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(|Q0(f)|
)
,

sup
l∈N

sup
α∈Il

[
1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)
χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

(

inf
x∈Qk,ν

τ

|Qk(f)(x)|
)q]1/q

⎫
⎬

⎭
.

(6.75)

Proof. To prove Proposition 6.15, it suffices to verify that for all f ∈ (Gε
0(β, γ))

′ with 0 < β, γ <
ε, the left-hand side of (6.75) is controlled by its right side.

Let all the notation be as in Proposition 5.25. Then, as in the proof of Proposition 5.25,
by (5.78) and (5.80), we still control mQ0,ν

τ
(|D0(f)|) by Z1 + Z2. Moreover, by (5.82) and

Lemma 2.1(ii), we have

Z1 � sup
τ ′∈I0

ν′=1,...,N(0,τ ′)

m
Q0,ν′
τ ′

(∣∣Q0(f)
∣∣), (6.76)

which is the desired estimate.
To estimate Z2, we need the following trivial estimate that for k′ ∈ N,

[
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣q
]1/q

� sup
l∈N

sup
α∈Il

[
1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)
χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

(
inf

x∈Qk,ν
τ

∣∣Qk(f)(x)
∣∣
)q]1/q

.

(6.77)
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By this and (5.82) together with μ(Qk′,ν′

τ ′ ) � V1(y
k′,ν′

τ ′ ) and (5.5), when q ≤ 1, we have

Z2 �
∞∑

k′=1

2−k
′(ε+s)

{
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣q
}1/q

� RHS of (6.75),

(6.78)

where we used the assumption that |s| < ε.
Similarly, when 1 < q ≤ ∞, by Hölder’s inequality and Lemma 2.1(ii),

Z2 �
∞∑

k′=1

2−k
′(ε+s)

{
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq∣∣Qk′(f)

(
yk

′,ν′

τ ′
)∣∣q
}1/q

×
{∫

X

1

V1
(
y0,ν
τ

)
+ V1(y) + V

(
y0,ν
τ , y

)
1

(
1 + d

(
y0,ν
τ , y

))ε dμ(y)

}1/q′

� RHS of (6.75).

(6.79)

Thus, mQ0,ν
τ
(|D0(f)|) for τ ∈ I0 and ν = 1, . . . ,N(0, τ) is controlled by the right-hand side of

(6.75).
We now verify that the second term of the left-hand side of (6.75) is also controlled

by its right-hand side. To this end, for any k ∈ N and z ∈ Qk,ν
τ , we also control |Dk(f)(z)| by

Y1+Y2. The estimate for Y2 is similar to the estimates for Y1+Y2 in the proof of Proposition 6.3
and we omit the details. To estimate Y1, by (5.95) and Lemma 2.1(ii), we have

sup
x∈Qk,ν

τ

Y1 � 2−kε
[

sup
τ ′∈I0

ν′=1,...,N(0,τ ′)

m
Q0,ν′
τ ′

(∣∣Q0(f)
∣∣)
]

×
∑
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N(0,τ ′)∑
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μ
(
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τ ′
) 1
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(
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)
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(
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τ ′
)
+V
(
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τ ′
)

1
(
1+d
(
yk,ντ , y0,ν′

τ ′
))ε

� 2−kε
[

sup
τ ′∈I0

ν′=1,...,N(0,τ ′)

m
Q0,ν′
τ ′

(|Q0(f)|
)
]

,

(6.80)

which together with Lemma 2.19 and |s| < ε gives that for l ∈ N and α ∈ Il,

[
1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)
χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν) sup

x∈Qk,ν
τ

∣∣Y1
∣∣q
]1/q

� sup
τ ′∈I0

ν′=1,...,N(0,τ ′)

m
Q0,ν′
τ ′

(∣∣Q0(f)
∣∣).

(6.81)

This is the desired estimate for Y1 and hence, we complete the proof of Proposition 6.15.
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Remark 6.16. We point out that Remark 5.5 applies in a similar way to Proposition 6.15.

From Proposition 6.15 and Lemma 2.19, it is easy to deduce the following proposition.
We omit the details.

Proposition 6.17. Adopting the notation from Proposition 6.15, one has for all for f ∈ (Gε
0(β, γ))

′

with 0 < β, γ < ε,

max

⎧
⎪⎨

⎪⎩
sup
τ∈I0

ν=1,...,N(0,τ)
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∣
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l∈N
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α∈Il
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2ksq|Dk(f)(x)|qdμ(x)
]1/q
⎫
⎪⎬

⎪⎭
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⎧
⎪⎨

⎪⎩
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τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(∣∣Q0(f)
∣
∣), sup

l∈N

sup
α∈Il

[
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq|Qk(f)(x)|qdμ(x)
]1/q
⎫
⎪⎬

⎪⎭
.

(6.82)

Proposition 6.17 shows that the definition of the norm ‖·‖Fs∞,q(X) is independent of the
choice of IATIs. We now verify that under some restrictions on β and γ , it is also independent
of the choice of distribution spaces.

Proposition 6.18. Let all the notation be as in Definition 6.14. Let |s| < ε and p(s, ε) < q ≤ ∞.
If f ∈ (Gε

0(β1, γ1))
′ with max{0,−s} < β1 < ε and 0 < γ1 < ε, and if ‖f‖Fs∞,q(X) < ∞, then

f ∈ (Gε
0(β2, γ2))

′ for everymax{0,−s} < β2 < ε and 0 < γ2 < ε.

Proof. We use the notation from the proof of Proposition 5.28. Let ψ ∈ G(ε, ε), and f ∈
(Gε

0(β1, γ1))
′ with max{0, d(1 − 1/q)+ − s − d} < β1 < ε and 0 < γ1 < ε, and ‖f‖Fs∞,q(X) < ∞.

To verify that f ∈ (Gε
0(β2, γ2))

′ with max{0,−s} < β2 < ε and 0 < γ2 < ε, we need the following
trivial estimates that for τ ∈ I0 and ν = 1, . . . ,N(0, τ),

mQ0,ν
τ

(∣∣D0(f
)∣∣) � ‖f‖Fs∞,q(X) (6.83)

and that for k ∈ N,

[
∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
∣∣Dk(f)

(
yk,ντ
)∣∣q
]1/q

� ‖f‖Fs∞,q(X). (6.84)

When q ≤ 1, by Theorem 4.16, (5.80), (5.105), (5.5), (6.25), (6.83), and (6.84), we have

∣∣〈f, ψ〉∣∣ =
∣∣∣∣∣

∑

τ∈I0

N(0,τ)∑
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∫

Q0,ν
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〈
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〉
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τ,1(f)

+
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)〈
D̃k

(·, yk,ντ
)
, ψ
〉
Dk(f)

(
yk,ντ
)
∣∣∣∣∣

� ‖ψ‖G(β2,γ2)‖f‖Fs∞,q(X),

(6.85)

where we used the assumption that γ2 > 0 and β2 > −s.
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If 1 < q ≤ ∞, by (6.83), Hölder’s inequality, (6.25), and (6.84), we obtain

∣
∣〈f, ψ〉∣∣�‖ψ‖G(β2,γ2)

{

‖f‖Fs∞,q(X)+
∞∑
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(
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× 1
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(
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)
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(
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τ

)
1

(
1+d
(
x1, y

k,ν
τ

))γ2

]1/q

×
[∫

X

1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ2 dμ(y)

]1/q′}

� ‖ψ‖G(β2,γ2)‖f‖Fs∞,q(X),

(6.86)

where we used the assumption β2 > −s and γ2 > 0 again. This finishes the proof of
Proposition 6.18.

Based on Propositions 6.17 and 6.18, we can now introduce the inhomogeneous
Triebel-Lizorkin spaces Fs∞,q(X).

Definition 6.19. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0, ε ∈ (0, ε1 ∧ ε2) and let {Sk}k∈Z
be an (ε1, ε2, ε3)-

IATI. Set Dk = Sk − Sk−1 for k ∈ N and D0 = S0. Let {Q0,ν
τ : τ ∈ I0, ν = 1, . . . ,N(0, τ)} with

a fixed large j ∈ N be dyadic cubes as in Section 4. Let |s| < ε and p(s, ε) < q ≤ ∞. The space
Fs∞,q(X) is defined to be the set of all f ∈ (Gε

0(β, γ))
′, for some |s| < β < ε and 0 < γ < ε, such

that

‖f‖Fs∞,q(X)

=max

⎧
⎪⎨

⎪⎩
sup
τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(∣∣D0(f)
∣∣), sup

l∈N

sup
α∈Il

[
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq
∣∣Dk(f)(x)

∣∣qdμ(x)

]1/q
⎫
⎪⎬

⎪⎭
<∞,

(6.87)

where the supremum is taken over all dyadic cubes as in Lemma 2.19 and Section 4, and the
usual modification is made when q = ∞.

Propositions 6.17 and 6.18 show that the definition of the space Fs∞,q(X) is independent
of the choices of IATIs and the distribution spaces, (G(β, γ))′ with β and γ with |s| < β < ε and
0 < γ < ε.

Remark 6.20. To guarantee that the definition of the space Fs∞,q(X) is independent of the choice
of the distribution space (G(β, γ))′, we only need to restrict max{0,−s} < β < ε and 0 < γ < ε.
However, if max{0, s} < β < ε and 0 < γ < ε, we can then verify that G(β, γ) ⊂ Fs∞,q(X); see
Proposition 6.21 below.



Yongsheng Han et al. 195

6.4. Properties of Fs∞,q(X) and boundedness of singular integrals

In this subsection, we first present some basic properties of Fs∞,q(X) and the relation between
Fs∞,q(X) and Ḟs∞,q(X). By establishing a maximal function characterization of Fs∞,q(X), we
then derive some relations between the spaces Fs∞,q(X) and Cs(X) and between the spaces
Fs∞,q(X) and bmo(X). Finally, we prove boundedness results on the spaces Fs∞,q(X) for the
classes of singular integral operators considered in Subsection 5.4.

Proposition 6.21. Let ε1 ∈ (0, 1], ε2 > 0, ε ∈ (0, ε1 ∧ ε2), |s| < ε, and p(s, ε) < q ≤ ∞. Then, the
following hold.

(i) Fs∞,q0(X) ⊂ Fs∞,q1(X) if p(s, ε) < q0 ≤ q1 ≤ ∞.

(ii) Let −ε < s + θ < ε and θ > 0. Then for p(s, ε) < q0, q1 ≤ ∞,

Fs+θ∞,q0(X) ⊂ Fs∞,q1(X). (6.88)

(iii) Bs∞,q(X) ⊂ Fs∞,q(X) ⊂ Bs∞,∞(X).

(iv) Ifmax{0,−s} < β < ε and 0 < γ < ε, then Fs∞,q(X) ⊂ (Gε
0(β, γ))

′.

(v) Ifmax{s, 0} < β < ε and 0 < γ < ε, then G(β, γ) ⊂ Fs∞,q(X).

(vi) The spaces Fs∞,q(X) are complete.

Proof. Property (ii) can be established by an argument similar to that used for property (ii) of
Proposition 5.31, while property (i) and property (iii) through property (vi) can be proved by
an argument similar to those used for Proposition 6.9 via Proposition 5.31, which completes
the proof of Proposition 6.21.

The following proposition gives a new characterization of the spaces Fs∞,q(X) when
1 ≤ q ≤ ∞.

Proposition 6.22. Let ε and {Dk}k∈Z+
be as in Definition 6.19. If 1 ≤ q ≤ ∞, then f ∈ Fs∞,q(X) if

and only if f ∈ (Gε
0(β, γ))

′, for some |s| < β < ε and 0 < γ < ε, and

sup
l∈Z+

sup
α∈Il

[
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μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq
∣∣Dk(f)(x)

∣∣qdμ(x)

]1/q
<∞. (6.89)

Moreover, in this case,

‖f‖Fs∞,q(X) ∼ sup
l∈Z+

sup
α∈Il

[
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq
∣∣Dk(f)(x)

∣∣qdμ(x)

]1/q
. (6.90)

Proof. Fix τ ∈ I0 and ν = 1, . . . , N(0, τ). Since Q0,ν
τ ⊂ Q0

τ , then it is easy to verify that Q0
τ ⊂

B(z0,ντ , 2C6), and hence μ(Q0,ν
τ ) � μ(Q0

τ) � μ(B(z0,ντ , 2C6)) � μ(Q0,ν
τ ). From this and 1 ≤ q ≤ ∞
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together with Hölder’s inequality, it follows that

mQ0,ν
τ

(∣∣D0(f)
∣
∣) ≤

[
1

μ
(
Q0,ν
τ

)

∫

Q0,ν
τ

∣
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∣
∣qdμ(x)
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�
[

1
μ
(
Q0
τ

)

∫

Q0
τ

∣
∣D0(f)(x)

∣
∣qdμ(x)

]1/q
.

(6.91)

Thus,

‖f‖Fs∞,q(X) � sup
l∈Z+

sup
α∈Il

[
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq
∣∣Dk(f)(x)

∣∣qdμ(x)

]1/q
. (6.92)

To see the converse, it suffices to verify that for all f ∈ Fs∞,q(X) and τ ∈ I0,

[
1

μ(Q0
τ)

∫

Q0
τ

∣∣D0(f)(x)
∣∣qdμ(x)

]1/q
� ‖f‖Fs∞,q(X). (6.93)

To see this, by the construction of {Q0,ν
τ : τ ∈ I0, ν = 1, . . . ,N(0, τ)}, we have

[
1

μ
(
Q0
τ

)

∫

Q0
τ

∣∣D0(f)(x)
∣∣qdμ(x)

]1/q
�
{

1
μ
(
Q0
τ

)
N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)
[

sup
x∈Q0,ν

τ

∣∣D0(f)(x)
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]q}1/q

� sup
ν=1,...,N(0,τ)

sup
x∈Q0,ν

τ

∣∣D0(f)(x)
∣∣.

(6.94)

Using Theorem 4.16 together with some estimates similar to those for Z1 + Z2 in the proof of
Proposition 6.15, we can then verify that

sup
ν=1,...,N(0,τ)

sup
x∈Q0,ν

τ

∣∣D0(f)(x)
∣∣ � ‖f‖Fs∞,q(X), (6.95)

which gives the desired estimate and hence, we complete the proof of Proposition 6.22.

Using Proposition 6.22, we now complement Proposition 5.39(ii) for the case p = ∞ as
follows.

Proposition 6.23. Let ε > 0 be as in Definition 6.19, 0 < s < ε, 1 ≤ q ≤ ∞ and μ(X) = ∞. Then
Fs∞,q(X) = Ḟs∞,q(X) ∩ L∞(X), and moreover, for any f ∈ Fs∞,q(X),

‖f‖Fs∞,q(X) ∼ ‖f‖Ḟs∞,q(X) + ‖f‖L∞(X). (6.96)
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Proof. Take f ∈ Fs∞,q(X). By Proposition 6.18, without loss of generality, we may assume that
f ∈ (G(β, γ))′ with s < β, γ < ε as in (6.32). Thus, we also have f ∈ (G̊(β, γ))′ with s < β, γ < ε
as in (6.32); see the proof of Proposition 5.37. By Theorem 3.29, we have that

f = D̃0S0(f) +
∞∑

k=1

D̃kDk(f) (6.97)

holds in ∈ (G(β, γ))′ with s < β < ε and 0 < γ < ε, where D̃k with k ∈ Z+ is as in Theorem 3.26.
From this and Lemma 2.19, it follows that for any x ∈ X,
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∣
∣�
∑

τ∈I0

N(0,τ)∑

ν=1

∫

Q0,ν
τ

∣
∣D̃0(x, y)

∣
∣
∣
∣S0(f)(y)

∣
∣dμ(y)+

∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

∣
∣D̃k(x, y)

∣
∣
∣
∣Dk(f)(y)

∣
∣dμ(y)

�
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

) 1

V1(x) + V1
(
y0,ν
τ

)
+ V
(
x, y0,ν

τ

)

(
1

1 + d
(
x, y0,ν

τ

)

)ε
mQ0,ν

τ

(∣∣S0(f)
∣∣)

+
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

) 1

V2−k(x) + V2−k
(
yk,ντ
)
+ V
(
x, yk,ντ

)

×
(

2−k

2−k + d
(
x, yk,ντ

)

)ε[

sup
y∈Qk,ν

τ

∣∣Dk(f)(y)
∣∣
]

.

(6.98)

Since f ∈ Fs∞,q(X), by its definition, we have that for τ ∈ I0 and ν = 1, . . . ,N(0, τ),

mQ0,ν
τ

(∣∣S0(f)
∣∣) � ‖f‖Fs∞,q(X), (6.99)

and the definition of Fs∞,q(X) together with Proposition 6.15 also implies that for any k ∈ N,
τ ∈ Ik, and ν = 1, . . . , N(k, τ),

{
∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
[

sup
y∈Qk,ν

τ

|Dk(f)(y)|
]q}1/q
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Notice that 1 ≤ q ≤ ∞. Both estimates via Hölder’s inequality, the fact that μ(Qk,ν
τ ) ∼

V2−k(y
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τ ), Lemma 5.2, and the assumption that s > 0 further yield that
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(6.101)
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namely, f ∈ L∞(X) and

‖f‖L∞(X) � ‖f‖Fs∞,q(X). (6.102)

Moreover,
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(6.103)

To estimate the second term, by Proposition 2.7(i), we have

∣∣Dk(f)(x)
∣∣ � ‖f‖L∞(X) � ‖f‖Fs∞,q(X), (6.104)

which together with s > 0 shows
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(6.105)

To estimate the third term, for any l ∈ Z \ N and α ∈ Il, set

Iαl =
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β ∈ I1 : Q1
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}
. (6.106)

Lemma 2.19 proves that
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)
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which together with Lemma 2.19 further yields that

sup
l∈Z\N

sup
α∈Il

[
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=1

2ksq|Dk(f)(x)|qdμ(x)
]1/q

� sup
l∈Z\N

sup
α∈Il

[
1

μ
(
Ql
α

)
∑

β∈Iα
l

μ
(
Q1
β

) 1
μ
(
Q1
β

)

∫

Q1
β

∞∑

k=1

2ksq|Dk(f)(x)|qdμ(x)
]1/q

� ‖f‖Fs∞,q(X).

(6.108)

Thus, f ∈ Ḟs∞,q(X) ∩ L∞(X) and

‖f‖L∞(X) + ‖f‖Ḟs∞,q(X) � ‖f‖Fs∞,q(X). (6.109)

Conversely, let f ∈ Ḟs∞,q(X) ∩ L∞(X). Obviously, f ∈ (G(β, γ))′ with s < β < ε and
0 < γ < ε. On the other hand, Proposition 2.7(i) shows that for any x ∈ X,

∣∣S0(f)(x)
∣∣ � ‖f‖L∞(X). (6.110)

Since 1 ≤ q ≤ ∞, by Proposition 6.22, (5.5) together with (6.110), and Lemma 2.19 together
with (6.107), we obtain

‖f‖Fs∞,q(X) ∼ sup
l∈N

sup
α∈Il

[
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq|Dk(f)(x)|qdμ(x)
]1/q

+ sup
α∈I0

[
1

μ
(
Q0
α

)

∫

Q0
α

(

|S0(f)(x)|q +
∞∑

k=1

2ksq|Dk(f)(x)|q
)

dμ(x)

]1/q

� ‖f‖Ḟs∞,q(X) + sup
α∈I0

{
1

μ
(
Q0
α

)
∑

β∈Iα0
μ
(
Q0
β

)
[

1
μ
(
Q0
β

)

∫

Q0
β

∞∑

k=1

2ksq|Dk(f)(x)|qdμ(x)
]}1/q

� ‖f‖Ḟs∞,q(X),

(6.111)

which means that f ∈ Fs∞,q(X). Thus,

Ḟs∞,q(X) ∩ L∞(X) ⊂ Fs∞,q(X), (6.112)

which completes the proof of Proposition 6.23.
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From Proposition 6.23 and Theorem 6.11(i), we easily deduce the following results.

Corollary 6.24. Let ε > 0 be as in Definition 6.19. Then,

(i) for any s ∈ (0, 1], Cs(X) = Ċs(X) ∩ L∞(X), and moreover, for all f ∈ Cs(X),

‖f‖Cs(X) = ‖f‖L∞(X) + ‖f‖Ċs(X); (6.113)

(ii) for any s ∈ (0, ε), Cs(X) = Bs∞,∞(X) = Fs∞,∞(X) with equivalent norms.

Proof. Property (i) is a simple consequence of the definitions of both Cs(X) and Ċs(X).
When μ(X) = ∞, then Property (ii) can be deduced from Property (i), Theorem 6.11(i),

and Proposition 6.23, which completes the proof of Corollary 6.24 in this case.
An alternative way to prove Property (ii), whichworks when μ(X) = ∞ and also when

μ(X) <∞, follows the line of reasoning in the proof of Theorem 6.11(i). In fact, let f ∈ Cs(X)
and {Dk}k∈Z+

be as in Definition 6.19. Then from f ∈ L∞(X), it follows that f ∈ (G(β, γ))′ with
s < β < ε and 0 < γ < ε. Moreover, by Proposition 2.7(i), we have that for all x ∈ X,

∣∣D0(f)(x)
∣∣ =
∣∣∣∣

∫

X
D0(x, y)f(y)dμ(y)

∣∣∣∣ � ‖f‖L∞(X), (6.114)

which together with (6.45) shows that f ∈ Fs∞,∞(X) and

‖f‖Fs∞,∞(X) � ‖f‖L∞(X). (6.115)

Conversely, suppose f ∈ Fs∞,∞(X). By Proposition 6.18, we can assume that f ∈
(G(β, γ))′ with s < β < ε and 0 < γ < ε. Using the same notation as in Theorem 3.26, by
Theorem 3.29 and the definition of ‖·‖Fs∞,∞(X) together with s > 0, we further obtain that for all
x ∈ X,

∣∣f(x)
∣∣ =

∣∣∣∣∣

∞∑

k=0

D̃kDk(f)(x)

∣∣∣∣∣
� ‖f‖Fs∞,∞(X)

∞∑

k=0

2−ks � ‖f‖Fs∞,∞(X). (6.116)

Thus, f ∈ L∞(X) and

‖f‖L∞(X) � ‖f‖Fs∞,∞(X). (6.117)

Moreover, if d(x, y) ≥ 1/2, then

∣∣f(x) − f(y)∣∣ � ‖f‖L∞(X) � ‖f‖Fs∞,∞(X)d(x, y)
s. (6.118)
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Assume that 2−l0−1 ≤ d(x, y) < 2−l0 with l0 ∈ N. By the regularity of D̃k, Lemma 2.1(ii) and
Proposition 2.7(i) together with 0 < s < ε < ε1, we then obtain

∣
∣f(x) − f(y)∣∣ �

∣
∣
∣
∣
∣

l0−1∑

k=0

∫

X

[
D̃k(x, z) − D̃k(y, z)

]
Dk(f)(z)dμ(z)

∣
∣
∣
∣
∣

+
∞∑

k=l0

{∫

X

∣
∣D̃k(x, z)

∣
∣
∣
∣Dk(f)(z)

∣
∣dμ(z) +

∫

X

∣
∣D̃k(y, z)

∣
∣
∣
∣Dk(f)(z)

∣
∣dμ(z)

}

�
l0−1∑

k=0

∫

X

(
d(x, y)

2−k + d(x, z)

)ε1 1
V2−k(x) + V2−k(y) + V (x, y)

×
(

2−k

2−k + d(x, z)

)ε2∣
∣Dk(f)(z)

∣
∣dμ(z) + ‖f‖Fs∞,∞(X)

∞∑

k=l0

2−ks

� ‖f‖Fs∞,∞(X)d(x, y)
s.

(6.119)

Thus, f ∈ Cs(X) and

‖f‖Cs(X) � ‖f‖Fs∞,∞(X), (6.120)

which completes the proof of Corollary 6.24(ii).

We now establish the connection between Ḟs∞,q(X) and Fs∞,q(X) for all admissible s
and q.

Proposition 6.25. Let ε, s, q, and S0 be as in Definition 6.19 and let μ(X) = ∞. Then there exists a
constant C > 0 such that for all f ∈ Ḟs∞,q(X), f − S0(f) ∈ Fs∞,q(X) and

∥∥f − S0(f)
∥∥
Fs∞,q(X) ≤ C‖f‖Ḟs∞,q(X). (6.121)

Proof. Let f ∈ Ḟs∞,q(X). By Proposition 6.6, we may assume that f ∈ (G̊ε
0(β, γ))

′ with β, γ as
in (6.32). On the other hand, for any g ∈ Gε

0(β, γ)with β, γ as in (6.32), from Lemma 5.36 and∫
XS0(x, y)dμ(x) = 1, it is easy to deduce that g − St0(g) ∈ G̊(β, γ) with β, γ as in (6.32). Thus,
from

〈
f − S0(f), g

〉
=
〈
f, g − St0(g)

〉
, (6.122)

we deduce that f − S0(f) ∈ (Gε
0(β, γ))

′ with β, γ as in (6.32).
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We now verify (6.121). In what follows, let I be the identity operator, let {Dk′ }k′∈Z
be

as in Definition 6.7, and let {D̃k′ }k′∈Z
be as in Theorem 4.11. We first claim that for all k′ ∈ Z

and x, y ∈ X,

∣∣(S0(I − S0
)
D̃k′
)
(x, y)

∣∣

� 2−|k
′ |ε 1
V2−(0∧k′) (x) + V2−(0∧k′) (y) + V (x, y)

(
2−(0∧k

′)

2−(0∧k′) + d(x, y)

)ε (6.123)

and that for all k ∈ N, k′ ∈ Z, and x, y ∈ Z,

∣
∣(Dk(I − S0

)
D̃k′
)
(x, y)

∣
∣

� 2−|k−k
′ |ε 1
V2−(k∧k′) (x) + V2−(k∧k′) (y) + V (x, y)

(
2−(k∧k

′)

2−(k∧k′) + d(x, y)

)ε

.
(6.124)

The estimate (6.124) is essentially the same as the estimate (5.130) by symmetry, while the
estimate (6.123) can essentially be obtained by an argument similar to Cases 1 and 2 of the
proof of the estimate (5.130).

Using the estimate (6.123) and Theorem 4.13, we have that for any x ∈ X,

∣∣S0
(
I − S0

)
(f)(x)

∣∣

=

∣∣∣∣∣

∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)(
S0
(
I − S0

)
D̃k′
)(
x, yk

′,ν′

τ ′
)
Dk′(f)

(
yk

′,ν′

τ ′
)
∣∣∣∣∣

�
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−|k
′ |εμ
(
Qk′,ν′

τ ′
) 1

V2−(0∧k′) (x) + V2−(0∧k′)
(
yk

′,ν′
τ ′
)
+ V
(
x, yk

′,ν′
τ ′
)

×
(

2−(0∧k
′)

2−(0∧k′) + d
(
x, yk

′,ν′
τ ′
)

)ε
∣∣Dk′(f)

(
yk

′,ν′

τ ′
)∣∣.

(6.125)

From Proposition 6.3, we deduce the following trivial estimate that for all k′ ∈ Z,

{
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq∣∣Dk′(f)

(
yk

′,ν′

τ ′
)∣∣q
}1/q

� ‖f‖Ḟs∞,q(X), (6.126)

and from Lemma 2.19, it follows that

μ
(
Qk′,ν′

τ ′
)

V2−(0∧k′) (x) + V2−(0∧k′)
(
yk

′,ν′
τ ′
)
+ V
(
x, yk

′,ν′
τ ′
) � 1. (6.127)
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Both estimates together with (5.5) show that when q ≤ 1, for any x ∈ X,

∣
∣S0
(
I − S0

)
(f)(x)

∣
∣ �
∑

k′∈Z

2−|k
′ |ε2−k

′s

{
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq∣∣Dk′(f)

(
yk

′,ν′

τ ′
)∣∣q
}1/q

� ‖f‖Ḟs∞,q(X),

(6.128)

while when 1 < q ≤ ∞, both estimates together with Hölder’s inequality, Lemma 5.2, and
Lemma 2.1(ii) still yield that for all x ∈ X,

∣
∣S0
(
I − S0

)
(f)(x)

∣
∣

�
∑

k′∈Z

2−|k
′ |ε2−k

′s

[
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
) 1

V2−(0∧k′) (x) + V2−(0∧k′)
(
yk

′,ν′
τ ′
)
+ V
(
x, yk

′,ν′
τ ′
)

×
(

2−(0∧k
′)

2−(0∧k′)+d
(
x, yk

′,ν′
τ ′
)

)ε]1/q′[∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq|Dk′(f)

(
yk

′,ν′

τ ′
)|q
]1/q

� ‖f‖Ḟs∞,q(X).

(6.129)

Thus, for τ ∈ I0 and ν = 1, . . . ,N(0, τ),

mQ0,ν
τ

(∣∣S0
(
I − S0

)
(f)
∣∣) =

1

μ
(
Q0,ν
τ

)

∫

Q0,ν
τ

∣∣S0
(
I − S0

)
(f)(x)

∣∣dμ(x) � ‖f‖Ḟs∞,q(X), (6.130)

which is the desired estimate.
For l ∈ N and α ∈ Il, from Theorem 5.16 together with (6.124), it follows that

1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq
∣∣Dk

(
I − S0

)
(f)(x)

∣∣qdμ(x)

� 1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq
[
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−|k−k
′ |εμ
(
Qk′,ν′

τ ′
) 1

V2−(k∧k′) (x)+V2−(k∧k′)
(
yk

′,ν′
τ ′
)
+V
(
x, yk

′,ν′
τ ′
)

×
(

2−(k∧k
′)

2−(k∧k′) + d
(
x, yk

′,ν′
τ ′
)

)ε
∣∣Dk′(f)

(
yk

′,ν′

τ ′
)∣∣
]q
dμ(x).

(6.131)

Then, an argument similar to that used to estimate Y1 + Y2 in the proof of Proposition 6.3
together with Proposition 6.3 yields that

1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

2ksq
∣∣Dk

(
I − S0

)
(f)(x)

∣∣qdμ(x) � ‖f‖q
Ḟs∞,q(X)

. (6.132)
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Thus, (I − S0)(f) ∈ Fs∞,q(X) and

∥
∥(I − S0

)
(f)
∥
∥
Fs∞,q(X) � ‖f‖Ḟs∞,q(X), (6.133)

which completes the proof of Proposition 6.25.

Remark 6.26. We point out that Remark 5.38 applies in a similar way to Proposition 6.25.

To establish the equivalence between bmo(X) and F0
∞,2(X), we need the following

technical result which in fact gives a new characterization of Triebel-Lizorkin space Fs∞,q(X)
when 1 ≤ q ≤ ∞. We first introduce an inhomogeneous maximal function.

For any x ∈ X and l ∈ Z+, we choose m ∈ N by a way similar to that in the definition
of Ċsq. Let {Dk}k∈Z+

be as in Definition 6.19. Then for any s ∈ R, q ∈ (0,∞], f ∈ (G(β, γ))′ with
0 < β, γ < ε and x ∈ X, we define the inhomogeneous maximal function Csq(f)(x) by

Csq(f)(x) = sup
l∈Z+

[
1

μ
(∪mi=1Ql

αi
l

)

∫

∪mi=1Ql

αi
l

∞∑

k=l

2ksq
∣∣Dk(f)(y)

∣∣qdμ(y)

]1/q
, (6.134)

where the usual modification is made when q = ∞.
Using Proposition 6.22 and an argument similar to the proof of Proposition 6.10 yields

the following characterization of Fs∞,q(X)with 1 ≤ q ≤ ∞; we omit the details.

Proposition 6.27. Let ε and s be as in Definition 6.7 and let 1 ≤ q ≤ ∞. Then f ∈ Fs∞,q(X) if and
only if f ∈ (G(β, γ))′ with |s| < β < ε and 0 < γ < ε, and Csq(f) ∈ L∞(X). Moreover, in this case,

‖f‖Fs∞,q(X) ∼ ‖Csq(f)‖L∞(X). (6.135)

Now, from Theorem 5.44(i), Proposition 6.22, and Proposition 6.27, we can deduce the
following relation between bmo(X) and F0

∞,2(X).

Theorem 6.28. bmo(X) = F0
∞,2(X), with equivalent norms.

Proof. Let f ∈ bmo(X) and {Dk}k∈Z+
be as in Definition 6.19. Proposition 6.21(v) and

Theorem 5.44(i) immediately imply that f ∈ (Gε
0(β, γ))

′ with 0 < β, γ < ε. Let now Ql
α

for l ∈ Z+ and α ∈ Il be a dyadic cube as in Lemma 2.19. Let Blα be as in the proof of
Theorem 6.11(ii). We then decompose f = f1 + f2 + f3 in the same way as in the proof of
Theorem 6.11(ii). The estimations for f1 and f2 are as in the proof of Theorem 6.11(ii) by
replacing Proposition 3.15 by Proposition 3.30. If l ∈ N, then

{
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

∣∣Dk

(
f3
)
(x)
∣∣dμ(x)

}1/2

= 0, (6.136)
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while when l = 0, we then have

{
1

μ
(
Ql
α

)

∫

Ql
α

∞∑

k=l

∣
∣Dk

(
f3
)
(x)
∣
∣dμ(x)

}1/2

=
∣
∣f3
∣
∣ ≤ ‖f‖bmo(X). (6.137)

Thus, f ∈ F0
∞,2(X) and ‖f‖F0

∞,2(X) � ‖f‖bmo(X).

Conversely, using Theorem 5.44(i), Proposition 6.22, and Proposition 6.27 together
with an argument similar to the proof of Theorem 6.11(ii), we can prove that if f ∈ F0

∞,2(X),
then f ∈ bmo(X) and ‖f‖bmo(X) � ‖f‖F0

∞,2(X),which completes the proof of Theorem 6.28.

We end this subsection by considering the boundedness on Fs∞,q(X) of singular
integrals of order (ε, σ).

Theorem 6.29. Let ε, s, and q be as in Definition 6.19. Let σ > 0 and let T be a singular integral of
order (ε, σ). Then T is bounded from Gb(β, γ) with 0 < β ≤ ε and γ > 0 to Fs∞,q(X). Moreover, there
exists a constant C > 0 such that for all f ∈ Gb(β, γ) with 0 < β ≤ ε and γ > 0,

‖Tf‖Fs∞,q(X) ≤ C‖f‖Fs∞,q(X). (6.138)

Proof. Combining some estimates and technics used in the proof of Proposition 5.54 with
those used in the proof of Proposition 6.15 gives the desired conclusions. The details are left
to the reader.

Remark 6.30. By Theorem 8.18 below, if p(s, ε) < q ≤ ∞, then Fs∞,q(X) is the dual space of
F−s
1,q′(X). In this case, Theorem 6.29 can be deduced from Theorem 5.48 together with a duality

argument, which provides another proof of Theorem 6.29.

7. Frame characterizations

In this section, using the discrete Calderón reproducing formulae, we establish a frame
characterization of Besov spaces and Triebel-Lizorkin spaces.

7.1. Frame characterization of Ḃsp,q(X) and Ḟsp,q(X)

In this subsection, we assume that μ(X) = ∞. We first introduce some spaces of sequences,
ḃsp,q(X) and ḟ sp,q(X).

Let

λ =
{
λk,ντ : k ∈ Z, τ ∈ Ik, ν = 1, . . . ,N(k, τ)

}
(7.1)

be a sequence of complex numbers. The space ḃsp,q(X) with s ∈ R and 0 < p, q ≤ ∞ is the set
of all λ as in (7.1) such that

‖λ‖ḃsp,q(X) =

{ ∞∑

k=−∞
2ksq
[
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]q/p}1/q

<∞, (7.2)
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and the space ḟ sp,q(X) with s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞ is the set of all λ as in (7.1) such
that

‖λ‖ḟ sp,q(X) =

∥
∥
∥
∥
∥

{ ∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
∣
∣λk,ντ

∣
∣qχQk,ν

τ

}1/q∥∥
∥
∥
∥
Lp(X)

<∞. (7.3)

Moreover, the space ḟ s∞,q(X)with s ∈ R and 0 < q ≤ ∞ is the set of all λ as in (7.1) such that

‖λ‖ḟ s∞,q(X)

= sup
l∈Z

sup
α∈Il

{
1

μ
(
Ql
α

)

[ ∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)∣∣λk,ντ
∣
∣qχ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

]}1/q

<∞,
(7.4)

where {Ql
α}l∈Z, α∈Il are dyadic cubes as in Lemma 2.19.

Proposition 7.1. Let ε be as in Definition 5.8, let |s| < ε, and let p(s, ε) < p ≤ ∞. Let λ be a sequence
of numbers as in (7.1) and all the other notation as in Theorem 4.11. Then, the following hold.

(i) If 0 < q ≤ ∞ and ‖λ‖ḃsp,q(X) <∞, then the series

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

λk,ντ μ
(
Qk,ν
τ

)
D̃k

(
x, yk,ντ

)
(7.5)

converges to some f ∈ Ḃsp,q(X) both in the norm of Ḃsp,q(X) and in (G̊ε
0(β, γ))

′ with

max
{
0,−s + n

(
1
p
− 1
)

+

}
< β < ε, max

{
n

(
1
p
− 1
)

+
, s − κ

p

}
< γ < ε (7.6)

when p, q < ∞ and only in (G̊ε
0(β, γ))

′ with β and γ as in (7.6) when max(p, q) = ∞.
Moreover, in all cases,

‖f‖Ḃsp,q(X) ≤ C‖λ‖ḃsp,q(X). (7.7)

(ii) If p(s, ε) < q ≤ ∞ and ‖λ‖ḟ sp,q(X) < ∞, then the series in (7.5) converges to some f ∈
Ḟsp,q(X) both in the norm of Ḟsp,q(X) and in (G̊ε

0(β, γ))
′ with β, γ as in (7.6)when p, q <∞

and only in (G̊ε
0(β, γ))

′ with β and γ as in (7.6) when max(p, q) = ∞. Moreover, in all
cases,

‖f‖Ḟsp,q(X) ≤ C‖λ‖ḟ sp,q(X). (7.8)
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Proof. We first verify that the series in (7.5) converges in (G̊ε
0(β, γ))

′ with β and γ as in (7.6)
if λ ∈ ḃsp,q(X) with s, p, q as in (i). By Lemma 2.19 and the definition of N(k, τ) together
with (2.59) in [85, page 1385], we know that for all k ∈ Z and τ ∈ Ik, N(k, τ) is a finite set.
Without loss of generality, since μ(X) = ∞, we may assume that Ik = N for all k ∈ Z. With
this assumption, for L ∈ N, we define

fL(x) =
L∑

k=−L

L∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
λk,ντ D̃k

(
x, yk,ντ

)
. (7.9)

Then fL ∈ G̊(ε′, ε′) with ε′ ∈ (0, ε1 ∧ ε2), and fL ∈ (G̊ε
0(β, γ))

′ with any β, γ ∈ (0, ε). For any
ψ ∈ G̊(β, γ) with β, γ as in (7.6), L1, L2 ∈ N and L1 < L2, we have

∣∣〈fL2 − fL1 , ψ
〉∣∣ ≤

−L1−1∑

k=−L2

L1∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣∣∣〈D̃k

(·, yk,ντ
)
, ψ
〉∣∣

+
L2∑

k=L1+1

L1∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣∣∣〈D̃k

(·, yk,ντ
)
, ψ
〉∣∣

+
L2∑

k=−L2

L2∑

τ=L1+1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣∣∣〈D̃k

(·, yk,ντ
)
, ψ
〉∣∣

≡ Z1 + Z2 + Z3.

(7.10)

Let us now consider two cases, respectively. We first consider the case p ≤ 1. In this
case, letting γ ′ ∈ (max{0, s − κ/p}, γ), by (5.25) and γ > n(1/p − 1) together with (5.31) and
Hölder’s inequality, we have

Z1 � ‖ψ‖G(β,γ)
−L1−1∑

k=−L2

L1∑

τ=1

N(k,τ)∑

ν=1

2kγ
′
μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣ 1

V2−k
(
x1
)
+ V
(
x1, y

k,ν
τ

)
2−kγ

(
2−k + d

(
x1, y

k,ν
τ

))γ

� ‖ψ‖G(β,γ)
−L1−1∑

k=−L2

2k(γ
′−s+κ/p)

[
L1∑

τ=1

N(k,τ)∑

ν=1

2kspμ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]1/p

.

(7.11)

If q ≤ 1, by (5.5), we further obtain

Z1 � ‖ψ‖G(β,γ)
{−L1−1∑

k=−L2

2k(γ
′−s+κ/p)q

[
L1∑

τ=1

N(k,τ)∑

ν=1

2kspμ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]q/p}1/q

� ‖ψ‖G(β,γ)
{−L1−1∑

k=−L2

[
L1∑

τ=1

N(k,τ)∑

ν=1

2kspμ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]q/p}1/q

,

(7.12)
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while if 1 < q ≤ ∞, by Hölder’s inequality, we have

Z1 � ‖ψ‖G(β,γ)
{−L1−1∑

k=−L2

[
L1∑

τ=1

N(k,τ)∑

ν=1

2kspμ
(
Qk,ν
τ

)∣∣λk,ντ
∣
∣p
]q/p}1/q{−L1−1∑

k=−L2

2k(γ
′−s+κ/p)q′

}1/q′

� ‖ψ‖G(β,γ)2−L1(γ ′−s+κ/p)
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k=−L2

[
L1∑

τ=1

N(k,τ)∑
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2kspμ
(
Qk,ν
τ

)∣∣λk,ντ
∣
∣p
]q/p}1/q

.

(7.13)

Thus,

lim
L1, L2 →∞

Z1 = 0. (7.14)

Replacing the estimates (5.25) and (5.31) respectively by the estimates (5.24) and
(5.30), and using some similar computations to the estimate for Z1, we obtain

Z2 � ‖ψ‖G(β,γ)
L2∑

k=L1+1

L1∑

τ=1

N(k,τ)∑

ν=1

2−kβμ
(
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τ
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∣∣ 1
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(
x1
)
+ V
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)
1

(
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(
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(
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)∣∣λk,ντ
∣∣p
]1/p

� ‖ψ‖G(β,γ)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
L2∑

k=L1+1

[
L1∑

τ=1

N(k,τ)∑

ν=1

2kspμ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]q/p}1/q

, q ≤ 1

2−L1[s+β−d(1/p−1)]
{

L2∑

k=L1+1

[
L1∑

τ=1

N(k,τ)∑

ν=1

2kspμ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]q/p}1/q

, 1 < q ≤ ∞.

(7.15)

where we used the assumption that β > −s + d(1/p − 1). Thus,

lim
L1, L2 →∞

Z2 = 0. (7.16)
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The estimates (5.24) and (5.25) together with (5.5), (5.30), and (5.31) further yield that

Z3 � ‖ψ‖G(β,γ)
{
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2kγ
′
μ
(
Qk,ν
τ
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∣∣ 1
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(
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)
+V
(
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)
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(
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(
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))γ

}

� ‖ψ‖G(β,γ)
{
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k=0

2−k[β+s−d(1/p−1)] +
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2k(γ
′−s+κ/p)

}[
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N(k,τ)∑
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2kspμ
(
Qk,ν
τ

)∣∣λk,ντ
∣
∣p
]1/p

,

(7.17)

where we chose γ ′ > 0 as in the estimate for Z1. For any given δ > 0, since γ ′ > s − κ/p and
β > d(1/p − 1) − s, we can fix L0

2 ∈ N such that

∞∑

k=L0
2+1

2−k[β+s−d(1/p−1)] +
−L0

2−1∑

k=−∞
2k(γ

′−s+κ/p) < δ. (7.18)

Since for all k ∈ Z,

[
L2∑

τ=L1+1

N(k,τ)∑

ν=1

2kspμ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]1/p

≤
[
∑

τ∈Ik

N(k,τ)∑

ν=1

2kspμ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]1/p

<‖λ‖ḃsp,q(X), (7.19)

we can chooseN ∈ N such that if L1 > N, then

[
L2∑

τ=L1+1

N(k,τ)∑

ν=1

2kspμ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]1/p

< δ (7.20)

for all k = −L0
2, − L0

2 + 1, . . . , L0
2. From (7.18), (7.19), and (7.20), it follows that if L2 > L1 > N,

then

Z3 � ‖ψ‖G(β,γ)
{ L0

2∑

k=0

2−k[β+s−d(1/p−1)] +
−1∑

k=−L0
2

2k(γ
′−s+κ/p)

}

δ

+ C‖ψ‖G(β,γ)‖λ‖ḃsp,q(X)

{ ∞∑

k=L0
2+1

2−k[β+s−d(1/p−1)] +
−L0

2−1∑

k=−∞
2k(γ

′−s+κ/p)
}

� ‖ψ‖G(β,γ)δ,

(7.21)

which just means that

lim
L1, L2 →∞

Z3 = 0. (7.22)
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We now consider the case 1 < p ≤ ∞. Replacing (5.5) by Hölder’s inequality and using
Lemma 5.2, similarly to the estimate for the case p ≤ 1, we obtain

Z1 � ‖ψ‖G(β,γ)
−L1−1∑

k=−L2
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′−s)
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)
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)
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(
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(
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k,ν
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))γ
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×
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(
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)
+ V
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)
2−kγ
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(
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))γ dμ(y)
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� ‖ψ‖G(β,γ)
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′−s+κ/p)

[
L1∑

τ=1
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∣
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]1/p

.

(7.23)

Then repeating the proof of the case p ≤ 1 yields that

lim
L1, L2 →∞

Z1 = 0. (7.24)

Similarly, for Z2, Hölder’s inequality and Lemma 5.2 imply that

Z2 � ‖ψ‖G(β,γ)2−k(s+β)
[
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×
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(
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(
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� ‖ψ‖G(β,γ)
L2∑
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2−k(s+β)
[
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N(k,τ)∑

ν=1

2kspμ
(
Qk,ν
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)∣∣λk,ντ
∣∣p
]1/p

.

(7.25)

Using the fact that β > −s and repeating the proof of the case p ≤ 1 show that

lim
L1, L2 →∞

Z2 = 0. (7.26)

To estimate Z3, let

XL2,k
L1

=
L2⋃

τ=L1+1

N(k,τ)⋃

ν=1

Qk,ν
τ . (7.27)
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The Hölder inequality shows that

Z3 � ‖ψ‖G(β,γ)
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∣
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]1/p
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(7.28)

where we chose γ ′ ∈ (max{0, s − κ/p}, γ). If p ∈ (1,∞), using the facts that γ ′ > s − κ/p and
β > −s, (7.19), (7.20),

∫

X

1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ dμ(y) � 1,

∫

X

1
V2−k
(
x1
)
+ V
(
x1, y

)
2−kγ

(
2−kγ + d

(
x1, y

))γ dμ(y) � 1,
(7.29)

and repeating the argument for the case p ≤ 1, we can verify that

lim
L1, L2 →∞

Z3 = 0. (7.30)

If p = ∞, replacing (7.20) by

lim
L1,L2 →∞

∫

XL2 ,k
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1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
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))γ dμ(y) = 0,
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L1,L2 →∞

∫
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(
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)
+ V
(
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2−kγ

(
2−kγ + d

(
x1, y

))γ dμ(y) = 0

(7.31)

for any given k ∈ Z, by an argument similar to the case p ≤ 1, we still obtain that

lim
L1,L2 →∞

Z3 = 0. (7.32)

Thus, for any give ψ ∈ G(β, γ), {〈fL, ψ〉}L∈N
is a Cauchy sequence, which means that

the series in (7.5) converges to some f ∈ (G̊ε
0(β, γ))

′ with β, γ as in (7.6) if λ ∈ ḃsp,q(X) with
s, p, q as in the theorem.

If λ ∈ ḟ sp,q(X), by the proved fact on ḃsp,q(X) and

ḃsp,min(p,q)(X) ⊂ ḟ sp,q(X) ⊂ ḃsp,max(p,q)(X) (7.33)
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(see [87, Proposition 2.3]), we also obtain that the series in (7.5) converges in (G̊ε
0(β, γ))

′ with
β and γ as in (7.6).

Let us now verify that the series in (7.5) converges in the norm of Ḃsp,q(X) or Ḟsp,q(X)
when p, q < ∞ if λ ∈ ḃsp,q(X) or λ ∈ ḟ sp,q(X), respectively. To this end, let f be the series in
(7.5). For L ∈ N, in (G̊ε

0(β, γ))
′ with β and γ as in (7.6), we then have

f − fL =
∞∑
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)
.

(7.34)

Replacing Qk′(f)(y
k′,ν′

τ ′ ) in the proof of Proposition 5.4 by λk,ντ here and repeating the proof of
Proposition 5.4, we can verify that
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(7.35)

Thus, from Lebesgue’s dominated convergence theorems on the integral and the series, it is
easy to deduce that

∥∥f − fL
∥∥
Ḃsp,q(X) −→ 0,

∥∥f − fL
∥∥
Ḟsp,q(X) −→ 0

(7.36)



Yongsheng Han et al. 213

as L → ∞. Moreover, by Proposition 5.10(iv), we know that fL ∈ Ḃsp,q(X) and fL ∈ Ḟsp,q(X)
if we choose ε′ large enough. Thus, f ∈ Ḃsp,q(X) if λ ∈ ḃsp,q(X) and f ∈ Ḟsp,q(X) if λ ∈ ḟ sp,q(X)
when p, q <∞.

The same arguments as in the proof of Propositions 5.4 and 6.3 for the space Ḃsp,q(X)
and the space Ḟsp,q(X) with all p, q as in the assumption of the theorem yield (7.7) and (7.8),
respectively, which completes the proof of Proposition 7.1.

From Theorem 4.13, Proposition 7.1, and the Plancherel-Pôlya inequalities, Proposi-
tions 5.4 and 6.3, we obtain the following frame characterizations of the spaces Ḃsp,q(X) and
Ḟsp,q(X).

Theorem 7.2. Let ε be as in Definition 5.8, let |s| < ε, and let p(s, ε) < p ≤ ∞. Let all the other
notation be as in Theorem 4.11 and λk,ντ = Dk(f)(y

k,ν
τ ) for k ∈ Z, τ ∈ Ik and ν = 1, . . . ,N(k, τ),

where yk,ντ is any fixed element in Qk,ν
τ . Then, the following hold.

(i) If 0 < q ≤ ∞, then f ∈ Ḃsp,q(X), if and only if f ∈ (G̊ε
0(β, γ))

′ for some β, γ as in (5.35),

f(x) =
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μ
(
Qk,ν
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)
Dk(f)

(
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D̃k

(
x, yk,ντ

)
, (7.37)

holds in (G̊ε
0(β, γ))

′ and λ ∈ ḃsp,q(X). Moreover, in this case,

‖f‖Ḃsp,q(X) ∼ ‖λ‖ḃsp,q(X). (7.38)

(ii) If p(s, ε) < q ≤ ∞, then f ∈ Ḟsp,q(X) if and only if f ∈ (G̊ε
0(β, γ))

′ for some β, γ as in
(5.35), (7.37), holds in (G̊ε

0(β, γ))
′ and λ ∈ ḟ sp,q(X). Moreover, in this case,

‖f‖Ḟsp,q(X) ∼ ‖λ‖ḟ sp,q(X). (7.39)

7.2. Frame characterization of Bsp,q(X) and Fsp,q(X)

Again, in this subsection, μ(X) can be finite or infinite. We also first introduce some spaces of
sequences, bsp,q(X) and fsp,q(X).

Let

λ =
{
λk,ντ : k ∈ Z+, τ ∈ Ik, ν = 1, . . . ,N(k, τ)

}
(7.40)

be a sequence of complex numbers. The space bsp,q(X) with s ∈ R and 0 < p, q ≤ ∞ is the set
of all λ as in (7.40) such that
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<∞, (7.41)
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and the space fsp,q(X) with s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞ is the set of all λ as in (7.40) such
that

‖λ‖fsp,q(X) =
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∥
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<∞. (7.42)

Moreover, the space fs∞,q(X)with s ∈ R and 0 < q ≤ ∞ is the set of all λ as in (7.40) such that

‖λ‖fs∞,q(X) =max

[

sup
τ∈I0

ν=1,...,N(0,τ)

∣
∣λ0,ντ
∣
∣,

sup
l∈N

sup
α∈Il

{
1

μ
(
Ql
α

)

[ ∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
Qk,ν
τ

)∣∣λk,ντ
∣
∣qχ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

]}1/q]

<∞,

(7.43)

where {Ql
α}l∈N, α∈Il are dyadic cubes as in Lemma 2.19.

Proposition 7.3. Let ε be as in Definition 5.29, let |s| < ε, and let p(s, ε) < p ≤ ∞. Let λ be a
sequence of numbers as in (7.40) and all the other notation as in Theorem 4.14. Then, the following
hold.

(i) If 0 < q ≤ ∞ and ‖λ‖bsp,q(X) <∞, then the series

∑

τ∈I0

N(0,τ)∑

ν=1

λ0,ντ

∫

Q0,ν
τ

D̃0(x, y)dμ(y) +
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

λk,ντ μ
(
Qk,ν
τ

)
D̃k

(
x, yk,ντ

)
(7.44)

converges to some f ∈ Bsp,q(X) both in the norm of Bsp,q(X) and in (Gε
0(β, γ))

′ with

max
{
0, − s + n

(
1
p
− 1
)

+

}
< β < ε, n

(
1
p
− 1
)

+
< γ < ε, (7.45)

when p, q < ∞ and only in (Gε
0(β, γ))

′ with β and γ as in (7.45) when max(p, q) = ∞.
Moreover, in all cases,

‖f‖Bsp,q(X) ≤ C‖λ‖bsp,q(X). (7.46)

(ii) If p(s, ε) < q ≤ ∞ and ‖λ‖fsp,q(X) < ∞, then the series in (7.44) converges to some f ∈
Fsp,q(X) both in the norm of Fsp,q(X) and in (Gε

0(β, γ))
′ with β, γ as in (7.45) when p, q <

∞ and only in (Gε
0(β, γ))

′ with β and γ as in (7.45) whenmax(p, q) = ∞. Moreover, in all
cases,

‖f‖Fsp,q(X) ≤ C‖λ‖fsp,q(X). (7.47)
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Proof. In what follows, for simplicity, we set

D̃Q0,ν
τ
(x) =

1

μ
(
Q0,ν
τ

)

∫

Q0,ν
τ

D̃0(x, y)dμ(y). (7.48)

Let us first show that the series in (7.44) converges in (G(β, γ))′ with β and γ as in (7.45). As in
the proof of Proposition 7.1, we know that for all k ∈ Z+ and τ ∈ Ik,N(k, τ) is a finite set. Let
us suppose Ik = N for all k ∈ Z+; the other cases are easier. With this assumption, for L ∈ N,
we define

fL(x) =
L∑

τ=1

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)
λ0,ντ D̃Q0,ν

τ
(x) +

L∑

k=1

L∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
λk,ντ D̃k

(
x, yk,ντ

)
. (7.49)

Then fL ∈ G(ε, ε) and fL ∈ (Gε
0(β, γ))

′ with any β, γ ∈ (0, ε), where ε can be any positive
number in (0, ε1 ∧ ε2). In what follows, we choose ε > max(β, γ) such that p > p(s, ε) for the
spaces bsp,q(X), and p, q > p(s, ε) for the spaces fsp,q(X).

For any ψ ∈ G(β, γ)with (β, γ) as in (7.45), L1, L2 ∈ N and L1 < L2, we have

∣∣〈fL2 − fL1 , ψ
〉∣∣ ≤

L2∑

τ=L1+1

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)∣∣λ0,ντ
∣∣∣∣〈D̃Q0,ν

τ
, ψ
〉∣∣

+
L2∑

k=L1+1

L2∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣∣∣〈D̃k

(·, yk,ντ
)
, ψ
〉∣∣

+
L1∑

k=1

L2∑

τ=L1+1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣∣∣〈D̃k

(·, yk,ντ
)
, ψ
〉∣∣

≡ Y1 + Y2 + Y3.

(7.50)

From (5.105), (5.5) when p ≤ 1 or Hölder’s inequality when 1 < p ≤ ∞, and γ >
n(1/p − 1)+ together with (5.30), it follows that when p ≤ 1,

∣∣Y1
∣∣ � ‖ψ‖G(β,γ)

{
L2∑

τ=L1+1

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)∣∣λ0,ντ
∣∣p
}1/p

, (7.51)

while when 1 < p ≤ ∞,

∣∣Y1
∣∣ � ‖ψ‖G(β,γ)

{
L2∑

τ=L1+1

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)∣∣λ0,ντ
∣∣p
}1/p

×
{∫

XL2 ,0
L1

1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ dμ(y)

}1/p′

,

(7.52)

where XL2,0
L1

is as in the proof of Proposition 7.1.
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For Y2, by (5.105), (5.5) when p ≤ 1 or Hölder’s inequality when 1 < p ≤ ∞, γ >
n(1/p − 1)+ together with (5.30), and Lemma 2.1(ii), we obtain

∣
∣Y2
∣
∣�‖ψ‖G(β,γ)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L2∑

k=L1+1

2−k[β+s−n(1/p−1)]2ks
[
L2∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣
∣p
]1/p

, p ≤ 1

L2∑

k=L1+1

2−k(β+s)2ks
[
L2∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣
∣p
]1/p

, 1 < p ≤ ∞.

(7.53)

From this and (5.5) when q ≤ 1 or Hölder’s inequality when 1 < q ≤ ∞ again, it further
follows that when p ≤ 1 and q ≤ 1,

∣
∣Y2
∣
∣ � ‖ψ‖G(β,γ)

{
L2∑

k=L1+1

2ksq
[
L2∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣
∣p
]q/p}1/q

, (7.54)

while when 1 < q ≤ ∞,

∣∣Y2
∣∣ � ‖ψ‖G(β,γ)

{
L2∑

k=L1+1

2ksq
[
L2∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]q/p}1/q{

L2∑

k=L1+1

2−k[β+s−n(1/p−1)]q
′
}1/q′

,

(7.55)

and that when 1 < p ≤ ∞,

∣∣Y2
∣∣�‖ψ‖G(β,γ)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
L2∑

k=L1+1

2ksq
[
L2∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]q/p}1/q

, q ≤ 1

{
L2∑

k=L1+1

2ksq
[
L2∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]q/p}1/q{

L2∑

k=L1+1

2−k(β+s)q
′
}1/q′

, 1 < q ≤ ∞.

(7.56)

where we used the fact that β > max(0, n(1/p − 1)+ − s).
Similarly, by (5.105), (5.5) when p ≤ 1 or Hölder’s inequality when 1 < p ≤ ∞, and

γ > n(1/p − 1)+ together with (5.30), we have

∣∣Y3
∣∣ � ‖ψ‖G(β,γ)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1∑

k=1

2−k[β−n(1/p−1)]
[

L2∑

τ=L1+1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]1/p

, p ≤ 1

L1∑

k=1

2−kβ
[

L2∑

τ=L1+1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]1/p

×
{∫

XL2 ,k
L1

1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ dμ(y)

}1/p′

, 1 < p ≤ ∞,

(7.57)

where XL2,k
L1

is as in the proof of Proposition 7.1.
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From this and (5.5) when q ≤ 1 or Hölder’s inequality when 1 < q ≤ ∞, we further
deduce that when p ≤ 1,

∣
∣Y3
∣
∣ � ‖ψ‖G(β,γ)

{
L1∑

k=1

2ksq
[

L2∑

τ=L1+1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣
∣p
]q/p}1/q

, (7.58)

and that when 1 < p ≤ ∞ and q ≤ 1,

∣
∣Y3
∣
∣ � ‖ψ‖G(β,γ)

{
L1∑

k=1

2ksq
[

L2∑

τ=L1+1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣
∣p
]q/p}1/q

, (7.59)

or that when 1 < p ≤ ∞ and 1 < q ≤ ∞,

∣∣Y3
∣∣ � ‖ψ‖G(β,γ)

{
L1∑

k=1

2ksq
[

L2∑

τ=L1+1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]q/p}1/q

×
{

L2∑

k=1

2−k(β+s)q
′
[∫

XL2 ,k
L1

1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ dμ(y)

]q′/p′}1/q′

,

(7.60)

where we used the fact that β > max(0, n(1/p − 1)+ − s).
Combining (7.51) through (7.60), by λ ∈ bsp,q(X),

∫

X

1
V1
(
x1
)
+ V
(
x1, y

)
1

(
1 + d

(
x1, y

))γ dμ(y) <∞ (7.61)

when p = ∞, and

∞∑

k=1

2−k[β+s−n(1/p−1)] <∞ (7.62)

when p ≤ 1 and q = ∞, or

∞∑

k=1

2−k(β+s) <∞ (7.63)

when 1 < p ≤ ∞ and q = ∞, it is easy to see that {〈fL, ψ〉}L∈N
is a Cauchy sequence. This just

means that the series in (7.44) converges to some f ∈ (Gε
0(β, γ))

′ with β, γ satisfying (7.45) if
λ ∈ bsp,q(X) with s, p, q as in the theorem. If λ ∈ fsp,q(X) with s, p, q as in the theorem, by
this fact and

bsp, min(p,q)(X) ⊂ fsp,q(X) ⊂ bsp, max(p,q)(X) (7.64)



218 Abstract and Applied Analysis

(see [87, Proposition 2.3]), we also obtain that the series in (7.44) converges in (Gε
0(β, γ))

′ with
β and γ as in (7.45).

Let us now verify that the series in (7.44) converges in the norm of Bsp,q(X) when
p, q <∞, if λ ∈ bsp,q(X). Let f be the series in (7.44). We estimate the norm in Bsp,q(X) of f − fL
by writing

f − fL =
∞∑

τ=L+1

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)
λ0,ντ D̃Q0,ν

τ
(x)

+
∞∑

k=1

∞∑

τ=L+1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
λk,ντ D̃k

(
x, yk,ντ

)

+
∞∑

k=L+1

L∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
λk,ντ D̃k

(
x, yk,ντ

)
.

(7.65)

Replacing Q0,ν′

τ ′,1(f) and Qk′(f)(y
k′,ν′

τ ′ ) in the proof of Proposition 5.25 respectively by λ0,ντ and

λk,ντ here, and repeating the proof of Proposition 5.25, we then obtain

∥∥f − fL
∥∥
Bsp,q(X) �

{ ∞∑
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μ
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τ
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∣∣p
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+

{ ∞∑
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2ksq
[ ∞∑
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N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]q/p}1/q

+

{ ∞∑

k=L+1

2ksq
[

L∑

τ=1

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣λk,ντ
∣∣p
]q/p}1/q

,

∥∥f − fL
∥∥
Fsp,q(X) �

{ ∞∑

τ=L+1

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)∣∣λ0,ντ
∣∣p
}1/p

+

∥
∥∥∥∥

{ ∞∑

k=1

∞∑

τ=L+1

N(k,τ)∑

ν=1

2ksq
∣∣λk,ντ

∣∣qχQk,ν
τ

}1/q∥∥∥∥∥
Lp(X)

+

∥∥∥∥∥

{ ∞∑

k=L+1

L∑

τ=1

N(k,τ)∑

ν=1

2ksq
∣∣λk,ντ

∣∣qχQk,ν
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}1/q∥∥∥∥∥
Lp(X)

.

(7.66)

Then Lebesgue’s dominated convergence theorems on the integral and the series show that

∥∥f − fL
∥∥
Bsp,q(X) −→ 0,

∥∥f − fL
∥∥
Fsp,q(X) −→ 0

(7.67)

as L → ∞. Moreover, by Proposition 5.31(v), we know that fL ∈ Bsp,q(X) and fL ∈ Fsp,q(X)
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if we choose ε large enough. Thus, f ∈ Bsp,q(X) if λ ∈ bsp,q(X) and f ∈ Fsp,q(X) if λ ∈ fsp,q(X)
when p, q <∞.

The same arguments as in the proof of Propositions 5.25 and 6.15 for the space Bsp,q(X)
and the space Fsp,q(X)with all p, q as in the assumption of the theorem yield (7.46) and (7.47),
respectively, which completes the proof of Proposition 7.3.

From Theorem 4.16, Proposition 7.3, and the Plancherel-Pôlya inequalities, Proposi-
tions 5.25 and 6.15, we obtain the following frame characterizations of the spaces Bsp,q(X) and
Fsp,q(X).

Theorem 7.4. Let ε be as in Definition 5.29, let |s| < ε, and let p(s, ε) < p ≤ ∞. Let all the other
notation be as in Theorem 4.14, λ0,ντ = mQ0,ν

τ
(D0(f)) for τ ∈ I0 and ν = 1, . . . , N(0, τ), and λk,ντ =

Dk(f)(y
k,ν
τ ) for k ∈ N, τ ∈ Ik and ν = 1, . . . ,N(k, τ), where yk,ντ is any fixed element in Qk,ν

τ . Then,
the following hold.

(i) If 0 < q ≤ ∞, then f ∈ Bsp,q(X) if and only if f ∈ (Gε
0(β, γ))

′ for some β, γ as in (5.111),

f(x) =
∑

τ∈I0

N(0,τ)∑

ν=1

λ0,ντ

∫

Qk,ν
τ

D̃0(x, y)dμ(y) +
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
Dk(f)

(
yk,ντ
)
D̃k

(
x, yk,ντ

)

(7.68)

holds in (Gε
0(β, γ))

′, and λ ∈ bsp,q(X). Moreover, in this case,

‖f‖Bsp,q(X) ∼ ‖λ‖bsp,q(X). (7.69)

(ii) If p(s, ε) < q ≤ ∞, then f ∈ Fsp,q(X) if and only if f ∈ (Gε
0(β, γ))

′ for some β, γ as in

(5.111), (7.68) holds in (Gε
0(β, γ))

′, and λ ∈ fsp,q(X). Moreover, in this case,

‖f‖Fsp,q(X) ∼ ‖λ‖fsp,q(X). (7.70)

8. Real interpolation and dual spaces

In this section, using the frame characterization of Besov spaces and Triebel-Lizorkin spaces
in the last section, we characterize real interpolation spaces for our scales of Besov and
Triebel-Lizorkin spaces and determine their dual spaces (when p ≥ 1).

8.1. Real interpolation spaces

Let us first recall some general background on the real interpolation method; see [3, pages
62–64] or [88, 89].

Let H be a linear complex Hausdorff space, and let A0 and A1 be two complex quasi-
Banach spaces such that A0 ⊂ H and A1 ⊂ H. Let A0 +A1 be the set of all elements a ∈ H
which can be represented as a = a0+a1 with a0 ∈ A0 and a1 ∈ A1. If 0 < t <∞ and a ∈ A0+A1,
then Peetre’s K-functional is given by

K(t, a) = K
(
t, a;A0,A1

)
= inf

(∥∥a0
∥∥
A0

+ t
∥∥a1
∥∥
A1

)
, (8.1)
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where the infimum is taken over all representations of a of the form a = a0 + a1 with a0 ∈ A0

and a1 ∈ A1.

Definition 8.1. Let 0 < σ < 1. If 0 < q <∞, then one defines the interpolation space

(A0,A1
)
σ,q ≡

{

a : a ∈ A0 +A1, ‖a‖(A0,A1)σ,q
≡
{∫∞

0

[
t−σK(t, a)

]q dt
t

}1/q

<∞
}

. (8.2)

If q = ∞, then one defines

(A0,A1
)
σ,∞ ≡

{
a : a ∈ A0 +A1, ‖a‖(A0,A1)σ,∞

≡ sup
0<t<∞

t−σK(t, a) <∞
}
. (8.3)

The following basic properties of (A0,A1)σ,q are proved in [3, pages 63-64] and [88,
page 64].

Proposition 8.2. LetA0 andA1 be two complex quasi-Banach spaces. Let 0 < σ < 1 and 0 < q ≤ ∞.
Then,

(i) (A0,A1)σ,q is a quasi-Banach space;

(ii) (A0,A1)σ,q = (A1,A0)1−σ,q;

(iii) letH be a linear complex Hausdorff space, and let B0 and B1 be two complex quasi-Banach
spaces such thatA0 ⊂ B0 ⊂ H and A1 ⊂ B1 ⊂ H. Then (A0,A1)σ,q ⊂ (B0,B1)σ,q.

Using Theorems 7.2 and 7.4 together with the method of retraction and coretraction
as in the proofs of Theorems 2.4.1 and 2.4.2 in [89], we can easily deduce the following
interpolation theorems; see also [90].

Theorem 8.3. Let ε be as in Definition 5.8 and σ ∈ (0, 1).

(i) Let −ε < s0, s1 < ε, s0 /= s1, 1 ≤ p ≤ ∞, and 1 ≤ q0, q1, q ≤ ∞. Then

(
Ḃs0p,q0(X), Ḃs1p,q1(X)

)
σ,q

= Ḃsp,q(X), (8.4)

where s = (1 − σ)s0 + σs1.
(ii) Let −ε < s < ε, 1 ≤ p ≤ ∞, 1 ≤ q0, q1 ≤ ∞, and q0 /= q1. Then

(
Ḃsp,q0(X), Ḃsp,q1(X)

)
σ,q

= Ḃsp,q(X), (8.5)

where 1/q = (1 − σ)/q0 + σ/q1.
(iii) Let −ε < s0, s1 < ε, 1 ≤ p0, p1 ≤ ∞, and p0 /= p1. Then

(
Ḃs0p0,p0(X), Ḃs1p1,p1(X)

)
σ,p

= Ḃsp,p(X), (8.6)

where 1/p = (1 − σ)/p0 + σ/p1 and s = (1 − σ)s0 + σs1.
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Theorem 8.4. Let ε be as in Definition 5.8, −ε < s0, s1 < ε, 1 ≤ p0, p1 < ∞, 1 ≤ q0, q1 ≤ ∞,
σ ∈ (0, 1), s = (1 − σ)s0 + σs1, 1/p = (1 − σ)/p0 + σ/p1, and 1/q = (1 − σ)/q0 + σ/q1.

(i) If s0 /= s1, then

(
Ḟs0p0,q0(X), Ḟs1p1,q1(X)

)
σ,p

= Ḟsp,p(X). (8.7)

(ii) If s0 = s1 = s, p0 = q0, p1 = q1, and q0 /= q1, then

(
Ḟsp0,p0(X), Ḟsp1,p1(X)

)
σ,p

= Ḟsp,p(X). (8.8)

(iii) If s0 = s1 = s, q0 = q1 = q, and p0 /= p1, then

(
Ḟsp0,q(X), Ḟsp1,q(X)

)
σ,p

= Ḟsp,q(X). (8.9)

Theorem 8.5. Let ε be as in Definition 5.29 and σ ∈ (0, 1).

(i) Let −ε < s0, s1 < ε, s0 /= s1, 1 ≤ p ≤ ∞, and 1 ≤ q0, q1, q ≤ ∞. Then

(
Bs0p,q0(X), Bs1p,q1(X)

)
σ,q

= Bsp,q(X), (8.10)

where s = (1 − σ)s0 + σs1.
(ii) Let −ε < s < ε, 1 ≤ p ≤ ∞, 1 ≤ q0, q1 ≤ ∞, and q0 /= q1. Then

(
Bsp,q0(X), Bsp,q1(X)

)
σ,q

= Bsp,q(X), (8.11)

where 1/q = (1 − σ)/q0 + σ/q1.
(iii) Let −ε < s0, s1 < ε, 1 ≤ p0, p1 ≤ ∞, and p0 /= p1. Then

(
Bs0p0,p0(X), Bs1p1,p1(X)

)
σ,p

= Bsp,p(X), (8.12)

where 1/p = (1 − σ)/p0 + σ/p1 and s = (1 − σ)s0 + σs1.
Theorem 8.6. Let ε be as in Definition 5.29, −ε < s0, s1 < ε, 1 ≤ p0, p1 < ∞, 1 ≤ q0, q1 ≤ ∞,
σ ∈ (0, 1), s = (1 − σ)s0 + σs1, 1/p = (1 − σ)/p0 + σ/p1, and 1/q = (1 − σ)/q0 + σ/q1.

(i) If s0 /= s1, then

(
Fs0p0,q0(X), Fs1p1,q1(X)

)
σ,p

= Fsp,p(X). (8.13)

(ii) If s0 = s1 = s, p0 = q0, p1 = q1, and q0 /= q1, then

(
Bsp0,p0(X), Bsp1,p1(X)

)
σ,p

= Bsp,p(X). (8.14)
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(iii) If s0 = s1 = s, q0 = q1 = q, and p0 /= p1, then

(
Fsp0,q(X), Fsp1,q(X)

)
σ,p

= Fsp,q(X). (8.15)

Proofs of Theorem 8.3 through Theorem 8.6. The proofs of Theorem 8.3 through Theorem 8.6 are
similar by using [89, Theorem 1.2.4]. We only give an outline here; see also [90, the proofs of
Proposition 3.3 and Theorem 3.1].

To prove Theorems 8.3 and 8.4, by Proposition 5.10(iii), we know that

Ḃsipi,qi(X), Ḟsipi,qi(X) ⊂ (G̊ε
0

(
βi, γi
))′
, (8.16)

where max{0,−si + n(1/pi − 1)+} < βi < ε and max{n(1/pi − 1)+, si − κ/pi} < γi < ε with
i = 0, 1. We then let β = max(β0, β1) and γ = (γ0, γ1). Then

Ḃsipi,qi(X), Ḟsipi,qi(X) ⊂ (G̊ε
0

(
β, γ
))′
. (8.17)

In this sense, {Ḃs0p0,q0(X), Ḃs1p1,q1(X)} and {Ḟs0p0,q0(X), Ḟs1p1,q1(X)} are interpolation couples in the
sense of [89, Section 1.2.1]. Now, for f ∈ (G̊ε

0(β, γ))
′, with the notation of Theorem 4.11, we

can define the coretraction operator Ṡ by

Ṡ(f)(x) =
{
Ṡ(f)k(x)

}∞
k=−∞, (8.18)

where for k ∈ Z,

Ṡ(f)k(x) =
∑

τ∈Ik

N(k,τ)∑

ν=1

Dk(f)
(
yk,ντ
)
χQk,ν

τ
(x); (8.19)

and the corresponding retraction operator Ṙ by

Ṙ
({
fk
})

(x) =
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

[∫

Qk,ν
τ

fk(y)dμ(y)
]
D̃k

(
x, yk,ντ

)
. (8.20)

By Theorem 4.13, for any f ∈ (G̊ε
0(β, γ))

′, we have ṘṠ(f)(x) = f(x). In what follows, for s ∈ R,
0 < q ≤ ∞, and 0 < p ≤ ∞, we say {fk}∞k=−∞ ∈ �̇s,q(Lp)(X), if

∥∥{fk
}∞
k=−∞
∥∥
�̇s,q(Lp)(X) =

{ ∞∑

k=−∞
2ksq
∥∥fk
∥∥q
Lp(X)

}1/q

<∞; (8.21)

and we say {fk}∞k=−∞ ∈ Lp(�̇s,q)(X), if

∥∥{fk
}∞
k=−∞
∥∥
Lp(�̇s,q)(X) =

∥∥∥∥∥

{ ∞∑

k=−∞
2ksq
∣∣fk(x)

∣∣q
}1/q∥∥∥∥∥

Lp(X)

<∞, (8.22)
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where the usual modifications are made when p = ∞ or q = ∞. If F is an interpolation functor,
then one obtains by [89, Theorem 1.2.4] that

‖f‖F({Ḃs0p0 ,q0 (X),Ḃ
s1
p1 ,q1 (X)}) ∼

∥
∥Ṡ(f)

∥
∥
F({�̇s0 ,q0 (Lp0 )(X), �̇s1 ,q1 (Lp1 )(X)}),

‖f‖F({Ḟs0p0 ,q0 (X), Ḟ
s1
p1 ,q1 (X)}) ∼

∥
∥Ṡ(f)

∥
∥
F({Lp0 (�̇s0 ,q0 )(X), Lp1 (�̇s1 ,q1 )(X)}).

(8.23)

Using Proposition 7.1 and Theorem 7.2, we can then finish the proofs of Theorems 8.3 and 8.4
by the same procedures as those in [89, pages 182-183] and [89, pages 185-186].

To prove Theorems 8.5 and 8.6, by Proposition 5.31(iv), we know that

Bsipi,qi(X), Fsipi,qi(X) ⊂ (Gε
0

(
βi, γi
))′
, (8.24)

where max{0,−si + n(1/pi − 1)+} < βi < ε and n(1/pi − 1)+ < γi < ε with i = 0, 1. We then let
β = max(β0, β1) and γ = (γ0, γ1). Then

Bsipi,qi(X), Fsipi,qi(X) ⊂ (Gε
0(β, γ)

)′
. (8.25)

In this sense, {Bs0p0,q0(X), Bs1p1,q1(X)} and {Fs0p0,q0(X), Fs1p1,q1(X)} are interpolation couples in the
sense of [89, Section 1.2.1]. Now, for f ∈ (Gε

0(β, γ))
′, with the notation of Theorem 4.14, we

can define the coretraction operator S by

S(f)(x) =
{
S(f)k(x)

}∞
k=0, (8.26)

where

S(f)0(x) =
∑

τ∈I0

N(0,τ)∑

ν=1

mQ0,ν
τ

(
D0(f)

)
χQ0,ν

τ
(x) (8.27)

and for k ∈ N,

S(f)k(x) =
∑

τ∈Ik

N(k,τ)∑

ν=1

Dk(f)
(
yk,ντ
)
χQk,ν

τ
(x); (8.28)

and the corresponding retraction operator R by

R
({
fk
})

(x)=
∑

τ∈I0

N(0,τ)∑

ν=1

[∫

Q0,ν
τ

f0(y)dμ(y)
]
D̃Q0,ν

τ
(x)+

∞∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[∫

Qk,ν
τ

fk(y)dμ(y)
]
D̃k

(
x, yk,ντ

)
,

(8.29)

where D̃Q0,ν
τ
(x) is as in the proof of Proposition 7.3. By Theorem 4.16, for any f ∈ (Gε

0(β, γ))
′,
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we have RS(f)(x) = f(x). In what follows, for s ∈ R, 0 < q ≤ ∞, and 0 < p ≤ ∞, we say
{fk}∞k=0 ∈ �s,q(Lp)(X), if

∥
∥{fk

}∞
k=0

∥
∥
�s,q(Lp)(X) =

{ ∞∑

k=0

2ksq
∥
∥fk
∥
∥q
Lp(X)

}1/q

<∞; (8.30)

and we say {fk}∞k=0 ∈ Lp(�s,q)(X), if

∥
∥{fk

}∞
k=0

∥
∥
Lp(�s,q)(X) =

∥
∥
∥
∥
∥

{ ∞∑

k=0

2ksq
∣
∣fk(x)

∣
∣q
}1/q∥∥
∥
∥
∥
Lp(X)

<∞, (8.31)

where the usual modifications are made when p = ∞ or q = ∞. If F is an interpolation functor,
then one obtains by [89, Theorem 1.2.4] that

‖f‖F({Bs0p0 ,q0 (X),B
s1
p1 ,q1 (X)}) ∼

∥∥S(f)
∥∥
F({�s0 ,q0 (Lp0 )(X), �s1 ,q1 (Lp1 )(X)}),

‖f‖F({Fs0p0 ,q0 (X),F
s1
p1 ,q1 (X)}) ∼

∥∥S(f)
∥∥
F({Lp0 (�s0 ,q0 ),Lp1 (�s1 ,q1 )}).

(8.32)

Using Proposition 7.3 and Theorem 7.4, we then finish the proofs of Theorems 8.5 and 8.6 by
the same procedures as those in [89, pages 182-183] and [89, pages 185-186], which completes
the proofs of Theorem 8.3 through Theorem 8.6.

We remark that Theorem 8.3 through Theorem 8.6 only deal with Besov spaces and
Triebel-Lizorkin spaces which are Banach spaces, since p, q ≥ 1. Using Theorems 7.2 and 7.4
together with the following fact that for 0 < p0 /= p1 ≤ ∞ and σ ∈ (0, 1), if 1/p = (1 − σ)/p0 +
σ/p1,

(
�̇p0 , �̇p1

)
σ, p = �̇

p,
(
�p0 , �p1

)
σ, p = �

p
(8.33)

(see [88, Theorem 5.2.1] and also [89, Remark 1.18.6/5]), by a method similar to the proofs
of Theorem 8.3 through Theorem 8.6 (see also [82, Corollary 6.6]), we can easily establish the
following interpolation theoremwhich covers also cases when p < 1. We omit the details.

Theorem 8.7. Let ε be as in Definition 5.8, s0, s1 ∈ (−ε, ε), p(s0, ε) < p0 ≤ ∞, p(s1, ε) < p1 ≤ ∞,
and p0 /= p1. Let σ ∈ (0, 1), 1/p = (1 − σ)/p0 + σ/p1, and s = (1 − σ)s0 + σs1. Then,

(i) (Ḃs0p0,p0(X), Ḃs1p1,p1(X))
σ,p

= Ḃsp,p(X);

(ii) (Bs0p0,p0(X), Bs1p1,p1(X))
σ,p

= Bsp,p(X).

Making use of Calderón reproducing formulae in place of frame characterizations,
we can also directly establish the following real interpolation theorems for Besov and Triebel-
Lizorkin spaces which are only quasi-Banach spaces; see also [3, Theorem 2.4.2] and [91].
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Theorem 8.8. Let ε be as in Definition 5.8, σ ∈ (0, 1), s0, s1 ∈ (−ε, ε), s0 /= s1, and s = (1 − σ)s0 +
σs1. Then

(i) ifmax{p(s0, ε), p(s1, ε)} < p ≤ ∞ and 0 < q0, q1, q ≤ ∞, then

(
Ḃs0p,q0(X), Ḃs1p,q1(X)

)
σ,q

= Ḃsp,q(X); (8.34)

(ii) ifmax{p(s0, ε), p(s1, ε)} < p ≤ ∞, p(si, ε) < qi ≤ ∞ for i = 0, 1 and 0 < q ≤ ∞, then

(
Ḟs0p,q0(X), Ḟs1p,q1(X)

)
σ,q

= Ḃsp,q(X). (8.35)

Proof. We first verify (i). By Proposition 5.10(iii), we know that

Ḃs0p,q0(X), Ḃs1p,q1(X) ⊂ (G̊ε
0(β, γ)

)′
(8.36)

with max{0, −s0+n(1/p − 1)+, −s1+n(1/p − 1)+} < β < ε andmax{n(1/p − 1)+, s0−κ/p, s1−
κ/p} < γ < ε. Thus, we can take H = (G̊ε

0(β, γ))
′
with β and γ as above.

We now verify that

(
Ḃs0p,∞(X), Ḃs1p,∞(X)

)
σ,q

⊂ Ḃsp,q(X). (8.37)

By Proposition 8.2(ii), without loss of generality, we may assume that s0 > s1.
Assume that f ∈ (Ḃs0p,∞(X), Ḃs1p,∞(X))

σ,q
and f = f0 + f1 with f0 ∈ Ḃs0p,∞(X) and f1 ∈

Ḃs1p,∞(X). Let {Dk}k∈Z
be as in Definition 5.8. Then,

2ks0
∥∥Dk(f)

∥∥
Lp(X) � 2ks0

∥∥Dk

(
f0
)∥∥

Lp(X) + 2k(s0−s1)2ks1
∥∥Dk

(
f1
)∥∥

Lp(X)

�
∥∥f0
∥∥
Ḃ
s0
p,∞(X) + 2k(s0−s1)

∥∥f1
∥∥
Ḃ
s1
p,∞(X).

(8.38)

Taking the infimum on all representations f = f0 + f1 yields that

2ks0
∥∥Dk(f)

∥∥
Lp(X) � K

(
2k(s0−s1), f ; Ḃs0p,∞(X), Ḃs1p,∞(X)

)
. (8.39)
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If 0 < q <∞, from (8.39), it follows that

∫∞

0
t−σq
[
K
(
t, f ; Ḃs0p,∞(X), Ḃs1p,∞(X)

)]q dt
t

=
∞∑

k=−∞

∫2k(s0−s1)

2(k−1)(s0−s1)
t−σq
[
K
(
t, f ; Ḃs0p,∞(X), Ḃs1p,∞(X)

)]q dt
t

�
∞∑

k=−∞
2−σqk(s0−s1)

[
K
(
2k(s0−s1), f ; Ḃs0p,∞(X), Ḃs1p,∞(X)

)]q

�
∞∑

k=−∞
2ksq
∥
∥Dk(f)

∥
∥q
Lp(X)

� ‖f‖q
Ḃsp,q(X)

;

(8.40)

and if q = ∞, by (8.39), we then have

‖f‖Ḃsp,∞(X) = sup
k∈Z

2ks
∥∥Dk(f)

∥∥
Lp(X)

� sup
k∈Z

2k(s−s0)K
(
2k(s0−s1), f ; Ḃs0p,∞(X), Ḃs1p,∞(X)

)

� sup
0<t<∞

t−σK
(
t, f ; Ḃs0p,∞(X), Ḃs1p,∞(X)

)
.

(8.41)

Thus, (8.37) holds.
We now prove that if 0 < r < q, then

Ḃsp,q(X) ⊂ (Ḃs0p,r(X), Ḃs1p,r(X)
)
σ,q
. (8.42)

Without loss of generality, we may assume that s0 > s1 again. Then we also have s0 > s > s1.
In what follows, we only consider the case q < ∞ and we omit the details for the case q = ∞
by similarity and simplicity. Let now f ∈ Ḃsp,q(X). We then write

‖f‖q
(Ḃ

s0
p,r(X),Ḃ

s1
p,r(X))

σ,q

=
∫∞

0
t−σq
[
K
(
t, f ; Ḃs0p,r(X), Ḃs1p,r(X)

)]q dt
t

�
∞∑

j=−∞
2−jσq(s0−s1)

[
K
(
2j(s0−s1), f ; Ḃs0p,r(X), Ḃs1p,r(X)

)]q
.

(8.43)

Let all the notation be as in Theorem 4.11. For any j ∈ Z, we write

f(x) =
j∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
Dk(f)

(
yk,ντ
)
D̃k

(
x, yk,ντ

)
+

∞∑

k=j+1

∑

τ∈Ik

N(k,τ)∑

ν=1

· · ·

≡ fj0 + f
j

1 .

(8.44)
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From this and the definition of K-functional, it follows that

‖f‖q
(Ḃ

s0
p,r(X),Ḃ

s1
p,r(X))

σ,q

�
∞∑

j=−∞
2−jσq(s0−s1)

(∥∥f
j

0

∥
∥q
Ḃ
s0
p,r(X) + 2j(s0−s1)

∥
∥f

j

1

∥
∥q
Ḃ
s1
p,r(X)

)

�
∞∑

j=−∞
2jq(s−s0)

{ ∞∑

k′=−∞
2k

′s0r

[
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)∣∣Dk′

(
f
j

0

)(
yk

′,ν′

τ ′
)∣∣p
]r/p}q/r

+
∞∑

j=−∞
2jq(s−s1)

{ ∞∑

k′=−∞
2k

′s1r

[
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)∣∣Dk′

(
f
j

1

)(
yk

′,ν′

τ ′
)∣∣p
]r/p}q/r

≡ J1 + J2.

(8.45)

We first estimate J1 in the case p ≤ 1. In this case, by (5.10), (5.5), Lemma 5.2, and
(5.12), we have

J1 �
∞∑

j=−∞
2jq(s−s0)

{ ∞∑

k′=−∞
2k

′s0r

(
j∑

k=−∞
2−|k

′−k|εp2n[k−(k∧k
′)](1−p)

×
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p
)r/p}q/r

.

(8.46)

Now, we choose ε′ ∈ (|s0|, ε) such that p > n/(n+s0+ε′). Using (5.5)when r/p ≤ 1 or Hölder’s
inequality when 1 < r/p <∞ then further shows that

J1 �
∞∑

j=−∞
2jq(s−s0)

{ ∞∑

k′=−∞
2k

′s0r

[
j∑

k=−∞
2−|k

′−k|ε′r2n[k−(k∧k
′)](1/p−1)r

×
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )
∣∣Dk(f)

(
yk,ντ
)∣∣p
)r/p]}q/r

�
∞∑

j=−∞
2jq(s−s0)

{
j∑

k=−∞
2ks0r
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p
)r/p}q/r

.

(8.47)

Since q/r > 1, by Hölder’s inequality and s0 > s, we have

J1 �
∞∑

j=−∞
2jq(s−s0)/2

{
j∑

k=−∞
2k(s0−s)q/22ksq

(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p
)q/p}

� ‖f‖q
Ḃsp,q(X)

,

(8.48)

which is the desired estimate in the case p ≤ 1.
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While when 1 < p ≤ ∞, letting ε′ ∈ (|s0|, ε), by Hölder’s inequality and Lemma 5.2, we
have

J1 �
∞∑

j=−∞
2jq(s−s0)

{ ∞∑

k′=−∞
2k

′s0r

(
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ
(
Qk′,ν′

τ ′
)

×
[

j∑

k=−∞
2−|k

′−k|ε′p∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p

× 1

V2−(k∧k′)
(
yk

′,ν′
τ ′
)
+ V2−(k∧k′)

(
yk,ντ
)
+ V
(
yk

′,ν′
τ ′ , yk,ντ

)

×
(

2−(k∧k
′)

2−(k∧k′) + d
(
yk

′,ν′
τ ′ , yk,ντ

)

)ε])r/p}q/r

�
∞∑

j=−∞
2jq(s−s0)

{ ∞∑

k′=−∞
2k

′s0r

[
j∑

k=−∞
2−|k

′−k|ε′p
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p
)]r/p}q/r

.

(8.49)

Let ε′′ = ε′ when r/p ≤ 1 and ε′′ ∈ (|s0|, ε′) when r/p > 1. By (5.5) when r/p ≤ 1 or Hölder’s
inequality when r/p > 1, we further obtain

J1 �
∞∑

j=−∞
2jq(s−s0)

{ ∞∑

k′=−∞
2k

′s0r

[
j∑

k=−∞
2−|k

′−k|ε′′r
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p
)r/p]}q/r

� ‖f‖q
Ḃsp,q(X)

,

(8.50)

where in the last step, we omit some estimates similar to the case p ≤ 1. This completes the
estimate for J1.

We now turn to the estimate for J2. We also need to consider two cases. We first assume
that p ≤ 1. In this case, the estimate (5.10) and Lemma 5.2 prove that

J2 �
∞∑

j=−∞
2jq(s−s1)

{ ∞∑

k′=−∞
2k

′s1r

( ∞∑

k=j+1

2−|k
′−k|εp2n[k−(k∧k

′)](1−p)

×
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p
)r/p}q/r

.

(8.51)
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Now let ε′ = 0 when r/p ≤ 1 or ε′ ∈ (0, s − s1) when r/p > 1. Using (5.5) when r/p ≤ 1 or
Hölder’s inequality when r/p > 1 gives that

J2 �
∞∑

j=−∞
2jq(s−s1−ε

′)

{ ∞∑

k′=−∞
2k

′s1r

[ ∞∑

k=j+1

2−|k
′−k|εr2n[k−(k∧k

′)](1/p−1)r2kε
′r

×
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p
)r/p]}q/r

�
∞∑

j=−∞
2jq(s−s1−ε

′)

{ ∞∑

k=j+1

2k(s1+ε
′)r

(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p
)r/p}q/r

.

(8.52)

Using q/r > 1 together with Hölder’s inequality then further yields that

J2 �
∞∑

j=−∞
2jq(s−s1−ε

′)/2

{ ∞∑

k=j+1

2k(s1+ε
′−s)q/22ksq

(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p
)q/p}

� ‖f‖q
Ḃsp,q(X)

.

(8.53)

If 1 < p ≤ ∞, letting ε′′ ∈ (0, s − s1), by Hölder’s inequality and Lemma 5.2, we obtain

J2 �
∞∑

j=−∞
2jq(s−s1−ε

′′)

{ ∞∑

k′=−∞
2k

′s1r

( ∞∑

k=j+1

2−|k
′−k|εp2kε

′′p
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p
)r/p}q/r

.

(8.54)

Now, if r/p ≤ 1, we then take ε′ = 0, and if r/p > 1, we take ε′ ∈ (0, s − ε′′ − s1); by (5.5) or
Hölder’s inequality, we obtain

J2 �
∞∑

j=−∞
2jq(s−s1−ε

′′−ε′)
{ ∞∑

k′=−∞
2k

′s1r

[ ∞∑

k=j+1

2−|k
′−k|εr2k(ε

′′+ε′)r

×
(
∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)∣∣Dk(f)
(
yk,ντ
)∣∣p
)r/p]}q/r

� ‖f‖q
Ḃsp,q(X)

.

(8.55)

Thus, (8.42) holds.
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From (8.37), (8.42), and Proposition 8.2(iii) together with Proposition 5.10(i), by taking
0 < r < q0 and 0 < r < q1, we deduce that

Ḃsp,q(X) ⊂ (Ḃs0p,r(X), Ḃs1p,r(X)
)
σ,q

⊂ (Ḃs0p,q0(X), Ḃs1p,q1(X)
)
σ,q

⊂ (Ḃs0p,∞(X), Ḃs1p,∞(X)
)
σ,q

⊂ Ḃsp,q(X).

(8.56)

Thus, (i) holds.
To see (ii), by (i) and Proposition 8.2(iii) together with Propositions 5.10(ii) and 6.9(ii),

we have

Ḃsp,q(X) =
(
Ḃs0
p,min{p,q0}(X), Ḃs1

p,min{p,q1}(X)
)
σ,q

⊂ (Ḟs0p,q0(X), Ḟs1p,q1(X)
)
σ,q

⊂ (Ḃs0
p,max{p,q0}(X), Ḃs1

p,max{p,q1}(X)
)
σ,q

= Ḃsp,q(X).

(8.57)

Thus, (ii) holds, which completes the proof of Theorem 8.8.

Theorem 8.9. Let ε be as in Definition 5.29, σ ∈ (0, 1), s0, s1 ∈ (−ε, ε), s0 /= s1, and s = (1 − σ)s0 +
σs1. Then

(i) ifmax{p(s0, ε), p(s1, ε)} < p ≤ ∞ and 0 < q0, q1, q ≤ ∞, then

(
Bs0p,q0(X), Bs1p,q1(X)

)
σ,q

= Bsp,q(X); (8.58)

(ii) ifmax{p(s0, ε), p(s1, ε)} < p ≤ ∞, p(si, ε) < qi ≤ ∞ for i = 0, 1 and 0 < q ≤ ∞, then

(
Fs0p,q0(X), Fs1p,q1(X)

)
σ,q

= Bsp,q(X). (8.59)

Proof. Similarly to the proof of Theorem 8.8, we only need to verify (i), while (ii) can be
deduced from (i), Propositions 8.10, 5.31, and 6.21.

To prove (i), by Proposition 5.31(iv), we know that

Bs0p,q0(X), Bs1p,q1(X) ⊂ (Gε
0(β, γ)

)′ (8.60)

with max{0, − s0 + n(1/p − 1)+,−s1 + n(1/p − 1)+} < β < ε and n(1/p − 1)+ < γ < ε. Thus, in
this case, we can take H = (Gε

0(β, γ))
′ with β and γ as above.
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We now verify that

(
Bs0p,∞(X), Bs1p,∞(X)

)
σ,q

⊂ Bsp,q(X). (8.61)

By Proposition 8.2(ii), without loss of generality, we may assume that s0 > s1.
Assume that f ∈ (Bs0p,∞(X), Bs1p,∞(X))

σ,q
and f = f0 + f1 with f0 ∈ Bs0p,∞(X) and f1 ∈

Bs1p,∞(X). Let {Dk}k∈Z+
be as in Definition 5.29. Then,

2ks0
∥
∥Dk(f)

∥
∥
Lp(X) � 2ks0

∥
∥Dk

(
f0
)∥∥

Lp(X) + 2k(s0−s1)2ks1
∥
∥Dk

(
f1
)∥∥

Lp(X)

�
∥
∥f0
∥
∥
B
s0
p,∞(X) + 2k(s0−s1)

∥
∥f1
∥
∥
B
s1
p,∞(X).

(8.62)

Taking the infimum on all representations f = f0 + f1 yields that for all k ∈ Z+,

2ks0
∥∥Dk(f)

∥∥
Lp(X) � K

(
2k(s0−s1), f ;Bs0p,∞(X), Bs1p,∞(X)

)
. (8.63)

If 0 < q <∞, from (8.63), it follows that

∫∞

0
t−σq
[
K
(
t, f ;Bs0p,∞(X), Bs1p,∞(X)

)]q dt
t

=
∞∑

k=−∞

∫2k(s0−s1)

2(k−1)(s0−s1)
t−σq
[
K
(
t, f ;Bs0p,∞(X), Bs1p,∞(X)

)]q dt
t

�
∞∑

k=0

2−σqk(s0−s1)
[
K
(
2k(s0−s1), f ;Bs0p,∞(X), Bs1p,∞(X)

)]q

�
∞∑

k=0

2ksq
∥∥Dk(f)

∥∥q
Lp(X)

� ‖f‖q
Bsp,q(X);

(8.64)

and if q = ∞, by (8.63), we then have

‖f‖Bsp,∞(X) = sup
k∈Z+

2ks
∥∥Dk(f)

∥∥
Lp(X)

� sup
k∈Z+

2k(s−s0)K
(
2k(s0−s1), f ;Bs0p,∞(X), Bs1p,∞(X)

)

� sup
0<t<∞

t−σK
(
t, f ;Bs0p,∞(X), Bs1p,∞(X)

)
.

(8.65)

Thus, (8.61) holds.
We now prove that if 0 < r < q, then

Bsp,q(X) ⊂ (Bs0p,r(X), Bs1p,r(X)
)
σ,q
. (8.66)
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Without loss of generality, we may assume that s0 > s1 again. Then we also have s0 > s > s1.
In what follows, we only consider the case q < ∞ and we omit the details for the case q = ∞
by similarity and simplicity. Let now f ∈ Bsp,q(X). We then write

‖f‖q
(B

s0
p,r(X),B

s1
p,r(X))

σ,q

=
∫∞

0
t−σq
[
K
(
t, f ;Bs0p,r(X), Bs1p,r(X)

)]q dt
t

�
∫1

0
t−σq
[
K
(
t, f ;Bs0p,r(X), Bs1p,r(X)

)]q dt
t

+
∞∑

j=0

2−jσq(s0−s1)
[
K
(
2j(s0−s1), f ;Bs0p,r(X), Bs1p,r(X)

)]q

≡ Y1 + Y2.

(8.67)

To estimate the first term, by Proposition 5.31(ii), we have

K
(
t, f ;Bs0p,r(X), Bs1p,r(X)

) ≤ t‖f‖Bs1p,r(X) � t‖f‖Bsp,r(X), (8.68)

which shows that

Y1 =
∫1

0
t−σq
[
K
(
t, f ;Bs0p,r(X), Bs1p,r(X)

)]q dt
t

� ‖f‖q
Bsp,r(X). (8.69)

To estimate the second term, let all the notation be as in Theorem 4.14. For any j ∈ N,
we write

f(x)=

{
∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)
mQ0,ν

τ

(
D0(f)

)
D̃Q0,ν

τ
(x)+

j∑

k=1

∑

τ∈Ik

N(k,τ)∑
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μ
(
Qk,ν
τ

)
Dk(f)

(
yk,ντ
)
D̃k

(
x, yk,ντ

)
}

+
∞∑

k=j+1

∑

τ∈Ik

N(k,τ)∑
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μ
(
Qk,ν
τ

)
Dk(f)

(
yk,ντ
)
D̃k

(
x, yk,ντ

)

≡ fj0 + f
j

1 ,

(8.70)

where D̃Q0,ν
τ
(x) is as in the proof of Proposition 7.3. From this and the definition of K-

functional, it follows that
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+
∞∑

j=0

2jq(s−s1)
{
∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

μ
(
Q0,ν′

τ ′
)[
m
Q0,ν′
τ ′

(∣∣D0
(
f
j

1

)∣∣)]p
}q/p

+
∞∑

j=0

2jq(s−s1)
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′s1r
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μ
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τ ′
)∣∣Dk′

(
f
j

1

)(
yk

′,ν′

τ ′
)∣∣p
]r/p}q/r

≡ J1 + J2 + J3 + J4.
(8.71)

The estimate (5.82), (5.5), and Lemma 5.2 show that when p ≤ 1,

J1 �
∞∑
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2j(s−s0)q
{
∑

τ∈I0

N(0,τ)∑
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(
yk,ντ
)∣∣]p[V1

(
yk,ντ
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}q/p

� ‖f‖q
Bsp,q(X),

(8.72)

where in the last inequality, we used (5.5) when q/p ≤ 1 or Hölder’s inequality when 1 <
q/p <∞.

When 1 < p ≤ ∞, from (5.82), Hölder’s inequality, and Lemma 5.2, it follows that

J1 �
∞∑
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τ

)
+ V
(
y0,ν′
τ ′ , y
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)
1
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τ

))ε

)}q/p

+
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{
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N(0,τ ′)∑

ν′=1

μ
(
Q0,ν′

τ ′
)

×
[

j∑

k=1

2−kε
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× 1
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(
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τ ′
)
+ V1
(
yk,ντ
)
+ V
(
y0,ν′
τ ′ , y

k,ν
τ

)
1

(
1 + d

(
y0,ν′
τ ′ , y

k,ν
τ

))ε

]}q/p

� ‖f‖q
Bsp,q(X),

(8.73)

where we chose ε′ ∈ (|s|, ε).



234 Abstract and Applied Analysis

By (5.82), we write

J2 �
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(
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+
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μ
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(
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kDk

)(
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′,ν′

τ ′ , yk,ντ
)∣∣
]p)r/p}q/r

≡ J2,1 + J2,2.
(8.74)

The estimate J2,2 is completely similar to that for J1. Thus, we only need to estimate J2,1.
When p ≤ 1, by (5.5) and Lemma 5.2, we have

J2,1 �
∞∑

j=0

2j(s−s0)q
{ ∞∑

k′=1

2k
′(s0−ε)r

}q/r(∑

τ∈I0

N(0,τ)∑

ν=1

μ
(
Q0,ν
τ

)[
mQ0,ν

τ

(∣∣D0(f)
∣∣)]p
)q/p

� ‖f‖q
Bsp,q(X),

(8.75)

while when 1 < p ≤ ∞, Hölder’s inequality and Lemma 5.2 give that
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)
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∣∣)]p 1
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′,ν′
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(
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)
+ V
(
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τ

)

× 1
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1 + d

(
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′,ν′
τ ′ , y0,ν

τ

))ε

])r/p}q/r

� ‖f‖q
Bsp,q(X),

(8.76)

which is also the desired estimate.
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Similarly, from (5.82), (5.5), Hölder’s inequality, and Lemma 5.2, it follows that if p ≤ 1,

J3 �
∞∑

j=0

2j(s−s1)q
{
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μ
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(
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)∣∣
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(
y0,ν′
τ ′
)
+V1
(
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)
+V
(
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1

(
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τ

))d+ε
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�
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μ
(
Qk,ν
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(
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� ‖f‖q
Bsp,q(X),

(8.77)

where we choose a1 = 1 if q/p ≤ 1 and a1 ∈ (0, 1) if q/p > 1 such that a1s > (1 −
a1)(ε + n − n/p) + s1, while when 1 < p ≤ ∞, by Hölder’s inequality and Lemma 5.2, we
have

J3 �
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j=0

2j(s−s1)q
{
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τ ′
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τ∈Ik

N(k,τ)∑

ν=1

μ
(
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τ

)|Dk(f)
(
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)|p

×2−kε′p 1

V1
(
y0,ν′
τ ′
)
+V1
(
yk,ντ
)
+V
(
y0,ν′
τ ′ , y

k,ν
τ

)
1

(
1+d
(
y0,ν′
τ ′ , y

k,ν
τ

))ε

]}q/p

� ‖f‖q
Bsp,q(X),

(8.78)

where we chose ε′ ∈ (|s1|, ε) and a2 ∈ (0, 1) such that a2ε′ > (1 − a2)s − s1.
The estimate J4 is similar to that for J2 and we omit the details, which completes the

proof of Theorem 8.9.

8.2. Dual spaces

In this subsection, we are going to identify the dual spaces of some classes of Besov spaces and
Triebel-Lizorkin spaces. To this end, we first recall the definitions of some auxiliary function
spaces. Let 0 < p, q ≤ ∞. The spaces Lp(�̇q)(X) and �̇q(Lp)(X) are respectively defined to be
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the set of all sequences f = {fk}k∈Z
of μ-measurable functions on X such that

‖f‖Lp(�̇q)(X) =

∥
∥
∥
∥
∥

{ ∞∑

k=−∞

∣
∣fk
∣
∣q
}1/q∥∥
∥
∥
∥
Lp(X)

<∞,

‖f‖�̇q(Lp)(X) =

{ ∞∑

k=−∞

∥
∥fk
∥
∥q
Lp(X)

}1/q

<∞;

(8.79)

and the spaces Lp(�q)(X) and �q(Lp)(X) are respectively defined to be the set of all sequences
f = {fk}k∈Z+

of μ-measurable functions on X such that

‖f‖Lp(�q)(X) =

∥
∥∥∥∥

{ ∞∑

k=0

∣∣fk
∣∣q
}1/q∥∥∥∥∥

Lp(X)

<∞,

‖f‖�q(Lp)(X) =

{ ∞∑

k=0

∥∥fk
∥∥q
Lp(X)

}1/q

<∞.

(8.80)

The following result is well known (cf., e.g., [3, Proposition 2.11.1, pages 177-178]).

Proposition 8.10. Let 1 ≤ p <∞ and 0 < q <∞. Then the following hold.

(i) g ∈ (Lp(�̇q)(X))′ if and only if there exists a sequence {gj}j∈Z
∈ Lp′(�̇q′)(X) such that

g(f) =
∞∑

j=−∞

∫

X
gj(x)fj(x)dμ(x) (8.81)

for every f = {fj}j∈Z
∈ Lp(�̇q)(X), and ‖g‖ ∼ ‖{gj}j∈Z

‖
Lp

′ (�̇q′ )(X)
.

(ii) g ∈ (�̇q(Lp)(X))′ if and only if there is a sequence {gj}j∈Z
∈ �̇q′(Lp′)(X) such that

g(f) =
∞∑

j=−∞

∫

X
gj(x)fj(x)dμ(x) (8.82)

for every f = {fj}j∈Z
∈ �̇q(Lp)(X), and ‖g‖ ∼ ‖{gj}j∈Z

‖
�̇q

′ (Lp′ )(X)
.

Using Proposition 8.10, by a procedure similar to the proof of Theorem 2.11.2 in [3],
we can establish the following duality theorem for homogeneous Besov spaces and Triebel-
Lizorkin spaces. In what follows, when 0 < q < 1, we also let q′ ≡ ∞.
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Theorem 8.11. Let ε be as in Definition 5.8 and |s| < ε. Then, the following hold.
(i) If 1 ≤ p <∞ and 0 < q <∞, then

(
Ḃsp,q(X)

)′ = Ḃ−s
p′,q′(X). (8.83)

More precisely, given g ∈ Ḃ−s
p′,q′(X), then Lg(f) ≡ 〈f, g〉 defines a linear functional on G̊(ε, ε) ∩

Ḃsp,q(X) such that

∣
∣Lg(f)

∣
∣ ≤ C‖f‖Ḃsp,q(X)‖g‖Ḃ−s

p′ ,q′ (X), (8.84)

where C > 0 is independent of f , and this linear functional naturally extends to Ḃsp,q(X) by continuity
with norm at most C‖g‖Ḃ−s

p′ ,q′ (X).

Conversely, if L is a linear functional on Ḃsp,q(X), then there exists a unique g ∈ Ḃ−s
p′,q′(X)

such that L is the natural extension of Lg , with ‖g‖Ḃ−s
p′ ,q′ (X) ≤ C‖L‖.

(ii) If 1 < p, q <∞, then

(
Ḟsp,q(X)

)′ = Ḟ−s
p′,q′(X). (8.85)

More precisely, given g ∈ Ḟ−s
p′,q′(X), then Lg(f) ≡ 〈f, g〉 defines a linear functional on G̊(ε, ε) ∩

Ḟsp,q(X) such that

∣∣Lg(f)
∣∣ ≤ C‖f‖Ḟsp,q(X)‖g‖Ḟ−s

p′ ,q′ (X), (8.86)

where C > 0 is independent of f , and this linear functional naturally extends to Ḟsp,q(X) by continuity
with norm at most C‖g‖Ḟ−s

p′ ,q′ (X).

Conversely, if L is a linear functional on Ḟsp,q(X), then there exists a unique g ∈ Ḟ−s
p′,q′(X)

such that L is the natural extension of Lg , with ‖g‖Ḟ−s
p′ ,q′ (X) ≤ C‖L‖.

Proof. Let s ∈ (−ε, ε). We first claim that if 1 < p <∞ and p(s, ε) < q <∞, then

Ḟ−s
p′,q′(X) ⊂ (Ḟsp,q(X)

)′
, (8.87)

and that if 1 ≤ p <∞ and 0 < q <∞,

Ḃ−s
p′,q′(X) ⊂ (Ḃsp,q(X)

)′
. (8.88)
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We first verify (8.87). Observe first that 1 < p′ < ∞ and 1 < q′ ≤ ∞. Let f ∈ Ḟ−s
p′,q′(X)

and all the notation be as in Theorem 3.10. For any ϕ ∈ G̊(ε1, ε2), by the definition of Ḟ−s
p′,q′(X)

and Theorem 3.13 together with Hölder’s inequality and Remark 5.5, we have

∣
∣f(ϕ)

∣
∣ =

∣
∣
∣
∣
∣

∞∑

k=−∞

〈
Dk(f), D̃t

k(ϕ)
〉
∣
∣
∣
∣
∣

≤
∫

X

∞∑

k=−∞

∣
∣Dk(f)(x)

∣
∣
∣
∣D̃t

k(ϕ)(x)
∣
∣dμ(x)

� ‖f‖Ḟ−s
p′ ,q′ (X)‖ϕ‖Ḟsp,q(X),

(8.89)

which together with the Hahn-Banach theorem and Proposition 5.21 shows (8.87).
Similarly, to see (8.88), for any f ∈ Ḃ−s

p′,q′(X) with 1 < p′, q′ ≤ ∞ and ϕ ∈ G̊(ε1, ε2), we
have

∣∣f(ϕ)
∣∣ =

∣∣∣∣∣

∞∑

k=−∞

〈
Dk(f), D̃t

k(ϕ)
〉
∣∣∣∣∣

≤
∞∑

k=−∞

∥∥Dk(f)
∥∥
Lp

′ (X)

∥∥D̃t
k(ϕ)
∥∥
Lp(X)

≤ ‖f‖Ḃ−s
p′ ,q′ (X)‖ϕ‖Ḃsp,q(X),

(8.90)

which together with the Hahn-Banach theorem and Proposition 5.21 again proves (8.88).
We now complete the proof of (ii). Let s ∈ (−ε, ε) and let 1 < p, q < ∞. Let {Dk}k∈Z

be
as in Definition 5.8. Then

f ∈ Ḟsp,q(X) −→ {2ksDk(f)
}∞
k=−∞ (8.91)

is a one-to-one mapping from Ḟsp,q(X) onto a subspace of Lp(�̇q)(X), and every functional g ∈
(Ḟsp,q(X))′ can be interpreted as a functional on that subspace. By the Hahn-Banach theorem,
g can be extended to a continuous linear functional on Lp(�̇q)(X), where the norm of g is
preserved. If ϕ ∈ G̊ε

0(β, γ)with some fixed |s| < β < ε and max{s − κ/p, 0, − s − κ(1 − 1/p)} <
γ < ε, then Proposition 8.10(ii) yields

g(ϕ) =
∞∑

k=−∞

∫

X
gk(x)Dk(ϕ)(x)dμ(x), (8.92)

∥∥∥
{
2−skgk

}∞
k=−∞
∥∥∥
Lp

′ (�̇q′ )(X)
∼ ‖g‖. (8.93)

The formula (8.92) can be written as

g(ϕ) =
∞∑

k=−∞

∫

X
Dt
k(gk)(x)ϕ(x)dμ(x), (8.94)
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which means that in (G̊ε
0(β, γ))

′ with |s| < β < ε and max{s− κ/p, 0, − s− κ(1− 1/p)} < γ < ε,
we have

g(x) =
∞∑

k=−∞
Dt
k(gk)(x). (8.95)

Repeating the proof of Proposition 5.4(ii), we find that

‖g‖Ḟ−s
p′ ,q′ (X) �

∥
∥
∥
{
2−skgk

}∞
k=−∞
∥
∥
∥
Lp

′ (�̇q′ )(X)
. (8.96)

Thus, g ∈ Ḟ−s
p′,q′(X), which shows (ii).

To finish the proof of the theorem, we still need to establish the converse of (8.88). To
this end, we first let s ∈ (−ε, ε), 1 ≤ p, q < ∞, and g ∈ (Ḃsp,q(X))′. Repeating the above proof
with �̇q

′
(Lp

′
)(X) instead of Lp

′
(�̇q

′
)(X), for any ϕ ∈ G̊ε

0(β, γ) with some fixed |s| < β < ε and
max{s − κ/p, 0,−s − κ(1 − 1/p)} < γ < ε, we see that (8.92) holds, and that

∥∥∥
{
2−skgk

}∞
k=−∞
∥∥∥
�̇q

′ (Lp′ )(X)
∼ ‖g‖. (8.97)

Similarly, (8.92)means that (8.95) holds in (G̊ε
0(β, γ))

′ with |s| < β < ε and max{s−κ/p, 0,−s−
κ(1 − 1/p)} < γ < ε. Repeating the proof of Proposition 5.6(ii), we obtain

‖g‖Ḃ−s
p′ ,q′ (X) �

∥∥∥
{
2−skgk

}∞
k=−∞
∥∥∥
�̇q

′ (Lp′ )(X)
. (8.98)

Thus, g ∈ Ḃ−s
p′,q′(X), which proves (i)when s ∈ (−ε, ε) and 1 ≤ p, q <∞.

Finally, let s ∈ (−ε, ε), 1 ≤ p < ∞, and 0 < q < 1. Then Ḃsp,q(X) ⊂ Ḃsp,1(X) by
Proposition 5.10(i), which gives

Ḃ−s
p′,∞(X) =

(
Ḃsp,1(X)

)′ ⊂ (Ḃsp,q(X)
)′
. (8.99)

On the other hand, if g ∈ (Ḃsp,q(X))′ with s ∈ (−ε, ε), 1 ≤ p < ∞, and 0 < q < 1 and letting
{Dk}k∈Z

be as in Definition 5.8, we then have that for all l ∈ Z,

∣∣(Dlg
)
(ϕ)
∣∣ =
∣∣g
(
Dt
l(ϕ)
)∣∣ � ‖g‖∥∥Dt

l(ϕ)
∥∥
Ḃsp,q(X). (8.100)

We now estimate ‖Dt
l
(ϕ)‖Ḃsp,q(X). For any k, l ∈ Z, by Theorem 3.10, we have

DkD
t
l(ϕ) =

∞∑

k′=−∞
DkD

t
lD̃k′Dk′(ϕ) (8.101)
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in G̊ε
0(β, γ) with β and γ as above. Using (3.2) of Lemma 3.2 and (iii) of Proposition 2.7

together with Hölder’s inequality and the Fubini theorem gives

∥
∥DkD

t
lD̃k′Dk′(ϕ)

∥
∥
Lp(X) � 2−|k−l|ε

′
1
∥
∥D̃k′Dk′(ϕ)

∥
∥
Lp(X) � 2−|k−l|ε

′
1
∥
∥Dk′(ϕ)

∥
∥
Lp(X),

∥
∥DkD

t
lD̃k′Dk′(ϕ)

∥
∥
Lp(X) �

∥
∥Dt

lD̃k′Dk′(ϕ)
∥
∥
Lp(X) � 2−|l−k

′ |ε′′1
∥
∥Dk′(ϕ)

∥
∥
Lp(X),

(8.102)

where ε′1 and ε′′1 can be any positive number in (0, ε1). These estimates together with the
geometric means and Proposition 2.7(iii) again yield that for any σ ∈ (0, 1),

∥
∥DkD

t
lD̃k′Dk′(ϕ)

∥
∥
Lp(X) � 2−|k−l|ε

′
1σ2−|l−k

′ |ε′′1(1−σ)
∥
∥Dk′(ϕ)

∥
∥
Lp(X)

� 2−|k−l|ε
′
1σ2−|l−k

′ |ε′′1(1−σ)‖ϕ‖Lp(X).
(8.103)

If we choose σ ∈ (0, 1) and ε′1 ∈ (0, ε1) such that ε′1σ > |s|, then from the above estimate and
(8.101) together with Definition 5.1 and (5.5), it follows that

‖Dt
l(ϕ)‖Ḃsp,q(X) �

{ ∞∑

k=−∞
2ksq
∥∥DkD

t
l(ϕ)
∥∥q
Lp(X)

}1/q

�
{ ∞∑

k=−∞
2ksq
[ ∞∑

k′=−∞
2−|k−l|ε

′
1σ2−|l−k

′ |ε′′1(1−σ)‖ϕ‖Lp(X)

]q}1/q

� 2ls‖ϕ‖Lp(X).

(8.104)

Thus,

∣∣(Dlg
)
(ϕ)
∣∣ � 2−ls‖ϕ‖Lp(X), (8.105)

which implies that

sup
l∈Z

{
2−ls
∥
∥Dl(g)

∥∥
Lp

′ (X)

}
� ‖g‖. (8.106)

That is, g ∈ Ḃ−s
p′∞(X), which completes the proof of (i), and hence, Theorem 8.11.

To determine the dual space of Ḟsp,q(X)when p = 1, following [82], we first consider the
corresponding spaces of sequences. Let λ be a sequence as in (7.1). Then for s ∈ R, 0 < q ≤ ∞,
and x ∈ X, we define

Ġs,q(λ)(x) =

{ ∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
∣∣λk,ντ

∣∣qχQk,ν
τ
(x)

}1/q

,

Ġ
s,q

τ,k,ν
(λ)(x) =

{ ∞∑

k′=k+1

∑

Qk′ ,ν′
τ ′ ⊂Qk,ν

τ

2k
′sq∣∣λk

′,ν′

τ ′
∣∣qχ

Qk′ ,ν′
τ ′

(x)

}1/q

.

(8.107)
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Let ṁs,q

τ,k,ν(λ) denote the “1/4-median” of Ġ
s,q

τ,k,ν(λ) on Q
k,ν
τ , namely,

ṁ
s,q

τ,k,ν
= inf

{
δ > 0 : μ

({
x ∈ Qk,ν

τ : Ġs,q

τ,k,ν
(λ)(x) > δ

})
<
μ
(
Qk,ν
τ

)

4

}
. (8.108)

We also set

ṁs,q(λ)(x) = sup
k,τ,ν

ṁ
s,q

τ,k,ν
(λ)χQk,ν

τ
(x). (8.109)

The following conclusion is trivial by the definition of ḟ s∞,q(X).

Proposition 8.12. Let δ ∈ (0, 1], s ∈ R, and 0 < q ≤ ∞. Assume that for each dyadic cube Q, there
exists a measurable set EQ ⊂ Q such that μ(EQ)/μ(Q) ≥ δ. Then

‖λ‖ḟ s∞,q(X) ∼ sup
l∈Z

sup
α∈Il

{
1

μ
(
Ql
α

)

[ ∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksqμ
(
EQk,ν

τ

)∣∣λk,ντ
∣∣qχ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

]}1/q

.

(8.110)

We now establish a characterization of ḟ s∞,q(X) by means of ṁs,q.

Proposition 8.13. Let s ∈ R and 0 < q ≤ ∞. Then

‖λ‖ḟ s∞,q(X) ∼
∥∥ṁs,q(λ)

∥∥
L∞(X). (8.111)

Proof. By Chebyshev’s inequality, we see that

μ
({
x ∈ Qk,ν

τ : Ġs,q

τ,k,ν(λ)(x) > δ
}) ≤ 1

δq

∫

Qk,ν
τ

[
Ġ
s,q

τ,k,ν(λ)(x)
]q
dμ(x)

≤ μ
(
Qk,ν
τ

)

δq
‖λ‖q

ḟs∞,q(X)

<
1
4
μ
(
Qk,ν
τ

)
,

(8.112)

if δ> 41/δ‖λ‖ḟ s∞,q(X). Hence,

∥∥ṁs,q(λ)
∥∥
L∞(X) � ‖λ‖ḟ s∞,q(X). (8.113)

To establish the converse, we introduce the extended integer-valued stopping time
k(x) for x ∈ X by

k(x) = inf

{

k ∈ Z :

( ∞∑

k′=k

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k
′sq∣∣λk

′,ν′

τ ′
∣∣qχ

Qk′ ,ν′
τ ′

)1/q

≤ ṁs,q(λ)(x)

}

. (8.114)
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Also, for any Qk,ν
τ , set

EQk,ν
τ

=
{
x ∈ Qk,ν

τ : k(x) ≤ k}. (8.115)

Then, obviously,

EQk,ν
τ

=
{
x ∈ Qk,ν

τ : Ġs,q

τ,k,ν(λ)(x) ≤ ṁs,q(λ)(x)
}
. (8.116)

From (8.108), it follows that

μ
({
x ∈ Qk,ν

τ : Ġs,q

τ,k,ν(λ)(x) > ṁ
s,q(λ)(x)

})

≤ μ({x ∈ Qk,ν
τ : Ġs,q

τ,k,ν(λ)(x) > ṁ
s,q

τ,k,ν(λ)
}) ≤ 1

4
μ
(
Qk,ν
τ

)
,

(8.117)

and hence, μ(EQk,ν
τ
) ≥ (3/4)μ(Qk,ν

τ ), and

( ∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
∣∣λk,ντ

∣∣qχE
Q
k,ν
τ

(x)

)1/q

� ṁs,q(λ)(x), (8.118)

which together with Proposition 8.12 yields

‖λ‖ḟ s∞,q(X) �
∥∥ṁs,q(λ)

∥∥
L∞(X). (8.119)

This finishes the proof of Proposition 8.13.

We next prove the following duality for ḟ s1,q(X).

Proposition 8.14. Assume that s ∈ R and 0 < q < ∞. Then (ḟ s1,q(X))′ = ḟ−s
∞,q′(X). In particular, if

λ = {λk,ντ : k ∈ Z, τ ∈ Ik, ν = 1, . . . ,N(k, τ)} ∈ ḟ−s
∞,q′(X), then the map

t =
{
tQk,ν

τ
: k ∈ Z, τ ∈ Ik, ν = 1, . . . ,N(k, τ)

} �−→ 〈t, λ〉, (8.120)

where

〈t, λ〉 =
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

tQk,ν
τ
λk,ντ μ

(
Qk,ν
τ

)
, (8.121)

defines a continuous linear functional on ḟ s1,q(X) with operator norm ‖λ‖(ḟ s1,q(X))′ equivalent to

‖λ‖ḟ s1,q(X), and every � ∈ (ḟ s1,q(X))′ is of this form for some λ ∈ ḟ s1,q(X).
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Proof. We first assume that 1 ≤ q <∞. Similarly to the proof of Proposition 8.13, let

EQk,ν
τ

=
{
x ∈ Qk,ν

τ : Ġ
−s,q′
τ,k,ν

(λ)(x) ≤ ṁ−s,q′(λ)(x)
}
. (8.122)

Then μ(EQk,ν
τ
) ≥ (3/4)μ(Qk,ν

τ ) and

( ∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

2−ksq
′∣∣λk,ντ

∣
∣q

′
χE

Q
k,ν
τ

(x)

)1/q′

� ṁ−s,q′(λ)(x). (8.123)

From this, Hölder’s inequality, and Proposition 8.13, it follows that

∣∣∣∣∣

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
tQk,ν

τ
λk,ντ

∣∣∣∣∣

�
∫

X

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

(
2ks
∣∣tQk,ν

τ

∣∣χQk,ν
τ
(x)
)(

2−ks
∣∣λk,ντ

∣∣χE
Q
k,ν
τ

(x)
)
dμ(x)

�
∫

X

{ ∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

2ksq
∣∣tQk,ν

τ

∣∣qχQk,ν
τ
(x)

}1/q{ ∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

2−ksq
′ |λk,ντ |q

′
χE

Q
k,ν
τ

(x)

}1/q′

dμ(x)

� ‖t‖ḟ s1,q(X)

∥∥ṁ−s,q′(λ)
∥∥
L∞(X)

� ‖t‖ḟ s1,q(X)‖λ‖ḟ−s
∞,q′ (X),

(8.124)

which yields

‖λ‖(ḟ s1,q(X))′ � ‖λ‖ḟ−s
∞,q′ (X), (8.125)

if 1 ≤ q <∞. The case 0 < q < 1 then follows from the trivial imbedding ḟ s1,q(X) ⊂ ḟ−s
1,1(X).

Conversely, by Proposition 8.10(i), it is easy to see that every � ∈ (ḟ s1,q(X))′ is of the
form:

t �−→
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

μ
(
Qk,ν
τ

)
tQk,ν

τ
λk,ντ (8.126)

for some λ as in (7.1). Assume first again that 1 ≤ q < ∞. Fix a dyadic cube Ql
α. Let Y be the

sequence space of all dyadic cubesQk,ν
τ such thatQk,ν

τ ⊂ Ql
α, and let σ be a measure on Y such
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that the σ-measure of the point Qk,ν
τ is μ(Qk,ν

τ )/μ(Ql
α). Then

{
1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

2−ksqμ
(
Qk,ν
τ

)∣∣λk,ντ
∣
∣q

′
χ{(τ,ν):Qk,ν

τ ⊂Ql
α}(τ, ν)

}1/q′

=
∥
∥
∥
{
2−ksλk,ντ

}
Qk,ν
τ ⊂Ql

α

∥
∥
∥
�q

′ (Y, dσ)

= sup
‖t‖�q(Y,dσ)≤1

∣
∣
∣
∣
∣

1

μ
(
Ql
α

)
∞∑

k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

tQk,ν
τ
2−ksλk,ντ μ

(
Qk,ν
τ

)
∣
∣
∣
∣
∣

≤ ‖λ‖(ḟ s1,q(X))′ sup
‖t‖�q(Y, dσ)≤1

∥
∥
∥
∥
∥

{
2−kstQk,ν

τ

1

μ
(
Ql
α

)
}

Qk,ν
τ ⊂Ql

α

∥
∥
∥
∥
∥
ḟ s1,q(X)

.

(8.127)

However, by Hölder’s inequality, we have

∥∥∥∥∥

{
2−kstQk,ν

τ

1

μ
(
Ql
α

)
}

Qk,ν
τ ⊂Ql

α
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ḟ s1,q(X)

=
1

μ
(
Ql
α

)

∫

Ql
α

{ ∞∑
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∑

τ∈Ik

N(k,τ)∑
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∣∣tQk,ν
τ

∣∣qχ{(τ,ν):Qk,ν
τ ⊂Ql

α}(τ, ν)χQk,ν
τ
(x)

}1/q

dμ(x)

�
{

1

μ
(
Ql
α

)
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k=l

∑

τ∈Ik

N(k,τ)∑

ν=1

∣∣tQk,ν
τ

∣∣qχ{(τ,ν):Qk,ν
τ ⊂Ql

α}(τ, ν)μ
(
Qk,ν
τ

)
}1/q

∼ ‖t‖�q(Y, dσ).

(8.128)

Thus, if 1 ≤ q <∞, then

‖λ‖ḟ−s
∞,q′ (X) � ‖λ‖(ḟ s1,q(X))′ . (8.129)

For 0 < q < 1, we have q′ = ∞. In this case, for any Qk,ν
τ , we set (tQ

k,ν
τ )

Qk′ ,ν′
τ ′

= 2−ks/μ(Qk,ν
τ ) for

Qk′,ν′

τ ′ = Qk,ν
τ and 0 otherwise. Clearly, ‖tQk,ν

τ ‖ḟ s1,q(X) = 1 and hence,

‖λ‖ḟ−s∞,∞(X) ≤ sup
k,τ,ν

∣∣〈tQ
k,ν
τ , λ
〉∣∣ � ‖λ‖(ḟ s1,q(X))′ , (8.130)

which completes the proof of Proposition 8.14.

From Proposition 7.1, Theorem 7.2, and Proposition 8.14, by a standard method as in
[82, pages 79-80], we can obtain the dual space of Ḟsp,q(X) when p = 1 as follows. We omit the
details.



Yongsheng Han et al. 245

Theorem 8.15. Let ε be as in Definition 6.1, |s| < ε, and p(s, ε) < q < ∞. Then (Ḟs1,q(X))′ =
Ḟ−s
∞,q′(X) in the sense of that in Theorem 8.11(ii).

A slightmodification of the proof of Proposition 2.11.1 in [3, pages 177-178] again gives
the following inhomogeneous version of Propositions 8.10 and 8.14. We omit the details.

Proposition 8.16. Let 1 ≤ p <∞ and 0 < q <∞. Then the following hold.

(i) g ∈ (Lp(�q)(X))′ if and only if there is a sequence {gj}j∈Z+
∈ Lp′(�q′)(X) such that

g(f) =
∞∑

j=0

∫

X
gj(x)fj(x)dμ(x) (8.131)

for every f = {fj}j∈Z+
∈ Lp(�q)(X), and ‖g‖ ∼ ‖{gj}j∈Z+

‖
Lp

′ (�q′ )(X)
.

(ii) g ∈ (�q(Lp)(X))′ if and only if there is a sequence {gj}j∈Z+
∈ �q′(Lp′)(X)

g(f) =
∞∑

j=0

∫

X
gj(x)fj(x)dμ(x) (8.132)

for every f = {fj}j∈Z+
∈ �q(Lp)(X), and ‖g‖ ∼ ‖{gj}j∈Z+

‖
�q

′ (Lp′ )(X)
.

Theorem 8.17. Assume that s ∈ R and 0 < q < ∞. Then (fs1,q(X))′ = f−s
∞,q′(X). In particular, if

λ = {λk,ντ : k ∈ Z+, τ ∈ Ik, ν = 1, . . . ,N(k, τ)} ∈ f−s
∞,q′(X), then the map

t =
{
tQk,ν

τ
: k ∈ Z+, τ ∈ Ik, ν = 1, . . . ,N(k, τ)

} −→ 〈t, λ〉, (8.133)

where

〈t, λ〉 =
∞∑

k=0

∑

τ∈Ik

N(k,τ)∑

ν=1

tQk,ν
τ
λk,ντ μ

(
Qk,ν
τ

)
, (8.134)

defines a continuous linear functional on fs1,q(X) with operator norm ‖λ‖(fs1,q(X))′ equivalent to

‖λ‖fs1,q(X), and every � ∈ (fs1,q(X))′ is of this form for some λ ∈ fs1,q(X).

With Proposition 8.16 and Theorem 8.17, respectively, in place of Propositions 8.10 and
8.14, by a procedure similar to the proof of Theorem 8.11 (see also [3, the proof of Theorem
2.11.2]) and Theorem 5.6 in [82, pages 79-80], we can establish the following inhomogeneous
version of Theorems 8.11 and 8.15, which describes the dual spaces of some inhomogeneous
Besov and Triebel-Lizorkin spaces. We omit the details.
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Theorem 8.18. Let ε be as in Definition 5.8 and |s| < ε. Then, the following hold.
(i) If 1 ≤ p <∞ and 0 < q <∞, then

(
Bsp,q(X)

)′ = B−s
p′,q′(X). (8.135)

More precisely, given g ∈ B−s
p′,q′(X), then Lg(f) ≡ 〈f, g〉 defines a linear functional on G(ε, ε) ∩

Bsp,q(X) such that

∣
∣Lg(f)

∣
∣ ≤ C‖f‖Bsp,q(X)‖g‖B−s

p′ ,q′ (X), (8.136)

where C > 0 is independent of f , and this linear functional naturally extends to Bsp,q(X) by continuity
with norm at most C‖g‖B−s

p′ ,q′ (X).

Conversely, if L is a linear functional on Bsp,q(X), then there exists a unique g ∈ B−s
p′,q′(X)

such that L is the natural extension of Lg , with ‖g‖B−s
p′ ,q′ (X) ≤ C‖L‖.

(ii) If 1 < p, q <∞, or p = 1 and p(s, ε) < q <∞, then

(
Fsp,q(X)

)′ = F−s
p′,q′(X). (8.137)

More precisely, given g ∈ F−s
p′,q′(X), then Lg(f) ≡ 〈f, g〉 defines a linear functional on G(ε, ε) ∩

Fsp,q(X) such that

∣∣Lg(f)
∣∣ ≤ C‖f‖Fsp,q(X)‖g‖F−s

p′ ,q′ (X), (8.138)

where C > 0 is independent of f , and this linear functional naturally extends to Fsp,q(X) by continuity
with norm at most C‖g‖F−s

p′ ,q′ (X).

Conversely, if L is a linear functional on Fsp,q(X), then there exists a unique g ∈ F−s
p′,q′(X)

such that L is the natural extension of Lg , with ‖g‖F−s
p′ ,q′ (X) ≤ C‖L‖.
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Revista Matemática Iberoamericana, vol. 16, no. 2, pp. 243–279, 2000.

[23] J. Heinonen, P. Koskela, N. Shanmugalingam, and J. T. Tyson, “Sobolev classes of Banach space-
valued functions and quasiconformal mappings,” Journal d’Analyse Mathématique, vol. 85, pp. 87–139,
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et interpolation,” Revista Matemática Iberoamericana, vol. 1, no. 4, pp. 1–56, 1985.

[65] R. A. Macı́as, C. Segovia, and J. L. Torrea, “Singular integral operators with non-necessarily bounded
kernels on spaces of homogeneous type,” Advances in Mathematics, vol. 93, no. 1, pp. 25–60, 1992.

[66] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, PrincetonMathematical Series,
no. 30, Princeton University Press, Princeton, NJ, USA, 1970.

[67] K. Yosida, Functional Analysis, Classics in Mathematics, Springer, Berlin, Germany, 1995.
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