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We work on RD-spaces X, namely, spaces of homogeneous type in the sense of Coifman and Weiss
with the additional property that a reverse doubling property holds in X. An important example
is the Carnot-Carathéodory space with doubling measure. By constructing an approximation of
the identity with bounded support of Coifman type, we develop a theory of Besov and Triebel-
Lizorkin spaces on the underlying spaces. In particular, this includes a theory of Hardy spaces
H?P(X) and local Hardy spaces h”(X) on RD-spaces, which appears to be new in this setting.
Among other things, we give frame characterization of these function spaces, study interpolation
of such spaces by the real method, and determine their dual spaces when p > 1. The relations
among homogeneous Besov spaces and Triebel-Lizorkin spaces, inhomogeneous Besov spaces
and Triebel-Lizorkin spaces, Hardy spaces, and BMO are also presented. Moreover, we prove
boundedness results on these Besov and Triebel-Lizorkin spaces for classes of singular integral
operators, which include non-isotropic smoothing operators of order zero in the sense of Nagel
and Stein that appear in estimates for solutions of the Kohn-Laplacian on certain classes of model
domains in CN. Our theory applies in a wide range of settings.

Copyright © 2008 Yongsheng Han et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The scales of Besov spaces By, , and Triebel-Lizorkin spaces F, ; on R", respectively, domains in
R" for the full range of parameters, s € R and 0 < p, g < oo, were introduced between
1959 and 1975. They cover many well-known classical concrete function spaces such as
Holder-Zygmund spaces, Sobolev spaces, fractional Sobolev spaces (also often referred to
as Bessel-potential spaces), local Hardy spaces, and bmo, which have their own history.
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A comprehensive treatment of these function spaces and their history can be found in
Triebel’s monographs [1, 2]. For further developments, including analogous theories of
function spaces on fractals, we refer to [3-6].

Metric spaces play a prominent role in many fields of mathematics. In particular,
they constitute natural generalizations of manifolds admitting all kinds of singularities and
still providing rich geometric structure; see [7-9]. Analysis on metric measure spaces has
been studied quite intensively in recent years; see, for example, Semmes’s survey [10] for
a more detailed discussion and references. Of particular interest is the study of functional
inequalities, like Sobolev and Poincaré inequalities, on metric measure spaces; see, for
example, [11-16]. Also the theory of function spaces on metric measure spaces has seen
a rapid development in recent years. Since Hajtasz in [17] introduced Sobolev spaces on
any metric measure spaces, a series of papers has been devoted to the construction and
investigation of Sobolev spaces of various types on metric measure spaces; see, for example,
[12,13,18-27].

It is well known that Calderén-Zygmund operators are in general not bounded on
L'(R"™), and the Hardy space H!(R") is a good substitute for L!(R"). Coifman and Weiss
[28] introduced atomic Hardy spaces H' (X) for p € (0,1] when X is a general space of
homogeneous type in the sense of Coifman and Weiss [29], that is, s is known only to be
doubling. Moreover, under the assumption that the measure of any ball in X is equivalent to
its radius (i.e., if X is essentially a so-called Ahlfors 1-reqular metric measure space), Coifman
and Weiss [28] further established a molecular characterization of H.,(X), and ifp € (1/2,1],
Macias and Segovia [30] gave a maximal function characterization of H:t(ﬂé). For p in this
range, a Lusin-area characterization for H (X) was given in [31], and Duong and Yan in
[32] characterized these atomic Hardy spaces in terms of Lusin-area functions associated
with certain Poisson semigroups. However, the results in [28, 30, 32] require that X is an
Ahlfors 1-regular metric measure space, and the methods do not extend to arbitrary spaces
of homogeneous type, even though Macfas and Segovia [33] proved that any space of
homogeneous type is topologically equivalent to an Ahlfors 1-regular metric measure space.
On the other hand, via Littlewood-Paley theory, a theory of Besov and Triebel-Lizorkin
spaces on Ahlfors n-regular metric measure spaces was established in [34], which was further
completed in [2, 31, 35-37], and it turns out that some ideas from [31, 34, 35] still work on
general metric measure spaces considered in this paper.

In this paper, we work on RD-spaces XA, that is, spaces of homogeneous type in
the sense of Coifman and Weiss with the additional property that a reverse doubling
property holds in X, or equivalently, that there exists a constant ap > 1 such that for
all x € X and 0 < r < diam(X)/ag, the annulus B(x,apr) \ B(x,r) is nonempty,
where and in what follows, diam(X) denotes the diameter of the metric space (X,d).
An important class of RD-spaces is provided by Carnot-Carathéodory spaces with a
doubling measure, which have been the object of intensive studies for quite a while. A
Carnot-Carathéodory (or sub-Riemannian) space is a connected smooth manifold endowed
with a Hormander system of vectors {Xi,X»,..., Xk}, which span, together with their
commutators of order < m, the tangent space at each point, and the distance function
d is in this case given by the Carnot-Carathéodory or control distance associated with
the Hormander system. Carnot-Carathéodory spaces arise in many places in mathematics,
including control theory, the theory of hypoelliptic differential operators, and several areas
of harmonic analysis and complex analysis; see [38—40] for a general discussion and detailed
references. Also, this type of metric measure space plays an important role in connection
with problems related to snowflaked transforms; see [13, page 99] or [2]. Examples
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of noncompact Carnot-Carathéodory spaces naturally arise as boundaries of unbounded
model polynomial domains in CN appearing in the work of Nagel and Stein; see [41-
43].

Our theory of function spaces on RD-spaces will use Carnot-Carathéodory spaces as a
basic model, in particular well-known estimates of heat kernels on such spaces.

By constructing an approximation of the identity with bounded support of Coifman
type on RD-spaces, we develop a theory of Besov and Triebel-Lizorkin spaces on the
underlying spaces. In particular, this includes a theory of Hardy spaces H”(X) and local
Hardy spaces h”(X) on RD-spaces, which appears to be new in this setting. Among other
things, we give frame characterization of these function spaces, study interpolation of such
spaces by the real method and determine their dual spaces when p > 1. The relations among
homogeneous Besov spaces and Triebel-Lizorkin spaces, inhomogeneous Besov spaces and
Triebel-Lizorkin spaces, Hardy spaces, and BMO are also presented. Moreover, we prove
boundedness results on these Besov and Triebel-Lizorkin spaces for classes of singular
integral operators in [44], which include nonisotropic smoothing operators of order zero in
the sense of Nagel and Stein that appear in estimates for solutions of the Kohn-Laplacian on
certain classes of model domains in CV; see [43, 45-47].

We point out that a theory of Hardy spaces on RD-spaces was also established in
[48] by using spaces of test functions, the theory of distributions, and the boundedness
criterion of singular integrals on spaces of test functions, which are all developed in the
current paper, and by assuming that there exists a suitable Calderén reproducing formula
in L?(X). These Hardy spaces are proved to coincide with some of Triebel-Lizorkin spaces
in this paper. Also, some spaces of Lipschitz type on RD-spaces were recently studied in
[49]. Via Calderén reproducing formulae developed in the current paper, the relations of
Besov and Triebel-Lizorkin spaces introduced in the current paper with those spaces of
Lipschitz type in [49] and with various known Sobolev spaces as mentioned above were
established in [49]. As an application, a difference characterization of Besov and Triebel-
Lizorkin on RD-spaces was also obtained in [49]. Moreover, it is possible to establish
smooth atomic and molecular characterizations and lifting property of these spaces by using
fractional integrals and derivatives, and it is also possible to develop a corresponding product
theory. However, to limit the length of this paper, we will leave these topics to forthcoming
papers.

Our setting of RD-spaces includes spaces with a “local” dimension strictly less than
the global dimension, such as certain classes of nilpotent Lie groups. In such situations, the
Lipschitz classes (in the sense of Coifman and Weiss [28]) that we consider in this paper do
not compare with the usual Holder classes (which are particular Besov spaces), which is why
some of our results, for example, about duality of Besov and Triebel-Lizorkin spaces, assume
a different form compared to the corresponding “classical” results on R”, respectively, on
Ahlfors n-regular spaces.

1.1. Underlying spaces

We first recall the notion of a space of homogeneous type in the sense of Coifman and
Weiss [28, 29] and then introduce the so-called RD-spaces, which are particular spaces of
homogeneous type.

Definition 1.1. Let (X, d) be a metric space with a regular Borel measure u, which means that
U is a nonnegative countably subadditive set function defined on all subsets of X, open sets
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are measurable, and every set is contained in a Borel set with the same measure, such that all
balls defined by d have finite and positive measure. For any x € X and r > 0, set

B(x,r)={yeX:d(x,y)<r}. (1.1)

(i) The triple (X, d, p) is called a space of homogeneous type if there exists a constant
Co>1suchthatforallx e Landr >0,

u(B(x,2r)) < Cou(B(x,r)) (doubling property). (1.2)

(ii) Let 0 < x < n. The triple (X, d, p) is called a (x, n)-space if there exist constants
0<Cy<land C; > 1suchthatforallx € X,0 <r < diam(X)/2,and 1 < A <
diam(X)/(2r),

CiA*u(B(x, 1)) < p(B(x,Ar)) < Co)"u(B(x, 1)), (1.3)

where diam(X) = supx,yexd(x,y).

A space of homogeneous type will be called an RD-space if it is a (x, n)-space for some
0 < x < n, that is, if some “reverse” doubling condition holds.

Clearly, any Ahlfors n-regular metric measure space (X,d,u), which means that there
exists some n > 0 such that u(B(x,r)) ~r" forall x € X and 0 < r < diam(X)/2, is an
(n, n)-space.

Remark 1.2. (i) Obviously, any (k, n)-space is a space of homogeneous type with Cy = C,2".
Conversely, any space of homogeneous type satisfies the second inequality of (1.3) with
C; = Cp and n = log,Cy. Comparing with spaces of homogeneous type, the only additional
restriction in (k, n)-spaces is the first inequality of (1.3).

If X is a (x,n)-space, the first inequality in (1.3) implies that there exist constants ay >
1/C}/K >1and 61 = C1ag > 1 such that for all x € L and 0 < r < diam(X)/ao,

1(B(x,aor)) > Cipu(B(x, 1)) (reverse doubling property), (1.4)

(if ap = 2, this is the classical reverse doubling condition), and therefore,

B(x,aor) \ B(x,1) #©2. (1.5)

Conversely, assume that y satisfies the second inequality of (1.3) (i.e., # is doubling)
and (1.5) holds for some gy > 1 and for all x € X and 0 < r < diam(X)/ag. Then, X is a
(x, n)-space for some x > 0.

To see this, by ideas in [50, pages 11-12] (see also [51, pages 269-270]), it suffices to

show that there exist constants a; > ag and C; > 1 such that forallx € X and 0 < r <
diam(X)/2ay,

u(B(x,air)) > fly(B(x,r)), (1.6)
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which further implies that the first inequality in (1.3) also holds for some x > 0, that is, X
is a (x,n)-space. To this end, fix any o € (0,1]. Then, if 0 < r < diam(X)/2ap, we have
(1+o0)r < diam(X)/ag. Thus, by the assumption,

B(x,a0(1+0)r) \ B(x,(1+0)r) # 2. (1.7)
Choose y € B(x,ao(1 +0)r) \ B(x, (1 + 0)r). It is easy to see that

B(y,or)NB(x,r) =, (1.8)

B(y,or) C B(x, [0 + ag(1 + 0)]r), and

B(x, [0 +ao(1+0)]r) c B(y, [0 +2a0(1+0)]r), (1.9)

which together with the second inequality in (1.3) imply

/,L(B(x, [O' + ao(l + O')]T))
> u(B(x,r)) + u(B(y, or))

> u(B(x,1)) +C51< o

m) u(B(y, [0 +2a0(1+0)]r)) (1.10)

-9
o+2ap(l+0)

> u(B(x,r)) +C£1< >ny(B(x, [0 +a(1+0)]r)).

This implies (1.6) with a; = 0 + ag(1 + 0) > ap and

-1

~ 1 o n
C1 = [1 — C2 (m) ] > 1. (111)

Thus, X is a (x, n)-space.

Therefore, X is an RD-space if and only if X is a space of homogeneous type with the
additional property that there exists a constant ag > 1 such that for all x € X and 0 < r <
diam(X)/ag, B(x,aor) \ B(x,r) # 2.

(ii) From (i), it is obvious that an RD-space has no isolated points.

(iii) It is proved in [7-9] that some curvature-dimension condition on metric measure
spaces implies the doubling property of the considered measure.

Remark 1.3. We recall that two metrics d and d are said to be equivalent if d/ dis uniformly
bounded and uniformly bounded away from zero. In what follows, we always regard two
(x, n)-spaces or spaces of homogeneous type with equivalent metrics as the same space.
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Remark 1.4. Let d be a quasimetric, which means that d is a nonnegative and symmetric
function on X x X, d(x,y) = 0 if and only if x = y, and there exists a constant Ay > 1
such that forall x, v,z € X,

d(x,y) < Ao(d(x,2) +d(z,y)). (112)

Macias and Segovia [33] proved that for any quasimetric d, there exists an equivalent
quasimetric d such that all balls corresponding to d are open in the topology induced by

d, and there exist constants Aj; > 0 and 6 € (0,1) such that forall x, y, z € X,
|d(x,2) - d(y, z)| < Apd(x,y)° [d(x, z) +d(y, z)] (1.13)

which means d has some regularity; see [33, Theorem 2].

Notice that all results below are true if d is a quasimetric and has some regularity, and
Remark 1.3 is also true for both such equivalent quasimetrics. From this and the above result
of Macias and Segovia, it follows that all results in this paper are still true if d on X is only
known to be a quasimetric (especially, if X is a so-called d-space of Triebel; see [2, page 189]),
which is another advantage of the results in this paper compared to all known results so far.

In what follows, for the simplicity of the presentation, we always assume that d is a
metric, which means Ag =1 and 6 = 1.

Remark 1.5. If X is a closed subset of R” and X is a (x,n)-space with the additional
normalization assumption that p(B(x,1)) ~ 1 for all x € X, Jonsson in [52, 53] introduced
certain Besov spaces for some special indices on such sets with the aid of difference or local
polynomial approximation (equivalently by atoms) and obtained some trace theorems for
restrictions to A.

Moreover, Bylund and Gudayol [54] gave out some conditions such that a compact
pseudometric space becomes a (x, 11)-space with p being a probability measure.

Remark 1.6. Under rather general circumstances, regular Borel measures have two useful
properties, which are often called inner reqularity and outer reqularity. More precisely, if p
is a regular Borel measure, then for each Borel set A of finite measure, p(A) is the supremum
of the numbers p(C), where C runs through all closed subsets of A; moreover, if the metric
balls have finite measure, and A is a Borel set, then p(A) is the infimum of the numbers u(U),
where U runs through all open supersets of A; see [55, Theorem 2.2.2] or [13, page 3]. These
properties are used in establishing Lebesgue’s differentiation theorem; see [13, pages 4-7] for
the details.

We now recall the definition of Carnot-Carathéodory spaces. Let X be a connected smooth
manifold and let {Xj, ..., Xk} be k given smooth real vector fields on X satisfying Hormander’s
condition of order m, that is, these vector fields together with their commutators of order at
most m span the tangent space to X at each point. To develop a theory of Besov and Triebel-
Lizorkin spaces on X, we make use of the notion of control distances associated to the vector
fields. One possibility of defining a control distance is as follows: for x,y € X and 6 > O,
let AC(x,y,6) denote the collection of absolutely continuous mappings ¢: [0,1] — X with

¢(0) = x and ¢(1) = y such that for almost every ¢t € [0,1], ¢'(t) = Z;‘zla]-Xj((p(t)), with
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laj| < 6. Then, the control metric d(x,y) from x to y is the infimum of the set of 6 > 0 such
that AC(x,y, 6) # @. Hormander’s condition makes sure that d(x, y) < oo for every x,y € X.

The following three specific examples of Carnot-Carathéodory spaces which are also
(xc, m)-spaces naturally come from harmonic analysis and several complex variables.

(a) Compact case. If X is a compact n-dimensional Carnot-Carathéodory space and is
endowed with any fixed smooth measure y with strictly positive density, by [56,
Theorem 1] (or [42, Theorem 2.2.4]), we know that X is an (n, nm)-space; see also
[44].

(b) Noncompact case. Let Q = {(z,w) € C?> : Jm[w] > P(z)}, where P is a real,
subharmonic, nonharmonic polynomial of degree m. Namely, Q is an unbounded
model domain of polynomial type in C%. Then, X = 0Q can be identified with
CxR = {(z,t) : z € C, t € R}. The basic (0,1) Levi vector field is then
Z = 0/0z — i(0P/0z)(8/0t), and we write Z = X; + iXo. The real vector fields
{X1, X5} and their commutators of orders < m span the tangent space at each point.
If we endow C x R with the Lebesgue measure, then by [43, Proposition 3.1.1] we
know that X = C x Ris a (4, m + 2)-space; see also [42, 44, 56].

(c) (Noncompact case) Lie groups of polynomial growth (see [56-60]). Let G be a
connected Lie group and fix a left invariant Haar measure y on G. We assume that
G has polynomial volume growth, that is, if U is a compact neighborhood of the
identity element e of G, then there is a constant C > 0 such that p(U") < n° for all
n € N (see [56]). Then G is unimodular. Furthermore, there is a nonnegative integer
Ny such that u(U") ~ n" as n — oo; see [61] and also [57, 62]. Let X3,..., X,
be left invariant vector fields on G that satisfy Hormander’s condition, that is,
they together with their successive Lie brackets [X;,, [Xi,, [...,Xi]...] span the
tangent space of G at every point of G. Let d be the associated control metric. Then
this metric is left invariant and compatible with the topology on G; see [57, 58].
Moreover, by the results in [56, 57], we know that there is ny € N, independent of
x, such that p(B(x,r)) ~ ™ when 0 < r <1, and pu(B(x,r)) ~ r"» when r > 1. From
this, it is easy to verify that G is a (min{ny, 1, }, max{ng, n. })-space.

1.2. Outline of some basic methods

Let X be a Carnot-Carathéodory space as in Case (a) with n > 3 or as in Case (b), and let
{X1,..., Xk} be a family of real vector fields on X, which are of finite-type m. Consider the
sub-Laplacian £ on X in self-adjoint form, given by

L= X}‘X-.

: (1.14)

\.
i Mw
L

Here (X:¢, ¢) = (9, Xjg), where
@) = [ PG (115
x

and @, ¢ € CZ(X), the space of C* functions on X with compact support. In general, X~ =
-Xj + aj, where a; € C*(X). The solution of the following initial value problem for the heat
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equation,

a—u(x,s) + Lu(x,s) =0 (1.16)
0s
with u(x,0) = f(x), is given by us(x,s) = Hs[f](x), where H, is the operator given via the
spectral theorem by H, = e~*#, and an appropriate self-adjoint extension of the nonnegative
operator £ initially defined on C®(X). It was proved in [44] that for f € L2(X),

HL[f](x) = LCH(S’ ) f(y)du(y), (1.17)

where x € X. Moreover, H (s, x,y) has some nice regularity properties (see [44, Proposition
2.3.1] and [63]).

By abstracting from the properties of heat kernels H (s, x, y), we will introduce notions
of approximations of the identity and spaces of test functions and their dual spaces on
arbitrary spaces of homogeneous type. These two spaces are, respectively, the substitutes
of the space of Schwartz functions and the space of tempered distributions; see, for example,
[31, 34]. Following Coifman’s idea in [64], we then construct an approximation of the identity
with bounded support on metric measure spaces. We will show that our spaces of test
functions are invariant under a large class of singular integral operators. The integral kernels
associated to these operators satisfy a certain “second difference regularity condition,” which
also turns out to be necessary to this result; see [31, 35]. This theorem is a main tool for
establishing a Calderén reproducing formula. Let {Sk}c; be such an approximation of the
identity. Set next Dy = Sk — Sk_1 for k € Z. Based on Coifman’s ideas (see [64] for the
details), on L (X) with p € (1,00), we can decompose the identity operator I in the strong
sense as

(o)
I= > D
k=-c0

<;§:ka> <§ij > (1.18)

> DiDj+ >, DiD;j
Jk=jl<N Jk=jl>N

= TN +RN.

The error term Ry will be small of order 27°N in norm with 6 > 0. Using the above-
mentioned theorem, we prove that if N is large enough, then Ry is bounded on the space
of test functions with the operator norm less than 1. Therefore, if N is large enough and
DY = 2.jcNDi+j for k € Z, we then obtain the following Calder6n-type reproducing
formulae:

f= i Ty DY Di(f) = i DiDYTH (f), (1.19)
k=-c0 k=—o0
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where Ty is the inverse of Ty and the series converge in LF(X), 1 < p < o, and in the
space of test functions and its dual space. We also obtain a corresponding discrete version.
The Calderén reproducing formula is another main tool of this paper. As soon as (1.19) is
established, we can introduce Besov and Triebel-Lizorkin spaces on X via approximations
of the identity and prove that these spaces are independent of the choice of approximations
of the identity. The Calder6n reproducing formula is also employed to establish the atomic
decomposition of these spaces and to prove boundedness results for operators acting on these
spaces.

Remark 1.7. Let {Sk}ie;, be an approximation of the identity as constructed in Theorem 2.6
below. An essential difference in the theory occurs when the measure, p(X), of the underlying
space A is finite versus the case when the measure of the underlying space is infinite. When
U(X) < oo, it is not true that ||Sk(f)llrxy — Oask — —ocoforallp € (1,00) and f €
LP(X); see the proof of Proposition 3.1(i) below. Thus, when p(X) < oo, in the Calderén-type
reproducing formulae (1.19), we should replace Dy by Sy and Dy for k € {-1,-2,...} by 0.
This means that when p(X) < oo, we always have an inhomogeneous term corresponding to
So, which needs some special care.

1.3. Notation

Finally, we introduce some notation and make some conventions. Throughout the paper,
A ~ B means that the ratio A/B is bounded and bounded away from zero by constants that
do not depend on the relevant variables in A and B; A < B and B 2 A mean that the ratio
A/B is bounded by a constant independent of the relevant variables. For any p € [1, o],
we denote by p' its conjugate index, namely, 1/p + 1/p' = 1. We also denote by C a positive
constant which is independent of the main parameters, but it may vary from line to line.
Constants with subscripts, such as Cy, do not change in different occurrences. If E is a subset
of a metric space (X, d), we denote by yr the characteristic function of E and define

diam E = supd(x,y). (1.20)
x,y€E

WealsosetN = {1,2,...} and Z, = NU {0}. For any a,b € R, we denote min{a, b}, max{a, b},
and max{a,0} by aAb, aVv b, and a,, respectively.
If (X,d,p) is a space of homogeneous type, we also introduce the volume functions
Vs(x) = u(B(x,6)) and V(x,y) = u(B(x,d(x,y))) forall x,y € X and 6 > 0. By (1.2), it is easy
to see that V(x,y) ~ V(y, x); see also [44]. We will use this fact without further mentioning.
Throughout the whole paper, for € € (0,1] and |s| < €, we set

p(s,e)Emax{ " L} (1.21)

n+e n+e+s

2. Approximations of the identity and spaces of test functions

In this section, we will work on spaces of homogeneous type with the constant Cy as in
Definition 1.1, (X, u,d), where pu(X) can be finite or infinite. We first present some basic
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estimates which will be used throughout the whole paper. We then introduce the notion of
an approximation of the identity. Following Coifman’s idea in [64], we then construct an
approximation of the identity with bounded support on X. We also introduce spaces of test
functions and establish the boundedness of singular integrals on these spaces, which are key
tools of the whole theory.

2.1. Approximations of the identity

Throughout the whole paper, we denote by M f the Hardy-Littlewood maximal function on X
for any f € L! (X). It is well known that M is bounded on LP(X) with p € (1,00]; see

1
[29, 44]. Some basic estimates used throughout the whole paper are stated in the following

lemma, whose main part is included in [48, Lemma 2.1], and the remaining statements are
obvious.

Lemma 2.1. Let 6 >0,a>0,r >0,and 0 € (0,1). Then the following hold.

() faey)<s @)V (x,y))du(y) < Co%and [, s (1/V (x,))(6%/d(x, ) ") du(y) <
C uniformly in x € X and 6 > 0.

(i) [ 0 (1/ (Va(x) + V(x, ) (69/ (5 + d(x, ) )d(x, y)dp(y) < C uniformly in x € X
and 6 >0,ifa>n>0.

(iil) If x,x',x1 € X satisfy d(x,x’) < 0(r + d(x,x1)), then 1/(r + d(x',x1)) < C(1/(r +
d(x,x1))), 1/ (Ve (x1) + V(x1,x')) < C(1/(Vy(x1) + V(x1,))), and

1 <C 1
Vi(x)+V(x,x1) © Vi(x)+V(x,x1)

(2.1)

uniformly inr > 0and x,x', x1 € X.

(iv) For all f € Llloc(%) and all x € X, J’d(x,y)>6(1/V(x,y))(6“/d(x,y)a)|f(y)|d#(y) <
CM(f)(x) uniformlyin6>0, f € L (X)and x € X.

loc

(v) Forany e > 0, [ 0, 55(1/ (Va(x) + V(y, )1/ (r + d(y, x)))du(y) < CA/(r +6)°)
uniformly in x € X and 6,r > 0.
(vi) For any fixed & > 0, if d(x,y) < ar, then V. (x) ~ Vi (x) ~ Vor (y) ~ Vi (y) uniformly in
x,y € Xandr >0.
(vii) Forall r > O and all x,y € X, V,(x) + V(x,y) ~ V;(x) + V,.(y) + V(x,y) ~ V,(y) +
Vix,y).

Motivated by the properties of the heat kernel defined in (1.17) in the case of Carnot-
Carathéodory spaces, we introduce the following notion of an approximation of the identity
on X.

Definition 2.2. Let ¢1 € (0,1], &2 > 0, and e3 > 0. A sequence {Sk}c; of bounded linear
integral operators on L?(X) is said to be an approximation of the identity of order (€1, €2, €3) (for
short, (e1, €2, €3)-ATI) if there exists a constant C3 > 0 such that for all k € Z and all x,x’, y,
and y' € X, Sk(x,y), the integral kernel of Sk is a measurable function from X x X into C
satisfying

(i) ISk (x,y)I < Co(1/ (Vo () + Vo (y) + V(x, ) 27/ (27 + d(x, 1)) );
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(ii) [Sk(x, )= Sk(*, y)| < Ca(d(x, x')/ 27F +d(x, 1)) " (1/ (Vars () + Vs () +V (x, ) x
(ke /(2% +d(x,y))”) for d(x,x') < 27 +d(x,1))/2;

(iii) property (ii) also holds with x and y interchanged;

(iv) |[Sk(x,¥) = Sk(x, )] = [Sk(x, y) = Sk(x, )] < Cs(d(x,x')/(27F +d(x,y)))“€X
Ay, y)/ @ +d(x, )" 1/ (Var(x) + Vo (y) + V(x, y)) (2% /275 +d(x, ) )
for d(x,x') < 2% +d(x,y))/3and d(y,v') < 27 +d(x,v))/3;

(V) [xSk(x,y)du(y) = 1;
(vi) fxsk(x/y)dﬂ(x) =1

In case the ATI has bounded support, in the sense that Sk(x,y) = 0 when d(x,y) 2
27k, then the conditions (i), (i), (iii), and (iv) of Definition 2.2 simplify as follows (see
Proposition 2.5).

Definition 2.3. Let e; € (0,1]. A sequence {Si},; of bounded linear integral operators on
L2(X) is said to be an approximation of the identity of order 1 with bounded support (for short,
€1-ATI with bounded support) if there exist constants C4, C5 > 0 such that for all k € Z and all
x,x',y,and y' € X, Sk(x,y), the integral kernel of S is a measurable function from X x X
into C satisfying (v) and (vi) of Definition 2.2 as above, and

(i) Sk(x,y) = 0if d(x,y) > C527F and |S(x, y)| < C4(1/ (Vas(x) + Vo ()));

(ii) |Sk(x,v) = Sk(x,y)| < Ca2kad(x,x)(1/(Var(x) + Vau(y))) for d(x,x') <
max {Cs, 1}21_k;

(iii) property (ii) also holds with x and y interchanged;

(i) [[Sk(x,y) = Sk(x,y)] = [Sk(x,y) = Sk(x',y)]| < Ca2%ad(x,x)"d(y,y)*" x
(1/(Var (x) + Var (y))) for d(x, x') < max {Cs,1)2" % and d(y, y') < max {Cs, 1)2"%.

We call €; the regularity of (e1, €2, €3)-ATI { Sk} ez

Remark 2.4. (i) Assume that X is as in Case (a) with n > 3 or as in Case (b) in the
introduction, and let H(s,x,y) be the heat kernel defined in (1.17). Define Si(x,y) =
HQ*,x,y) for k € Z and x,y € A. Using [44, Proposition 2.3.1], we can verify that
{Sk}iez is an (€1, €2, €3)-ATI for any €1 € (0,1], &2 > 0, and €3 > 0. Moreover, in this case,
Sk(x,y) = Sk(y, x).

(ii) If X is any (compact or noncompact) Ahlfors n-regular metric measure space or
any Lie group with polynomial growth, then one can construct an e;-ATI with bounded
support for any €; € (0,1] by following Coifman’s idea in [64].

(iii) We remark that when we consider the existence of ATIs, the condition (iv) of
Definition 2.2 is not essential, in the sense that if there exist {Sk},c; With k € Z satisfying
(i), (i), (iii), (v), and (vi) of Definition 2.2, then {Si o Si};¢; satisfy (i) through (vi) of
Definition 2.2.

Proposition 2.5. Suppose { Sy } ey, is a sequence of bounded linear integral operators on L?(X) such
that Sk(x,y) = 0 whenever d(x,y) > Cs27%. Then { Sk} ey, is an ATI if and only if it is an ATI with
bounded support.
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Proof. Obviously, from the assumption that Sg(x,y) = 0 whenever d(x,y) > Cs27%, it easily
follows that Sy satisfies Definition 2.2(i) if and only if

| Sk (x,

1
RS Ve ) V)’ (2.2)

which appears in Definition 2.3(i).

We now establish the equivalence between Definitions 2.2(ii) and 2.3(ii), with the
proof for the equivalence between (iii) of Definitions 2.2 and (iii) of Definition 2.3 being
similar. Notice that Si(x,y) — Sk(x’,y)#0 implies that d(x,y) < Cs27F or d(x,y) <
Cs27%. Thus, Sk(x,y) — Sk(x',y) #0 together with d(x,x’) < 2max {C5,1}2_k shows
that d(x,y) < 3max(Cs,1)27%, and hence, 27% + d(x,y) ~ 2% and Vo (x) + Vax(y) +
V(x,y) ~ Vo (x)+ V-« (y). From these estimates, it immediately follows that Definition 2.2(ii)
implies Definition 2.3(ii), and conversely Definition 2.3(ii) implies that Definition 2.2(ii)
holds whenever d(x, x') < 2max {Cs, 1}27%. We still need to prove that Definition 2.3(ii) also
implies that Definition 2.2(ii) holds when 2 max {C5,1}27k < d(x,x") < (ka +d(x,y))/2.
However, if 2 max {Cs, 1}2_k <d(x,x") < (2_k+d(x,y))/2, we have d(x,y) > 3max {Cs, 1}2_k
and d(x',y) > d(x,x') - 27k 5 C527%. Thus, in this case, Sk(x,y) =0 = Sk(x', y), and therefore,
Definition 2.2(ii) automatically holds. This proves the equivalence between Definitions 2.2 (ii)
and 2.3(ii).

We now establish the equivalence between Definitions 2.2(iv) and 2.3(iv). Notice
that [Sk(x,y) — Sk(x,¥)] — [Sk(X,y) — Sk(x,y')] #0 implies that d(x,y) < Cs27% or
d(x',y) < Cs27% or d(x,y') < Cs27F or d(x',y') < Cs27%. This together with d(x,x') <
max{C5,1}21_k and d(y,y') < max{C5,1}21_k further shows that we have d(x,y) <
5 max {C5,1}217k, and hence, 27% + d(x,y) ~ 27F and Vo« (x) + Vo () + V(x, 1) ~ Vor(x) +
V-« (y). From these estimates, we see that Definition 2.2(iv) implies Definition 2.3(iv), and
conversely, Definition 2.3(iv) also implies that Definition 2.2(iv) holds when d(x,x’) <
2max {Cs, 1 }Z’k and d(y,y') < max{Cs,1 }21’k. We still need to prove that Definition 2.3(iv)
also implies that Definition 2.2(iv) holds in the three cases listed below. Recall that we
always assume that d(x,x') < 27F + d(x,y))/3 and d(y,y') < 27" + d(x,y))/3 in
Definition 2.2(iv).

Case 1. d(x,x') < 2max {C5,1}2_k and d(y,y') > Zmax{C5,l}2_k. In this case, d(x,y) >
3d(y,y') =27 > C527%, d(x,vy') > 2d(y,y') —27F > Cs27%, d(x,y) > 2d(y,y') - 27% > C527%,
and d(x',y') > d(y,y') =27 > C527F. Thus Sk(x, y) = Sk(x,v') = Sk(x,y) = Sk(¥',y') = 0and
therefore Definition 2.2(iv) automatically holds in this case.

Case 2. d(x,x') >2max {Cs,1}27F and d(y,y') <2max{Cs,1 127% . This case is similar to Case
1 by symmetry.

Case 3. d(x,x') > 2max {Cs,1}27% and d(y,y’) > 2max {C5,1)27%. In this case, similar to
Case 1, we have that d(x,y) > 3d(y,y') - 2% > C527%, d(x,vy) > 2d(y,y') - 27F > C527F,
d(¥,y) > 2d(x,x') - 2% > C527%, and d(x, ) > d(x,y) - d(x,x) - d(y, ) > [d(x,y) -
217Ky /3 > d(y,y') - 27F > C527%. We also have Si(x,y) = Sk(x,y') = Sk(x,y) = Sk(x',y') =0
and therefore (iv) automatically holds in this case. This establishes the equivalence between
(iv) and (iv)’, and hence completes the proof of Proposition 2.5. O
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Following Coifman’s idea in [64], for any e; € (0,1], we can construct e€;-ATIs with
bounded support on X (cf. also [65, Theorem (1.13)]).

Theorem 2.6. Let (X, d, u) be a space of homogeneous type as in Definition 1.1 and e; € (0,1]. Then
there exists an approximation of the identity {Sk}cy of order €1 with bounded support on X, with
constant Cs = 4. Moreover, for all k € Z and x,y € X, Sk(x,y) = Sk(y, x).

Proof. Obviously, we only need to prove the theorem for ¢; = 1. Let h € C}(R), h(t) = 1 if
te[0,1], h(t) =0ift >2,and 0 < h(t) < 1forallt e R. Forany k € Z, f € Llloc(,%) andu € X,
we then define

Tif (u) = J‘%h(de(u,w))f(w)dy(w). (2.3)

Obviously, we have Vo« (1) < Til(u) < Vu«(u). Fix any x € X. By Lemma 2.1(vi), for all
u € B(x, 25k ), we further have

Tel(u) ~ Vit (). (2.4)

Thus, if z € B(x,2**) and h(2kd(z, 1)) #0, then u € B(x,2°%), and by (2.4), we further have

1 1
Tk<m>(z) = th(zkd(z, u))m—(u)dy(u) ~1. (2.5)
For all x,y € X, we define
1 x 1 K 1
Sk(x,y) = Ta@) {L{h(Z d(x, z))—Tk(l/Tkl)(z)h(z d(z,y))d‘u(z)}Tkl(y). (2.6)

We now prove that { Sk} is a 1-ATI with bounded support and Cs = 4. It is obvious that for
all x,y € X, Sk(x,y) = Sk(y, x), and that if d(x,y) > 227F, then Sk (x, y) = 0. Also, it is easy to
show that fok(x,y)d‘u(y) = 1. Moreover, if d(x,y) < 27k by (2.4) and (2.5) together with
Lemma 2.1(vi), we obtain

1 1
< ~
R R T eo S Ea A 27

Thus Sk (x, y) satisfies (i)’ of Definition 2.2 with Cs = 4.

We now show that Si(x,y) has the desired regularity in the first variable when
d(x,x') < 23k Notice that in this case, Sk(x,y) — Sk(x',y) #0 implies that d(x,y) < 24k
and hence,

1 B 1
Vo () + Vo (y) - Vor (%)

(2.8)
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By (2.6), we have

Sk(x,y) = Sk (¥, y)

_ 1 k k 1
B [Tkl(x) Tkl(x)]{f h(2 d(x’z)>Tk<1/T Eks d(z’y))d”(z)}:r 1(y)

; k _ k ’ ; k 1
=1+ 2,
(2.9)

To estimate Z;, by the choice of h, the mean value theorem, and (2.4) together with
Lemma 2.1(vi), we first have

1 1 1 24d(x, x')
- < 28d(x, x" ) u(B(x,24F)) ~ ey 2.10
Til(x)  Tel(x) [Vos (x)]2 (x, %) p(B( ) Vor (%) (2.10)
which together with (2.4), (2.5), and (2.8) further yields
2kd(x, x' 2kd(x, x'
|21 < (x, ) (x, ') (2.11)

|5 Vo (x) Vo (x) + Var (y)

To estimate Z,, notice that h(2k d(x,z))- h(2k d(x',z)) #0implies d(x, z) < 24k, By this
observation, (2.5), the mean value theorem together with Lemma 2.1(vi), we obtain

k _ k ! 1 k
Ux (124, 2) =W A2, )] s 2z, )2
S 24, X )u(B(x,25)) 21
< 2%d(x, X' ) Vo (x),
which together with (2.4) and (2.8) yields
k ! k !
12| < 2%d(x, x") 2%d(x, x") (2.13)

< Vo () Vo () + Vo ()

In combination with the estimate for Z;, this shows that Si(x, y) has the desired regularity
with respect to the first variable when d(x, x') < 237,
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We finally prove that Sk (x, y) satisfies the desired second difference condition, when

d(x,x") <23%and d(y,y') < 23°%. Notice that in this case, [Sk(x,y) — Sk(x',¥)] - [Sk(x,y') -
Sk(x',y")] #0 implies that d(x, y) < 25K Thus, (2.8) also holds in this case. By (2.6), we have

[Sk(x,y) = Sk(x, y)] = [Sk(x,¥') = Sk (x, y')]

[t o1 " 1 .
) [Tkl(x) Tel (') {Lch(z 4 amny e d(zry))dﬂ(Z)}

ety ol b el
Til(y) Tel(y) Til(x)  Til(x') [ Tel(y')

k 1 k k !
y {th(z A2 iy MG ) —hC2 d(z,y))]dy(z)}
1

*qxuxv{fxvmfdu»n>—h@“ﬂxﬁﬂ)l

1 1
“Te(1/Te1) (=) Tid(y) T(y)

{ f (2 2) - @, 2))]

1
g Tk (1/Ti1)(2)

h(de(z,y))dy(z)} [

L1 1
Til(*') Tel(y')

(12" (=) - b2 () (=) |

=3+ 2y + Zs+ L.

(2.14)
The estimates (2.10), (2.5), and (2.8) together with Lemma 2.1(vi) show that
2dux> 2d.9) 1

Z p(B(x,2%* ~2%d(x,x")d(y, 2.15

The estimate for Z, is similar to the one for Zs, while the estimate for Z5 can be deduced
immediately from the estimates (2.12), (2.10), and (2.4) together with (2.8). Finally, to
estimate Zg, notice that h(2*d(x, z)) - h(2*d(x',z)) #0 and d(x,x') < 2%°* implies that z €
B(x,2*%). This observation together with the mean value theorem, (2.5), and Lemma 2.1(vi)
yields

1

Lﬁw@wwz»—ﬂf“ﬂ””ﬁﬁﬁﬁWE

[h(2%d(z, ) - h(2%d(z,y'))] dp(2)

< 2%k4 (x,x")d(y,y") Var (x),
(2.16)
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which together with (2.4) and (2.8) further gives

1

1
72k / ’
Vz-k(x) 2 d(x’x)d(y’y)vz_k(x)

< 2k ! !
| Zs| < 27%d(x,x")d(y,y") FVor(y)

(2.17)

This proves that Sk(x, ) has the desired second difference property, and hence, completes
the proof of Theorem 2.6. O

In the sequel, for any f € LP(X) with p € [1,00] and x € X, we set
5cf () = [ i) 7 @)duty). (218)

We also let

Ly (X) = {f € L*(X) : f has bounded support}. (2.19)

Some basic properties of ATIs are presented in the next proposition.

Proposition 2.7. Let {Si}cy be an (€1, €2, €3)-ATI with €; € (0,1], €2 > 0 and e3 > 0, and let Sf{
denote the adjoint operator to Sy, whose integral kernel is given by S} (x,y) = Sk(y, x). Then the
following hold.

(i) Forany k € Z and any x,y € X, [ 4|Sk(x, y)|dpu(y) < Cand [ ,|Sk(x, y)|dpu(x) < C.
(ii) Forany k € Zand any f € LI _(X), |Skf(x)| < CMf(x).

loc

(iii) For 1 < p < oo, there exists a constant C,, > 0 such that for all f € LP(X),

”Skf”Lv(x) S Coll fllp ) (2.20)

(iv) For 1 <p < oo and any f € LP(X), ||Skf—f||L,,(x) — Qwhen k — oo.
(v) Properties (ii) through (iv) also hold for S replaced by S

Proof. Definition 2.2(i) together with Lemma 2.1(i) shows that for any k € Z and any x € X,

[ Iscomlann = isiwwldeer+ [ s pldew)
X k >2

d(x,y)<2” d(xy)

(2.21)

<1+f L2
~ dxyys2* V(x,y) d(x, ) Hy

<1

A similar argument proves that [ , Sk (x, y)|dp(x) < 1.
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To prove (ii), by Definition 2.2(i) together with Lemma 2.1(iv), we have

1 ke
|f () ]dpu(y)

Sk f @) < 3 e f e k|f(y)|d#(y)+J‘d(x,y)>2kV(x,y) d(x,y)® (2.22)

S Mf(x).

From (ii) and the L”(X)-boundedness of M, we obtain (iii) for p € (1,]. Forp =1,
we obtain (iii) from (i), by Fubini’s theorem.

To prove (iv), we first recall that Lebesgue’s differentiation theorem holds in X, that
is, if f is locally integrable, then for almost all x € X, x is a Lebesgue point which means

. 1 )
}T})mh(m |f(y) = f()|du(y) =0, (2.23)

since the measure y is regular; see [13, page 4] and [66, page 11].
For any given f € L7 (X) with p € [1, 0], assume that xy is a Lebesgue point of f, then
Mf(x0) + |f(x0)| < oo. By the conditions (v) and (i) of Sk in Definition 2.2, we have

|Skf (x0) = f(x0)]
_ f SeCon) [F) - f () au(y)

1 2k
C - d
< SJ.d(xO,y)<2k Vz—k (xO) " Vz—k (y) i V(XO, y) (2—k + d(x0/ y) )62 |f(]/) f(xO) | .“(]/)

[ee]

+ C3 f .
1=0 J 2127k <d(xp,y) <22k

© 1 1
€O P Vi (w0) - du(y).
- Sé 2 Viyg+ (x0) J‘d(xmy)<212—k /() = f (x0) |dp(y)
(2.24)

For any 6 > 0, we choose Ly € N so that

. (2.25)

N| O

CO[Mf(x0) + (0] 3 5 <

Since xq is a Lebesgue point, by the definition, we know that there exists K € N such that
when k > K,

o)
Ccsz 2162 Vaia- k(XO) Id(xo y)<2'2-k |f(y) B f(xo) |d‘u(y) < 2" (2.26)
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Thus limk —, o, Sk f (x0) = f(x0), and therefore for almost everywhere x € X,

Jim Sif(x) = £ (). (2.27)

This fact together with |Sif(x)] < Mf(x) (see (ii) of this proposition), the LF(X)-
boundedness of M with p € (1,0) again and Lebesgue’s dominated convergence theorem,
gives that limy o, ||Sk f — fllzr(x) = 0 for all f € LP(X).

When p = 1, we first consider f € L°(X). Assume that supp f C B(yo, o) for some
Yo € X and ry > 0. For some fixed L > 2ry, by Holder’s inequality and the conditions (i) and

(v) of Sk in Definition 2.2 together with Lemma 2.1(i), we have

94 ~Flloe = [, ISef - f@lenco) + |

< u(Br(v0))"||Skf ~fllzw

L|51<f(36) = f(x)[dp(x)

X,Y0)< d(x,y0)>

2.28
1 2t 229

d d
" C3fd(y,yo)<ro FW)l {fd(x,y)ZL/Z Vix,y) d(x,y)® y(x)} #y)

/ —Key T —€2
< I‘(BL(IJO))1 2||Skf_f||L2(x) +CCs27*eL 1Al )

which together with L*(X) C L?(X) and the above proved conclusion for p € (1, o0) implies
that limi— 0[Sk f = fllpixy = 0 for all f € Li?(X). This and the density of L;°(X) in LY(X)
further yield that limy . [|Sk f = fll11(x) = 0 forall f € L'(X), which verify (iv).

Property (v) can be deduced from (i) through (iv) together with the symmetry, which
completes the proof of Proposition 2.7. O

We now introduce the space of test functions on X.

Definition 2.8. Letx; € X, v > 0,0 < f<1,and y > 0. A function f on X is said to be a test
function of type (x1,1, B, v) if there exists a constant C > 0 such that

() [f() < CA/(Ve(x1) + V(x1,x))) (r/ (r + d(x1, x)))" forall x € X;

(i) |f (x) = f(y)] < Cd(x,y)/ (r +d(x1,x)))P 1/ (Vi(21) + V (21, %)) (r/ (r + d(x1, %))
for all x, y € A satisfying that d(x,y) < (r + d(x1,x))/2.

Moreover, we denote by G(x1,7,,y) the set of all test functions of type (x1,7,p,7), and if
f € G(x1,1,B,7), we define its norm by

1fllgs, vy = inf {C : (i) and (i) hold}. (2.29)

The space G(x1,,B,y) is called the space of test functions.

This definition of a test function of type (x1,7,B,y) gives a quantified meaning to the
notation of a sufficiently “smooth” function which is essentially supported in the ball of
radius r centered at x; in the sense that it decays of sufficiently high order (measured by
y) at infinity, and is Holder continuous of order § (at the right scale r).
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Obviously, Sk(x,-) for any fixed k € Z and x € X in Definition 2.2 is a test function
of type (x,27%, €1, €2), and Sk(-,y) for any fixed k € Z and y € X in Definition 2.2 is a test
function of type (y, 27k e, €2). Moreover, for 7 € (0,1], let

T 5;}(% (230)
x7y
and define the homogeneous Holder space
CUK) = {f € CLO) | fllenry < ) (231)
we also consider the inhomogeneous Holder space
C1K) = {f € CLK) = I fllcagy < o0}, 2.32)

Cl(X) = {f € C(X) : f has bounded support},

where |fllcyxy = fllpexy + Iflleaxy- Then any f € CZ(,K) is also a test function of type
(x1,7,1,7) forany x; € X,r >0,and y > 0.
Now fix x; € L and let G(B,y) = G(x1,1, B, 7). It is easy to see that

G(XOI r, p’ Y) = G(ﬂ’ Y) (233)

with the equivalent norms for all xy € X and r > 0. Furthermore, it is easy to check that
G(B,y) is a Banach space with respect to the norm in G(g, y).

It is well known that even when X = R”, G(f1,y) is not dense in G(f, y) if 1 > P,
which will bring us some inconvenience. To overcome this defect, in what follows, for given
e € (0,1], let G5(B,y) be the completion of the space G(e,€) in G(B,y) when 0 < B,y < e.
Obviously, Gj(e,€) = G(e, €). Moreover, f € Gi(B,y) if and only if f € G(B,y) and there
exist {fn},cny C G(e, €) such that ||f—fn||q(m) — O0asn — oo. If f € G5(B,y), we then
define ||f|| Gy = IIf “G(ﬂ,y)' Then, obviously, Gg(f,y) is a Banach space and we also have

”f”Gg(ﬁ,y) = limnﬂoo||fn||c(ﬂ,y) for the above chosen { f,}, .-
We define the dual space (G (S, 7))’ to be the set of all linear functionals £ from G5B Y)
to C with the property that there exists C > 0 such that for all f € G5(B,y),

2O < Clifllgeepy- (2.34)

We denote by (h, f) the natural pairing of elements h € (G§(,y)) and f € G5(B,). Clearly,
forall h € (Gg(ﬁ,y))', (h, f) is well defined for all f € G§(x1,7,,y) with x; € Land r > 0.
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In the sequel, we define
G pr) = {feGEanpy): | Fdue =0, (2.35)
pe

which is called the space of test functions with mean zero. The space GS (B,7) is defined to be the
completion of the space G(e, €) in G(B,y) when 0 < f, y < e. Moreover, if f € GE(B,y), we
then define || fllg 1) = lfllgp -

By essentially following a procedure similar to that of [44, Lemma 3.5.1], we can
establish some kind of decomposition for test functions with mean zero.

Proposition 2.9. Let x; € X, 7> 0,0 < p < 1,and y >0, and let f € G(x1,1,B,7). Then for any
Y€, ylandall x € X,

f(x)= i 27 i(x), (2.36)
1=0

where @y is an adjusted bump function associated with the ball B(x1,2'r), which means that there
exists a constant C > 0 independent of r and | such that

(i) supp ¢1 C B(x1,2'r);

(ii) |gi(x)| < C(A/ Vo, (x1)) forall x € X;

lpillenxy < C(er)_n(l/Vzlr(xﬂ)for all0<n < p;
(iv) [ xpr(x)dp(x) = 0.

Moreover, the series in (2.36) converges to f pointwise, as well as in LP(X) for p € [1, 0], and in
GV B,y with 0 < B, y' < (BAY) and also in (G (B, y')) with0 < B, y' < (BAY).

(ii

)
)
)
)

Proof. Fix a nonnegative function & € C}(R) such that a(t) = 1ift <1/2 and a(t) = 0if t > 1.
Let Ao(x) = a(d(x,x1)/r)f(x),and for [ € N,

A(x) = [a<M> —a<m>]f(x). (2.37)

2lr 21-1y
Then f(x) = Xj5) Ai(x), and for all ¥ € (0, 7],

1
VZIr (X1) ’

|Ai(x)| <277 (2.38)

Define a; = fol(x)dy(x) and v; = Zé':oaj- Let 71(x) = a(d(x,x1)/2'r) and 1(x) =
i(x) [fxﬁl(z)d‘u(z)]*l. Finally, if we define

Ay(x) = Ai(x) — aym(x) + o1 (m(x) = M (x)) (2.39)
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and ¢;(x) = 2 Aj(x), then it is easy to verify that ¢, satisfies (i) through (iv) of the proposition
and (2.36) holds pointwise.

Obviously, ¢; € G(B,y) and therefore ¢; € égAY B,y for0 < p, vy < (BAY). Moreover,
if | € Nis large enough, then there exists a constant C, , > 0, which is independent of x, such
that for all x € B(xy,2'r), 1+ d(x, x1) < C,.,2" and hence

oty gy < Crn2" (240)
From this, it follows that if y' < ¥,
L o o .
f=22" < Cry, D, 270~ C,p 270 — (241)
1=0 Gg/\f(ﬂ’,)”) I=L+1

as L — oo. This shows that (2.36) holds in Cg,g/\7 (B,y) with0 < f, y' < (B AY). By Fatou’s
lemma and Minkowski’s inequality, we also obtain that for any p € [1, o],

L o)
‘f—ZZ"“Pz < 3 e
1=0 LP(X) I=L+1
< i 2—1?;
o V()T (242)
<— L o
Vr(xl)l—l/P
— 0,

as L — oo. That s, (2.36) holds in L?(X) with p € [1, oo].
Finally, for any ¢ € Gg/\y(ﬂ’, y) with 0 < g, y' < (BAY), from Holder’s inequality, Fatou
lemma and Minkowski’s inequality, it follows that

L 0
(fro) -2, 2”<<pz,<p>' <|[ D 27y el o
1=0 I=L+1 L1(X)
S < Z 2_l?> ”‘F”Lw(ﬂ() (2.43)
I=L+1

S 27L?”(P||Loo(x)

— 0,

as L — co. Thus, (2.36) also holds in (GgAY (B,y)) with 0 < B, y' < (B Ay), which completes
the proof of Proposition 2.9. O
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The following proposition is a slight variant of Proposition 2.9.

Proposition 2.10. Let x; € X, v > 0,0 < p < 1,andy > 0,and let f € (x1,7,p,7). Then for any
ye€(0,ylandall x € X,

f) = 3 2 (), (2.44)
1=0

where (y is an adjusted bump function associated with the ball B(x1,2'r), which means that there
exists a constant C > 0 independent of r and | such that

(i) supp ¢ C B(x1,2’1');
(if) lgr(x)] < C(1/ Vo, (x1)) for all x € X;
(i) 91l engey < C@7) ™ (1/ Vi, (x1) for all 0 < < .
Moreover, the series in (2.44) converges to f pointwise, as well as in LP (X) for p € [1, 0], and in

B,y with0 < B,y < (BATF) and also in (G5 (B, y)) with0 < B, y' < (BAY).

Proof. Let a € C}(R) be as in the proof of Proposition 2.9. Let Ag(x) = a(d(x,x1)/r) f(x), and
forl e N,

Ax) = [a<d(x,x1)> —a<d(x'x1)>]f(x). (2.45)

2r 2-1y
Then for I € Z,, setting ¢;(x) = 27 Aj(x), we can verify that the {¢;) 1z, have all the properties
stated in the proposition, which completes the proof of Proposition 2.10. O

In what follows, for any g € (0,1], y >0, and r > 0, we let

Go(x1,7,8,7) = {f € G(x1,7,B,7) : f has bounded support},

2.46
Go(x1,7,8,7) = {f € G(x1,7,B,y) : f has bounded support}. (2:46)

Also, for n € (0,1], let
Gl = { feChX): f f(x)du(x) = 0}. (2.47)
X

From Propositions 2.7, 2.9, and 2.10, it is easy to deduce the following useful result; we
omit the details.

Corollary 2.11. Let €; € (0,1] be as in Definition 2.2, 0 < < €1 and y > 0. Then,

(i) both C’g(ﬂ() and G, (x1,1,B,y) for any fixed x; € X and r > 0 are dense in G(xl,r, B.y);

(ii) both Cf(,%) and Gy(x1,1,B,7) for any fixed x; € X and r > 0 are dense in both
G(x1,1,B,y) and LP(X) with p € [1, o0).
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2.2. Boundedness of singular integrals on spaces of test functions with mean zero

Let p € (0,1]. In analogy with the topology of the space D(R"), in what follows, we endow
the spaces Cf(,ﬁ() (resp., C‘g (X)) with the strict inductive limit topology (see [30, page 273] or

[67]) arising from the decomposition Cf(%) = U, CP(B,) (resp., C‘f (X)) = U,CF(B,)), where
{B,}, is any increasing sequence of closed balls with the same center and X = (J,,B,, and the
space C#(B,,) (resp., CP(B,)) means the set of all functions f € CP(X) (resp., f € CP(X)) with
supp f C By, whose topology is given by the norm ||-[|sx)- It is well known that the topology

of Cf (X) (resp., Cf (X)) is independent of the choice of closed balls {B,},; see [30, page 273]

or [67]. Their dual spaces (Cg(ﬂ())' and (Cf(,%))' will be endowed with the weak™ topology.
We first have the following basic facts.

Proposition 2.12. Let f € (0,1] and let T be a continuous linear operator from C‘g (X) to (Cf(ﬂ())',
Assume that T has a distributional kernel K, which is locally integrable away from the diagonal of

X x X, in the sense that for all ¢,y € Cf (X) with disjoint supports,
@)= [[ K@ypwp@anau). (2.49)

Assume also that there exists a constant Ct > 0 such that for all x,x',y € X with d(x,x') <
d(x,y)/2and x#y,

d(x,x')°

[KGey) =Ky < Cro

(2.49)

Then T can be extended to a continuous linear operator from CP(X) to (C‘g(ﬂ())'.

Proof. For any f € CP(X) and g € C‘g(ﬂ(), suppose supp g C B(xg, ) for some xy € X and r >
0. Choose ¢ € Cg(ﬂ() such that ¢s(x) = 1 when x € B(xy,2r) and ¢(x) = 0 when x ¢ B(xo,4r).

It is easy to see that ¢ f € Ci(%), which shows that (T (¢ f), g) is well defined. On the other
hand, we define

(T(a-01f).8) = || [Keow) -Klxon)] (- ¢ @) @sau@uty). @50

By (2.49) and Lemma 2.1(i), it is easy to see that the right-hand side of the above equality is
finite; furthermore, if f has also bounded support, this equals with

f f K (=g ) fgIapCduy), (2.51)

which coincides with (2.48). Moreover, it is easy to verify that

(T(pf), ) +(T(L-w)f) g) (2.52)
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is independent of choice of ¢. Thus we can define T f by letting
(Tf,8) =(T(¢f), &) +(T(A-9)f), g)- (2.53)

In this sense, we have T f € (C{j (X)), which completes the proof of Proposition 2.12. O

We also need the weak boundedness property and the strong weak boundedness
property of operators; see [68] for the definition of the weak boundedness property on R”
and [34] for the definition of the strong weak boundedness property on Ahlfors 1-regular
metric measure spaces.

In what follows, for g € (0,1], we denote by Cf (X x X) the set of all functions f on
X x X with bounded support, which satisfy that for any x € X, both f(x,-) and f(:, x) are in
Ch(X).

Definition 2.13. Let p € (0,1] and let T be a continuous linear mapping from C‘g (X) to
(Cg(ﬂ())'. The operator T is said to have the weak boundedness property of order p (for short,

T € WBP(p)) if there exists a constant C > 0 such that for all ¢,¢p € Cg(,%) with
supp ¢, supp ¢ C B(z,r) for some z € Land r >0, [|Plle ) < r and g llenxy < rF,

[(T9,47] < Cp(B ). (254)

The minimal constant C as above is denoted by ||T||ygpg)-

Remark 2.14. (i) Let p € (0,1] and y > 0. Let us also endow the space Gy (B, y) (resp., G B.7)
with the strict inductive limit topology in a similar way as the space Cf(,ﬁ() (resp., Cf(ﬂ())
and its dual space (Gy(8,7))’ (resp., (G (B,7))") with the weak® topology. Then, as topological
spaces, Ch(20) = Gu(B,y) and (CL(L))' = (Gu(B, 7)) (resp., Ch(X) = Gu(B,y) and (C)(K)) =
(G (B1)))-

(ii) We remark that if A is a (x, n)-space as in Definition 1.1, then there exists a constant
C > 0 such that forall ¢ € C/(«) and all x € X,

|$(0)] < C[diam (supp $)] lIpllcr - (2.55)

To see this, assume that supp ¢ C B(x,r) for some xg € X and r > 0. By Remark 1.2, we can
find a yy € X such that r < d(yo, xo) <2r. Then ¢(yo) = 0 and for all x € supp ¢,

160)] = [$(0) - d(¥0)| < A, 1) Ibllescrr < BrP Idlles e (2.56)

which is just (2.55). By this observation, we see that the functions ¢ and ¢ in Definition 2.13
also satisfy ||l ) S 1and [l¢gllpeyy < 1.

(iii) From Holder’s inequality, it is easy to deduce that if T is bounded on LP (X)) with
p € (1,00), then T € WBP() for any g € (0,1] and

ITllwep) < NTllr ) - 1r(x)/ (2.57)
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where and in what follows, ||T||rrx)—1r(x) denotes the operator norm of T from LP(X) to
LP(X).

(iv) Following [34], we can also introduce a slightly stronger property than WBP,
called strong weak boundedness property in [34] as follows: let T be as in Definition 2.13.
The operator T is said to have the strong weak boundedness property of order p (for short,

T € SWBP(p)) if T has a distributional kernel K € (Cf(% x X)) such that (2.48) holds and
there exists a constant C > 0 such that for all f € Cg(ﬂ( x X) with supp f C B(xo,r) x B(xo, 1)
for some xg € X and r > 0, | f(-, ¥)llesxy < 7P forally € L and ||f(x,)llesn) < rF for all
x € X,

(K, f)| < Cu(B(xo,1)). (2.58)

The minimal constant C as above is denoted by ||T [lswgp(g)-

- By the observation in (ii) of this remark, the function f also satisfies that || f]| ;. . x)
(v) Leti = 1,2, pi € (0,1] and let T be a continuous linear mapping from Cgi (X) to

(Cgi (X)) with a distributional kernel K as in (2.48) of Proposition 2.12. If K satisfies the size

condition that for all x, y € X with x#y,

IK(x,y)I < CT%}/), (2.59)

then T € WBP(f;) if and only if T € WBP(f3;). This fact can be proved by an argument similar
to that used in the proof of Proposition 1 in [64] and we omit the details.

In what follows, standard notions from distribution theory carry over to continuous
linear functionals on C‘g (X). For instance, if # C X is an open subset, the restriction of w €
(Cf(ﬂ())' to U is defined by (w|y, ) = (w, ) forall ¢ € Cg(ﬂ() supported in A.

Using some ideas from Meyer in [69], we can obtain the following useful estimates
which play a key role in establishing the boundedness of singular integrals on spaces of test
functions with mean zero.

Lemma 2.15. Fix a bump function 0 € C; (R) with 0 < 8(x) <1 forall x e suppO C {x e R: [x| <
2} and O(x) =1 on {x € X : |x| <1}. For any fixed z € X and r > 0, let 0, ,(y) = 6(d(z,y)/r) for

all y € X and put w,, =1 —0;,. Let T be as in Proposition 2.12. If T(1) € (Cg(,%))' is 0, then the
following hold.

(i) The restriction of the linear functional T(0,,) € (Cf(%))' to the ball B(z,r/2) is a mea-
surable function, and for a.e. x € B(z,1/2),

T(0:r)(x) =Czy - L{ [K(x,y) -~ K(z, )] wz(y)du(y), (2.60)

where C, is a constant independent of x.
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(ii) If further assuming that T € WBP (), then there exists a constant C > 0 such that for a.e.
x € B(z,7/2),

|T(6=,)(x)| < C(Cr + I Tllwgpg))- (2.61)

Proof. Assume that T(1) = 0 in (C}(X))". For any f € C}(X) with supp f C B(z,7/2), since
J o f (X)dp(x) = 0, we have

0= (1), ) = (1@ + [ [KCw)-KEmloswduw), f). @62
x
Let « € C}(R) be as in the proof of Proposition 2.9, and 7. ,(y) = a(d(y, z)/(r/2)). Set

N ) = Fier () an (w)d(e)| - (2.63)

Then 1., € C;(,K), supp 1z C B(z,r/2) and fxqzlr(y)d//t(y) = 1. For any f € Ci(ﬂ() with
supp f C B(z,r/2), we set f(yz = f(y) = 1z (Y) [ o f (¥)du(y); then f € Cg(ﬂ() with supp f C
B(z,r/2). Applying (2.62) to f and using Corollary 2.11(ii) in the case p = 1 show that the

restriction of the linear functional T(0,,) € (Cg (X)) to the ball B(z,r/2) is a measurable
function, and for a.e. x € B(z,7/2),

<T(ez,r) (x) + fx [K(x,y) - K(z,y)]wz,r(y)dﬂ(y),f>

(2.64)
[ {10+ [ IKCw - K wss )t ner ) f)dut),
X X
which implies (i) with
Cz,r = <T(92,r) + ’[ [K(/ y) - K(Z, ]/)] Wz,r (]/)d.“(]/)/ le,r>r (265)
ye

by noticing that C, is a constant independent of x and the choice of 7, ,, but, it may depend
onzandr.
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To verify (ii), by (2.62) together with the definition of T(1), (2.49) of Proposition 2.12
and Lemma 2.1(i), we have

[(T(8=r), )] = | = (T(w=r), )

) U f Ky = K y)lws () f () duty)dp()

(2.66)

d(x,z)¢
C _ a4z p
< TL( [J‘Zd(z,xkd(zlwV(Z,y)d(z,y)e ﬂ(y)] |f(x)| u(x)

§ CT”f”Ll(x)r

which together with Corollary 2.11(ii) in the cases r = 1 and p = 1 again shows that for a.e.
x € B(z,7r/2),

T(02,)(x) = Q. r(x) + Csp, (2.67)

where ||Q_ || LX) < Cr and C,, is a constant independent of x. We now estimate C, by
using that T € WBP(p). To this end, let g € Cg(,%) with suppg C B(z,7), [I§llpexy < 1
||g||C-ﬁ(x) <rP, and _[xg(x)dy(x) ~ u(B(z,r)). From (2.67) and T € WBP(p), it follows that

|Cer|

[ s
X

- '<T(ez,r),g> - fxszz,rmg(x)dy(x) e

S (ITllwsp) + Cr)u(B(z, 1)),

which implies that |C,,| < ||T||WBP(;5) + Cr, and hence, completes the proof of Lemma 2.15.
O

We recall the notion of the space of functions with bounded mean oscillation, BMO(X),
which was first introduced by John and Nirenberg in [70], and was proved to be the dual
space of H2, (X) in [28].

Definition 2.16. Let 1 < g < co. The space BMO,(X) is defined to be the set of all f € quoc (X)
such that

= ! 1d o 2.69
. llmo, ) = xesz}lo{mj‘mm)v(y) — mpn ()| #(y)} < . (2.69)

When g = 1, one denotes BMO; (X) simply by BMO(X).

It was proved in [28] that for any 1 < g1, g2 < oo, BMOy, (X) and BMOy, (X) are equal
as vector spaces and the seminorms ”'”BMOHH () and ”'”BMOqZ (x) are equivalent. Moreover, if

we let NV = C be the subspace of all constant functions on X, then the quotient space BMO(X)/ N
becomes a Banach space in a natural way.
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Remark 2.17. Let p € (0,e] and y > 0. It is easy to see that T(1) = 0 in (Cg(%))' if and
only if T(1) € (Ci (X))' is constant; see also [71, page 22]. Moreover, from Corollary 2.11(i),

Proposition 5.21, Theorems 5.19(i) and 6.11 below, it is easy to see that T(1) € (C’;(X))/ is
constant if and only if T(1) € BMO(X) is constant, which is also equivalent to T(1) = 0 in
BMO(X).

We now establish a basic boundedness result for singular integrals on spaces of test
functions with mean zero, which will be a key tool for the whole paper.

Theorem 2.18. Let € € (0,1], p € (0,¢€), and let T be as in Proposition 2.12 with the distributional
kernel K satisfying the following additional conditions that

(i) forall x,y € X with x#y, |K(x,y)| < Cr(1/V(x,y));
(ii) forall x,y,y' € X with d(y,y') <d(x,y)/2 and x #y,

! d(y’y’>€ .
|K(x,y)—K(x,y)| SCTW, (270)
(iii) forall x,x',y,y' € X with d(x,x') <d(x,y)/3,d(y,y') <d(x,y)/3and x#y,
d(x,x)d(y,v)°
1K 9) - K(,9)] - [K(x,y) - K(2,)] | < Cra) A6y) e

V(x,y)d(x, y)*

If T € WBP(p) and T(1) = 0 in (Cf (X)), then T extends to a bounded linear operator from
G(x, 1, B,y) to G(x1,1,B,7) forall x; € X, r > 0,and y € (0,€). Moreover, there exists a constant
Cp,y,co > 0 such that for all f € G(x1,r,B,y) withany x; € X, any r >0, and any y € (0, ),

IT fllg sy < Chrco (Cr + 1T wsp) ) I fllG ey .- (2.72)

Compared with the corresponding results in [31, 35], Theorem 2.18 has three advan-
tages. (1) Theorem 2.18 is true on spaces of homogeneous type, while the corresponding
results in [31, 35] are proved only for R" or for spaces of homogeneous type with
U(B(x,r)) ~rforall x € X and 0 < r < diam X, respectively. (2) We do not assume that
T*(1) = 0in Theorem 2.18. Since T*(1) = 0 was also assumed in [31, 35], by the T (1)-theorem
in those settings, one knows that T is bounded on L?(X). Thus, for any f € Gy, 1, B,y) for
somex; € X, r>0,pe(0,1]]andy>0,Tf € L?(X), which makes the proof much easier. (3)
We only require T € WBP(p) instead of T € SWBP () in [35].

To prove Theorem 2.18, we first recall the following construction given by Christ
in [72], which provides an analogue of the grid of Euclidean dyadic cubes on spaces of
homogeneous type.

Lemma 2.19. Let X be a space of homogeneous type. Then there exists a collection {Qk c X : k €
Z, a € Iy} of open subsets, where I is some index set, and constants 6 € (0,1) and Cq, Cy > 0 such
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that

(1) p(X\ U,QF) = 0 for each fixed k and QX N Q’ﬂ‘ =gifatp;
(ii) for any a, B, k, l with | > k, either Q}s c Qkor Q; NQk=g;

(iv) diam (QK) < C46%;

)
)
(iii) for each (k, &) and each 1 < k there is a unique f such that Q¥ C Q;;
)
(v) each QX contains some ball B(zk, C;6%), where zk € X.

In fact, we can think of QX as being a dyadic cube with diameter rough 6 and centered
at zk. In what follows, to simplify our presentation, we always suppose 6 = 1/2; otherwise,
we need to replace 27F in the definition of ATIs by 6% and some other changes are also
necessary; see [34, pages 96-98] for more details.

To prove Theorem 2.18, we need another technical lemma, where we need Lemma 2.19
and T € WBP(p); see also [69, Lemma 3] and [34, Lemma (3.12)].

In what follows, if T f € (Cf (X)) and g € Cg (X), we sometimes will write
[ Tr@stoduc 73)

in place of (Tf, g), in order to indicate more clearly the dependence on the variable x.

Lemma 2.20. Let € € (0,1], B € (0,¢), y € (0,€] and let T be as in Proposition 2.12 with the
distributional kernel K satisfying the additional size condition (2.59). Let 0 be as in Lemma 2.15

and for any fixed x; € X and r > 0, one defines 6 = Oy, y0, and @ = wy, 2o, in the same way as
in Lemma 2.15. If T € WBP(p) and T(1) = 0 in (Cf(ﬂ())', then for any f € Gyp(x1,7,B,y), the

restriction of the linear functional T f € (Cﬁ (X)) to the ball B(x1,10r) is a measurable function, and
fora.e. x € B(x1,10r),

Tf(x)= L(K (x, ) [f () - fF()]0()du(y) + J;K (5, y) f (W@ W)du(y) + f(x)T(O)(x),
(2.74)

where the first two integrals are absolutely convergent.

Proof. We make use of some ideas used in the proofs of Lemma 3 in [69] and Lemma (3.12)

in [34]. For any fixed f € Gp(x1,7,B,y) and any ¢ € Cg(ﬂ() with supp ¢ C B(x1,10r), we have
(Tf,) =(T(f0),4) + (T (f@), )

- [ 161 - F @D @@t + [ 1@ r0du)
x x (2.75)

+ff K (x, y)¢(x) f (1)@ () dp(x)du(y)
X x X

EY1+Y2+Y3,
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where the first two integrals have to be interpreted in the sense of “distributions,” whereas
the third one is an absolutely convergent integral.

Actually, by Lemma 2.15(ii), T(é) is a bounded function in B(x1,10r), and we have

~ 1
|Yz|s( sup IT(G)(x)I)fxlw(y)f(y)Id#(y)5mlltplluw, (2.76)

x€B(x1,107) X1

which is the desired estimate.
Notice that if d(x, x1) < 107, then x ¢ supp . Moreover, if we put

Yo (x) = LK(x,y)f(y)a)(y)dﬂ(y), 2.77)

then for x € B(x1,10r),

1

|Y3,1(x)| S Vr(xl) +V(X1,x)'

(2.78)

In fact, we first notice that w(y) #0 implies that d(y,x;) > 20r > 2d(x, x1). From this, it

follows that V(x1,y) > u(B(x1,2d(x,x1))) > V(x1,x) and d(y, x1) < 2d(x,y), which together
with (1.2) shows that

V(x,y) ~V(y,x) = u(B(y,d(y,x1))) < p(B(y,2d(x,y))) SV(y,x) ~V(xy). (279)

These estimates together with Lemma 2.1(i) and (2.59) imply that

1 1 rY
diynz20r V(0 Y) Ve(x1) + V(x1,y) (r+d(y, x1))
< 1 )
~ Vi(x1) + V(x1,x)

Y] < _du(y)

(2.80)

which is just (2.78). Noticing that supp ¢ N supp (fw) = &, by the assumption (2.48) of
Proposition 2.12 and (2.78), we have

1
Vi (x1)

ol =| [ s omanco| < o ylhco, @)

which is again the desired estimate.

Let k € N be large enough, which will be determined later, and let { Sk}, be an ATI
with bounded support as constructed in Theorem 2.6. Let € C?(R) be radial and 7(t) = 1
when t € [0,2%], n(t) = 0 when [f| > 2*and 0 < n(t) < 1forallt € R. For any x,y € R,
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we then define A (x,y) = ijk(x, z)q(de(z, y))du(z). It is easy to see that Ax(x,y) = 0 if
d(x,y) > 25%, and that

A, y) = L(sk(x,z)dy(z) =1, ifd(x,y)<2~ (2.82)

For any fixed k € N, choose J € N so large that C427/ < 237k, Put

Ny ={iel; : Q/ nB(x,22%) # & for some x € B(x;,10r)}, (2.83)

and for all x € B(x;,10r), N} = {i € I} : Qi] N B(x,227%) # &}, where Qi] is the dyadic cube
as in Lemma 2.19. Let N and N7 denote the cardinality of N and N7y, respectively. It is

easy to see that if Q] N B(x,227%) # & for some x € B(x,10r), then Q] C B(x1,2*% +10r) and
B(x1,2* % +10r) c B(ZQ/ 2(2% kg 107)), where zZgl is the center of Q] as in Lemma 2.19. From
this, and Lemma 2.19(i) and (v), it is easy to see that

Ny <27 (r 270" (2.84)

Similarly, N7 < 2U70m.
We now claim that for any given k € N and any given x € B(x;,10r),

A, ) = lim > Sk(x,2g)n(25d (21, ) )w(Q)), (2.85)
lGN]

1= de(x,) = lim > Sk(x,2g) [1 - n(25d(zg1, ) (Q)) (2.86)
lEN]

hold in CP(X).
We only prove (2.85), the proof of (2.86) being similar. To this end, it is easy to see that

(e y) = X Sk(x,z01)m(28d (2, v) ) (Q))

iEN]

f [Sk(x, z) — Sk (x, zQ;)]q(de(z y))du(z)
ieNy (2.87)

j Si(x,2g) N2 d(z ) - (2 d(21,y))]dn(z)

leN"

=Yi(y) + Ys5(y)-
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Since z € Qi] , by Lemma 2.19(iv), we have d(z, ZQ_]) < C27/, which together with the
regularity of Sy yields

-J
u(B(x,24%)) <287 —, (2.88)

7 2
|Y4(y)| ~ Z V k(x)/’l(Q) 5 Vz-k(x)

1€N"

as | — oo. Similarly, by the size condition of Sy and the mean value theorem, we have

Ys(y)] S 28— > u(Q)) $2¢/ —o, (2.89)

V (X) 1€N’

as ] — oo.Thus,as ] — oo,

Me(x,) = D Si(x, ZQ{)’T(de(ZQ{/‘))#(Qi]) — 0. (2.90)
iGN[ L*(X)
Forany y,y' € A, if d(y,y') > 2K/, by (2.88), we then have
Yaly) = Ya@y)| 5 240Dy, )" @91)

If d(y,y') < 257, by the regularity of Sy and the mean value theorem, we have

[Ya(y) -Ya(y')| =

j [St(x,2) - Sk(x, 2] [1(2Xd(z,) - n(2d(=,'))]dp(2)
leNY

< 27y, v )u(Bx )
NVTk(x) 3//3/ ‘u 4

< 2k(3—ﬂ)—](2—ﬂ)d<y, y/)ﬂ‘

(2.92)
Similarly, if d(y, y') > 2¥/, by (2.89), we then have
Ys(v) - Y5(y/)| S 250 Pd(y,y)" (2.93)

To estimate Y5(y) — Ys5(y') when d(y,v') < 2kT, by the mean value theorem, we first see that

[[1(2%d(z, ) - n(2"d(z), y))] - [1(2*d(z,y)) - n(2*d(zg1, ¥))]| £ 2"d(z, 2y).

|[1(2%d(z, ) - n(2%d(z1, )] - [1(2*d(z,y)) - n(2"d(zg), y'))]| £ 2%d(v, ).
(2.94)



Yongsheng Han et al.

Taking a suitable geometric mean of these estimates, we find that

|[n(2%d(z, 1)) - n(2“d(zg, y))] - [1(2*d(z,y")) - n(2"d(zg1. ¥'))]|

S 24d(y, ) d(z,2) .

Using this estimate and the size condition of S, we obtain

[Ys(y) - Ys(v)| =

Y IENCENICCECIRLCRICm)

H X
IEN]

- [1(@"d(z, ) - n(@"d(zg. y'))] }dp(2)

1
Vz—k (X)

< 2td(y,y)'r 0P

> u(@h)

H X
IEN]

<2td(y,y) 20,
Thus,

< 2kG-p)p-J(-p) _,

M) = 3 Se(x, 20 (25 (201, ) )(Q))

iEN] P (1)

as J] — oo. This establishes (2.85), and hence also (2.86).
We now decompose Y; into

= J‘xT(é[f = FEI[1 = Ak (x,)]) (%) (x) dpa(x)
+ J‘xT(é[f — £ (x, ) ()9 (x)dpu(x)

=Y.+ Yo,

where both integrals have to be interpreted in the sense of “distributions.”
To estimate Y7 1, by (2.86) and (2.84), observe that

Yl,l = lim E
J— o0
IEN]

f KT(é[f—f(x)] [1-1(2%d(2g,))]) () Sk (x, 20 ) (x) () (Q] )

33

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)
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where the integral has to be interpreted in the sense of “distributions.” However, noticing
that supp 0(-)[1 - q(de(zQ_z, N1 Nsupp Sk(:, zQ[) = &, by (2.48), we then further have

Y= lim 3 u@)f[ K@nEwIfo) - f0] [1- 1@z 0)]
© Ax K

ieN; (2.100)

x Si(x, zQi])tp(x)dy(x)dy(y).
Notice that

Sr@)|[ | 1K6o B [0~ [1-n@ gy w111k (5, 20| duduty)

iGN/

< u(B(x1,25% +10r))

* <J‘X|q;(x) | {Jd(x,y)S(T+d(x1,x))/2|§(y)| V(i,]/) <r +d0(132;631/,)x) >ﬂ

1 r 4
8 Vi (x1) + V(x,x1) <r+d(x1,x)) Auy)

el vy Gratey)
d(x,y)<50r
d(x,y)i(rﬁ;x,xl))/z Vi (x1)+V (x1,y) \r+d(x1,y)

+Vr(x1)+1V(x1,x) <r+d(:cl,x) >Y]

1
x WW(W}W(@)

1
< u(B(x1,2¥ % +10r)) —— )
N/”l( (X1 + r))Vr(xl)”(P”Ll(.K)
(2.101)

Thus, by Lebesgue’s dominated convergence theorem, we have

Yi = j j K(x, 1)8(y) [f(y)—f(x)]tp(x){f [1-n(2*d(z, v))] S (x, Z)dﬂ(Z)}d#(X)d#(y)
Ax X X

- [[ KGwiww) - et 1 -t ] auedu),
(2.102)

where the last integral converges absolutely; and moreover, by (2.82) and an argument similar
to (2.101), we further have |Y11| < (1/V;(x0))ll¢ll )
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We next prove that

lim Y, =0, (2.103)

k— o0

making use of our assumption that T € WBP(f).
To this end, by (2.85) and (2.84), we have

o= fim 3% w(@D) [ TOLf - FI (2o, ) Sk 20y ()au)

ieN;
= lim 3, 4(Q) {f;(é [f = f(zg)]n (2 d(zg),))) (0)Sk(x, 20 (x)dpa(x)
ieN;
+ IKT(éq(de(zQ{, ) (x) [f(zQ{) — f(x)] Sk(x, z2g) )¢ (x)dp(x) }
(2.104)
Choose k € N such that 27% < 7/2°. We claim that
|| TG - fznIn@ (g ) @Se( 20y au
kb q (2.105)
S r_ﬂm||f||q(xl,r,ﬁ,y)||(f'||cﬁ(ﬂ()/
|| T @En@ g )@ (o)) - 0] S 2 odt)
w1 (2.106)
S o v, (x1> ||f||c,(x1,r,ﬂ,y)||(I’||Cﬁ(x)'
We only show (2.105), the proof of (2.106) being similar.
To see (2.105), put ¢(y) = B(y) [f (v) - f(zg)) (2 (2, y)) and
g(x) = Sk(x, ZQi/)(p(x). (2.107)
Notice that if f, h € CF(X), then
Ifalles ey S N 1Rl ) + 1LF s ooy 1Nl o () (2.108)
From this, it follows that
! (2.109)

I$lesco S W acsron w7y gy
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and that

1
Illesxy S IIqJIICﬂ(x)mzkﬂ, (2.110)
+(zg)

The estimates (2.109) and (2.110) together with T € WBP(f) imply the claim (2.105).
By (2.105) and (2.106), we know that if 27 < r/2°, then

| .
Mial £ 5 gy Wt 19 lesen fim, zNj n(@))
Ny (2.111)
-kp

S r_ﬂ”f”C;(xl,r,ﬂ,y)”(P”Cl"(x)’

which implies (2.103).

Thus, we have that for any ¢ € Cf(%) with supp ¢ € B(x1,107), KTf,¢)| < Nl
so that T f agrees with L*(X) function on B(x1,10r). Moreover, by (2.102) and Lebesgue’s
dominated convergence theorem, we have

(Tf,¢) = ﬂx K ppBw) () - F6]dp(y)dut)
[ Keng @@ e dumdue (2112)
AxX

+f T(®) () f ()¢ () du(x),
X

as was to be proved. O

Proof of Theorem 2.18. By Corollary 2.11(i), we only need to prove Theorem 2.18 for Gy (x, 7,

Bry).
Let f € G (x1, 1, B,v). We first verify that T f(x) satisfies (i) of Definition 2.8 for a.e.
x € X. To this end, we consider two cases.

Case 1 (d(x,x1) < 10r). In this case, let 6 and & be as in Lemma 2.20. By Lemma 2.20, for a.e.
x € B(x1,10r), we have

Tf(x) = LK(x, W) - F180)du(y) + LK(’“’ W F @) du(y) + F@T ) @)

= 21 + ZZ + Z3.
(2.113)

Lemma 2.15(ii) shows that for a.e. x € B(x1,10r), | Z3| < |f(x)] < 1/ (Vi (x1)+V (x1,x)), which
gives the desired estimate. By (2.78), we have |Z,| < 1/(V,(x1) + V(x1,x)). For Z;, the facts
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that é(y) #0 and d(x, x1) < 107 imply that d(x,y) < 50r. The size condition on K and the
regularity of f yield that

z)< e KGI) - FNIldA)
x,y)<(r+d(x,xy

(

+ f |K(x,y) f(x)0()|du(y)
d(x,y)>(r+d(x,x1))/2

* f |K(x, ) f()8(y)|dp(y)
d(x,y)>(r+d(x,x1))/2

1 1 d(x, )’
1 p (2.114)
{ P Ve (x1) + V (x1, %) J e yyzsor V(% y) H)

1 J‘ 1
: )
V(1) + V(x1,x) 50r2d(3;%ii;+§iga;,x1))/2, Vi(x,y)

1

1
+ f du(y)
rzdley il 2V (x,y) Vi (20) + V(31 y)

= Zl,l + erz.

By Lemma 2.1(i) and (1.2), we obtain

7 < 1 [1+V(x,50r) < 1

V,(x1) + V(x1,x) V(x,7/2)| ~ V,(x1) + V(x1,x)”

1 1
Ziy <min{ ——, S S,
1f2~mm{vr<xl) I r/2<d S0V (3, )V (21, y) #(y)

d(x,x1)/5<r<d(x1,y) (2 115)

- f ! d#(y)}
d(x,y)>d(x,x1)/2,
Vi () J Ayl 12V (x, )

< 1
~ Ve (x1) +V(xg,x)

Combining the estimates for Z;; and Z;, yields the desired estimate for Z;, which verifies
that T f (x) satisfies (i) of Definition 2.8 when d(x, x1) < 10r.

Case 2 (d(x,x1) = R > 10r). In this case, for any m € N, let
B,, = B(x1,10(m + 1)r) \ B(x, 10mr). (2.116)

For any fixed xo € B,,, we put I,,(y) = 0(10d(xo, y)/37mr), Jm(y) = 0(4d(x1,y)/5mr) and
define L,,(y) by L,(y) = 1 - I,(y) — Ju(y). Notice that if y € supp I, N supp J, then
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d(y,xg) < 37mr/5 and d(y,x1) < 5mr/2, and hence d(xp,x1) < d(xo,y) + d(y,x1) <
(99/10)mr < 10mr, which contracts the choice of xg € B,,. Therefore, L,,(y) > 0. We also

define f1(y) = f(¥)In(y), f2(y) = f(y)Jm(y) and f3(y) = f(y)Lm(y). We first establish some
estimates on f; withi =1,2,3, when x € B,,.
Obviously f1(y) #0 implies that d(y, xo) < 37mr/5, and therefore

d(x1,y) > d(x1,x0) —d(x0,y) > %R (2.117)

which together with (1.2) and the size condition of f shows that

r

1 Y
AW < W<§> , VyeX (2.118)

We now claim that

1 dyy) <1

Y
|f1(y)—f1(y’)|§VR(xl) 5 R>, Yy, v € X. (2.119)

To prove (2.119), we consider two cases.
Case 1 (d(y,y') < (r +d(x1,y))/2). In this case, we divide
AW - AG) = @) = FOO W x0@,y) + FY) In@) = In(y)] = Za+ Zs,  (2.120)

where Xo (y, }/') = X{yex:d(xo,y)<37mr/5} (y) + X{y'eX: d(xo,y')<37mr/5) (yl)
The regularity of f shows that

dv.y) \' 1 r v .
|Z] 5 <r+d(x1,y)> Vi (x1) + V(x1,y) <r+d(x1,y)> xo(v.¥)- (2.121)

If Yo(y,y') #0, then d(xo,y) < 37mr/5 or d(xo,y') < 37mr/5. Notice that d(y,y') < (r +
d(x1,y))/2 implies that 3d(x1,y)/2 > d(x1,y') —r/2.If d(x,y') < 37mr/5, we then further
have 3d(x1,y)/2 > d(x1,x0) — d(x0,y') —r/2 > 21mr/10 > R/10, and hence d(x1,y) > R/15.
This together with (2.117) implies that if yo(y, y') #0, then we have

R
d(y,x1) > 12 (2.122)

By (2.122) and (1.2), we obtain Vr(x1) S V(x1,y). These estimates prove that |Zi| <

(1/Vr(x)(d(y, ) /R (r/R)".
The size condition of f implies that

|ZS|§ 1 < r
Vi(x1) + V(1) \r+d(x1,y)

Y
) [T (y) = L (') | X0 (v, ¥')- (2.123)
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We now claim that

1
V,(x1) + V(x1,y')

1
Xo(w.y') < Vel (2.124)

To prove (2.124), we consider two subcases.

Subcase 1.1 (r > d(x1,y')). Inthis case, (1/(V,(x1)+V(x1,¥") xo(w, v') S 1/ Vo (x1)) oy, ¥').
If d(xo,y') < 37mr/5, then d(x1,y") > d(x1,x0) — d(xo,y’) > 13mr /5 > 2r, which contradicts
the assumption that r > d(x1,y'). Thus, we further have

1
Vi (x1) + V(x1,1")

, 1
xo(y,y') < Vi (o) et 57 /5 ). (2.125)

Since d(xo,y) < 37mr/5 and x € B, by (2.117), we have d(y, x1) > 3R/25. Moreover, from
dy,x1) < d(y,y") +d(y,x1) and d(y,y') < (r +d(x1,y))/2, it follows that d(y,x1) < r +
2d(y’, x1) < 3r. Thus, in this case, R < 257 and hence Vr(x1) < V,(x1). Thus, the claim (2.124)
holds in this case.

Subcase 1.2 (r < d(x1,y’)). In this case, from r < d(x1,y') and d(y,y') < (r +d(x1,y))/2, it
follows that d(x1,y) < r +2d(x1,y’) < 3d(x1,y'), which together with (2.122) implies that
Vr(x1) S V(x1,Y). Thus, (1/(Vi(x1) + V(x1, ¥)xo(v,y') < 1/Vr(x1). Thus, (2.124) also
holds in this case, which completes the proof of claim (2.124).

Notice that if d(xo,y) < 37mr/5, then d(y,x1) < d(x1,x0) + d(x0,y) S R, and if
d(xo,y') < 37mr/5,since d(y,y’) < (r +d(y,x1))/2, we then have d(y, x1) < r +2d(y, x1) <
r+2[d(y', xo0) + d(xp,x1)] S R. These estimates together with d(y, y') < (r +d(y, x1))/2 again
implies that if yo(y,y') #0, thend(y,y') < Rand r+d(y, x1) < 2(r +d(x1,y')), which together
with (2.122) further yields that r + d(x1,y') 2 R. All these estimates, (2.124), and the mean
value theorem show that for any g € (0,1],

15| < VR(lxl) <%>Yld(y,x) ;Qd(y’,x)l < VR(lxl) (d(y{{y’))ﬂ%)r‘ 0126

Case 2 (d(y,y') > (r +d(y,x1))/2). In this case, notice again that fi(y) — fi(y') #0 implies
that d(xo,y) < 37mr/5 or d(xo,y') < 37mr/5.1f d(xo,y") < 37mr/5, by d(y,x1) < 2d(y,y'),
we have 10mr < d(xg,x1) < d(xo,y") +d(y,y) + d(y,x1) < 37mr/5 + 3d(y,y'). Thus, by
x € By, we further have 3R/25 < 13mr/5 < 3d(y,y’), which together with (2.117) and
d(y,x1) <2d(y,y') again implies that if f1(y) - f1(y') #0and d(y,y’) > (r + d(y, x1)) /2, then
R < 17d(y,y'). This estimate together with (2.118) yields that for any > 0,

-5 <1501 15015yt (2) = ety (“%2) (2)"
(2.127)

Thus, (2.119) holds.
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As for f3, first observe that obviously, for all y € X,

1 r Y
S 19> : 2128
|f3()] < V)« V(xy) <r+d(y,x1)> Xtd(x,y)>R/16) (V) ( )
From (2.128) and Lemma 2.1(i), it follows that
[ 1l < Lo ams(5) e
3 S <(=). .
X dty)>k/16 V(x1,y) d(y, x1)" R

Notice that supp fi C B(x1,137R/50). From this, the estimates (2.118) and (2.129)
together with | o f (x)dp(x) = 0 and (1.2), it follows that

Uxfz(y)dﬂ(y)‘ - Uxﬁ(y)d#(y) + fxfs(y)dﬂ(y)l

S ﬁ <%>YV137R/50 (x1) + (%)Y (2.130)

Since x € By, we have 1/(V,(x1) + V(x1,x)) ~ 1/Vr(x1). Now, for any m € N and
y € X, put Uy, (y) = 0(d(x1,y)/42(m + 1)r). Notice that supp fi1 Nsupp (1 - U,,,) = &. By
Lemma 2.20, for a.e. x € B,,,, we have

Tfi(x) = LCK W [AY) = 1O U () dp(y) + fL)T U,y ) (x)

(2.131)
= Ze(x) + Z7(x).
From Lemma 2.15(ii) and (2.118), it follows that for a.e. x € B,,,,
|Z7(x)| S |fi(x0)] £ #G)Y. (2.132)
VR (xl) R

As for Z4(x), notice that x € B,, together with U,,,(y) #0 implies that d(x,y) < 18R; hence,
by (2.119), the size condition on K and Lemma 2.1(i), we obtain

1 1 dxy)? /r\" 1 \’
< —)d < — ). .
Zs@)] 5 jd(x,y)<18R V(x,y) Vr(x1) RP <R> Ky S Vr(x1) <R> (2.133)

Combining the estimate for Zs(x) with Z;(x) gives us the desired estimate for T f1(x) for a.e.
x € B,,.
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Since x ¢ supp f», we can write

Tfy(x) = fx [K(x,y) - K (x,10)] faly)da(y) + K (x, X1)sz(y)d/4(y)

= Zg(x) + Zo(x).

(2.134)

The assumption (ii) of the theorem, the support condition of f,, and the fact that y < €
together with Lemma 2.1(i) yield that

B[ Ky Kl @)l
x1,Y)<
1 ¢ 1 rY
) Ty e,

S e du(y) 2.135
V(X,xl)d(x,xl) d(x1,y)<R/2 y)Y Y ( )

“uc(R)

From the size condition on K, and (2.130), it also follows that

| Zo(x)| < ﬁ(%)y < ﬁ(%)r (2.136)

which together with the estimate for Zg(x) gives the desired estimate for T f,(x) for a.e. x €
By,

Notice that f3(x) #0 implies that d(x1,y) > R/16 and d(xo, y) > 37mr/10. If we now
further assume that x € B,, N B(xo, mr/10), then d(x,y) > d(y, xo) — d(xo,x) > 18mr/5 >
9R/50. From this, (1.17), and (1.2), it follows that Vr(x1) ~ Vr(x) < V(x,y). This together
with (2.128), the size condition on K and Lemma 2.1(i) yields that

A = |[ sy oo K )

d(x1,y)>R/16

1 1 rY

< du(y)
~ X, , 7
WV ey Vixy) d(y,x)

< VR(lxl) <%>Y,

which is the desired estimate.

Thus, we have verified that Tf(x) for a.e. x € B, N B(xo, mr/10) satisfies the size
condition (i) of Definition 2.8, with constants independent of m, r, and x;. By the Besicovitch
covering lemma (see, e.g., [13, Theorem 1.16, pages 8-9]), this implies that for a.e. x € By,
T f(x) satisfies the size condition (i) of Definition 2.8, with constants independent of m, r,
and x1. In combination with Case 1, we thus see that for a.e. x € X, T f(x) satisfies the size
condition (i) of Definition 2.8.

(2.137)
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We now turn to verify that T f (x) for a.e. x € X satisfies the regularity condition (ii) of
Definition 2.8. In what follows, we fix x' near x and put 6 = d(x, x’). We first remark that for
a.e. x,x' € X such that (1/160)(r + R) < 6 < (1/2)(r + R), by the size condition of T f (x) and
Lemma 2.1(iii), we obtain

7500 -TF ) S v e ) Vo Grates)

V(1) + V(x1,x) \r+d(x,x1) ! V(1) + V(x1, x') \r+d(x,x1)

- d(x,x")

p r Y
~ (r + d(x,x1)> V,(x1) +1V(x1,x) (r +d(x,x1)> ’

(2.138)

which is the desired estimate. In what follows, we only need to estimate |Tf(x) — T f(x')]
for a.e. x,x' € X such that 6 < (1/160)(r + R) by considering two cases. Recall that
R=d(x,xy).

Case 1 (R < 10r). In this case, we divide the ball B(x1,10r) into the union of annuli B,,, = {x €
X :10r/(my +1) < d(x,x1) <10r/m;}, where m; € N. For any fixed xy € B,,, and m, € N, we
put U, m, (y) = 0(20mimyd(xo, y)/ (m1 +10)r) and let wy, m, (y) = 1 = Oy m, (y) forall y € X.
By Lemmas 2.15 and 2.20, for a.e. x € B(xo, (m1 + 10)r /40mym;),

i - | K@) = 0]t )

2.139
| K@) + FOT @) 0| 1)
=T1(x) +Ia2(x),
|T (st ) ()| S Cr + 1T lwiep), (2.140)
T (thmy 5 ) (%) = Cony o r — f [K(x,y) — K (x0, )] @Wm,m, (y)du(y), (2.141)
x
where Cy, m, r is a constant independent of x. For any
(m1+11)r
x € B(xo, ), (2.142)
160(my + 1) (my + 1)

we then consider x' in the annulus (r + R)/160(my + 1) < d(x,x’) < (r + R)/160m,. It is
easy to check x' € B(xo, (11 + 10)r/40mym,). Assume that x, x’ both satisfy (2.139), (2.140),
and (2.141). Notice that w4, m, () #0 implies that d(y, xo) < (m; + 10)r/10m;m;, and hence
d(x,y) < d(x,x0) +d(xo,y) < 17(my + 11)r/160mim, < 68d(x,x") = 686 and d(x',y) < 696.
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Therefore, the size condition on K, the regularity of f, and Lemma 2.1(i) show that
1 = || Ko 0= £t ()|

< j |K (e, 9)|1£ () = £0)|dpy) (2.143)
d(x,y)<686

d(x, x’) p 1 r Y
S <r +d(x,x1) > V(1) V (x1, x) (r +d(x1,x) ) ’
and a similar estimate also holds for I'i (x'). Thus, we clearly obtain the desired estimate for
[1(x) = T1(x).
Now by (2.141), we have
Fz(x) - 1"2 (x')
= [ K6y - K9] [F0) - £ 10 (1))
+ f(x) {T(uml,mz) (%) + IX [K(x/ y) - K(x', y)] Wmy,my, (y)d/’l(y) } - f(x,)T(urru,mz) (xl)

= fﬂ( [K(x/ y) - K(xlr }/)] [f(]/) - f(x)]wm1,mz (y)d#(y) + [f(x) - f(xl)]T(umwm) (xl)

= 1"2,1 + 1"2,2.
(2.144)

The estimate (2.140) and the regularity of f then show that

, d(x,x") p 1 r ¥
IFaz] S1f () = F) <r +d(x,x1) > Vi (1) +V (x1,x) <r+d(x1,x) > ’ (2.145)

Notice that w,, m, (v) #0 implies that d(x, y) > 66. The regularity (2.49) on K, the regularity
and the size condition of f, and Lemma 2.1(i) together with the fact that f < € give

d(x,x)* dix,y) \ 1 r Y
2] §J‘ d(xy)>60,  V(x,y)d(x,y)¢ <r+d(x, x1)> V, (x1)+V (x1,x) <r+d(x1,x)> ()

d(x,y)<(r+d(x,x1)) /2
d(x, x')e
* —_—
d(x,y)>66, =
d(x,y)>(r+d(x,x1))/2 V(x, y)d(x, y)

8 [Vr(x1)+1V(x1,x) <r+d(rxl,x) >Y+Vr(x1)+lV(x1,y) <r+d(rX1,y) >Y] )

x, x' P r ¥
s <rffi(x,3)cl)> Vi (x1) +1V(x1,x) <r+d(x1,x)> ’

(2.146)
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where, in the last inequality, we used that r + d(x1,x) < 11r < r +d(x1, y) and

1 < 1 < 1
Vo (x1) +V(x1,y) = Vi (x1) ~ Vi (x1) + V(xp,x)”

(2.147)

which follows from V(x1,x) < u(B(x1,10r)) < V,(x1), by (1.2). Thus, for any xy € B,,,, and
a.e. x € B(xo, (my; +11)r/160(m1 +1)(m + 1)) and a.e. x' € A satisfying (v + R) /160(m, + 1) <
d(x,x') < (r+R)/160m,, T f (x)-T f (x') has the desired regularity with constants independent
of m; and my. Again, by the Besicovitch covering lemma, we further see that for a.e. x € By,
and a.e. x’ € A satisfying (r+R)/160(my+1) < d(x,x") < (r+R)/160m,, T f (x)-T f (x') has the
desired regularity with constants independent of m; and m», which implies that there exists
a measurable set Ay such that y(X;) = 0 and for all x € B(x1,10r) \ X1 and all X' € X\ X,
with d(x, x") < (1/160)(r + R), T f(x) — T f (x") has the desired regularity.

Case 2 (R > 10r). In this case, we rename B,, in Case 2 of the proof for the size condition of
T f by By,,. Namely, for m; € N, we consider annuli

B, = B(x1,10(my +1)r) \ B(x1,10my7). (2.148)

For any fixed X € B,,,, we define I,,,, J;n,, and L, in the same way as in Case 1 with m and

xo replaced, respectively, by m; and Xy here. Let f1(y) = f(y)Ln, (y), f2(y) = f(¥) Jm () and
f3(y) = f(y)Lm, (y) for all y € X. Then the estimates (2.119) and (2.130) still hold for fi, f»,
and f; here, when x € B,y .

Now, for my € N, we put lhy, m, (i) = 0(20mod(Xo, y)/ (10m; +11)r) and let @y, m, (y) =
1- §m1,m2 (y) for all y € X. By Lemmas 2.15 and 2.20, for a.e. x € B(Xy, (10m + 11)r/40m;),

Tf(x) = LK(’“’ DA — 1) Ty (V)i ()

+ J‘KK(x,y)fl(y)zIJml,mz () dpu(y) + f1()T (T, m, ) (X) (2.149)
= T5(x) + Ta(x),
|T (i, m,) ()| S Cr + [ Tllwsegs), (2.150)
T )9 = G~ | K@) = K@, y)| D () (), (2.151)

where éml,mz,r is a constant independent of x. For any x € B(Xy, (10m; + 1)r/160(m, + 1)),
we then consider x' in the annulus (r + R)/160(m, + 1) < d(x,x') < (r + R)/160m,. It is
easy to check x' € B(Xy, (10my + 11)r/40m;). We also restrict x € Eml. Assume that x, x’ both
satisfy (2.149), (2.150), and (2.151). Notice that i, m, (y) #0 implies that d(y, Xo) < (10m; +
11)r/10my, which implies d(x, y) < d(x, Xo)+d(Xo, y) < 177(10m1+1)r/160m, < 354d(x,x') =
3546 and d(x’, y) < 3556. Therefore, the size condition on K, (2.119), and Lemma 2.1(i) show
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that

1 1 d(x, y)ﬁ r\’
ol < | (r)
()] dxy)<asss V(0 Y) Vr(x1)  RP R #)

< ("% ()

and a similar estimate also holds for I's(x’). Thus, we obtain the desired estimate for I'3(x) —
F4 (x /) .
Now by (2.151) and some computations similar to I';(x) — I'2(x"), we have

(2.152)

Ty(x) -Ta(x') = J‘x [K(x,y) = K(X', )] [/1(y) = f1(0)] Dy, () dpe(y)

+ [f1(x) = f1 ()] T (T, my ) (') (2.153)
= 1”4,1 + 1"4,2.
The estimate (2.150) together with (2.119) then yields
Tl < Ne L dx)\ ey 2.154
R L

Notice that @0, m, (y) #0 implies d(x,y) > 76. Then by the regularity (2.49) on K, (2.119),
and Lemma 2.1(i) together with f < €, we further have

d(x,x')¢ 1 d(x,y)\* r\’
'r“'5fd<x,y>>76v<x,y>d<x,y>€VR(xo( R )(R) Ay)

< () ()"

Thus, for any Xy € Em“ and a.e. x € B(Xy, (10my + 1)r/160(my + 1)) N E,m and a.e. x' € X
satisfying (r + R)/160(my + 1) < d(x,x') < (r + R)/160my, T f1(x) — T f1(x') has the desired
regularity with constants independent of m; and m,.

Notice that f>(x) =0 = fo(x'). We write

(2.155)

70 =) = || [KGow) - K<) )|

<

[ 11Ky - K@ )] = Ko - K x)] Loy uty

K () =K )| f)dut)|

=I5+T%.
(2.156)
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Since d(x,x") < (11/1600)R, the regularity (2.49) on K, (2.130), and p < € prove

) e (Y G e

Notice that f,(y) #0 implies that d(x;, ) < R/4. Then the regularity (iii) on K together with
the size condition of f, the fact that y < e and Lemma 2.1(i) yields that

1 d(x,x)d(x1,y)° 1 r Y
S (x, )" d( 216 v) < ) du(y)
Ve(x1) ) aep<ra d(x,x) Vi(x1) + V(x1,y) \r+d(x1,y)

("% ()

I's

(2.158)

Thus, we have also obtained the desired regularity for T f,(x) — T f,(x') for all x € B, and
d(x,x") < (1/160)(r + R).
Notice that f3(y) # 0 implies that d(x1, y) > R/16. Moreover, if

10m: +1 _
(107, + )r> B, (2.159)

€ B( Xo, ——— %
¥ (xo 160(m, + 1)
then f3(y) #0 also implies that d(x,y) > 7R/40. Since 6 < (11/1600)R, we then have 6 <

(11/280)d(x, y). Then the regularity (2.49) on K, the size condition of f, and Lemma 2.1(i)
show that

ITf3(x) ~Tfr(x)] 5 f dtyorsis | KEY) = K& )| o) |dp(y)

d(x,y)>7R/40
d<x’ xl)e 1 ry
S fd(xl,y)>R/16,V(x )yd(x,y)¢ V, (x ) N V(x ) d( )Yd‘u(y)
d(x,y)>7R/40 Y 4 r\A1 1Y X1,y
< 1 (d(x,x’))p<1>r
~ Vr(x1) R R/’
(2.160)

where in the last step, we used the fact that f < € and d(x,x') < (11/1600)R, and in the
third-to-last inequality, we used the fact that

Va(x1) ~ V(x,x1) < ‘u<B<x, w» <V(x,y). (2.161)

Thus, for all x € B(Xy, (10my +1)r/160(my+1)) N Eml and d(x,x") < (1/160)(r + R), we obtain
the desired regularity for T f3(x) — T f3(x").
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Summarizing the above estimates, we see that for any Xy € B,,,, and a.e. x € By, N
B(xo, (10m; + 1)r/160(m, + 1)) and a.e. x' € X satisfying (r + R)/160(mz + 1) < d(x,x') <
(r + R)/160my, T f (x) — T f (x') has the desired regularity with constants independent of #1;
and m,. By the Besicovitch covering lemma again, similarly to Case 1, we obtain that there
exists a measurable set A, such that u(X;,) =0, and for all x € X\ (B(x3,10r) U X;) and all
x' e X\ Xy withd(x,x') < (1/160)(r + R), T f(x) — T f (x') has the desired regularity.

Thus, there exists a measurable set A3 such that for all x,x" € AL \ A5 with d(x,x') <
(1/2)(r+d(x,x1)), T f(x)-Tf (x') satisfies the regularity condition (ii) of Definition 2.8, which
implies that for all x, x" € X\ X3 withd(x,x') <r/2,

ITf(x)-Tf(x)] S ————d(x,x)’. (2.162)

V(x)ﬁ

Now, for any x € X, we choose {x,},cy C (X \ X3) such that d(x,,x) — 0Oasn — oo. Then
{Tf(xn)},ey is @ Cauchy sequence in C. We then define g(x) = lim, T f(x,). It is easy to
show that g is a well-defined continuous function lying in G(x1, 1, f,y), which agrees with T f
almost everywhere. We may thus choose g as a representative of T f, for which we then have

||Tf||c;(x1,r,p,y) S (Cr+ ”T“WBP(ﬂ))”f”c,(xl,r,p,y)- (2.163)

This completes the proof of Theorem 2.18. O

Remark 2.21. 1t was proved in [35] that the condition (iii) of Theorem 2.18 is also necessary
for an operator T with distributional kernel K to be bounded from (j(xl, r,B,y) to G(x1,7,B,Y)
for all x; € L and r > 0; see [35, Theorem 4] or [31].

By Remark 2.14(iii), we immediately obtain the following conclusion, which is conve-
nient in applications.

Corollary 2.22. Let e € (0,1], p € (0,€), and let T be as in Proposition 2.12, with the distributional
kernel K satisfying (i), (ii), and (iii) of Theorem 2.18. If T is bounded on LP(X) for a certain p €

(1,00) and T(1) = 0 in (Cf (X)), then T extends to a bounded linear operator from G(xl, r,B,y) to
G(x1,7,B,y) forall x; € X, v > 0and y € (0,€). Moreover, there exists a constant Cgy c, > 0 such
that forall f € G(xl, r,B,y) withany x, € X, any r > 0, and any y € (0,¢),

”Tf”q(xl,r,ﬁ,w < Cﬂ,y,Co (CT + ||T||Lp(x)ﬁLP(x))“f”q(xl,r,ﬂ,y)- (2-164)

By an argument similar to the proof of Lemma 2.20, we can easily obtain the following
result, which is of independent interest; see also [69, Lemma 2], [71, Lemma 1, page 119] for
R”, and [34, Lemma (3.12)] for Ahlfors 1-regular metric measure spaces. Moreover, instead
of T € SWBP(p) in [34, Lemma (3.12)], we only need that T € WBP(f).

Corollary 2.23. Let T be as in Lemma 2.20. Then there exists a constant C > 0 such that for all
fechx),

IT fll iy < C(Cr + I Tllwse() [diam (supp 1 1f les - (2.165)
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Proof. Assume that supp f C B(xp,r) for some xo € X and r > 0. Let Oy, 10- be defined in

the same way as in Lemma 2.15. An argument similar to the proof of Lemma 2.20 yields that
when d(x, xy) < 5r,

Tf(x) = LCK 6, Y [f (W) = £)] Oy 0r (y)dp(y) + f (X)LCK (%, 1)8x10-(y)dp(y).  (2.166)
From this, Lemma 2.1(i), and Lemma 2.15(ii) together with (2.55), it follows that

1
——d, y)Pduy) + fll,w o (Cr + |IT
d(x,y)<25rv(xfy) y)aply ”f”L (x)( T ” ”WBP(,B)) (2,167)

< (Cr+ ||T||WBP(ﬁ))rﬂ”f“Cﬁ(x)‘

|Tf(x)| < CT“f”c‘ﬂ(X)f

If d(x,x0) > 5r and d(y, xo) < r, then d(y, x) > 4d(x,x¢)/5, and by Lemma 2.1(i) and (2.55),
we also have

1
Tl < W)|du(y)
ITfE] < Cr d(xy)>4d(xx0)/5 Y (X5, Y) [f@)ldpty
1
S Cr——— I fll = ) Vi (%0) (2.168)

~ TV (xo, x)

< Cr[diam (supp )] flles )

which completes the proof of Corollary 2.23. O

From Theorem 2.18, it is easy to deduce the following result which is convenient in
applications.

Corollary 2.24. Let T be as in Theorem 2.18 or Corollary 2.22. If € € (0, €), then T is bounded from
Gg(xl,r,ﬂ, Y) to Go(x1,7,B,y) forall xy € X, r > 0,and 0 < B, y < €. Moreover, there exists a
constant C > 0 such that for all f € dg(xl,r, B,y) withany x; € X and any r > 0,

”Tf”qg(x],r,p,y) < Cﬂ,y,Co (CT + ||T||WBP([5))”f”qg(xl,rrﬂ,Y) (2-169)

(or resp., T fllgz e, rpy) < Chyco(Cr + T e a0y - 7 fll G2 () )-

Proof. Let f € G&(x1,7,B,7). By the definition of G5(x1,7, B, y), there exists

{fuloy € Glx1,7,€,8) (2.170)
such that
nlglgo”f” - f”(_’,(xl,r,ﬁ,y) =0. (2.171)
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By Theorem 2.18 or Corollary 2.22, we have T f,, € G(x1,7,€,€) and
ITfn =T fllgrrpy S N = Fullgrpy — O (2.172)
asn — oo. Thus, Tf € C}g(xl,r,ﬂ, y) and
T Az ey = W gy S Wl rpyy = 1 lGi e (2.173)

which completes the proof of Corollary 2.24. O

2.3. Boundedness of singular integrals on spaces of test functions

In this subsection, we establish the boundedness on G(x1, 7,3, y) of singular integrals. Since
the functions in G(xi,7, §,y) may have nonvanishing integral, this requires, as usual, some
extra size decay conditions on the integral kernels; see, for example, [71, page 123].

The following result is an inhomogeneous variant of Proposition 2.12.

Proposition 2.25. Let f € (0,1], 0 > 0, o > 0, and let T be as in Proposition 2.12 with the
distributional kernel K satisfying the following extra size condition that for all x,y € X with
d(x,y) > ro,

(]

1
|K(x,y)| SCTWW-

(2.174)

. . p '
Then T can be extended to a continuous linear operator from CP(X) to (C, (1)

Proof. Let f € CP(X) and g € Cg(%), and suppose supp g C B(xp,r) for some xo € X and
r > 0. Choose ¢ € Cg(,%) such that ¢(x) = 1 when x € B(xg,2max{r,rp}) and ¢(x) = 0 when

x ¢ B(xg,4max{r,rp}). It is easy to see that ¢ f € Cg(ﬂ(), which implies that (T(¢f), g) is
well defined. On the other hand, we define

(T((1-9)f), g) = HMI«x, (1~ ) f (1) g () du(y)du(). (2.175)

By the size condition (2.174) and Lemma 2.1(i), it is easy to check that the right-hand side of
the above equality is finite; furthermore, if f has also bounded support, this coincides with
(2.48). Moreover, it is easy to verify that (T (¢ f), g) +(T((1-¢)f), ) is independent of choice
of ¢. Thus we can define T f by

(Tf,8) =(T(pf), ) +(T((1-¢)f),8), (2.176)

sothat Tf € (Cf(%))'. It is clear that then T is continuous, which completes the proof of
Proposition 2.25. O
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We now establish an inhomogeneous variant of Lemma 2.15. Here, in contrast to
Lemma 2.15, we do not need T € WBP(p).

Lemma 2.26. Let 0 be as in Lemma 2.15. For any fixed z € X and r > 0, let Oz max{ry) and
Wz max{rr) be defined as in Lemma 2.15. Let T be as in Proposition 2.25. If, for a certain p € (0,¢€],

T(1) € (Cg(ﬂ())' is a constant Cr 1), then there exists a constant C > 0 such that
(1) fOT" all x € B(Z/ max{r, 7'0}/2), |T(wz,max{r,ro})(x)| <CCr;

(ii) the restriction of the linear functional T(0;max{rr)) + T(Wzmax{rr)) € (Cf (X)) to the
ball B(z, max{r,ry}/2) is a constant; namely, for all x € B(z, max{r,ro}/2),

T(Gz,max{r,ro])(x) + T(wz,max[r,rg] ) (x) = CT(l); (2177)

(iii) for all x € B(z, max{r,70}/2), |T(Bzmax(rn)) ()| < C(Cr + |Cry)).

Proof. By the definitions of 6 max(r,r,} and Wz max(r.r ), We know that
Wz,max{r,ry) (y) 75 0 (2178)

implies that d(y,z) > max{r,rg}, which together with d(x,z) < max{r,ry}/2 shows that
d(x,y) > max{r,ry}/2. Therefore, by (2.174) and Lemma 2.1(i), for all x € X with d(x, z) <
max{r,ry}/2, we have

|T(wz,max[r,ro}) (x) | = K(x/ y)wz,max{r,rg} (]/)d/’l(]/)

J’d(x,y)>max{r,rg}/2
1 e (2.179)
o R S
d(x,y)>max{r,ro}/2 V(xl ]/) d(xf y) Hy
< CCr,

which is (i).
To see (ii), for any f € Gy (B, y) with supp f C B(z, max{r,r}/2), by the definition of
T(1) =Crq) in (Cf(ﬂé))’, we have

CT(l)L(f (x)dp(x) = (T (Ozmaxirm)), f) + (T (W maxirm)), f), (2.180)

which together with Corollary 2.11(ii) gives the conclusion (ii) of this lemma.
The conclusion (iii) can be deduced from the conclusion (i) and the conclusion (ii),
which completes the proof of Lemma 2.26. O

We recall the notion of the space bmo(X), which, when X = R" and u is the n-
dimensional Lebesgue measure, was first introduced by Goldberg [73]. A variant in the
setting of spaces of homogeneous type can be found in [74].
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Definition 2.27. Let 1 < q < co. The space bmo,(X) is defined to be the set of all f € L?oc (X)
such that

— 1 qd Y
Wl = 390 { -z [ L 1@ = maen (Dl'euty) |

(2.181)

; q 1/q
' xesﬂlcl,}rjm {#(B(x, r)) JB(x,r)lf(y)| d#(y)}

is finite. When g = 1, one denotes bmo; (X) simply by bmo(X).

It was proved in [74] that for any 1 < g1, g2 < oo, bmog, (X) = bmoy, (X) with
equivalent norms.

Remark 2.28. From Corollary 2.11(ii), Proposition 5.46, Theorems 5.44(i) and 6.28 below, it is
easy to see that T(1) = Crg) in (Cf (X)) if and only if T(1) = Cr(1) in bmo(X).

We can now present the inhomogeneous variant of Theorem 2.18 as follows.

Theorem 2.29. Lete € (0,1], 0 > 0, ry > 0,and let T be as in Proposition 2.25 with the distributional
kernel K also satisfying the conditions (i) through (iii) in Theorem 2.18 and the following additional
reqularity condition: for all x,x',y € X with d(x,x") < d(x,y)/2 and d(x,y) > ro,

, 1 A, )\ / rn \°
Ko -kl oo (g ) (aom) (2182

If T € WBP() for a certain p € (0,€) and T(1) = Crq in (Cg(ﬂ())', then T extends to a bounded
linear operator from G(x1,1o,B,y) to itself for any xy € X and any y € (0,0] N (0, €). Moreover,
there is a constant Cp,c, > 0 such that for all f € G(x1,1,p,y) with any x; € X and any
y€(0,0]1Nn(0,¢),

||Tf”c<x1,ro,ﬁ,y) <Cpyoc (CT + |CT(1) |)”f||G(x1,ro,ﬂ,y)' (2.183)

Proof. We prove Theorem 2.29 by essentially following the same argument as the proof
of Theorem 2.18, and we only give an outline. We use the notations as in the proof of
Theorem 2.18. By Corollary 2.11(ii), we only need to prove Theorem 2.29 for Gy (x1,70,,Y).

Let f € Gu(x1, 70, B, ). We first verify that T f (x) for a.e. x € X satisfies Definition 2.8(i)
by considering two cases.

Case 1 (d(x,x1) < 10rp). In this case, let Oy, 20r, and wy, 20, be defined in the same way as
in Lemma 2.15. Instead of Lemma 2.15(ii) by Lemma 2.26(iii), following the procedure of
Lemma 2.20 (here we need T € WBP(f3)), for a.e. xg € B(x110rp), we have

1760 = | K@) - 16k ()(v)
x (2.184)

+ LK(x, ) F (9200 (D) A () + £ ()T (B 200) ().



52 Abstract and Applied Analysis

Using Lemma 2.26(iii) to replace Lemma 2.15(ii) and following the same proof as that of
Theorem 2.18 give the desired estimate of this case.

Case 2 (d(x,x1) = R > 10rp). In this case, we use all the notation as in the proof of
Theorem 2.18, but with r replaced by ry. The estimates (2.118), (2.119), (2.128), and (2.129)
with r replaced by 1 hold in the current setting. Instead of (2.130), by Lemma 2.1(ii), we now
have

Uxfz(y)d‘u(y)‘ S 1. (2.185)

Replacing Lemma 2.15(ii) by Lemma 2.26(iii) and using T € WBP(p), by following the
proof of Lemma 2.20, for a.e. x € B,,, we have

Tfi(x) = LCK ) [[1() = L) U (V) dpy) + f1 ()T U, ) (x)- (2.186)

Then Lemma 2.26(iii) together with an argument similar to the proof of Theorem 2.18 gives
the desired estimate for T f1(x) in this case.
Since x ¢ supp f», we can write

Tfy(x) = fx [K(x, ) - K (x,10)] falp)dpa(y) + K (x, xl)fkfz(y)d#(y)

= Zg(x) + Zo(x).

(2.187)

The estimate for Zg(x) is as in the proof of Theorem 2.18. Since R > 107y and y < o, by (2.174)
and (2.185), we have

|Zo(x)] <

VR(lxl) (g)“ & VR(lxl) (%)Y (2.188)

which is the desired estimate.

The estimate for T f3(x) in this case is also similar to the proof of Theorem 2.18. Thus,
T(f)(x) for a.e. x € X satisfies Definition 2.2(i).

To verify that T(f) (x) for a.e. x € X satisfies Definition 2.2(ii), similarly to the proof of
Theorem 2.18, we can always assume that d(x, x') < (1/160)(rp + d(x, x1)), and we only need
to consider the following two cases.

Case 1 (R < 10rp). In this case, if we replace Lemma 2.15(i) and (ii), respectively, by
Lemma 2.26(ii) and (iii), the same proof as in the proof of Theorem 2.18 gives the desired
estimates.
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Case 2 (R > 10rp). In this case, the same argument as in the proof of Theorem 2.18 together
with Lemma 2.15 replaced by Lemma 2.26 yields the desired estimates for T f1 (x) and T f3(x).
Noticing that f,(x) =0 = f»(x'), we now estimate T f, by writing

70 =T = | [ [KGe) = K ()] ey
< |[ {KEy) - K@ )] - K 2) - K] fw)duty)

+ |K(x,x1) = K(x',x1) |

[ fwaut)|

=I5+ 1T%.
(2.189)

The estimate for I'5 is as in the proof of Theorem 2.18. To estimate I, by (2.182) and (2.185)
together with y < o, we have

Te 2 V(x1,x1) <Z((;C,,:)) >S<d(:’0xl) >‘7 S VR(lxl) <d(9;;x,) >ﬁ<%0>yl (2.190)

which is the desired estimate. Then an extension via the Besicovitch covering lemma as in the
proof of Theorem 2.18 completes the proof of Theorem 2.29. O

Remark 2.30. A regularity condition similar to (2.182) also appears in [71, page 123]. This
additional regularity assumption is used only in the estimate of I's. Instead of (2.182) by
requiring y € (0,0(e — B)/€], we can obtain a similar conclusion. In fact, since d(x', x1) >
d(x,x1)—d(x,x") >189r9/20 > ry and d(x', x1) > 189R/200 > R/2, by (2.174) and (2.185), we
have

1 To g 1 10 o 1 o o
o V(x,x1) <d(x,x1)) : V(x',x1) <d(x’,x1)> < V(x,x1) <d(x,x1)> - 219

On the other hand, by (2.49) and (2.185), we also have I'c < (1/V (x,x1))(d(x,x") /d(x, x1))°.
Combining both estimates yields that

Te = V(xl,X1) (jg:;c3>ﬁ<d(;ox1)>oup/e> S VR(lxl) (d(i;xl))%r—lg)y, (2.192)

which is the desired estimate.

By Remark 2.14(iii) again, we can obtain the following conclusion which is convenient
in applications.
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Corollary 2.31. Let ¢ € (0,1], 0 > 0, vy > 0, and let T be as in Proposition 2.25 with the
distributional kernel K also satisfying Theorem 2.18(i) through (iii) and (2.182). If T is bounded on
LP(X) for a certain p € (1,00) and T(1) = Crqy in (Cg (X)), then T extends to a bounded linear
operator from G(x1,7o,p,y) to itself for any x, € X, any p € (0,€), and any y € (0,6] N (0, ¢€).
Moreover, there is a constant Cpy,c, > 0 such that for all f € G(x1,70,B,y) with any x; € X and
anyy € (0,0] N (0,¢),

”Tf”Q(xl,To,ﬂ/Y) < Cﬂ,y,o‘,Cg (CT + |CT(1) |)||f||c;(x1,ro,ﬂ/)’)' (2193)

The proof of the following corollary is similar to that of Corollary 2.24. We omit the
details.

Corollary 2.32. Let T be as in Theorem 2.29 or Corollary 2.31. If € € (0, €), then T is bounded from
Gg(x1,70,B,y) to G5(x1,70,B,Y) fozf all x1, B,y as in Theorem 2.29. Moreover, there exists a constant
Cpy,0,co > 0 such that for all f € Gj(x1,70,P,y) withany x, € X,

”Tf”c;(xl,m,ﬂ/},) < Cﬂ,y,o‘,Co (CT + |CT(1) |)||f||5;(x1,m,p,y)' (2'194)

3. Continuous Calderén reproducing formulae

From now on till the end of this paper, we will always assume that X is an RD-space. In
this section, using Corollaries 2.22 and 2.31, we establish homogeneous and inhomogeneous
Calderén reproducing formulae.

3.1. Homogeneous continuous Calderon reproducing formulae

In this subsection, we always assume that diam(X) = oo.

Proposition 3.1. Let {Sk}ieyz be an (e1, €2, €3)-ATL with €1 € (0,1], €2 > 0, and e3 > 0 and let Sf{
be the adjoint operator of Sy for any k € Z. Then the following hold.

(i) Forp € (1,00) and any f € LP(X), |Skfllrr(x) — O when k — —co.

(ii) Let Dy = Sk — Sk-1 for k € Z. Then > 32, Dy = I in LP(X) for p € (1, o0), where I is the
identity on LP(X).

(iii) Properties (i) and (ii) also hold when Sy is replaced by S, .

Proof. Let 1/p +1/q = 1. Then Definition 2.2(i), Holder’s inequality, (1.2) and (1.3) together
with u(X) = oo yield that

1
Vo (%) ) g <2

1/q
1 — 1
S——s+ f ———du(y)
{Vzk(x)l/p [% 212—k§d(x,y)<21+12*k V(x/y)q # y ] } ”f”Lp(X) (31)

1
™ Vo (x) VP

1
dxy)z2+ V(X Y)

1Skf ()] < )l + [ 1FW)|du(y)

Il fllr )

— 0,
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as k — —oo. This together with Proposition 2.7(ii) and Lebesgue’s dominated convergence
theorem implies that ||Sk f||rr(x) — 0 when k — —co.

Property (ii) is a simple corollary of Property (i) together with Proposition 2.7(iv).
Property (iii) follows by symmetry, which completes the proof of Proposition 3.1. O

Before we establish the continuous Calderén reproducing formulae, we need a
technical lemma. We recall that we denote min{a, b} by a A b for any a,b € R.

Lemma 3.2. Let €1 € (0,1], €2 > 0, €3 > 0, {Sk} ey, and let {Ex}ycy be two (€1, €2, €3)-ATls. Let
Py = Sy — Sk1 and Qx = Ex — Ex_1 for k € Z. Then for any €| € (0, €1 A €2), there exist positive
constants C (depending on €, €1, €, and €3), 6 (depending on €, €1, and €3), and o (depending on
€, €1, €2, and €3) such that PiQx (x, y), the kernel of P,Qx, satisfies the following estimates that for all
x,y € Xandallk,l € Z,

1 2—(k/\l)ez

P Ly)| < c27lkle ; 2
| 1Qk (x y)l = Ve () + Voo () + V(x, 1) (2-knD 1 d(x, y))a (3.2)
ford(y,y') < (1/4)d(x,y) and all k,1 € Z,
| PQxk(x,y) - PQk(x,y)|
< C2—|k—1|6< d(y,y') )el 1 2- (ke .
- 2-(Ink) 4 d(x, y) Vo-tenny () + Vo-ten (y) +V(x, y) (2—(k/\l) +d(x, y))ez !
(3.3)
ord(x,x') < (1/4)d(x,y) and all k,l € Z,
y
| PIQk(x,y) - PQw (X, y)|
§ Cz—\k—l|6< d(x, x:) >€1 1 2-(kADea )
- 2-00) + d(x, y) V-t (x) + V-t () + V(x, 1) (2—(k/\1) +d(x, y))ez ’
(3.4)
and for d(x,x") < (1/8)d(x,y), d(y,y') < (1/8)d(x,y),and all k,] € Z,
[ [PQx (x, y) = PIQk (X, y)] - [PQk(x,¥) - PQk (X, y)]|
< C2-\k—1|6< d(x,x') )ei < aly,y") >€’1
< 2-UA) 4 d(x, ) 2-009 1 d(x, ) (3.5)

1 2—(k/\l)(7
8 Vo-tery () + Vo-em (y) +V(x, y) (2—(k/\l) +d(x, y))o ’

Proof. By symmetry, we may assume that k > [.
Noticing that

LCQk (x,y)dpu(x) =0, (3.6)
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we can write

IPQc(x, )| = | f [PI(2) = R )] Qu(z, 1))

<

[ Rt - A IO dut)
d(z,y)<(27 +d(x,y))/2

(3.7)

s f IPy(x, 2)]|Qi (2 ) | dpa(2)
d(zy)>Q " +d(x,y)) /2

gLl 1Qk (2 )| dk(2)
d(z,y)>2 " +d(x,y)) /2

EZl+Z2+Z3.

The regularity of P; and the size condition of Qi together with Lemma 2.1(i) show that for
any €| € (0,1 Ae2),

1 27le

VAR ke, e1te
Vo (x) + Vo (y) + V(x, 9) (27 + d(x,y)) "

d(z, )" du(y) (3.8)

V(z,y)

1 2—152
Vot () + Vo () + V(x,y) (27 +d(x,y))

x
4[ d(zy)<@+d(x,y)) /2

< okl

The size conditions for P; and Qy together with Lemma 2.1(i) prove that

VAR Z
Vz—l (JC) (2—1 i d(x, y)) 1
1 2le:
szl(x) (271 + d(x’ y))EZ 7

1 2kez 1 1
f du(z)

d(zy)>@ +d(x,y)) /2 V(Z, y) d(Z, y)ez—e’l

< o-(k-De>

3.9
- (3.9)

Zy <

N ﬁj‘ . | Pi(x, 2)|
2 +d(x, d(z,y)>(2"+d(x,y))/2
y

1
V) du(z)

1 2—162
Vo (y) + V(x,y) (27 +d(x, )™

< o=(k=De>

where in the last step, we used Proposition 2.7(i) and the fact that 1/V(z,y) < 1/ (Vo= (y) +
V(x,y)),byd(z,y) > (2_1 +d(x,y))/2 together with (1.2). Thus,

1 2—162
Vot () + Vo (y) + V(x,y) (27 +d(x,y)) ™

Z, < 270k De (3.10)



Yongsheng Han et al. 57

Similarly, by Lemma 2.1(v),

7 < L ! 2 )
P~ Vo (x) + Vi (Y) + V6, ) ) azyys@vdyy 2 Vaor (W) + VI(zy) (2% + d(z,y))® :
< o-(k-De; 1 2t ,
~ Vo (x) + Vo (y) + V(x,y) (27 +d(x,y))®
3.11)

which completes the proof of (3.2).
The proofs for (3.3) and (3.4) are similar and we only verify (3.3). To this end, it suffices
to prove

€1

1 2l
Vo (x) + Vo (y) + V(X y) (27 +d(x, y))®
(3.12)

d(y.y') )

|PiQk(x,y) - PQk(x,¥)| 5 (2—’ +d(x,y)

for d(y,y') < (1/4)d(x,y). To see this, by (3.2), for any €] € (0,€1 A €2),

1 2—162
Vo (x) + Vo (y) + V(x,y) (27 + d(x,y))Ez
1 2—162

+ .
Vou(x) + Vau (y') + V(x, y') (271 +d(x, )7
(3.13)

|PQk(x,y) - PQx (x,y/)| < 27* e

The assumption that d(y, y') < (1/4)d(x, y) together with Lemma 2.1(iii) further yields that

1 o-le:

PQk(x,y) - P Ly)| S 27kha . (314
|PiQk(x,y) - PQx(x,¥')| S Vo () + Vo (y) + V(x,y) (2 + d(x, 1))~ (3.14)
Let o € (0,1). Then the geometric mean between (3.12) and (3.14) gives
|PQk(x,y) = PIQk (x, /)|
= |PQk(x,y) - PQk(x, ') || PQk(x,y) - PQk(x,y") |1_Cr (3.15)

o€l

1 2—152
Vot (x) + Vo (y) + V(x,y) (27 +d(x,y))

< 2—(k—l)e’1(1—o)< ad(y,y') >
~ 271+ d(x,y)

which is (3.3).
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We now verify (3.12). By (3.6), we can write

|P.Qk(x,y) - PQk(x, )| = Ux [P(x,2)-Pi(x, )] [Qk(z,v) — Qk (2, y') ] du(z)

3
SZ,[W,lp’(x’z)‘P’(x'V”|Qk(zfy)—Qk(z,y’)|du(2) (3.16)

6

EZZi,
i=4
where
27+ d(x, 27k +d(z,
Wi=4zeX:d(yy)< +4(xy)s +2(Z ]/)}/
27k 4+ d(z, 27+ d(x,
Wro=43zeX:d(yy') < +2(z y)s +4(x y)}, (3.17)
27k +d(z,

The regularity for Qi and the size condition for P; together with the assumption k > |
implies that

1 2le
Vo1 (x) + Vo (y) +V(x, y) (2—1 +d(x, y))ez

d(y,y)" 1 2% g O
(2 +d(z,y))" Var(2) + Vo (y) + V(z, ) (275 +d(2,y))”

= Z4,1 + Z4,2.

Zy < I [|P1(x,z)| +
Wi

We now claim that if k > and 27" + d(x,y) < 2% +d(z,y), then forall x,y,z € X,

1 < 1
Vou(y) + V(z,y) ~ Vou(y) + V(x,y) (3.19)
In fact, if 275 > d(z,y), then 27! + d(x,y) < 2% +d(z,y) < 27%, and therefore V5 (y) <
Vo« (y) and V(x,y) ~ V(y,x) < Vo« (y). Thus, (3.19) holds in this case. If 27k < d(z,y), then
27'+d(x,y) < d(z,y) and hence, V,4(y) < V(y,z) ~ V(z,y)and V(x,y) ~ V(y,x) < V(z,y),
which verifies (3.19). Proposition 2.7(i) and the estimate (3.19) together with 27 + d(x,y) <
2(27F + d(z,y)) and k > [ imply that

d(y, y,)el 1 2_162
YN 2T ) Ve ) TV y) 2 A ) j M1 HE (3.20)
d(]/, y,)el 1 2-lex .

Y@+ dx ) Ve W) V() 27+ d(x,y)®
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and the size condition of P, together with Lemma 2.1(i) yields that

d(y,y “ 1 1 2-kes
41 ’S -1 (y y) ey, J- Wi +,[ Wi V. \4 -k € d#(z)
(27+d(x,y)) 21(0) d(z,y;éZ'k d(z,y)ézf" 2 )+V(zy) (2*+d(z,y))

o 4y 1 2l
YT +dx,y)” Varx) 27 +d(x, y)?
(3.21)
Similarly, using Lemma 2.1(ii), we have
d(y,y)" 1 2t
Y2 d(x, ) Vo () + Vo () + Vxy) (27 + d(x, y))®
1 27ke:
x du(z 3.22
fwl Vou(y) + V(zy) (27 +d(z,y))” #z) (3.22)
d(y,y)" 1 2l

~ 2 +d(x,y)" Var(x) + Vau(y) + VX, y) (27 +d(x,y))?

which completes the estimate for Z,.
The regularities of P, and Qx and Lemma 2.1(ii) show that

7 < I d(yl Z)el 1 2-lex
53 W, (2—1 + d(x,y)>€1 Vo1 (x) + Vo (y) + V(x,y) (2—1 4 d(x,y))€2
d(y/ y,>€1 1 2-kea
d :
(2% +d(y,2))" Var(y) + Vo (2) + V(z,y) (2% + d(z,y))® w(z) (3.23)
. dlyy)" 1 ol

~ (2 +d(x,y)T Var () + Vau(y) + V(xy) 27 +d(x,y)*

From (1/4)d(x,y) > d(y,y') > (1/2)(2_" +d(z,y)), it follows that d(z,y) < (1/2)d(x,y) <
(1/2) (2_1 + d(x,y)). Then the regularity of P; and the size condition of Qk together with
Proposition 2.7(i) and d(y, z) < 2d(y, y') prove that

Zs S L 2 =
Vou(x) + Vo (y) + V(x,y) (271 +d(x,y))?
d(y,z)" :
ng[l@c@y)l +[Qk(z y) [1du(=) (3.24)
~_dly)” 1 2ter

YT+ d(x )T Var (1) + Ve () + V(xy) (27 + d(x, )

Thus, (3.12) holds and this finishes the proof of (3.3).
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We finally prove (3.5) in the case k > [. To this end, it suffices to verify that for any
€; €(0,e1Ne), d(x,x') <(1/8)d(x,y) and d(y,y') < (1/8)d(x,y),

| [PQk(x, y) = PQx(x, )] = [PQk (x,y') = PiQk (x', )]
dix, )% d(y,y)? 1 27 (329
T 2 +d(x, )T (2 +d(x,y)) S Vo (O Va1 )V (6 y) (27 4d(x, )

where 0 = (€2 - €]) A€z > 0. To see this, the estimate (3.4) implies that for any €] € (0,1 A€2),
d(x,x') < (1/8)d(x,y), and d(y,y') < (1/8)d(x,y),

| [PQi(x,y) = PQk(x, )] = [PiQk (%, y) = PiQk (', )]

_ 2—(k—l)6 d(x, x/)€1 1 2—162
~ 21+ d(x, )4 V() + Var () + V(x y) (27 +d(x, 1)) (3.26)
. 2—(k—l)6 d(x, x’)el 1 2-le

(21 +d(x,y))T Vi () + Vau () + V(x, ) 27 +d(x, )" '

where 6 > 0 depends only on €], €1, and €. The assumption d(y,y') < (1/8)d(x,y) together
with Lemma 2.1(iii) further shows that for any e; € (0,€1 A €2), d(x,x") < (1/8)d(x,y) and
d(y,y') < (1/8)d(x,y),

[[PQk(x,y) - PQi(x, y)] - [PQk(x, ") — PQxk(x, y)]|
d(x,x') 1 o-les (3.27)

< o-(k-D5 .
YT @ty t Ve V@) V) (T )

By the estimate (3.3) and symmetry, we further obtain that for any €| € (0,e; A e2), d(x,x') <
(1/8)d(x,y) and d(y,y') < (1/8)d(x,y),

[[PQk(x,y) - PQk(x, y)] - [PQk(x, ") — PQxk(x, y)]|

d(]// yl)e/l 1 2—162 (328)

< (k=15 : ,
- (2 +d(x, ) V2 () + Vauy) + V(X y) (271 + d(x, )"

where 6 > 0 depends only on €], €1, and €;. Then the geometric mean among (3.25), (3.27),
and (3.28) gives the desired estimate (3.5).
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Using (3.6), we now prove (3.25) by writing that

[ [PQx(x, y) = PQk (%, )] = [PQx (%, ¥') = PiQk(x', y)]|
LC{ [Pi(x, 2) = Pi(x', 2)] = [P, y) = Pu(x, )]} [Qk (2, y) = Qk(2, ) ] dp(=)

4
< §IW| [PI(X,Z) _Pl(x’,Z)] - [Pl(x,y) _Pl(xlly)]”Qk(Z,]/) _ Qk(Z,y')|d‘u(z)

Y;,

4
i=1

(3.29)

where

2% 1 d(z, 27 4 d(x,
Wi=izeX:d(yy) < +2(z LI +8(x y)}’
-1 “k y
Wy ={zex: d(yy) <> +§<x’y> <2 +;i<z,y>, and d(x, <) < 2 +621(Z,x)},
27 +d 2k 4+ 4 1
Ws=3zeX:d(y,y) < i 8(x,y) < +2(z,y), and d(x,x’) > 2 +d(zx) +521(z,x) },
2%+ d(z,
W4: ZEXId(y,y’) > #}

(3.30)

If z € Wy, then d(z,y) < (1/4)(2_1 +d(x,y)), d(x,x') < (1/8)d(x,y) < (1/8)(2_1 +
d(x,y)), and d(y,y'") < (1/2)(2°F + d(z,y)), which together with the second difference
condition of P, the regularity of Qx and Lemma 2.1(ii) shows

y, < 4Gx)" ! 2
LY T d(x,y) T Vo (0 + Ve (9) + V(%) (27 + d(x, )
d(y, z)" d(y,y)"

-1 €1 (n-k e

wi (27 +d(x,y)" (2% +d(z,y)) (331)

; ! 2" )

Vo (2) + Vo (y) + V(z,y) (2% +d(z,y))" 8

d(x, x,)el d(y, y/)el 1 2—163

YT+ d(x,y)T (27 +d(x,y) Vo (x) + Vau(y) + V(x,y) (27 +d(x, y)
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If z € Wy, then (1/2)(27’{ +d(z,y)) <d(y,y') < (1/8)d(x,y), and therefore, d(z,y) <
2d(y,y") < (1/4)d(x,y) < (1/4)@2" + d(x,y)) and d(x,x) < (1/8)d(x,y) < (1/8)2" +
d(x,y)). From this, the regularity of P, and Proposition 2.7(i), it follows that

7 d(x,x') d(y,y')" 1
Y2t +d(xy)T (27 +d(x,y) Var(x) + Vau(y) + VX, y)
2—163
* 1+d(x,y)? ) x
o dxx)” d(y.y)" 1 2t
Y2 +d(x,y)T" (27 +d(x,y) Var(x) + Vau(y) + VX, y) (27 +d(x,y))”

[1Qk(z )| +|Qk(z. ¥)|]du(z) (3.32)

If z € W, then d(x,x') < (1/2)(27 + d(z,x)), d(y,y) < (1/2)27F + d(z,v)), and
d(x,x") <(1/8)d(x,y) < (1/8) 7+ d(x, 1)), which together with the regularity of P, and Qx
implies that

y, < J‘ d(x,x') 1 27l
2 wy| (27 +d(x,2)) Vo (x) + Vau(2) + V(x, 2) (27 +d(x,2))*
+ d(x,x')" 1 27le>
(271 +d(x,y)) Vo (x) + Vau(y) + V(x,y) (271 +d(x,y))?

d(y,y)" 1 2k
(2% +d(y,z))" Var(2) + Vo () + V(z, ) 2% +d(z,y))"

(3.33)

du(z)

= Y2,1 + Yz,z.

The fact that z € W,, which implies that 275 + d(z,y) > (1/ 4)(2_1 +d(x,y)), together with
Lemma 2.1(ii) yields that

e D)y :
T2 +d(x,y)T (27 +d(x,y)) Vo (x) + Vau(y) + VX, y)
o-lex 1 o-kes
@) V) Ve @ dGzy)°
A ) dlyy)” | e
YT +d(x,y)T (27 +d(x,y) Vo (x) + Vau(y) + V(x,y) (271 +d(x, y)?

du(z) (3.34)
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Similarly, the fact that 2°% + d(z,y) > (1/4)(2”" + d(x, y)) implies that

. d(y.y)" d(x,x')" 1
T +dG ) I w, (27 +d(x, 2)) T Vi (x) + Vo (2)+ V(x, 2)
2-lex 1 2-ke

5 ap(z).
(3.35)

@ d(x, D) Vo @D+ Vo s+ V(Ey) (25 d(z )

The estimate (3.19) together with the facts that k > I and 27 + d(z,y) > (1 /4)(271 +d(x,y))
and Lemma 2.1(ii) yields that for any €] € (0,e1 A e2),

d ) / -le
213 v.¥) g ! d(x,x/)elz—e2
27 +d(x, )" V2i(y) +V(x,y) (27 +d(x,v))
1 2—162
d
xfx%%ﬂ+VWJ)@4+mL@yW1”@) (336)

- d(y,y)" 1 d(x, xf)e’l o-l(e2—¢))
~ (2_1 + d(xr]/)>€1 szl(y) + V(x,y) (271 + d(x,y))eﬁ (271 n d(x’y))ez—e; ’

and similarly, Lemma 2.1(i) implies that

1 2-ke:
w, Vo (Y) + V(z,y) (2% +d(z,y))

d(y.y)" 1

2 (27 +d(x,y))" Vau(x)
d(y,y)" 1

T (27 +d(x,y)) Vau(x)

ﬂnfﬁﬁﬁ du(2)

d(x,x' )12

ATt . B e
2 +dx )" d(z9)2(1/8) @ +dx), V (z, ) d(z, )=

d(zy)227
. dlyy)" 1 d(x,x)" o-ler-€))
~ (2*1 + d(x,y))el szl(x) (2_1 + d(x,y))e’1 (2—1 n d(x’y))€27€,1 7
(3.37)
which completes the estimate for Y5.
Finally, to estimate Y3, since d(y, ') < (1/2) 27 +d(z, y)) and
d 214 d(x,
d(x,x) < LY 2T Aby) (3.38)

8 8 ’
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by the regularities of P, and Qx, we then have

Y <J‘ Py, )|+ | P, 2) |+ d(x,x')" 1 -les
X,z X,z = - -
o W; : : 271 +d(x,y))" Vo (x)+ Vo (y)+V(x,y) (271 +d(x,y))
d(y, y,)el 1 2—kez

g (27 +d(z,y))" Vax(2) + Vo (y) + V(z,y) (2% +d(z,y))” ap(z)

3
= Z Y3;.

i=1

(3.39)

The fact that 27% + d(z,y) > (1 /4)(2_1 +d(x,y)) and Lemma 2.1(ii) imply that
o dG®)dwy)” 1
T +d(xy)T (27 +d(x,y))! Vo (x) + Vo (y) + VX, y)
2 ler 1 2-ke2
X
@+ dee )™ Ve )+ VEY) 2k + d(zy)”
dxx)" ()" | ye
~ T +d(xy)T (27 +d(x,y) Vau(x) + Vau(y) + VI(x,y) (27 +d(x, )

du(z) (3.40)

The facts that k > 1,275 +d(z,y) > (1/4) (2_1 +d(x,vy)), (3.19), and Proposition 2.7(i) yield that
for any €] € (0,1 A €2),

(y,—y)e 1 2—k€2
M v, y) W lPl(x Ay Vo (@) +Vor () +V (2, y) (2*+d(z, y))® du(z)
(3.41)
d(x, x/) 1 d(]// yl)el 1 2_1(62_6,1)

N (2_1 +d(x,y))€ll (2—1 +d(x,y))€1 Vo (y) + V(x,y) (2_1 +d(x,y))€2_€'1’

where, in the last step, we used the fact that 27! < 2d(x, x') in this case. Similarly, by the size
condition of P, and Lemma 2.1(i), we further have

_ d(y, y:)el I 1 2—k52
2 d(x, ) sz(x) w, Vo () + V(z, y) (2% +d(z,y))"

. dlyy)" 1
T2 +d(x,y)) Vau(x)

du(z)

(3.42)
y { 2 lez + —lezf 1 ! /’l( )}
TN ) d(zy)>(1/8)2 7 +d(x,y)), V d(z,y)®
(2 +d(x/y)) Y d(zy)>27 Y (Z y) d(z y)

d(x, %) d(y,y')" 1 p-Herel)
- (2 +d(x, y))el1 (2 +d(x, )" Vau(x) (21 +d(x, y))ez-e;‘
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Notice that in this case, 27 < 2d(x,x') < (1/4)d(x,y) and therefore V,(x) < V(x,y). Thus,
by (3.19), we have that for z € W3, 1/ (Vo (y) +V(z,y)) S 1/ (Vo (y)+V(x,y)) S 1/ (Vo (x)+
Vo1 (y) + V(x,y)), which together with Proposition 2.7(i) shows

d , 1\ €1 —ley

2 d(x,y)T 1+ d(x ) w Vor () + Vor () + V z, ) 1)

d(x,x')" d(y.y)" 1 p-leel)
~ (2_1 +d(x,]/))€ll (2—1 +d(x, y))ﬁ Vi (x) + Vo (y) + V(x,y) (2_1 +d(x, y))ez—efl .
(3.43)

This completes the proof of (3.25), and hence, the proof of Lemma 3.2. O

Remark 3.3. From the proof of (3.2) in Lemma 3.2, it is easy to see that (3.2) still holds if P, has
the required regularity only in the second variable, and Qy the first variable. This observation
is useful in applications.

In what follows, let {Sk}cz, be an (€1, €2, €3)-ATI with €; € (0,1], €2 > 0, and €3 > 0 as
in Definition 2.2. Set Dy = Sk — Si_1 for k € Z. To establish continuous Calderén reproducing
formulae, by following Coifman’s idea (see [64]) and Proposition 3.1(ii), we write for any

N €N,
=(£2)(22)

= Z Z DDy + Z D}(VDk
k=-c0

I>N k=—co

(3.44)

=RN+TN

in LP(X) with p € (1, o0), where DII:] = 2 jij<N Di+1- To verify that Ti,l exists and is bounded on
any space of test functions, we first prove that Ry is bounded on L?(X) with a small operator
norm.

Lemma 3.4. Let N € N and let Ry be as in (3.44). Then there exist constants C > 0 and 6 > 0,
independent of N, such that for all f € L*(X),

”RN(f)”LZ X < C2_N6||f”L2(x)- (345)
(¢9)

Proof. To prove the lemma, by applying the Cotlar-Stein lemma (see [75, page 280] or [64]),
we see that it suffices to verify that for any o € (0,1), €] € (0,1 A €2) withi =1,2,3, and all
ki, li, ko, 1> € Z,

t _ ' _ / e (1
1Dk Dk (D Die) Mgz sy 120 S 27111727 027 RIS A7),

(3.46)
t _ ’ _ ’ e 11
”(Dk2+lsz2) Dkl*'llel”Lz(JC)ﬂLz(x) 5 o-lhleon-lkleyon—lki-k;les(1-0)
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We only prove (3.46), the proof for the last inequality being similar. In fact, Lemma 3.2 and
Proposition 2.7 yield that

||Dk1+11 le1 (Dk2+12 Dkz)t ||L2(JC)—>L2(JC) S 2‘|ll|€,1 2_|12|€,z,

t ot _lki—kalé.
||Dk1+lle1Dkszz+lz”LZ(X)_)LZ(X) 52 1-kzle;

(3.47)

Then the geometric mean of the above two estimates gives the estimate (3.46), which
completes the proof of Lemma 3.4. O

We now establish some estimates for the kernel, Ry (x, y), of the operator Ry. To this
end, we first give a technical lemma.

Lemma 3.5. Forany o >s>0and x,y € X withx#y,

i 1 Dks o1 1
Vo () +V(x,y) (2% +d(x,y))° ~ V(6 Y) dx,y) "

k=-c0

(3.48)

Proof. For any x,y € X, choose ko € Z such that 27% < d(x,y) < 27%*1. Then if k < ko, by
(1.3), we have
Vyk (x) = p(B(x, 27k koY)
> 27 (ko) (B(x,27%0)) (3.49)
2 27V (3, y).

Therefore,
i 1 27ks
Vo () + V(X y) (2% +d(x, )’
1 ko 1 1 oo .
< - + ks
d(x,y)° Sk:Z_oo Va-i(x) V(x,y)d(x,y)"k%l (3.50)
1 1 N
< o—x(k=ko) 1
~V(x,y) d(x,y)°° { k;_m
S i T
Vi(x,y) d(x,y)7°
which completes the proof of Lemma 3.5. O

Lemma 3.6. Let N € N, let Ry be as in (3.44), and let Rn(x,y) be its kernel. Then for any €| €
(0, €1 A €2), there exists a constant & > 0, independent of N, such that Ry satisfies all the conditions

of Corollary 2.22 with e replaced by €, and Cg, < 27°N. Moreover, Ry,(1) = 0.
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Proof. Let €] € (0,€1 A €2). Write
-N-1 o
Rn(x,y) = Z Z (DiaDi) (x,y) + D, >, (DraDi)(x,y)
I=N+1 k=—00 I=—0 k=—o0 (3.51)
= Rll\](x,y) + R?\] (x,v).
By (3.2) and Lemma 3.5, we have that for any x, y € X with x#y,
|Rn(x, )| < [RN (2 )| + | RY (x, )|
<> 2Ey . CH—
I=N+1 k=—co V2’k (x) + V(x/ ]/) (Z‘k + d(x, y)) :
N - (k+D)ex (3.52)
€
" ZOOZ Z_ Vo-ksn () +V(x Y) (2 k4D + d(x, ]/)) €
Y 1
<o Ne__ -
~ V(x,y)

Thus, Ry satisfies (i) of Theorem 2.18.

The estimate (3.3) and Lemma 3.5 show that for any x,y,y’ € X with x#y and
d(y,y') < (1/4)d(x,y),

|Rn(x,y) = R (x,/) |
<Ry (xy) =Ry (x,y) | + Ry (x,y) - Ry (x, )|
_d(yy)” { ST 1 p-ke:
Tdeoys LRn LV )V y) 27k +d(x ) (35%)
-N-1 0

. Z 216 Z 1 2—(k+l)ez }

ST & Vawan (0) + VI(x,y) (226D 4 d(x, )

< 2—1\1551(%y')€1 1
T dxy)a V)

and the estimate (3.4) and the symmetry also yield that

o el y)T 1
|RN(y, %) = Rn (v, %)| 27 d(x,y)5 V(xy)

(3.54)

which shows that Ry satisfies (2.49) and (ii) of Theorem 2.18.
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Using (3.5) and Lemma 3.5 then gives that for x, x', y, y' € X with x#y and d(x, x’) <
(1/8)d(x,y) and d(y, ) < (1/8)d(x, ),

[[Rn(x,y) = Rn (X, y)] = [Rn(x,y') = Rnv (x, )] |
< |[Ry(x, ) = RN (%, y)] = [Ry (x,y') = Ry (', y)]|
+|[RY (x,y) = R (¥, y)] = [Ry (%, ) = Ry (¥, y)]|

_dxx) T d(y,y) [ & ol6 1 2ko
T od,y)S dx,y)S LN V() + VI y) 2k +d(x, )]
-N-1 2—(k+l)o
+ 216
Zoo Z Vo (x) +V(x,y) (2D + d(x,y))°

~ yned(xx)" dy,y)" 1
T dy)s dxy)t V)

(3.55)

which shows that Ry satisfies (iii) of Theorem 2.18.

Moreover, by the vanishing moments of Dy, we obviously have Ry (1) = 0 = R},(1).
Thus, Ry satisfies all the conditions of Corollary 2.22 with e replaced by (—:’1 and Cg, S 2-0N
which completes the proof of Lemma 3.6. O

From Lemma 3.6 and Corollary 2.22, it is easy to deduce the boundedness of Ty on
spaces of test functions when N is large enough.

Proposition 3.7. Let €1 € (0,1], €2 > 0, 3 > 0, and let {Si }icz, be an (€1, €2, €3)-ATL For N € N,
let Ry and Ty be as in (3.44). Then there exist constants Cg > 0 and 6 > 0, which are independent of
N, such that for all f € é(xl,r, B.y) withx; € X, r>0and 0 < B, y < (1 N ep),

-N&
”RN(f)”c;(x],r,p,Y) <Cg2N ||f||c;(x1,r,ﬂ,y)' (3.56)
Moreover, if N is so large that
Cg2 N0 <1, (3.57)

then Ty exists and maps any space of test functions to itself. More precisely, there exists a constant
C > 0 such that for all f € G(xl,r, B,y) withx; € X, r>0,and 0 < B, y < (€1 N €2),

TN Dl g rpyy < Il rpm- (3.58)
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Proof. Applying Corollary 2.22 together with Lemmas 3.4 and 3.6 gives (3.56). Moreover, if
we choose N € N such that (3.57) holds, then by (3.56), we have that for all f € G(xl, 7,B6,Y),

_ -1
”TN1 (f) ”C;(xl,r,ﬂ,y) = || (I - RN) (f) “G(xl,r,ﬁ,y)

SR

1=0

G(x1,7,B)y) (359)

= BNPN
< %(Q;Z Noy 1A llg o)

S NG rpyy

which completes the proof of Proposition 3.7. O

Proposition 3.8. Let p € (1,00), €1 € (0,1], €2 > 0, €3 > 0 and let {Sk}cy be an (€1, €2, €3)-ATL
For N € N, let Ry and Tn be as in (3.44). Then there exist constants C9 > 0 and 6 > 0, which are
independent of N, such that for all f € LV (X)

||RN(f)||LP(_x) < C92_N6||f“m(x)- (3.60)
Moreover, if N is so large that

Co2™N0 <1, (3.61)

then Ty exists and is bounded on LP(X), and there exists a constant C > 0 such that for all f €
Lr(X),

”TJ:Il(f)”LP(x) < C”f”Lp(x)- (3.62)

Proof. We use the same notation as in Lemma 3.6. From Lemma 3.6 together with the
proposition in [75, page 29], it is easy to see that Ry is a singular integral satisfying the
condition (10) in [75, page 19] with A < 27N® This fact and the corollary in [75, page 19]
together with a duality argument and Lemma 3.4 prove that Ry is also bounded on L?(X)
for p € (1,00) and || Rn||r (1) — (1) S 27N9. That is, (3.60) holds. If we choose N € N so large
that (3.61) holds, by an argument similar to the proof of Proposition 3.7, we can prove that
Ty is bounded on LP(X) for p € (1, o). O

Lete; € (0,1], &2 > 0, €3 > 0, and let {Si};2, be an (€1, €2, €3)-ATL Set Dy = Sk — Sk
for k € Z. For any f € LP(X) with p € (1,0) and x € X, the Littlewood-Paley g-function g(f)
is defined by

o 1/2
g(f)(x) = { > |Dk(f)(x)|2} : (3.63)
k=-c0
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Lemma3.9. Lete; € (0,1], €2 >0, €3 > 0, and let {Si } ey, be an (€1, €2, €3)-ATL Let Dy = Si—Sk1
for k € Z and let §(f) for f € LP(X) with p € (1, 00) be as in (3.63). Then there exists a constant
Cp > 0 such that for all f € LP(X),

”g(f)”U’(x) < Cp“f”yv(x)- (3.64)

Proof. By Khinchin's inequality (see [76, page 165]) and Minkowski’s inequality, we first have
that for any N € N,

N 1/2
{ > IDk(f)IZ}
k=—N

ZNZ Z Z ok Dk (f)

ON k=—

Ly (ﬂ() Lr(X)

(3.65)

ZZNZ 2

ON

Z ok Dk (f)

k=-

7

Lr(X)

where ox =1or-1fork € {-N, ..., N}. For any fixed o = {O'k}kN?N, we set T, = Zsz_N oDy
and denote its kernel by KY;. Similarly to the proof of Lemma 3.6, it is easy to verify that K¢,
and (K¢)" are standard Calderén-Zygmund kernels, with constants independent of N and
0. Then if we can verify that Ty, is bounded on L?(X) with || T Nl -2 S 1, then by the
corollary in [75, page 22] together with a duality argument, we obtain that for p € (1, %),
ITR (%)~ 172y S 1. Therefore, for all N € Nand all f € LP(X),

S ||f”Lp(x)- (3.66)
1P (x)

N 1/2
{ > |Dk<f>|2}

k=-N

Then Fatou’s lemma further shows that lglrey < Nfllerexy- To finish the proof of
Lemma 3.9, it remains to verify that T}, is bounded on L?(X). By the Cotlar-Stein lemma,
it suffices to verify that for any € € (0, €1 Ney)andall j k € Z,

[|oxDx (ofo)t||L2(J()—>L2(J() s 2,

t (3.67)
| (0;D;) oxDx

[k=jl
||L2(J(,)—>L2(J(.)<2 e,

However, these two estimates are a simple corollary of (3.2) in Lemma 3.2. This completes
the proof of Lemma 3.9. O

We can now establish a continuous Calderén reproducing formula.

Theorem 3.10. Let €; € (0,1], €2 >0, €3 >0, € € (0, €1 A€ep) and let { Sy} ey, be an (€1, €2, €3)-ATL

Set Dy = Sy — Si_1 for k € 7. Then there exists a family of linear operators { Dy} oy, such that for all
feGSBy) with0<p, y<e,

f= 3 BuDilf), (3.68)
k

=—00
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where the series converges in both the norm of GE(B,y) and the norm of LP(X) for p € (1,00).
Moreover, the kernels of the operators Dy satisfy the conditions (i) and (ii) of Definition 2.2 with €
and e, replaced by €' € (e, €1 N €3), and fka(x,y)d‘u(y) = fka(x, y)du(x) = 0.

Proof. Fix a large integer N such that (3.57) and (3.61) hold and, therefore, Propositions
3.7 and 3.8 hold. Let D,JCV for k € Z be as in (3.44). It is easy to check that D,]:I(~,y) €
G(y,27,€e1,e) for all k € Z. Define Di(x, y) = T (DY (-, y))(x) for k € Z, where Ty} is
defined as in Proposition 3.7. Then Proposition 3.7 shows that Dy for k € Z satisfies all
the conclusions of the theorem, and formally, we also have (3.68). We still need to verify
that the series in (3.68) converges in both the norm of GS (B,7) and the norm of L?(X) with
p € (1,00).

Let € = €1 A €. We first prove that the series in (3.68) converges in the norm of ég(ﬁ, Y)
with0 < B,y < e.Let f € G(B,y) withp </ < Eand y < y < €. Then, for L € N, we
write

>’ DeDi(f) = T;(Z D?Dk><f>

[k|<L [k|<L

=Ty <TN - > D}jDk> (f)

|k|>L+1
(3.69)
=T Tn(f) - T;}( > D,f;’Dk) (f)
Ikj>L+1
= f - lim (Rn)’ (f) - T < >, DY Dk> (f)-
= k[>L+1
We now verify that
Jlim || f > DD (f) =0. (3.70)
IkisL G(p)
To see this, we write
> DiDi(f) - f
[k|<L G(B,
B) 3.71)

< }gg” (RN)j(f)”C}(ﬁ,y) +

Tﬁ( > D,’ka><f>

[kI>L+1

GBy)

Notice that G(f,y") € G(B, ). By (3.56) and (3.57), we have

Jim [| (Rn)' (Dl < Jim (Cs2N%) I fllgig =0, (372)
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we remark that this is also true even when f = ' and y = y". We now prove that

lim
L—oo

=0. (3.73)
Gy

T;V1< >, DY Dk>(f)

|k|>L+1

To this end, by Proposition 3.7, it suffices to verify that there exists some ¢ > 0 such that for
all0<p<p <éand0<y<y <éandall f €GBy,

>, DIDi(f)

[ki>L+1

S 277 fllgp - (3.74)
GBY)

Similarly to the proof of (3.3), by Lemma 2.1(iii) and the geometric mean, we can reduce the
proof of (3.74) to verifying that there exists some ¢ > 0 such that for all f € G(f,y') and all
x € X,

1 1
DYD <27k - , 7
|k|EZL+1 k k(f)(x) ~ ||f||q(ﬁ'Y)V](x1) +V(x1,x) (1+d(x,x1))y (3 5)
and for all x,x' € L with d(x,x") < (1/2)(1 + d(x, x1)),
> DYDu(N) - 3, DYD(N(X)
lk|>L+1 [k>L+1
, (3.76)
d(x,x' 1 1
< Wl gy )

(1+d(x, x1))ﬂ' Vi(x1) + V(x1, x) (1+d(x, x1))Y, .

Similarly to the proofs of Lemmas 3.4 and 3.6 and using some estimates similar to (3.2)
and (3.12), we easily obtain that for any L € N, the operator Tp, = 35141 D}(\] Dy satisfies all
the conditions of Corollary 2.22 with e replaced by €, Cr, < 1and

||TL||L2(,K)~>L2(}() S 1 (3.77)

Corollary 2.22 then shows that Ty is bounded on G(f,y') for any 0 < f, y' < €. In particular,
we see that (3.76) holds.
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To verify (3.75), we simply denote D,I(\] Dy by Eg. By Lemma 3.2 and its proof, it
is easy to see that Ex(x,y), the kernel of Ey, still satisfies (i) to (iv) of Definition 2.2
with a constant depending on N; see (3.2) and (3.12). Moreover, Ex(1) = 0. For f €

Gy,

>, DD = if (@) - Fldu(y
k=L+1 k=L+

>, [ExCe )£ ) - £ty
Ko Ay <adean) /2

+ f |Ex(x, )| f () |dp(y) (3.78)
k=L+1 7 d(x,y)>(1+d(x1,x))/2

0

+ |Ex(x, )| f () |dp(y)

k=L+1 »[d(x,y)>(1+d(x1,x))/2

3
> Z.

i=1

The size estimates for Ey and the regularity of f imply together with Lemma 2.1(ii) that

Zi < i J 1 2k
b dry)<(led(x,x)/2 Vo (X) + Vo () + V(x, y) (2% + d(x,y))®

k=L+1
A, y)” ! ! du(y)
(1+d(x1, %)) Vi(x) + V(x,x) (1+d(x,x))"
oy 1 1 )
Vi(x1) + V(xy, x) (1+d(x1,x))"
(3.79)
Similarly, Lemma 2.1(i) yields that
zs 3 | : 2 auw)
e KT Y dey)> (a2 Vo (X) + V(X y) (2% + d(x, ) Y
1 1
x , (3.80)
Vi(x1) +V(x1,%) (14 d(x,x))"
< Lo 1 1

~

Vi(ox1) +V(x1,x) (1+d(xy,x))"
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Since d(x,y) > (1 + d(x1,x))/2, we have V(x,x1) S V(x,y). This estimate together with
Lemma 2.1 shows that

Zz < i J‘ 1 Z_kez

G dey)s(eda a2 Yok (%) + Vo (y) + V(X y) (27 + d(x,y))®

X 1 1
Vi(x1) + V(x1,y) (1+ d(x1,y))y
L& min ! ! !
52 {vl(xl)’ V(x,x1) } (1+d(a1,x))
1 1
Vi(x1) + V(@ x) (1+d(x;, %))

-dp(y)
(3.81)

5 2—L€2

which completes the proof of (3.75) for the operator 372, .; Dy D.
Since [, f(y)du(y) = 0, we can write

-L-1

2

-L-1

< |Ex(x,y) = Ex(x, 1) || f ()| dp(y)

Koo ¥ d(x1,y)<(2 F+d(x1,x)) /2

-L-1

> DYDk(f)(x)
k=-—c0

[ By - EeCox)l fanty

-L-1
* |ExCe, )| f ()| dp(y) (3.82)
-L-1

[— f d(x1,y)>2 7 +d(x1,%)) /2
| B o) £ 9) | uay)

d(x1,y)>Q2 7 +d(x1,%)) /2

k=-00

The regularity of Ei in the second variable and the size condition of f together with
Lemma 2.1(i) yield that

1 e (2 -
Ko dGay<@Frda,0) 2 (27K +d (x,x1)) T (27K +d (x, x1) ) Vor () +Vox (1) +V (x,x1)
1 1
y Fdu(y)
Vi(x1) + V(x1,y) (1+ d(x1,y))y
< 9-L(y'-y) 1 ! .
S Ry V) (o)

(3.83)
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Similarly, Lemma 2.1(ii) shows that

-L-1 1
Ys < f
5 2 A(x1y)> @ +d(xa,x)) /2 Vak (X) + Vo (x1) + V(x, x1)

k=—c0
N 2—k€2 1 1 d ( )
(2% +d(x,x1))? Vi(x) + V(X1 y) (1+d(x1, )" Y
< p-Ly'-n/2 1 1 )
~ Vi(x1) +V(x,x1) (1+d(x1,x))"
(3.84)

Since k < 0and d(x1,y) > (2_" +d(x1,x))/2> (1+d(x1,x)) /2, then V(x1,x) < V(x1,y). From
this and Lemma 2.1(ii), it follows that

-L-1

1
Y, < f
) dy)> @ d(,x) 2 Vo (%) + Vo (y) + V(X )
2 ke 1 1 du(y)
X J
@F+dxy)® Vi) + V(L) Q+dy))
< 2=LG4'-1) 1 1 ,
- Vi(x1) +V(x,x1) (1+d(x1,x))"
(3.85)

which completes the proof of (3.75). Hence, we obtain (3.74). Therefore for f € G(ﬂ’, y') with
p<pf <€andy <y <€ (3.73) holds. Combining the estimate (3.73) with (3.72) shows
(3.70).

Let now f € dg (B,y) with 0 < B,y < e. By definition, there exists a sequence
{fa}2, c G(e e) such thatlim, o || f~ fullgsy) = 0. Forany given L € N, using some estimates
similar to (3.2) and (3.12) (see also Remark 3.16), similarly to the proof of Lemma 3.6, we can
easily verify that for any L € N, the operator Tj, = ki< L DY Dy satisfies all the conditions of
Corollary 2.22 with € replaced by €, C, <1, and T -2 S 1. Thus T; is bounded on
G(B,y) and IN"E (1) = 0 by the vanishing moment of DY, which together with the boundedness

of T} on G(B,y) yields

‘f_ > DeD(f)

k<L

GBy)
S ”f - f””q(ﬂ,y) + ”fn - Tzzfl (TL(fn)> ”C,(ﬂ,y) + ”T]:Il (TL(fn)) - T]:I1 (TL(f)) ”C,(ﬂ,y)

S ||f - fn“c;(m) + ”f" - Tf\fl (TL(f"» ”G(ﬂm)'
(3.86)
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For any given 6 > 0, fix some n € N such that || f - fyllg,y) < 6/4. By (3.70), for this chosen n,
there exists some Ly € N such thatif L > Ly, then

1,5 6
”fn - TNl (TL(fn))”c,(p,y) < DR (3.87)
Thus, when L > Ly,
“f - > DDi(f) <6. (3.88)
|k|l<L

GBy)

Since TZ(l) = 0 and R}, (1) = 0 and since T, and Ti,l are bounded from G(x,r, B,y) to
G(x,r,B,y) for any x € X, r > 0, and 0 < B,y < ¢, it follows that for ¢ € (0,¢),

Z|k|§L5ka(fn) = Tl(,lfL(fn) € G(e, €). Moreover,

<|If- fn||<;(p,y) + ”T&lfL(f = fn) ”G(ﬂ,y)
GBy)

SIf = fallgpy

— 0,

{7~ 5 bun}-{ - 5 enucn}

|k|<L [k|<L

(3.89)

asn — oo. Thus, f — X< DkDi(f) € G5(B, ¥)- By (3.88), we further have that when L > Ly,

<5, (3.90)

‘f - > DDx(f)
G5B

|k|<L

which implies that (3.68) holds in the norm of GS B y)-
We now verify that (3.68) also holds in L?(X) for p € (1, ). By Proposition 3.8 and
the choice of N, we have

Jim IR (Dl < Jim (G527 Wy =0

(3.91)
<

~

TfJ( > D,iVDk) (f)

[ki>L+1

< > DiVDk>(f)

|k|>L+1

Lr(X) Lr(X)
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Moreover, by Lemma 3.9 and Holder’s inequality, we obtain

(3o
|k|>L+1 (%)

= sup <Z D}Q’Dk(f),h>

15l gy ST\ [K2L+1

1/2 1/2 (3 92)
2 .
< s |( 3 unr) (= o)
il pr <1 |k|>L+1 () 1l \IK>L+1 L (%)
1/2
< <Z IDk(f)|2>
k|>L+1 L)
S fllee -
Thus,
1/2
. . 2
Jlim < >, D;];]Dk>(f) S fim H< > D) > =0. (3.93)
k|I>L+1 () k|>L+1 L)

From these estimates, we finally deduce that (3.68) holds in LF(X) with p € (1, 00), which
completes the proof of Theorem 3.10. O

By an argument similar to the proof of Theorem 3.10, we obtain another continuous
Calderén reproducing formula (we omit the details).

Theorem 3.11. Let e; € (0,1], €2 > 0,3 >0, € € (0, €1 N€2), and let { Sk} ey, be an (€1, €2, €3)-ATL

Set Dy = Sk — Sk_1 for k € Z. Then there exists a family of linear operators { Dy} .y, such that for all
feGEB,y) with0<p, y <e,

f= i DiDi(f), (3.94)
k=-c0

where the series converges in both the norm of GE(B,y) and the norm of LP(X) for p € (1,00).
Moreover, the kernels of the operators Dy, satisfy the conditions (i) and (iii) of Definition 2.2 with
and e, replaced by € € (e, €1 A €2), and [, Di(x, y)dp(y) = [ Dy (x, y)dpu(x) = 0.

To establish some Calderén reproducing formulae in spaces of distributions, we first
need to understand the action of the operators Dy on spaces of distributions.

To this end, for all x,y € X, let ¢(x,y) satisfy the conditions (i) through (iii) with
k = 0 of Definition 2.2, and _fx(p(x, y)du(y) =0= fx(p(x, y)du(x). Let € be as in Theorem 3.10,



78 Abstract and Applied Analysis

0<p, y<eand f € GS(B,y). We then define

W(F)(x) = Lf"(’" ) (3.95)

Let u € (GE(B, 7)) - In analogy with the theory of distributions on R", there exist two ways to
define ¥(u) € (C;S(ﬁ, 7))". One way is to define ¥(u) € (Gg(ﬁ, 7))’ by duality, that is, for all
f €G5(B,y), we put

(W), ) = (1)), (3.96)

where W' denotes the integral operator with the kernel ¢'(x,y) = ¢(y,x) for all x,y € X.
Alternatively, we define pointwise

() (x) = (u,¢(x,")). (3.97)

We now show that both definitions actually coincide.

Lemma 3.12. Let € be as in Theorem 3.10 and let 0 < , y < €. Let u € (Gg(ﬁ, ) and let ¥ (u) and
1I‘(u) be defined, respectively, as in (3.96) and (3.97). Then ¥(u) = 1i'(u) in (Gg B7)-

Proof. To establish this lemma, it suffices to show that for all f € G(e, €),
ff'(”) (0 f () dp(x) = (1w, ¥ (). (3.98)
To this end, for L € N large enough, we define

()@ - | | PO Fuy) (3.99)

B(x1,

Let B, y be as in the lemma. Using Theorem 2.18 and some routine computations, we have
TL(f) € Gle, €) and limp o [[¥'(f) = TL(f)llgp,) = 0. Thus, (1, ¥'(f)) = limp o1, TL(f)).

Now for fixed L € N large enough, and for any | € N, let N; = {i € I : Qi] N
B(x1,L) # @}, where {Qi] }]eN,iE[j are dyadic cubes of X as in Lemma 2.19. If Ql.] NB(x1, L)+ o
and L is large enough, then B(x;,L) C B(zi] ,3L) and Qi] C B(x1,2L), where zi] is the center of
Qi] as in Lemma 2.19. These facts imply that §N; < (L2/)". By Lemma 2.19, we write

= ,X)— /s d 7, d
Tr(f)(x) iEEN]I IQ!OB(M) [o(y, x) =9 (yqr, x)]f () #(y)+i€§N][<P(yQi x)fQi,nB(th)f(y) #(y)

=T}, (f)(x) + T7 () (%),
(3.100)
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where Yg is any point in Ql] N B(xy,L). For fixed L € N large enough, using Theorem 2.18

and some routine computations again, we have TE, 7 (f) € G(e,€) and
. 1 _
]15130||TLJ(f)||G(ﬂ,Y) =0. (3.101)

Thus,
(u,¥() = lim_lim (, (/)

= lim lim ) if(u)(yQ{)fQ,nB( L)f(y)dﬂ(y)

L—owo ]—ow

ieN;
[ o) wdn)+ im im 3 [ [0 (r) - T W] @),
X ©ieN; 7 Q/nB(x1,L) i
(3.102)
It is not so difficult to verify that
2 [oCvo) = oG] Xglapen () € Glese),
ieN;
(3.103)
Z [‘P(’ le]) - (P(r y)]XQ{mB(xl,L) (y) < c27/e
N G(By)

uniformly in y € X. From this, it follows that |‘f‘(u) (ng) - 1i’(u) (y)| £ C,277% uniformly in
y € X, which along with Lebesgue’s dominated convergence theorem shows that

lim

lim 3 [0 () (yo) - Ba0) ()] F (9)pe(y) = O, (3.104)
T % jeN; 7 Q/nB(xi,L) ’

Thus, (3.98) is true and this completes the proof of Lemma 3.12. O

Theorems 3.10 and 3.11 in combination with a duality argument and Lemma 3.12 show
that continuous Calderén reproducing formulae also hold in spaces of distributions.

Theorem 3.13. Let all the notation be as in Theorems 3.10 and 3.11. Then for all f € (C?g (B,y)) with
0<pB, v<e, (3.68) and (3.94) hold in (ég(ﬁ, 7).

Finally, let us end this subsection by establishing a Littlewood-Paley theorem associated
to ATIs via Theorem 3.10, which is a generalization of [44, Proposition 2.5.1]. However, the
method used here is different from that in [44].

To this end, we need the following Fefferman-Stein vector-valued maximal function
inequality in [77]; see also [44, Equation (2.11)] and [75, Chapter II, Section 1].
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Lemma 3.14. Let 1 < p < oo, 1 < g < oo, and let M be the Hardy-Littlewood maximal operator on
X. Let { fx} ey C LP(X) be a sequence of measurable functions on X. Then

w 1/q
\ [ Znr]

where C is independent of { fi} ;-

<C
Lr(X)

/ (3.105)
(%)

o 1/q
{ D |M<fk)|"}
k=—c0

Proposition 3.15. Let €1 € (0,1], €2 > 0, €3 > 0, and let {Si} .y, be an (e1, €2, €3)-ATL Let Dy =
Sk = Sk-1for k € Zoand let g(f) for f € LP(X) with p € (1,0) be as in (3.63). Then there exists a
constant C,, > 0 such that for all f € LP(X),

Co Al N8Ny < Coll fllieay- (3.106)

Proof. By Lemma 3.9, we only need to verify the first inequality. To this end, for any f €
LP(X), Theorem 3.10 shows that there exist operators { Dy} as in Theorem 3.10 such that

f=> DDi(f) (3.107)
k=—00
in LP(X).For 1 <p < oo, let1/p +1/p’ = 1. We first claim that for any h € L' (X),

S Bl - (3.108)
LY (%)

. B ) 1/2
{ S 1ptor ]
k=-0

Let € € (0,1 A €). In fact, by (3.2) of Lemma 3.2 and Remark 3.3, we have that for any
€ € (0,e1 Ne2),

1 Zf(k/\l)e

BBy, )| < 2 |
| kDilx y)l ~ Vo-teny (x) + Vo-tey () + V(x, 1) (2—(k/\l) +d(x, y))e

(3.109)

From this and Lemma 2.1(iv), it follows that for x € X,

1 2—(k/\l)s
x Vot (x) + Vo () + V(x, ) (2*(70\1) +d(x,y

< 27 M () (x),

|DLDy(h)(x)] < 2-|’<-”€’f 5% |h(y)|du(y)

(3.110)
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which together with (3.107), Holder’s inequality, Lemma 3.14, and Lemma 3.9 yields that

0 172 0 0 2\ 172
{ S |f)}<(h)|2} < { > [ZZ"‘”‘”'M(Dz(h))] }
k=—c0 ¥ (%) k=-c0 LI=—o0 LV (X)
» 5 1/2 (3.111)
< |{ & o)
l=—c0 L¥ (X)
f, ”h”Lp’(xy

Thus, (3.108) holds.
Using (3.108) and (3.107) together with a duality argument and Holder’s inequality
gives

(0000

||f||Lp(x) = sup

Wil <1 | \ K=o
1/2
. IR (3.112)
< s Olo|{ 151008 ]
Vil < frl v
SNEA My
which completes the proof of Proposition 3.15. O

Remark 3.16. From the proof of Proposition 3.15, it is easy to see that Lemma 3.9 is still true

if Dy there is replaced by 15;< for k € Z, which has regularity only in the second variable; see
(3.108).

3.2. Inhomogeneous continuous Calderon reproducing formulae

In this subsection, we have no restriction on diam(X), which means diam(X) < oo or
diam(X) = oo. We first introduce the following inhomogeneous approximation of the identity

on X.

Definition 3.17. Let €1 € (0,1], 2 > 0, and €3 > 0. A sequence {Si}z, of linear operators is
said to be an inhomogeneous approximation of the identity of order (€1, €2, €3) (for short, (€1, €2, €3)-
IATI) if Sy for k € 7Z, satisfies Definition 2.2.

A sequence {Sg},cz, of linear operators is said to be an inhomogeneous approximation of
the identity of order e1 with bounded support (for short, €;-IATI with bounded support) if Sk for
k € Z. satisfies Definition 2.3.

The following proposition is a simple corollary of Proposition 2.7(iv) and (v).

Proposition 3.18. Let ¢; € (0,1], &2 > 0, €3 > 0, let {Sk} keZ. be an (e1, €2, €3)-1ATI, and let S;{
be the adjoint operator of Sy for any k € Z,. Let Dy = Sk — Sk-1 for k € Nand Dy = Sy. Then

I=320DxinLP(X) for p € [1,00). The same is true for {Si}kE%.
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To establish the continuous inhomogeneous Calderén reproducing formulae, we need
a technical lemma, which is a variant of Lemma 3.2.

Lemma 3.19. Let €1 € (0,1], e2 > 0, and €3 > 0, {Sk}yez,, and let {Ex} ez, be two (€1, €2, €3)-
IATIs. Let P = Sk — Sk-1 and Qx = Ex — Ex_q for k € N, Py = So, and Qo = Eg. Then for any
€, € (0,€1 A e2), there exist constants C > 0, 6 > 0, and 0 > 0 as in Lemma 3.2 such that the
estimates (3.2) to (3.5) are still true for these { P} ez, and {Qx ke, -

Proof. The proof of Lemma 3.19 is essentially as in that of Lemma 3.2. The only different
situations are the cases when I = 0 or k = 0. Let us prove (3.2) for I = 0 = k to show the
difference. In this case, by the size condition of Py and Qy, we have

|PsQo(x, )| = \ [ S0z, )Q0(z V(2
< J‘ 1 1
™ aez<@/dey V1(x) + Vi(z) + V(x, 2) (1+d(x,z))
1 1
Vi@ + Vi) +V(zy) (1+d(z,y))

(3.113)

& dp(z)

. I .
d(x,z)>(1/2)d(x,y)

Since d(x,z) > (1/2)d(x,y) implies that d(y, z) < d(x,y)/2, by symmetry, the estimates of
the first and the second terms are similar and we only estimate the first term. To this end,
since d(x,z) < d(x,y)/2 < (1 +d(x,y))/2, by Lemma 2.1(iii), we have 1/(1 + d(z,y)) <
1/(1 +d(x,y)) and 1/(Vi(z) + V(z,y)) < 1/(Vi(x) + V(x,vy)), which further implies that
1/(Vi(z) + Vi(y) + V(z,¥)) S 1/(Vi(x) + Vi(y) + V(x,y)). These estimates together with
Lemma 2.1(ii) yield that

1 1
P S oy T TV ) (1+d(x,y)*

(3.114)

which is the desired estimate and hence completes the proof of Lemma 3.19. O

Now, let e € (0,1], &2 > 0, e3 > 0, and {Sk}icz, be an (e, €2, €3)-IATI as in
Definition 3.17. Throughout this subsection, we always assume that Dy = Sy — Sk-1 for k € N,
Dy = Spand Dy = 0if k € {-1,-2,...}. Similar to (3.44), by Proposition 3.18, for any N € N,
we write

0 0 0 0
I= (Z Dk> (Z D]-> = > > DiuDi+ >, DIDg =Ry + Ty (3.115)
k=0 j=0

II>N k=0 k=0

in LP(X) with p € (1, 0), where DY = 3.y D
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Repeating the proof of Lemma 3.4, we obtain the following.

Lemma 3.20. Let N € N and let Ry be as in (3.115). Then there exist constants C > 0 and 6 > 0,
independent of N, such that for all f € L*(X),

”RN(f)”LZ(jQ < CZ_N&”f”LZ(x)o (3.116)

We now establish some estimates for the kernel, Ry (x, ), of the operator Ry. To this
end, we first give a technical lemma, which is a simple corollary of Lemma 3.5.

Lemma 3.21. Forany o >s>0and x,y € X with x#y,

i 1 2ks < 1 1
S Var(0) +V(x,y) (2% +d(x,y)’ ~ Vxy) dx,y)T™

(3.117)

Lemma 3.22. Let N € N, let Ry be as in (3.115), and let Rn(x,y) be its kernel. Then for any
€ € (0,€1 A €), there exists a constant 6 > 0, independent of N, such that Ry satisfies all the

conditions of Corollary 2.22 and Cg,, < 27N. Moreover, Ry (1) =0.

Replacing Lemmas 3.2 and 3.5, respectively, by Lemmas 3.19 and 3.21, and repeating
the proof of Lemma 3.6, we obtain Lemma 3.22. In combination with Lemma 3.20, this leads
to the following variant of Proposition 3.7. We omit the details.

Proposition 3.23. Let €1 € (0,1], &2 > 0, e3 > 0, and let {Sk}icz, be an (e, €2, €3)-IATL For
N € N, let Ry and Tn be as in (3.115). Then there exist constants Cg > 0 and & > 0, which are
independent of N, such that Ry is bounded on any space of test functions, G(x1,, B,y) with x; € X,
r>0,and 0 < B,y < (€1 A €2), and its operator norm is bounded by Cs2~N®. Moreover, if N is
so large that (3.57) holds, then T](]l exists and is bounded on (j(xl,r, B.y), ifx1 € X, r > 0and
0<pB,v<(e1Nhe).

Via Lemmas 3.20 and 3.22, similar to the proof of Proposition 3.8, we can obtain the
following version of Proposition 3.8.

Proposition 3.24. Let p € (1,0), €1 € (0,1], &2 > 0, €3 > 0, and let {Sk}icz, be an (€1, €2, €3)-
IATL For N € N, let Ry and Ty be as in (3.115). Then there exist constants Co9 > 0 and 6 > 0,
which are independent of N, such that Ry is bounded on LP (X) with the operator norm bounded by
Co27N®. Moreover, if N is so large that (3.61) holds, then T](,l exists and is bounded on LP (X).

Lete; € (0,1], €2 >0, €3 > 0, and let { Sy}, be an (ey, €2, €3)-IATL. Set Dy = S — Sk1
for k € Nand Dy = Sp. For any f € L(X) with p € (1,00) and x € X, the inhomogeneous
Littlewood-Paley g-function g(f) is defined by

- 1/2
8(f)(x) = {ZIDk(f)(x)lz} : (3.118)
k=0

Applying the Cotlar-Stein lemma and using a procedure similar to the proof of Lemma 3.9,
we obtain the boundedness on LP(X) with p € (1, o) for the Littlewood-Paley g-function as
below.
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Lemma 3.25. Let €1 € (0,1], &2 > 0, e3 > 0, and let {Sk} ez, be an (e1, €2, €3)-IATL Let Dy =
Sk = Sk-1 for k € N, Dy = So, and g(f) for f € LP(X) with p € (1,00) being as in (3.118). Then
there exists a constant C,, > 0 such that for all f € LP(X),

”g(f)”Lr'(x) < Cp”f”Lp(x)- (3.119)

We can now establish an inhomogeneous continuous Calderén reproducing formula.

Theorem 3.26. Let €1 € (0,1], €2 >0, €3 > 0, € € (0,1 A €2), and let {Sy}ycy, be an (e1, €2, €3)-
IATL Set Dy = Sk — Sk-1 for k € Z and Dy = Sy. Then there exist N € N and a family of linear
operators { Dy }ycz, such that for all f € G5(B,y) with0 < f, y <e,

f= i DD (f), (3.120)
k=0

where the series converges both in the norm of Gi(B,y) and the norm of LP(X) for p € (1,00).
Moreover, the kernels of the operators Dy satisfy the conditions (i) and (ii) of Definition 2.2 with €,
and e, replaced by €' € (€, €1 N €2), and J’xﬁk(x,y)dﬂ(y) = ’[Xﬁk(x, y)du(x) =1when0< k < N;
=0 when k > N.

Proof. We prove this theorem by an argument similar to that of Theorem 3.10. Fix a large
integer N € N such that (3.57) and (3.61) hold and, therefore, Propositions 3.23 and 3.24
hold. Let DY be as in (3.115). Then,

k+N
ZD]-, for 0< k< N;
=0

DY =2 Duj=1 pn (3.121)
<N Z D;, for k> N.
j=k-N
Thus, for k > N, D,](\](yy) € é(y, 27 ¢, €2), and we then define
Di(x,y) = Ty (DY () (%) (3.122)

By Proposition 3.23, we know that for k > N and any 0 < B,y < (e1 A €2), Dip(,y) €
G(y,27%, B, y). Moreover, (Ty})"(1) = 37 (R%,) (1) = 1, which implies that

f Dy (x, y)du(x) :f DY (x, y)du(x) = 0. (3.123)
X X

Obviously, we have

[ Butrdnn =1{ [ DY edutn b 0. (3.124)
X X
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Thus, ﬁk for k > N satisfies all the conditions of Theorem 3.26. If k € {0,..., N}, then
L{D? (x, y)dp(x) =1 = LD}S (x, Y dy). (3.125)

Thus, in this case, we cannot directly apply Proposition 3.23. Notice that

0

T = ZO(RN)". (3.126)

Using Lemma 3.19, we easily show that for e; € (0,e1 A e2), there exist positive constants
C and 6 depending on €] such that Ry(x,y) satisfies (2.174) and (2.185) with ry = 1 and
Cr < C2-Né, Thus, by Corollary 2.31, we know that Rx(So(, y)) € G(y, 1, €], €2) and

IRN (SoCo ) gy e, < C27N° (3.127)

Notice that R};(1) = 0. Applying Proposition 3.23 yields that there exist two positive
constants Cg and 6, which are independent of N, such that for all j € Nand all y € X,

Rl (So(y)) € G(y,1,6,y) and
IR (SoCo ) gy < (€52, (3.128)

where f,y € (0,e1 A €2). Thus, if we choose N so large that (3.57) holds, then by (3.126),
we know that Dy for k € {0,1,..., N} satisfies the conditions (i) and (ii) of Definition 2.2
with e; and e, replaced by € € (0,e1 A €2). Moreover, from (3.126) together with Ry (1) =
0 = Ry(1), [4So(x,y)du(y) = 1 = [,4So(x,y)du(x) and for k € N, [, Di(x,y)du(y)
0 = [4Dk(x,y)du(x), it follows that for k € {0,1,...,N}, fxﬁk(x,y)dy(y) =1
[ £ Dic(x, y)dp(x).

Now it remains to prove that the series in (3.120) converges in both the norm of G (5, y)
with 0 < 3, y < € and the norm of LP(X) with p € (1, ).

To verify (3.120) converges in Gg(B,y) with f,y € (0,¢), similarly to (3.69), for f €
Go(B,y') with p' € (B,€) and y' € (y,€),and L € Nwith L > N +1, we have

L X 0
Z DDy (f) = f - jlir&(RN)](f) - T](}( Z D,QVD,(> (f). (3.129)
k=0

k=L+1

Thus,

T <k§] DY Dk> (f) (3.130)

=L+1

L
Z Dy Dy H-f
k=0

< ]11_{1;” (RN)j(f) ”G(ﬂd’) +

G(By) GBy)
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Applying Corollary 2.31 again, we obtain that there exists 6 > 0 such that for all x € X,

1 1

R < 27N , 3.131
I N(f)(x)| ~ Vl(xl) +V(X1,X) (1+d(x1,x))yl ( )
and for any f € (0, '), and x, x' € X with d(x, x') < (1 +d(x1,x))/2,
~ d(x,x") P 1 1
_ | < »—-N& )
[Rn (1)) - Ru(7) ()] £ 278 (= (xl,x)> Ve G ae )
(3.132)

Notice that R}, (1) = 0, which together with (3.131) and (3.132) shows that Rx(f) € é(ﬁ,y).
From this and Proposition 3.23, it follows that

Jim || (Ry Y Pl < jllri(cngN&)]”f lgesy) =O- (3.133)

To prove that the second term on the right-hand side of (3.130) tends to O as L — oo,
by (DIJCV ) (1) = 0 when L > N (see (3.121)), and Proposition 3.24, we only need to verify that
for a certain o > 0,

i Dy D (f)

k=L+1

S 277 fllgp - (3.134)
G(Byy)

In fact, (3.134) can be deduced from the following two estimates that for all x € X,

e '/ J ]. 1
DYDi(/))| S 27PN fllg g -, (3.135)
k=ZL+1 k f q(ﬁ’”Vl(xl) +V(x1,x) (1+d(x1,x))"
and for x, x' € L with d(x,x") < (1 +d(x1,x))/2,
>, DYDi(f)(x) - >, DYDi(f)(x)
k=L+1 k=L+1
< 20O | dx) \” 1 1
~ G\ 1+ d(x1,x) Vi(x1) + V(x1,x) (1+ d(xl,x))yl ’
(3.136)

where 0 € (0,1).
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Let E, = D,]:’ Dy. It is easy to check that Ex for k € N satisfies all estimates of
Definition 2.2 with e replaced by € and a coefficient depending on N. Moreover, for k € N,
Ex(1) = 0= E;(1). Thus, by Lemma 2.1(ii),

|DY D (f) ()]

<

( (LG |1 () - £ ) duty)
d(x,y)<(1+d(x1,x))/2

g B [F0)] + F@ ] dtw)
d(x,y)>(1+d(x1,x))/2

dix,y) \’
< flley f Ex(x, ><—)
ey d(x,y>s<1+d(x1,x>>/zl vl 1+d(x1,x)

y 1 1 du(y)
Vi(x1) +V(x1,x) (1+d (o, x))" Y

1 1
Vi(x1) + V(xLy) (1+d(x1,y))"

g e
d(x,y)>(1+d(x1,x)) /2

1 1
" Vi(x) +V(x1,%) (1+ d(xl,x))yl] d‘u(y)}

) 1 1
< , 427k -+ Z ¢,
”f”c(ﬂ,}’){ Vl(xl) +V(x1’x) (l+d(x1,x))}’ }
(3.137)

and by Lemma 2.1(i) and (ii), we further have

1 2 ke 1 1
zs| : Ap(y)
d(xy)>(rd(n0)/2 Vo () V(0 Y) (278 +d(x, y))* Vi(x) +V (21, y) (1+d (2, )"
27k 1 1
< min T duy),
{ Vi(x1) J dey>(eda,) 2 V(0 Y) d(x, y)T H
)
V(1) (14 d(oe, %)) Vi(x) +V(xLy) (1+d(x,y))"

1 1

< pky' -,
Vi(x1) + V(x1,x) (1+d(xy,x))"

~

(3.138)

From this, it is easy to deduce that (3.135) holds.
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On the other hand, similarly to the proof of (3.12), we can verify that for x, x' € X with
d(x,x') < (1+d(x,x1))/4,
|DND(f)(x) - DNDi(f) ()|

d(x,x") P 1 1 (3.139)
<
~ W laigy, (1 +d(x1,x) ) Vi(a1) + V(x1,%) (1+d(x,x))"

and by (3.137) together with Lemma 2.1 (iii),

4 ! 1 1
D' Di(f)(x) = DY D (H) ()] £ 270 fll g g, ;-
1D k | YTV (x1) + V (a1, ) (1+d(x1,x))"
(3.140)
These estimates together with the geometric means yield (3.136). Thus,
L ~
Jim > DiDi(f) - f =0. (3.141)
k=0 Gy)

Then repeating the proof of Theorem 3.10 further shows that (3.120) holds in the norm
of G5(B,y). Its convergence in LP(X) for p € (1,00) can be proved in a way similar
to Theorem 3.10 if instead of Lemma 3.9 by Lemma 3.25, which completes the proof of
Theorem 3.26. O

Remark 3.27. From the proof of Theorem 3.26, it is easy to see that N in Theorem 3.26 can be
chosen so that both (3.57) and (3.61) are satisfied. In order to defray our notation and simplify
our presentation, we will assume in the sequel that N = 0.

A similar argument as for the proof of Theorem 3.26 leads to the following variant of
the inhomogeneous continuous Calderon reproducing formula (we omit the details).

Theorem 3.28. Let €1 € (0,1], €2 > 0, €3 > 0, € € (0, €1 A €2), and let {Sk}ycy, be an (e1, €2, €3)-
IATL Set Dy = Sk — Sk-1 for k € Z and Dy = Sy. Then there exists a family of linear operators
{Dx } ez, such that forall f € G5(B,y) withO < p, y <e,

f= i DiDi(f), (3.142)
k=0

where the series converges in both the norm of G§(p,y) and the norm of LP(X) for p € (1,0).
Moreover, the kernels of the operators Dy satisfy the conditions (i) and (iii) of Definition 2.2 with
and €, replaced by € € (¢, €1 A €3), and [ , Di(x,y)du(y) = [ yDi(x, y)du(x) = 1 when k = 0; = 0
when k € N.

Theorems 3.26 and 3.28 in combination with a duality argument and Lemma 3.12 show
that the inhomogeneous Calderén reproducing formulae also hold in spaces of distributions.
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Theorem 3.29. Let all the notation be as in Theorems 3.26 and 3.28. Then for all f € (G5(B,y)) with
0<p, y<e (3.120) and (3.142) hold in (G5(B,y))".

Finally, we have the following analogue of Proposition 3.15 for the inhomogeneous
Littlewood-Paley g-function, based on Theorem 3.26 (we omit the proof).

Proposition 3.30. Let ¢; € (0,1], 2 > 0, €3 > 0, and let {Sx}cz, be an (€1, €, €3)-IATL Set
Dy = Sk — Sk-1 for k € Z, Dy = Sg and g(f) for f € LP(X) with p € (1, c0) be as in (3.118). Then
there exists a constant C, > 0 such that for all f € LP(X),

Collfllrry < N8y < Coll fllir - (3.143)

Remark 3.31. Similarly as in Remark 3.16, it is easy to see that Lemma 3.25 is still true if Dy
therein is replaced by the kernel Dj for k € Z,, which has regularity only in the second
variable.

4. Discrete Calderon reproducing formulae

In this section, we will establish some discrete Calderén reproducing formulae which play
a key role in the theory of function spaces, especially in obtaining a frame characterization.
To obtain these discrete Calderén reproducing formulae, we mainly use Corollaries 2.22 and
2.31 again.

In the following, for k € Z and 7 € I, we denote by Q¥”, v=1,2,...,N(k, 1), the set

of all cubes Qk+j C QF, where QF is the dyadic cube as in Lemma 2.19 and j is a positive large

T

integer such that

2, < % (4.1)

Denote by z&” the “center” of Q¥ as in Lemma 2.19 and by y¥” a point in Q.

4.1. Homogeneous discrete Calderon reproducing formulae

In this subsection, we always assume that diam(X) = oo, €1 € (0,1], &2 > 0, €3 > 0, and
{Sk}kez is an (€1, €2, €3)-ATL. Set Dy = Sk — Sg-1 for k € Z.

Let all the notation be as in (3.44). We now introduce the following discrete Riemann
sum operator on X,

o) N(k,T)

SH@=3 3 3 [ DY@ ndumDUHE). (42)

k=—co €l v=1 Qr

We first verify that S is well defined and bounded on L?(X) via the Littlewood-Paley
theorem for the homogeneous g-function as in (3.63), Proposition 3.15. To do so, let us first
establish the following estimate by using Proposition 3.15.
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Lemma 4.1. There exists a constant C > 0 such that for all y~” € Q%" and all f € L2(X),
[o'e) N(k,’T)

2 X 2 m@)DD ) < Cllf e (43)

k=—oo T€l; V=1

Proof. By Theorem 3.10, there exists a family of linear operators { Dy };-_., as in Theorem 3.10
such that for all f € L?(X), f = 37__DiDi(f). By Lemma 3.2 together with Remark 3.3, we
have that for any €] € (0,e1 A e2) and any €] € (0,€)),allx,z € XL and all k,l € Z,

1 2—(k/\l)e;

| DDy (2, x)| < 27kl (4.4)

Vo-tkry (x) + Vo-aeny (2) + V (2, x) (2—(k/\l) +d(z, x))ell ’

Notice that for all x € X and any z, y € QIT(’”, by Lemma 2.19(iv), we have that d(y, z) <
Ce2727% < Ce277270M) < 277127 1 d(x,vy)), where j € N satisfies (4.1). Thus, for all
xeX,anyy,z € Ql;’v and all k, I € Z, Lemma 2.1(iii) shows that

| DDy (2, x) lxgr (2)
1 o-(kADe, » (4.5)
Voo () + Voo () + VY, %) (76 | gy 1)) Xah»y):

k=1l
S 27t

From this and Lemma 2.1(iv), it follows that for k € Z,

DA < 35 [ 1B 9] D) )
I=—00
(4.6)

S D 2 M(DI() () xore (),

I=—o0

where M is the Hardy-Littlewood maximal function on X. By (4.6), the construction of QY
(see Lemma 2.19), Lemmas 3.14 and 3.9, we obtain

e} N (k) o) oS} 2
>3 X @DHEE S X L{[Z2_"‘_”67M(Dz(f))(y)] du(y)
k=—co 7€l v=1 k=—c0 I=—c0
® (4.7)
< 2 M@ iz
<1y
which proves Lemma 4.1. O

The next lemma can be proved in a way similar as in the proof of Theorem (1.14) in [78,
page 12]. The main idea is to combine Theorem 3.10, Lemma 2.19, and Hoélder’s inequality
with a duality argument. We omit the details here; see also [36].
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Lemma 4.2. Suppose that a sequence (@ : keZrel,v=1,..,N(kT)) of numbers satisfies
S el SNED G2 < oo Then the function defined by

[e's) N(k,T)

fo= 3 33 ) e oy 48)

k=—co TEl} v=1

is in L2(X). Moreover,

N (k,T)

”Nwmfcﬁlz 3 |ak) (4.9)

k=-—0 1€l v=1

Lemmas 4.1 and 4.2 yield the boundedness of the discrete Riemann sum operator S on

L2(X).

Proposition 4.3. Let the notation be the same as above with j satisfying (4.1). Then the discrete
Riemann sum operator S in (4.2) is bounded on L?>(X). That is, there is a constant C > 0, only
depending on N, such that for all f € L*(X),

ISz < Cllfllez)- (4.10)

Next we prove that the discrete Riemann sum operator S is invertible and S™' maps
(j(xl,r, B,y) into itself. To do this, we define R = I — S and first establish some estimates on
the kernel, R(x, y), of the operator R. To this end, by (3.44), we write

R(f)(x) = (I =S)(f)(x)

0 N(k‘l‘) 0
Y f DY () [P W) -Del )G du()+ S S D Di(H) ()

k=—oo TEIl v=1 [I|>N k=-o0
= D, Ge(f)(x) + Rn(f) (%)
k=—0

= G(f) (x) + Ry (f) ().
(4.11)

Let Gk (x,y) be the kernel of G for k € Z. We now verify that Gi(x,y), and hence G(x,y),
satisfies all the desired estimates. Clearly,

o N(k )

G- 3 f DY (x,2)[De(z,y) - Du(y”, ) dp(2)
k=—co T€l} v=1

(4.12)
= Z Gi(x,y).
k=-—c0

We need the following two technical lemmas.
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Lemma 4.4. Let 0 < A, u <1, e1 € (0,1], per < vi, Aex < vy, and k € Z. Then there exists a
constant C > 0 such that forall x,y € X and all k € Z,

J‘ d(x, x')* 1 27k

X (z—k 4 d(x, z))lel Vok (x) + Vox (Z) + V(x, Z) (Z_k + d(x, Z))Vl
d(y,y)"™ 1 2k

(Z_k + d(z,y))”e1 Vo (2) + Vo (y) + V(z, y) (2"‘ +d(z,v))
d(x, x')* d(y,y)" 1

@* +d(x,y)) @ @ +dxy) Ve )+ V() +Vxy)

{ 2*k(V2*J\€1) 2*k(‘|)1 *[161) }
X .
vm-ler Vi—Her

+
@  +d(x,y)) @ +d(x,y))

s du(z)
(4.13)
<C

Proof. Write

J‘ d(x, x')* 1 27km
X (2—k + d(x, Z))lel szk (x) + szk (Z) + V(x, Z) (Z_k + d(x, Z))Vl
d(y’ yI)H51 1 27’(1’2
(2—k + d(Z, y))#ﬂ V2,k (Z) + szk (y) + V(Z, y) (2—k + d(Z, y))
B J‘ d(x, x') 1
- d(x,z)>d(x,y)/2 (z’k +d(x, Z)))Lel Vo (x) + Vo (2) + V(x, 2) (4.14)
2k d(y,y)" 2k
x Vi — €1 - V2
QF+dx,2)" @ +dzy)" @F+dzy)
1
y du(z) + -
Vo (2) + Vor (y) + V(z,y) #) ,[d(x,z)<d(x,y)/2

5 Ap(z)

Ezl +Zz.

For Z;, the fact d(x,z) > d(x,y)/2 implies that V(x,y) < |B(x,2d(x,z))| < V(x,z), which
together with Lemma 2.1(ii) shows that

Zi S d(x, )" 1 27k
@F+d(xy) " VOV @ v dxy)”

y d(y y,)‘uaJ‘ 1 2-kv
, Ve W) +VEY) (27 4 d(z, )

d(x,x)" d(y, y)" 1 2-k(vi-pier)
~ (2—k N d(x, y)).}uﬁ (z—k + d(x, y))‘uel szk (x) + V(x, y) (Z_k + d(x, y))

e K (2) (4.15)

vi—per "
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For Z,, the fact d(x,z) < d(x,y)/2 implies that d(z,y) > d(x,y)/2 and therefore,
V(x,y) ~V(y,x) SV(y,z) ~ V(z,y). From these facts and Lemma 2.1(ii), it follows that

d(y,y)" 2-kv:
QF+dex,y) " @F+dxy)”

Z, Sd(x, x’))"':1

x min ! f ! 27km du(2)
V(x,y) ) £ Vo (x) + V(x, 2) (27 +d(x, z))vm1 ,
(4.16)
1 1 ke d(x,y) ))
Vo V) ”(B (x' 2
d(x, x’)“1 d(y, y)" 1 5—k(v-ler)
~ (Z_k +d(x, ]/))Ae] (z—k n d(x,y))ﬂel Vok (x) + V(x, y) (2—k +d(x, y))vz—)la
Moreover, by symmetry, we also have
J‘ d(x, x’))“g'1 1 kv
(@K d(x,z)) Vo (VB H V0D 0 v d(r,2)”
d ’ Olan 1 szvz
-k (y z ) Her _k vy d/l(Z)
27" +d(zy)) Vok(z) + Vor (y) + V(z,y) @+ d(z, )
(4.17)
- d(x, xl))»E] d(y, yl)/l61 1
~ - e - [ZE A VA
@ +dx,y)' " @ +dy) V) V)
2k(v2-der) 2—k(vi—per)
x —k va—Aey * -k vi—per [°
(27" +d(x,y)) 27" +d(x,y))
Combining these estimates completes the proof of Lemma 4.4. O]

Lemma 4.5. Let Gi(x,y) for k € Z be as above. Then for any \, u € (0,1) satisfying that Lei < ey,
there exists a constant Cn > 0, independent of j, such that

(i) |Gk(x, y)| < CN2T79(1/ (Vars (%) + Vo () + V(2 1)) 275/ (27 + d(x, y))*);
(i) for y,y' € X with d(y,y') < 2% +d(x,y))/2,

d(y,y)"™ 1
2 +d(x, )" Ver (0 +Var () +V(x, y)

|G (x, v)-Gi(x,y) | <Cpn27@
(4.18)

{ 2—kes 2—k(e2-per) }
X + ;
Q7 +dx,y)® 7 +d(x,y))
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(iii) [Ge(x, ¥) — Ge(x', )| < Cn2Te (d(x, ¥')* /@7 + d(x, 1)) ) (1/ (Vara (x) + Vare (y) +
V(x,y))) (@ k(ete) /(2-’<+d(x,y))€2‘“1) for x,x € X with d(x,x) < 2%+
d(x,y))/2;

(IV) fok(xl y)d#(y) =0= fok(x/ y)d/’l(x)
Proof. Since [ ,Di(x,y)du(y) = 0 = [, DY (x,y)du(x), by the definition of Gy in (4.12), we
easily see that (iv) holds.

By the construction of dyadic cubes in Lemma 2.19, we also easily see that for any
kv
z€Q;”,

d(z, ") < Ce2- ) = C27127% < o271 (27 + d(y, 2)). (4.19)

We recall that j always satisfies (4.1). Then, the regularity of Dy and the size estimates of DY
together with Lemma 4.4 in the case A = y = 0 yield that

N(k,T)

Gele ] =12 2, ka,VDiV (x,2) [D(z,y) - De(v”, y) ] du(z)
Tel v=1 T (420)
i 1 2—k€2
< CN2 re k €7
Vo () + Vo (1) + V0, 1) (7% 4 d(x, )
which shows Gy (x, y) satisfies (i).
Write
Gi(x,y) — G (x,y")
N(k7) . .
= 2 IQHD? (x,2){[Dk(z,y) = D(y=",y)] = [Dk (2 ¥') - Di(y=", y)] }du(2).
Tel v=1 r
(4.21)

We now verify that Gi(x, y) satisfies (ii) by considering the following two cases.

Case 1 (d(y,y') < (Z_k +d(z,y))/3). In this case, from (4.19) with j satisfying (4.1), the size
estimates of DY and the second difference regularity of Dy and Lemma 4.4 with A = 0, y €
(0,1), v1 = €2, and v, = €3, it follows that

|Gr(x, ) = Gk (x, )|

a(y, )" 1 i
(Z—k +d(z, y))/“‘” Vo (2) + Vo () + V(z, y) (z—k +d(z,v))

<Cnoje d(y, y/)#el 1 { D—kes .\ D-k(e2-per) }
>CUN €1 _ €3 ~ e —jier
@ +d(x, ) VOV WAV Y (7 d(x )" (@ rd )™

< 2‘7€1f |DY (x,z)| =du(z)
x

(4.22)
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Case 2 (2% + d(z,y))/3 < d(y,y) < @ + d(x,y))/2). In this case, the estimate

(i), Lemma 2.1(iii) together with the fact that 27 < 3d(y,y’) show that for any p €
©,1),

|Gk (x,y) = Gk (x,y/) |
<|Gi(x, y)| + |Gk (2, ¥)]

—kes
< Cy2 i 1 2-ke :
Vo () + Vo () + V6, Y) (27 1 d(x, y)) ™
(4.23)
. 1 27ke: }
Vo () + Vo () + V(X Y) (27 + d(x, )"
<C 2_j€1 d(y/ yl)/l€1 1 2-k(ea—per)
=N -k FU Vo (X) + Vor () +V (X, ) (o k erpier’
(2" +d(x,y)) 2 2y Y (27 +d(x,y))
which completes the proof of (ii).
We verify (iii) by writing
Gr(x,y) = Gk (¥, y)
N(k,7) . (4.24)
=2 2 Ika [Dy (x, 2) = D' (', 2)] [Di(2, y) = D (y=", y) ] dpu(2).
Telp v=1 ’

If d(x,x') < (27% + d(x,z)) /2, the estimate (4.19) with j satisfying (4.1), the regularity of D}(V
and Dy, Lemma 4.4 with A € (0,1), u =0, and v; = v, = €, show that

|G (x, ) = Gk (¥, y) |

d(x, x') 1

—jer
< Cn2 I @ 1 oy @+ Ve @)+ V(x2)

ke 1 R
(2_k T d(x, Z))EZ Vi (2) + Vor (y) + V(z,y) (2_k +d(z, y))e2 8

d(x, ') 1 2kle-te)

< CNZ_je1 e V. V. \ er—-Aep
(2*k +d(x,y)) Z‘k(x) + Z‘k(y) + (x,y) (sz +d(x,y))

(4.25)
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If (27k +d(x,z2))/2 < d(x,x') < (27k + d(x,y))/2, the estimate (i), Lemma 2.1(iii)
together with the fact 2% < 2d(x, x') yield that

1 2—k€2
Vi (x) + Vo () + V(x, y) (z_k + d(x,y))e2

|G (x, y)-Gi (¥, y)| <Cn27° {

1 2—kez
TV () + Vo () + V(XL y) (7% + d(x, )" }

d(x, x’))”El 1 2-k(e2-Aer)

o T Vo )+ Var )TV, ) ok eter”
@ +d(x,y)) FIITREITVRY) (7 v d(x, )
(4.26)
which completes the proof of (iii), and hence the proof of Lemma 4.5. O

Lemma 4.6. Let N € N and G be as in (4.12). Then there exist a constant Cn > 0 independent of j
such that

G2y - 120x) < Cn277e, (4.27)

Proof. Using Lemma 4.5 and repeating the proof of (3.2) in Lemma 3.2 yield that for any €] €
(0,e1ANex)and all k,j € Z,

GGl 2y — 1200y S Cn2T027T9, (4.28)
4.28
”jSk”Lz(,ﬂ(_)HLZ(x) < CNZ‘felz‘\k—]'\SQ,

where Cy > 0 is a constant depending on €/, but, independent of j and k. These estimates
together with the Cotlar-Stein lemma and G = > ;2 __ Gk yields the conclusion of Lemma 4.6.
O

The following lemma is a key lemma to establish the discrete Calderén reproducing
formula.

Lemma 4.7. Let S be as in (4.2) and R = I — S. Then R is a Calderén-Zygmund singular integral
operator, R(1) = 0 = R*(1). Moreover, for any €, € (0, €1 \€2), there exist positive constants Cy, Cn,
and 6, depending on €, such that the kernel, R(x, y), of R satisfies all the conditions of Corollary 2.22
with € replaced by €| and

Cr + IRl 2(x0) - 121y < C1027N + Cn274, (4.29)

where Cg is the Calderén-Zygmund constant as in Theorem 2.18, C19 and 6 are independent of N
and j, and Cy is independent of j.
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Proof. From (4.11), it is easy to see that R(1) = 0 = R*(1). Moreover, Lemma 3.6 shows that
Rn(x,y), the kernel of Ry, satisfies all the conditions of Corollary 2.22 with e replaced by
e; and Cry + Rl -2y < C1027%N, where Cjg and 6 are independent of N and j.
This combining the formula (4.11) implies that to prove Lemma 4.7, it suffices to verify that
G(x,vy), the kernel of G, satisfies (2.49) and Theorem 2.18(i), (ii), and (iii) with e replaced by
e;and Cg < C N27/¢, where Cy is independent of N. In fact, combining Lemma 4.5(i) with
Lemma 3.5 and (4.12) yields that for all x,y € X with x # vy,

IGx, )| < D, |Grx, )]
k=—c0

& 1 2-ke2
< Cn279 (4.30)
Y kzz_:oo Var(x) + V6, ) (27 + d(x, y))®
1
< “Je
SOy

which shows G(x, y) satisfies Theorem 2.18(i).
Lemma 4.5(ii) and (iii) and Lemma 3.5 together with (4.12), respectively, show that
forany p € (0,1),allx,y,y € L withx # yand d(y,y') < d(x,y)/2,

0

|G(x,y) -G(x,y)| < D, |Gk(x, y) - Gi(x, v)|

k=-o0

@AW" & 1
< Cy27e
=N A, g k:Z_szfk(x)+V(x,y)

{ 2-kes . 9-k(e2—per) }
X €3 _ €r—jler
(Z_k +d(x,y)) (2 ke d(x,y)) :

d(y,y)" 1
d(x, )k Vix,y)’

(4.31)

< Cpn27e

and forany A € (0,1), all x, x", y € X with x # yand d(x,x") < d(x,y)/2,

|G(x,y) - G(x,y)| < i |G (x,y) = Gk (x, y)|
k=-—c0

d (x, x'))‘sl i 1 Z_k(ez_)tel)
d(x,y)* (L Var () +V(xy

S C'Nz_]s1 er—Aey (432)

) @ +d(x,y)
d(x, x’))te1 1

<Cn27® ,
My Vay

which proves that G(x, i) satisfies Theorem 2.18(ii) and (2.49).
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By (2.49) and Theorem 2.18(ii), it is easy to see that it suffices to establish
Theorem 2.18(iii) only for d(x,x") < d(x,y)/6 and d(y,y’) < d(x,y)/6. To this end, we write

[G(x,y) -G(x, y)] - [G(x,¥) - G(x, y)]

o0 N(k,T)

PN I CEREACR)

k=—co 7€l v=1

x {[Dk(z,y) - Dk(y5",y)] - [Di(z. ) - De(v5”, ¥)] }dp(2).

(4.33)
Ifd(x,x') > 2% +d(x,z))/2and d(y,y') > 27" + d(y,z)) /3, then
1-k
A, 0) d(y,y) > ETAED T AEY) Ay, (434)

which contradicts the assumptions that d(x,x’) < d(x,y)/6 and d(y,y') < d(x,y)/6. Thus,
we still have the following three cases:

(i) d(x,x') < 2 +d(x,2))/2and d(y,y') < 2F +d(y,2))/3;
(i) d(x,x') < 27F +d(x,2))/2and d(y,y') > 27 +d(y,2))/3;
(iii) d(x,x") > (Z_k +d(x,z))/2and d(y,y’) < (2_k +d(y,z))/3.

In the case (i), by (4.19) with j satisfying (4.1), the second difference regularity of DY and
Dy, Lemma 4.4 with A, y € (0,1), v1 = €3, and v, = €; + €3, and Lemma 3.5, we obtain

[[G(x,y) - G(x\y)] - [G(xy) -G, )]

> I d(x,x')" 1 27ke: d(y.y)"™
X (2_k+d(x, Z))Ml Vok (%) +Vou (2)+V (x, 2) (2_k+d(x, Z))ez (2_k+d(2,y))#€]

<Cn277e

k=-00
1 2-k(er+es)
X
Vo (2) + Vo) + V(1) (27 1 4(z, y))

€1+€3 d/l(Z)

d(x, ) d(y,y) 1
d(x,y))‘e1 d(x,y) V(x,y)

<Cpn277e

(4.35)

In the case (ii), we also have (27 ¥ +d(z, y'))/2< 7% +d(z, y¥))/2+d(y,y')/2 <2d(y,y'). From
this, (4.19) with j satisfying (4.1), the regularity of DY and Dy, Lemma 4.4 with \, 1 € (0,1)
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and v, = v, = €3, Lemmas 2.1(iii) and 3.5, it follows that

[[Gxy) - G(x, )] - [G(xy) -G, y)]|

& J‘ d(x, x')* 1 y-kes
£ (2* 1 d(x,z)) @ VO F Ve B V002 (78 4 d(x, 2))

< CN27j€1

k=-o0

. [ d(y, y)"™ 1 p-kex
(Z—k + d(z/ y)).“el Vz—k (Z) + Vz—k (y) + V(Z, y) (2—k + d(Z, y))ez
d(]// y,)ml 1 2-kea
d
' (2_1(*'51(2/?))#61 Vo (2)+ Vo (y) +V (2, ') (2_k+d(z, y/))ez p#z)

d(x,x)' " d(y,y)* 1
d(x,y)* dix,y) V(ixy)

< Cn277e

(4.36)

For the last case (iii), we have (Z_k +d(x',z))/2 < (Z_k +d(x,z))/2+d(x,x")/2 <3d(x,x')/2.
This estimate, (4.19) with j satisfying (4.1), the size condition of DY, the second difference
regularity of Dy, Lemma 4.4 with A,y € (0,1), vi = €2, and v, = €1 + €3, Lemmas 2.1(iii) and
3.5 show that

[[G(x,y) - G(x,y)] - [G(x,¥) - G(x, ¥)]|
<oy f [IDN(x,2)| + DN (x, 2)]]
k=—co” X
d(y, yl)#el 1 2—k(51+53)
(27k+d(z, y))llﬁ Vok (Z) +Vok (y) +V(Z, y) (2_k+d(2, y))€1+€3

e A x) dy, )" 1
d(x,y)*e dx, ) Vixy)

du(z)

<CnN2™

(4.37)

Thus, G(x, y) satisfies Theorem 2.18(iii). This finishes the proof of Lemma 4.7. O

By Lemmas 4.6 and 4.7, we obtain the boundedness of R on Glxi, 1, B,y) forany x; € X,
r>0and 0 <,y < (e1 A€2), and in LP(X) for p € (1, o0). We omit the details.

Proposition 4.8. Let R and the notation be as in Lemma 4.7. Then R is bounded on LP(X) for p €
(1, 00) and on G(xl,r,ﬂ, y) forany x; € X, r > 0and 0 < B,y < (€1 A €2). That is, there exists a
constant C11 > 0, only depending on p, B, and y such that for all f € LP(X),

IR(A)Irxy € Cr(C1027N + Cn27) || fller ),

. (4.38)
IRGANGerpy < C11(C1027N + Cn27) [ fllG e rpy)-
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By using Proposition 4.8 and repeating the proof of Propositions 3.7 and 3.8, we can
obtain the boundedness of S~! on d(xl,r, B,y) forany x; € X, r >0and 0 < 3,y < ¢, and in
LP(X) for p € (1, ). We also omit the details.

Corollary 4.9. Let S be as in (4.2). Let N, j € N such that (4.1) and

C11(C1027%N +Cn2741) < 1 (4.39)

hold. Then S has a bounded inverse in G(x1, 1, B,y) forany x; € L, r>0,and 0 < B,y < (e1 A €2),
and in LP (X) for p € (1, 00). Namely, there exists a constant C > 0 depending only on B,y, and p
such that for all f € G(x, 1, B,7),

”S_1 (f)”C;(xl,r,ﬁ,y) < Clifllgerpy (4.40)
and for all f € LP(X),
15 )l < Cll - (4.41)

To establish the discrete Calderén reproducing formulae, we still need the following
technical lemma.

Lemma 4.10. Let j satisfy (4.1). For k € Z, any fixed y~” € Q¥ with v € Iy and v € (1,...,
N(k, 1)}, and any x € X, let

N(k,7)
By =3 3 fQMkaV (x, 2)dp(2) Di (55", ). (4.42)

Tel v=1

Then for any A, p € (0,1), there exists a constant Cn > 0 depending only on N, X and p such that
(i) forallk € Zand all x,y € X,

1 2ke

Vok (x) + Vo (y) + V(x, y) (2fk +d(x, y))ez; (4.43)

|Ex(x,y)| < Cn

(ii) forall k € Zand all x,y,y' € X with d(y,y') < 7*+ d(x,y))/2,

|Ex(x,y) - Ex(x,y)|
d(y, yl)ﬂel 1 Z_k(sz_ﬂsl) ) (444)
N (2_k+d(x’y))#el Voi () +Vor () +V (x, y) (2_k+d(x, y))€2—H€1 ;

<C

(iii) property (ii) also holds with x and y interchanged and u replaced by \;
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(iv) for all k € Z and all x,x',y,y" € X with d(x,x") < 7 + d(x,y))/4and d(y,y') <
@ +d(x,y))/4,

[[Ex(x,y) = Ex(x', y)] = [Ex(x,¥') = Ex(x, )]

!’ e ’ €
cop Xy dlyy)"™ 1
Tt y) T @ ) Ve )+ V() + V) (4.45)
2-k(e2-Aer) D—k(e2-pe1)
X —k er—le; + —k e—per |°
27" +d(x,y)) 27" +d(x,y))

Proof. The main idea for the proof of this lemma is to combine the techniques used in the
proof of Lemma 3.2 with Lemma 2.1(iii). By (4.19) and Lemma 2.1(iii), for any z € Qch,v and
yeX,

1 1
2k rd(yy) 25 +dEY)
1 1
Vo (YY) + Vo () + V() Vo (2) + Vo (y) + V(z,y)

(4.46)

(4.47)

To see (i), by the size condition of Dy together with (4.46) and (4.47), and Lemma 4.4 with
A=p=0and v; = v, = e, we have

1 2k

Ex(x, < j DN (x,z —du(z
BConI S ] 108 D e VEm o s a gy
(4.48)
- 1 27ke
~ Vor(x) + Vi (y) + V(x, y) (Z—k N d(x,y))sz ,
which verifies (i).
To verify (ii), we write
|Ex(x,y) - Ex(x,¥)|
NEP N kv kv
<3 3 |[ PN eadu@ D y) - D )]
el v=1 1/ Q7" (4.49)

X (X a2t awt” w2 W YD) + Xiawyse etz (G Y]
= Yl + Yg.
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For Yj, by the regularity of Dy and the size condition of Di\] together with (4.46), (4.47) and
Lemma 4.4 with A =0, u € (0,1), and v; = v, = €5, we obtain

Y; < f ! 27k d(y'y/)”e1
~ xvsz (x) + Vz—k(Z) + V(x, Z) (sz +d(x, z))ez (2*" + d(z,y))#el

1 2—kez
“Voi(@) + Var () + V(z, 1) @ +d(z,y))

5 apu(z) (4.50)

d(y,y)"™ 1 o-kler-per)
Y@ Frd(e ) VO Var VW) (07 ()T

The property (i), Lemma 2.1(iii), and the fact that 27% < 2d(y, ') yield that

1 2—ksz
YZ ,S €
Vo () + Vo () + V0 y) (27% 4 d(x, 7))~

1 2—kez
+ B
Vo (x) + Vo () + V(x, 1) Q" +d(x,y))

(4.51)

o dwy)™ 1 2-klerper)
T @ e y) V@V W VY 0, y)

which completes the proof of (ii).
By symmetry, we can deduce (iii) from (ii).
To prove (iv), we write

[Ex(x,y) - Ex(x, y)] - [Ex(x,y') - Ex(x,y)]
N(k,T)
-3 3 [ D) - DY (D5 ) - Delok” )t

Tel, v=1

(4.52)

Notice that if d(x,x') > 2% + d(x,2))/2 with z € Q¥” and d(y,y') > 27 + d(y~",y))/2,
thend(x,x")+d(y,y') > (21_k +d(x,z)+ d(y’j’v, y))/2, which contradicts the assumptions that
d(x,x") < (2_k +d(x,y))/4and d(y,y') < (Z_k +d(x,y))/4, since these estimates together with
(4.1) and Lemma 2.19 prove that for z € QX”, d(x, x') +d(y,y') < 2" *+d(x, z) +d(v~",y)) /2.

Thus, if we let

27k 4+ d
Wi={zeQ": d(x,x") < #

2 +d(yr”,

2 +d(yr"y) (4.53)

2

2K+ d(ys”,y)
2

&
Wa=1{zeQ¥ :d(x,x') < 2+d(x,z)

and d(y,y') >

27k 1+ d(x, z)

W3 = ZEQITW:d(x,x')> >

and d(y, ) <
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we then have
[Ex(x,y) = Ex(x,y)] - [Ex(x,¥) - Ex(x, ¥/)]

3 N(k,T)
=33 S [ DYDY ()] Dk () D5 it

i=1 tely v=1

(4.54)

3
=> Z
i=1

1

For Z;, the regularity of D}(\] and Dy together with the estimates (4.46) and (4.47) and
Lemma 4.4 yield that for any A, 4 € (0,1),

|Z1] < f d(x, ) 1 ke
N )y (2 +d(x, ) Vo )+ Vo @) +VE) (7 1 g, 2))°
d(y,y")" 1 ke
= ) P Vo (2) + Var (9) + V(2,1) (o = Ap(z)
2 +d@zy) 2+ V) (27 +d(zy) w55)
d(x,x')" d(y,y)™ 1 '
T e y) T @ ey V@) V@) V)
2—k(ez—)tel) 2—k(€2—#€1)
x —k ex—\ey * -k er—per -
(27" +d(x,y)) 27" +d(x,y))

Similarly, for Z,, from d(y,y') > (7% + d(yi"v, y))/2, (446) and Lemma 2.1(iii) with d(y, y')
< (27 + d(x,y))/4, it follows that for z € Qr”, 1/2ve < dy,y)“ /" + d(y’;,v,y))uel B
d(y,y)/ (2_k +d(z, y))”el, which together with the regularity of D}(V and the size condition
of Dy, (4.46), (4.47), Lemmas 4.4, and 2.1(iii) shows for any A, u € (0,1),

1\ el —ke
12| <f d(x,x) 1 2k
Tl F e, z)) @ Ve OV H VD) (74 d(x, 2)”
x [ d(y,y)" 1 L
@ +d(zy)" V@V VEY) (27 v d(z,y))”
. ! 2 ]dy(z) (456)
Vo (2) + Vo (v') + V(2. Y) Q" +d(z, y’))e2 '
d(x, x,))Lel d(y, y/)ﬂel 1
T @ ) @ e y) T Ve V) V)
2—k(€2—)t€1) 2—k(€2—#€1)
x —k e—Aeq + —k €2—[€1 :
" +d(x,y)) 27 +d(x,y))
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From Z, and the symmetry, we can deduce the desired estimate for Z3, which completes the
proof of Lemma 4.10. O

We can now establish discrete Calderén reproducing formulae.

Theorem 4.11. Let ¢1 € (0,1], &2 > 0, 3 > 0, € € (0,1 A €2), and let {Sk}72_, be an
(e1, €2, €3)-ATL Set Dy = Sy — Sk-1 for any k € Z. Then for any fixed j € N as in Corollary 4.9, there
exists a family of linear operators { Dy} ey, such that for any fixed y’;’” e Q¥ withk ez, T € I,
andv=1,...,N(k,7),and all f € C?S(ﬁ,y) with0 < B,y <e,

(o) N(k,T)

=33 kalvak(x,y)d#(y)Dk(f)(y’i’”)

k=—c0 TEl} v=1

© N(k,T)

- 3 3 S By [ Dep@dty) 457)

k=—co 7€l v=1

© N(k,T)

=3 > 3 u(@¥)Di(x, v ) D) (),

k=-—co TEl v=1

where the series converges in both the norm of G5(B,y) and the norm of LF(X) with p € (1,00).
Moreover, lNDk satisfies the conditions as in Theorem 3.10.

Proof. We only prove the first formula in (4.57), the proof of the second formula in (4.57) being
similar. Fix N, j € N such that (4.1) and (4.39) hold. Thus, for such N and j, Corollary 4.9
holds. Let DY for k € Z be as in (3.44). For k € Z, let D(x,y) = S [DN(, y)](x). By (4.2)
and Corollary 4.9, similarly to the proof of Theorem 3.10, it is easy to see that we obtain all
the conclusions of the theorem except for the convergence of the series in the first formula
in (4.57). To prove this, we need to verify that all the series in the first summation and the
second summation of the first formula in (4.57) converges in the desired ways. To simplify
the presentation, by similarity, we prove this only for the series in the first summation of the
first formula in (4.57).
Similarly to the proof of Theorem 3.10, for L € N, we write

N(k,T)

22 2 ka,vﬁux,y)du(y)Dk(f)(yk"’)

|k|I<L Tel v=1

N(k,T)
=555 5[ Prestmi e o

[kl<L7el, v=1

N(k,7)
:s‘l{sm(-) I ENCOE TN )(yiw)}(x)

|k|>L el v=1

N (k,T)

= f(x) - n;i;nwmf)(x)—sl{ >3 kanyf <-,y>du<y>Dk(f>(y¥”)}<x>.

|k|>L €l v=1

(4.58)
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Corollary 2.24 together with Lemmas 4.6 and 4.7 shows that for all f € ég(ﬁ, y) with 0 < B,
y<e,

lim [|R"(f)

CeBy) < Ji_I}’IOOCﬁ (C102*‘5N + CNijE)"’”f”GS(ﬂ’Y) =0, (4.59)

and for all f € LP(X) withp € (1, ),

Im [[R™(F)]] 1 < lim CF(C1027N +Cn27) " fllr ) = 0. (4.60)

m— oo

To finish the proof of the theorem, we still need to verify that for all f € GS (B,y) with 0 <
B,y <e,

N(ks)
lim s—l{ >y N I Dy (.,y)dy(y)Dk(f)(y’i'”)} =0, (4.61)
- k>Lrel, v=1 7 Q" GeBy)
and for all f € LP(X) withp € (1, ),
N(k,)
lim 5-1{ 3> f Dy (',y)d#(y)Dk(f)(y’T‘”)} =0. (4.62)
- k>L7el, v=1 7 Q7" LP(X)

We first verify (4.61). To this end, letting € = €1 A €;, similarly to the proof of Theorem 3.10,
by Corollary 4.9, it suffices to prove that there exists some o > 0 such that forall0 < f < ' <
€, 0<y<y <gallLeN,andall f € G(B,Y),

N(k,T)

PIPIPI f DY Gy duy)De(f) (y)

|k|>Lrel, v=1 ¥ Qr

<C2 fllgp.y)s (4.63)
GBy)

where C > 0 is independent of L and f. An argument similar to the proof of (3.3), via
Lemma 2.1(iii) and geometric mean, reduces the proof of this estimate to verifying the
following two estimates that there exists some ¢ > 0 such that for all f € G(f,y') and
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allx € X,

N (k,T)

Ty Zj DY (x, y)du(y) Di(F) (")

|k|>L el v=1

(4.64)
1 1

< 2_UL v !
~ ”f”G(ﬁfY)Vl(xl)+V(x1,x) (1+d(x/x1))Y

and for all x, x' € L with d(x,x') < (1/2)(1 + d(x,x7)),

N(k,T)

DD ijDiV (6, () D (F) (17

|k>LTel, v=1

N(kT

I f DY (', y)dpu(y)De( ) (v5™) (4.65)

|k|>L T€l} v=1
d(x, ')’ 1 1
(1+d(x,x;)) Vi(x) +V(x1,%) (1+d(x, %))

S fllge .y

For L € N, let T; be the operator associated with the kernel

N(k,)

Ki(x,y) = Z Z Z J‘levD,lj(x, z)d‘u(z)Dk(yl;’v,y) (4.66)

|k|>L el v=1

with x, y € X. By an argument similar to the proof of Lemma 4.7 together with Lemmas 4.10
and 3.5, we know T} satisfies all the conditions of Corollary 2.22 with e replaced by € and
Cr, +ITellz2(x) -~ 122y S 1. Thus, Corollary 2.22 then shows that Ty is bounded on G(B,y) for
any 0 < f,y’ < €. In particular, (4.65) holds. Using Lemma 4.10 and an argument similar to
the proof of (3.75) also gives (4.64). Thus, (4.61) holds.

We now prove (4.62). To this end, Corollary 4.9 shows that it suffices to verify that for
all f € LP(X) with p € (1, 00), limy . || Te(f)|lLrx) = 0. By Theorem 3.10, for f € LP(X) and
hell(X), f=3*_DD(f)and h = 32 _DiDy(h), respectively, in LP(X) and L¥ (X),
where ﬁk for k € Z are as in Theorem 3.10. From Remark 3.3, it is easy to deduce that there
exists €] € (0, €1 A €) such that forall y € QF and z € X,

1 2—(k/\l)e’1
Vo (y) + Vok (2) + V(y, 2) (27<kA1)

N |k—1|ey
DB (4, 2)] £ 2 -
+d(y,z))

1 2—(k/\l)s’1
Vou(y) + Vo (2) + V(y, 2) (24“1) N

(4.67)
|(DY) Dy, 2)| < 274

d(y, Z))Ea
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These estimates and Lemma 2.1(iv) together with Holder’s inequality, Lemma 3.14, and
Proposition 3.15 yield that

1Tl = sup KTLH B

St
N(k T)

= sup
lIAl

f Di(f) (7 )(D?)%h)(y)du(y)‘

|k|>LT€Ik v=1

{ ) [i 2""‘“’1M<|Dz<f>|>]2}

[kI>L Li=—co

v oSt
1/2

< sup
Il

St Lr(X)

- 2, 1/2

= , (4.68)

[s[Szrmmqoryon) |
>LLI=—co

X

L'(x)

1/2
<2t/ { > [M(IDz(f)I)]Z}

lII<L/2

LP(X)

+

{5 [M<|Dl<f>|>]2}1/z

[1=L/2

LP(X)

— 0,

as L — oo. That is, (4.62) also holds, which completes the proof of Theorem 4.11. O

By an argument similar to the proof of Theorem 4.11, we can establish the following
variants of the discrete Calderdn reproducing formulae (we omit the details).

Theorem 4.12. Let ¢; € (0,1], &2 > 0, e3 > 0,¢ € (0,e1 A €), and let {S}2_, be an
(e1, €2, €3)-ATL Set Dy = Sk — Sk-1 for any k € Z. Then for any fixed j € N as in Corollary 4.9, there

exists a family of linear operators { Dy} xcy, such that for any fixed y’;’v e Q¥ withk ez, T € I,
andv=1,...,N(k,7),and all f € Gg(ﬁ,y) with0 < B,y <e,

k'r)

fm=3 3

k=foo7'€Ik v=1

J Dy, y)du(y)Di(f) (y=”)

N (k,T)

i >, > D(xyr )I Di(f)w)du(y) (4.69)

k=—co TEl, v=1

© N(k,7)

=3 S 3 w(@F)Di(x, v DR () (),

k=—co T€l} v=1

where the series converges in both the norm of ég (B,v) and the norm of LV (X) with p € (1, ).
Moreover, Dy satisfies the conditions as in Theorem 3.11.
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Theorems 4.11 and 4.12 in combination with a duality argument show that discrete
Calderdn reproducing formulae on spaces of distributions.

Theorem 4.13. Let all the notation be as in Theorems 4.11 and 4.12. Then for all f € (G5(B,y))' with
0<pB,y<e (457)and (4.69) hold in (GS(,B, 7).

4.2. Inhomogeneous discrete Calderon reproducing formulae

Similarly to Subsection 3.2, we can establish the following inhomogeneous discrete Calderén
reproducing formulae (we omit the details). Here, again, we have no restriction on diam(X).

Theorem 4.14. Let e; € (0,1], 2 > 0, &3 > 0, € € (0,e1 A €2), and let {Sk}ycz, be an
(e1, €2, €3)-IATIL. Set Dy = So and Dy = Sk — Sk-1 for k € N. Then for any fixed j, N € N such
that (4.1) and (4.39) hold, there exists a family of functions {Dy(x,y)},, such that for any fixed

y’;”’ eQ withkeN,relyandv=1,...,N(k,1) and all f € G5(B,y) with0 < B,y <e,

N (k,T) © N(k,T)
flx)= ZZ > Dk(x,y)d#(y)Dk”(f)+ >y D Dk(x V) du(y)Di(f) (va™)
k=0 el v=1 k=N+1Ttel, v=1

N(OT) N (k) -
f Dot dum)D% (N + 3 S S w(@)Dilx y)DY (F)

TEI(] v=1 k=1r7el, v=1
N(OT) o N(k,T) - o o
= f Do(x, y)du(y) DYy (f) +Z > X Q) Di(x, yi")DyY (f)
TEI(] v=1 k=1r7elx v=1
=) N (k)

+ > > > Q) De(x, v ) De(f) (v5),

k=N+1Ttel, v=1
(4.70)

where the series converges in both the norm of Gg (B, y) and the norm of LP(X) with p € (1, 0), and
D’;f fork€Z,, T €lx,andv =1,...,N(k,T) is the corresponding integral operator with the kernel

D’;:f(z) = (l/y(Q’;’v))fQi,ka(u, z)dpu(u). Moreover, Dy for k > N + 1 satisfies the conditions (i)
and (ii) of Definition 2.2 with e, and e, replaced by €' € (e, €1 A €2); and there exists a constant C > 0
depending on €' such that the function Di(x,y) for k =0,1,..., N satisfies that

(i) forall x,y € X, |Di(x,y)| < C((1/(Va(x) + Va(y) + V(x, 1)) (1/ (1 + d(x, 1)),

(i) forall x,x',y € L with d(x,x") < (1 +d(x,y))/2,

|Di(x,y) - Di(x, )|

SC< d(x,x') )el 1 1 ‘ (4.71)

L+d(x,y)/ Vi) +Vi(y) + V(6 y) (1+d(x, )

and J’xﬁk(x,y)d‘u(x) = fxﬁk(x,y)dy(y) =1when0<k < N;=0when k> N.
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Theorem 4.15. Let ¢; € (0,1], &2 > 0, e3 > 0, € € (0,1 A €2), and let {Sy}ycy, be an
(e1,€2,€3)-IATL Set Dy = Sy and Dy = Sk — Sk-1 for k € N. Then for any fixed j, N € N such
that (4.1) and (4.39) hold, there exists a family of functions {Dy(x,vy)} kez, Such that for any fixed

vi € Q¥ withk €N, 7€ Iy, and v =1,...,N(k,7) and all f € GS(B,y) with0< B,y <e,

N (k,T)

® N(k T)
1033 3 [ Diopauns 33 > [ Dkt (48)
k=0 rel, v=1 7 Q7" k=N+17€l, v=1
N(0,7) _ o N(k,T) -
-3 3 | DabenduD+ 3 5 D k(@)D D ()
rely v=1 7 QY k=17€l, v=1
N(OT) N N(k,7)
Y f Do, dpmDT(N+ 3 S S u(Q)Di(x, y5*)DE ()
Telp v=1 k=1r7el, v=1
© N(k,T)

+ 3 S S Q) Di(x, yE) Dk () (vE7),

k=N+1Ttel, v=1
(4.72)

where the series converges in both the norm of Gg(B,y) and the norm of LV (X) with p € (1,00),

and Dk’v fork € Z,, T € Iy, and v = 1,...,N(k,T) is the corresponding integral operator with

the kernel Dk”(z) as in (4.70) with Dy replaced by Dy. Moreover, Dy for k > N + 1 satisfies the
conditions (i) and (iii) of Definition 2.2 with €, and e, replaced by € € (e,e1 N €); and there exists

a constant C > 0 depending on €' such that the function Dy (x,y) for k = 0,1,...,N satisfies
that

(i) for all x,y € X, [Di(x,y)| < C((1/ (Vi (x) + Vi) + V (x, ) (1/ (1 + d(x, 9))°)),
(ii) for all x,x',y € X with d(x,x') < (1 +d(x,y))/2,

|Di(x,y) - Di(x, )|

. C( d(x, x') >e’ 1 1 . (4.73)

L+d(x,y) /) Vi(x) +Vi(y) + V(5 Y) (1 +d(x,y))"

and fxﬁk(x,y)d‘u(x) = fxﬁk(x,y)d,u(y) =1when 0< k< N;=0when k> N.

Theorem 4.16. Use the same notation as in Theorems 4.14 and 4.15. Then for all f € (G5(B,Y))’
with 0 < B,y < e, (4.70) and (4.72) hold in (G5(B,y))".

Remark 4.17. Similarly to Remark 3.27, in the sequel, to simplify the representation of the
results, we will always assume that N = 0 in Theorems 4.14, 4.15, and 4.16.
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5. Besov spaces and Triebel-Lizorkin spaces

In this section, we consider Besov and Triebel-Lizorkin spaces on RD-spaces and study
their relations. As applications, we obtain boundedness results on these spaces for singular
integrals considered by Nagel and Stein [44]. Finally, we establish a variant of the T(1)-
theorem of David and Journé in these settings, and a variant of the T(1)-theorem of Stein
in [75] is also presented.

To develop a theory of these function spaces, we need two basic tools: the Calderén
reproducing formulae from Sections 3 and 4 and Plancherel-Polya inequalities, which will be
established in this section.

5.1. Plancherel-Pélya inequalities and definition of B, (X) and F; (X)

Throughout this and the next subsection, we will always assume that p(X) = oo. We first
introduce the norms in B;,q(x) and F;,q(ﬂC) via certain ATIs. We then prove that they are
independent of the choices of ATIs and spaces of distributions. To this end, we need to
establish homogeneous Plancherel-Polya inequalities; see also [79].

Adapting Triebel’s approach to homogeneous Besov and Triebel-Lizorkin spaces on
R" in [3], we make the following.

Definition 5.1. Lete; € (0,1], 2> 0, €3 >0, € € (0,€1 A €2), and let { Sy}, be an (€1, €2, €3)-
ATI. For k € Z, set Dy = Sy — Si_1.

(i) Forall f € (GE(B,y)) with0 < B, y <e, |s| <€, p(s,e) <p < oo,and 0 < g < oo,

one sets ||f|| B0 = {3z 2559|| Di (f )||Zp 0 }Nq with the usual modification made
whenp = oo or g = oo.

(ii) For all f € (GS(B,y)) with 0 < B,y < €, |s| < € p(s,e) < p < oo, and

. 1/ .
p(s,€) < q < oo, one defines |[fllis 0 = I Skez 2ID(NI)“lray with the
usual modification made when g = co.

To verify that the definitions of ”'”Bfa,q ) and |[|-] F3,(x) are independent of the choice of
ATIs, we need two technical lemmas, which have independent interest.

Lemma 5.2. Let e > 0, k', k € Z, and y’Tc”’ be any point in Q%" for v € I, and v = 1,..., N(k, ).
Ifn/(n+e€) <p < oo, then for any x € X,

N (k) (P/\l) 7(k/\kl) E(p/\l)
1 2 _
Z Z #(Ql’;v) [ )] [ )] SC[Vz—(k'Ak) (x)]l (P/\l)’

rel, vel Vywno (x)+V (x, y’;’v 2-(kAK) 1+ (x, y’;’”
(5.1)

where C > 0 is independent of x € X, k, k', T, and v.
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Proof. Notice that for any z € Q¥”, by Lemma 2.1(iii), we have

V-t (]/I';'v) +V(x, yl;/v) ~ Vaww (2) + V(x,2),
(5.2)
9~ (knk') d(x, leW) ~ 2-kAK) 4 d(x, Z).

These estimates together with Lemma 2.19 and the second inequality in (1.3) yield that the
left-hand side of (5.1) is, up to a bounded multiplicative constant, controlled by

1 (pA1) 2—(k/\k’) €(P/\1)d
I | Ve () + Vix, 2) 20 4 d(x, ) #)

_ & 5.3
< [Vz-wk) (x)]l (pA1) Z ol[n=n(pnl)=e(pa1)] (5.3)

1=0

S [V27(k’/\k) (x)] 1—(p/\1)/

which completes the proof of Lemma 5.2. O

Lemma 5.3. Let € > 0, k', k € Z, and v~ be any point in Q¥ for t € Iy and v = 1,..., N(k, 7).
Ifn/(n+¢€) <r <1, then there exists a constant C > 0 depending on r such that for all a';’” € Cand
all x € X,

N(k) 1 2-(kAK')e

kv kv
u(Qr") / |a="|
TEZIk ; ' Vowmo (x) + V(x, ]/ITW) (Zi(kAk) +d(x, J/ITW))e ’
(5.4)
N(k7) ur
< C2[(knK)=k]n(1-1/7) {M<Z Z |a1;,v |rXQk'V> (x)} ,
Telr v=1 ’

where C > 0 is also independent of k, k', T, and v.

Proof. We first recall the following well-known inequality that for all r € (0,1] and all a; € C
with j in some countable set of indices,

(Shat) <Slar 63
] ]

From this inequality, the fact that for all 7 € Iy and v = 1,..., N(k,7), and all z € X,
y(Ql;"’)ny(z) ~ V2—k(Z)XQ§,v(Z), and the fact that for all z € X and all k, k' € Z, by (1.3),
Vot (z) < 2Mk=CkNOInY7 4 (2), together with (5.2), Lemma 2.1(vi), and the second inequality
of (1.3), it follows that the left-hand side of (5.4) is, up to a bounded multiplicative constant,
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controlled by

N(kr) N 1 r 2—(k/\k’)re - 1r
(xS ey ( ) 7}

rel, vel sz(k’/\k) (x) + V(x’ yi,v 2—(k/\k’) + d(x, yl;,v))re

, . N(k7)
< ollerk)kina-1m ) 1 J' A o (2) )dp(z
= Vy oo (x) 7)<~ Z Z T | Xok (z) )du(z)

Telp v=1 (56)
< 1 1
+
; Dl[re+n(r-1)] V21+12—(k’/\k) (X)
N(k,7) . 1/r
x @5 g (2) Vdpu(2) |
f d(x,2)<2"* 120 <r;1k ; T
which implies the desired conclusion. O

Using these technical lemmas and the discrete Calderén reproducing formulae, we can
now establish the Plancherel-Pélya inequality.

Proposition 5.4. Let ¢; € (0,1], €2>0, €3> 0, € € (0,¢1 A €2), and let {Si } ey, and {Pr} ey be
two (€1, €2, €3)-ATls. For k € Z, set Dy = Sy — Sk-1 and Qk = Py — Py_1.
(i) Forall f € (G5(B,y)) withO< B, y<e, |s|<e p(s,€) <p<oo,and 0 < q < o,

1/q

{ZZ’“" <Z Nf)u(Q’;f") [sup Dk (f)(2) I]py/p}

keZ rel, v=1 zeQk” (5 7)
1/q ’

NED p\ 1P
. {ZW(Z 5 u(QT’”)[érQl{JQk(f)(Zﬂ] > }

keZ el v=1

(ii) Forall f € (Gg(ﬂ, 7)) with0< B, y<e, |s|<e, p(s,e) <p < oo, andp(s,e) <g< oo,

N(k) q 1/q
{ DD stq[sup |Dk<f><z>|] ng,v}

keZ telx v=1 zEQ’T(’v

Lr(x)

Nk p 1/q
N2z T2 mlene] e |

keZ el v=1

(%)

Proof. We first verify (5.7). By Theorem 4.13, there exist functions {Dy}., such that for all
fe(GEB,y) with0<p, y<eandallz€ X,

N(K )

f@=3 3 > mQ)De(z ) Qu(h (va™) (5.9)

kK'eZtely v=1
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holds in (GS (B,7))', where I5k: satisfies the same conditions as ﬁk in Theorem 4.13 and y’;,,”’,
is any point in Qlj’v,. For any ¢’ € (0,¢), by Lemma 3.2 (see also Remark 3.3), forall z € X,

| (DkDie) (2,97

< o keKIe 1 2-(knk')e (5.10)

Vot (2) + Voo (1) + V (2, 057) (2759w d(z,557))

If p(s,e) < p <1, by applying Dy to (5.9), and making use of (5.10), (5.5), and (5.2) together
with Lemma 5.2, we obtain

N(k,T) p
> #(Q’é'”)[sup |Dk<f><z>|]

el v=1 zeQﬁ’v (5 11)
- N(K' ) lk—K'le'p YN K 1-p K '\ 1P
S22 2 2RI (QY) Vaw (v )] T 1Qe (N (we ) P
kezrely v=1
From this and the fact that
Vi (™) S 2K ORIy () ~ k=l () (5.12)

together with Holder’s inequality when q/p > 1 and (5.5) when q/p < 1, it follows that if we
choose €' € (0, €) such that max{n/(n+¢€'), n/(n+¢€ +s)} <p <land|s| < €, the left-hand
side of (5.7) is, up to a bounded multiplicative constant, dominated by

N(K,7) = a/py 14
{Z[Z 2 Z 2 IR h 1 (QE) [V e ()] ”2"’5*’|Qw<f>(y’;f">l”] }
keZ Lk eZTely v'=1
N@K 7 v a/py 14
Sz (3 Y weenwr) |
K€z Tely V=
(5.13)
which together with the arbitrary choice of y’;,,'vl yields
N(k) px 9/py 11
(52435 o [sppncat] ) |
keZ rel, v=1 zeQk” (5 14)
N(k,7) p 4/Py 11 .
{z(3 S e | mievel| )}
kezZ Telp v=1 z€Q;’

By symmetry, we then obtain (5.7) when p(s,e) <p < 1.
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If p € (1, 0] and if we choose €' € (0, ¢) such that |s| < €', by Holder’s inequality and
Lemma 5.2, we obtain

N(k,7) P
> 3 uE) [SUP |Di(f)(2) I]

Tel, v=1 zeQk”

Nkr /)

<22 Z 2RI RSB 1 (QREYY Qe () (i) P

KeZt'ely v=1

(5.15)

which together with Holder’s inequality when g/p > 1 and (5.5) when g/p < 1 yields that
the left-hand side of (5.7) is, up to a bounded multiplicative constant, controlled by

1/q

Nk, ) q/p
(s[5 58 woaouerzrianwnr] |

kezlkezrely v=1
(5.16)
1/q

{szsq<z N%I w(QE)1Qk () (v ”)IP>W}

kK'eZ Tely V=

Then, since y%” was an arbitrary point in QX”, we see that the estimate (5.14) also holds
when p € (1, 0], which by symmetry then completes the proof of (5.7).

We now verify (5.8). By applying Dy to (5.9), and making use of (5.10) together with
(5.2), and Lemma 5.3, we obtain that for €' > |s| and r > max{p, p(s, €'), q},

N(k) 1/q
{ZZ > ZkSq[sup|Dk(f)(z)|:| Xka(x)}

keZ tel v=1 ZGQT

S {Z [Z 2(k—k’)s—|k—k’|e’2[(k/\k’)—k’]n(l—1/r) (517)

kezlrez
Nk, » 1/ro49, 174
X{M(Z > ZkS’IQkf(f)(y’é’”)I’ka;»f>(x)} ] } ,

Tely V=1 !

which together with Holder’s inequality when g € (1,00] or (5.5) when g < 1, and
Lemma 3.14 further implies that the left-hand side of (5.8) is, up to a bounded multiplicative
constant, dominated by

N(K,7) » a/ry
HZ[ <Z >, 21Qe () (v )Iwa>] }

kK'eZ Tely V=1 Lp/r (X

(5.18)

<

~

N@Es) o 1/q
{Z > 2 2"5’7|Qk/<f>(y;”>|‘*xQ¢;~r}

kKezZtely v=1

Lr(x)
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) /
v k'

Then, by symmetry and the fact that yl;,, " was an arbitrary point in Q" , we obtain (5.8),
which completes the proof of Proposition 5.4. O

The following remark is useful in applications.

Remark 5.5. Let all the notation be as in Proposition 5.4, except that Sk (and therefore Dy) for
k € Z has regularity only in the second variable. Then, there exists a constant C > 0 such that

(i) forall f € (GS(ﬁ,y))' with0<p, y<e, |s|<e, p(s,e) <p<ow,and 0 < g < oo,

1/q

{ D2k <Z Nf)u@’;"’) [ sup | Di(f)(2) |]p>w}

keZ el v=1 zeQ’;’v (5 19)
1/q ’

N(k,7) AN
SC{ZZ"”(Z > ﬂ(Q’ﬁ’v)[igngk(f)(Z”] > } ;

keZ Tel v=1

(ii) forall f € (dg(ﬁ,y))' with0 < p, y<e, |s| <€, p(s,e) <p <oo,and p(s,e) < q < oo,

N(k,T) q 1/q
{ZZ > zksq[sup IDk(f)(Z)I] ngv}

keZ el v=1 zte;/V

LP(X
o (5.20)

N (k) q Y
{ Y Y zksq[ iggJQk(f)(zn] xggv}

< C‘
keZ el v=1

LP(X)

Using Proposition 5.4, we can easily verify that the definitions of [||z; (x) and |||z, (x)
are independent of the choices of ATIs. We omit the details.

Proposition 5.6. Let all the notation be as in Proposition 5.4.

(i) Forall f € (dg(ﬁ,y))' with0< B, y<e, |s| <€, p(s,€) <p<oo,and 0 < g < oo,

1/q 1/q
{zzksqunkmnzm)} ~{zzkwngk<f>nzm)} . G521)

kez keZ

(ii) Forall f € (Gg(ﬂ,y))' with0< P, y<e, |s|<e, p(s,€) <p <oo,and p(s,e) <q < oo,

Lr(x)

(5.22)

1/q
{szsqlwf)lq}

keZ

1/q
{szsqlwf)l"}

keZ

Lr(x)

We now verify that the definition of the norm |-||p; (x) and the norm ||-] Es,(0) 18
independent of the choice of the underlying space of distributions. We recall that a, =
max{a,0} for any a € R.
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Proposition 5.7. Let all the notation be as in Definition 5.1.

(i) Let |s| <€, p(s,€) <p < oo,and 0 < q < oo. If f € (GE(B1, 1)) with

max 0,—s+n<1—1> < pi<e, max n<1—1> ,s—E <11<€, (5.23)
P + P + P

and if || fllp; (x) < oo, then f € (Gg(ﬁz,yz))'for every Po, 12 satisfying (5.23).

(ii) Let |s| < €, p(s,€) <p < oo, and p(s,e) < g < oo. If f € (Gg(ﬁl,}q))/ with Py, y, as in
(5.23), and Zf”f”p;}q(%) < oo, then f € (Gg(ﬂg,yz))'for every P, y, satisfying (5.23).

Proof. Let ¢s € G(e, €). Adopting the notation from Theorem 4.11, we first claim that for k € Z,,

1 1

Di(,y), ¢)| <27k , 5.24
|< k(y) (/’>| ~ ||‘/’||G(ﬂz,Y2)Vl(x1) +V(X1,y) (1 +d(x1ly))yz ( )
and that fork =-1,-2,...,
~ ! 1 27k
[(D(y), ¢)| S 2% (5.25)

||‘P“G( 2,)2) 2
PV () + V(1Y) (27K 4 d(x, y))

where y; can be any positive number in (0, y2).
In fact, to verify (5.24), by the vanishing moment of Dy, Lemma 2.1(ii), we have

|(Dx (. y), )|

- | f Bz () - @) (2

- 1 d(z,y)”
<ol [ Dutzy)
FllaPar) d(z,y)g(1+d(y,x1))/2| v |V1(x1) +V(x1,Y) (1+d(x;,y))*™

dp(z)

1 1
Vi(x1) +V(x1,2) (1+d(x1,2))"

|5k<z,y>|[

-
d(z,y)>(1+d(y,x1))/2

+ ! ! :Idﬂ(z)}
Vi(x) + V(L y) (1+d(x, )"
™ ! L
PRy ) + V() (1+d(x, )"

s

1 1
8 {1 +JXV1(x1) + V(xl,z) (1 +d(xl,Z))Y2 dﬂ(Z)

1 yHeR
+ L( VW HVEY 4 gz, ) he } '

(5.26)



Yongsheng Han et al. 117

where the last quantity is, up to a bounded multiplicative constant, controlled by the right-
hand side of (5.24), and in the last inequality, we used the fact that for d(z,y) > (1 +

d(y,x1))/2, V(z,y) 2 Vi(y) + V(x1,y) ~ Vi(x1) + V(x1,y); see also Lemma 2.1(vii). Thus,
(5.24) holds.

To see (5.25), by fx(p(z)d‘u(z) = 0, (i) and (ii) of Lemma 2.1, and the fact that for

d(z,x1) > (27% + d(x1,y))/2, V(x1,z) 2 Vox(x1) + V(x1,y), we obtain that for k = -1,
-2,...,

|(Dx (), )]

-|[ 1Bute - Dt lprauca

s et
~ NPUGBy2) - e _ €
" deaserawanz @75+ d(x, y)) @7F +d(x, y))

1
X
Vi (x1) + Vo (y) + V(x1,y)

y 1 1
Vi(x1) +V(x1,z) (1+d(x1,2))”

du(z)

1 2—ks
+
I d(z0)>(@ +d(y1))/2 [Vzk (2) + VoY) +V(zY) 2% + d(z,y))

1 2—ke
Ve (o) + Ve ) + V() (24 d<x1,y>>e]

x 1 ! du(z)
Vi (xl) + V(x1, Z) (1 + d(xl,z))n #
< 1
~ Vo (x1) + V(x1,y)
. { 1 . 2-ke 1 }
@ +dx,y)” @ +dy) @ +d(a,y)"
(5.27)

where the last quantity is, up to a bounded multiplicative constant, dominated by the right-
hand side of (5.25); namely, (5.25) holds.
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Thus, Theorem 4.13 together with (5.24), (5.25), and Lemma 2.1(iii) yield that

© N(k,T)

[Fwl=| X 2 X wQ)De() ") (DeCoye”), )
Koo 7l v:; "
5||q;||q<pz,yZ>{ZZ >, 2P IDk(F) (vi)|
k=07l v=1 1 1
’ Vi) + V (o1, 57 (1+d (2, y57)" (5.28)

-1 N(k,T)

£ 3> > 2u(QE) D) ()]

k=-co TEl v=1

1 2k }
y .
Vai (201) +V (21, y&7) (27k+d(x1/y’l;,v))yz

Ifp <1,by (5.5),

N(k,T)

If, qr>|<||wnq<m>{22 k‘ﬂ””[Z 3 250 u(QE) D () ()

Tl v=1

l 1 ]1/}7
X
(Vi(rn) +V (ra,we”)” (L d(r, ™))™
N (k,T)

-1
WA [Z > u(Qr) ) 25 | Die(F) (&™) |P
k=-c0

T€l, v=1

1 2-kpp ] 1/”}

X A .
(Vare () +V (1, y5)) (27 4d (e, i)™

(5.29)

Notice that when p < 1, by Lemma 2.1(vii) and y» > n(1/p - 1), for k € Z., T € I and
V= ., N(k,T1),

#(QkV)pl 1

(Vi () +V(an,y5)) (1+d(x, 7)) 5.30)
_ 1 )V 1 I
~Vi(n) Q) (T+d(,ye™)™ ™ Vila)’

and similarly, by the first inequality of (1.3), for k =-1,-2,..., 7€ fandv =1,...,N(k, 1),
1
u(@h)” 2
(Vare (1) + V (e, y5”))" (27 + (e, i)™

v v 1-p
< kK 1 VZ’k (]/I-;’ ) +V(x1, yl‘; ) < kK 1 )
T Vi) u(Q) (2_k+d(x1,y’;”’))yzp Vi(x1)

(5.31)
2-krp
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Thus, if p < 1, then by Holder’s inequality when g > 1 or (5.5) when g < 1 together with
Proposition 5.4,

|(f (I;>| < 1/p||(P||G(ﬂz Yz){zzk n(1/p-1)=(p+s)] | Z oklr/p+y= ]}
1( ) k=0 k=-00
NED K w 5.32
x [Z >, w(QE)2 | D) (v >|”] (532)
Tel v=1

1
S 5 el I flls;, 00,
Vi (1) P "

where we used the assumption that f, > —s + n(1/p — 1) and we chose y, € ((s = x/p)., 12)-
Similarly, if p > 1, by Lemma 2.1(ii), we have

|<f,(p>| ( 1)1/;7 ———= ¥l

o 1 1 vy
y {Zz—k(ﬁz+s> U ,dy(y)]
k=0

wVi(x1) + V(1Y) (1+d(xy,y))™

& / 1 2—kY2p'2 p
B i)

2Varr(3) VL Y) (07 4 d(x, )

N(k,7) 1p
X[Z > Q)25 D (f) (vr >|'“]

Tel, v=1

1
S ——=ellapm 1 f s, ),
Vi (o1)'/P "

(5.33)

where we used f; > —s and chose y, > max{0,s — x/p}.
Letnow h € Gg(ﬁz,yz). Then there exists {h,};-; C G(e, €) such thatas n — oo, ||h—
hullG(poy) — 0. By (5.32) and (5.33), we obtain

|<f/ hn - hm>| 5 ”f”Bf,,q(jC) ”hn - hm”G(ﬂz,yz)’ (534)

which shows that lim,,_, - ( f, h,) exists and the limit is independent of the choice of {h,}.
Thus, if we define (f,h) = lim,_.(f h,), by (5.32) and (5.33), we have [(f, h)]
||f||B,;q }Q||h||ée(ﬂ2 1) Thatis, f € (Ge(ﬂz,yz))' which completes the proof of (i).

The conclusion (ii) can be deduced from (i) and the fact that || f|| B oo O S E3,(K)7
see [3, Proposition 2.3.2/2] or Proposition 5.10(ii) below. O

Now we can introduce the Besov spaces, Bf,,q(ﬂ(), and the Triebel-Lizorkin spaces,

Es (%)
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Definition 5.8. Lete; € (0,1], €2 >0, €3 >0, € € (0,e1 Aez), and let { Sk}, be an (€1, €, €3)-
ATI. For k € Z, set Dy = Si — Si_1.

(i) Let |s| < €, p(s,e) <p < o0, and 0 < g < oo. The space B;,q(JC) is defined to be the set
ofall f € (G5(B,y))’, for some B, y satisfying

max s,0,—s+n<1—1> <p<e
p +
max S—E,Tl<1—1> ,—s+n<1—1> —K<1—1> <y<e
p p + p + P +

such that || fllg;, (1) = (Zi-co stq”Dk(f)”ZP(x) 14 < o with the usual modifica-
tions made when p = oo or g = o0.

(5.35)

(ii) Let |s| < €, p(s,e) < p < oo, and p(s,€) < g < oo. The space F;,q(ﬂ() is defined to
be the set of all f € (GS (B,7)) for some f, y satisfying (5.35) such that || f]| Es (K) =

{2, 25%1|Dy (f)|q}1/q||Lp(x) < oo with the usual modification made when g = co.

Propositions 5.6 and 5.7 show that the definitions of the spaces Bf?,q(,%) and Ff,’q(%) are
independent of the choice of the approximations of the identity and the distribution space,

(G5(B,y)), with B, y as in (5.35).

Remark 5.9. To guarantee that the definitions of the spaces B;lq(,X) and F;lq(ﬂ() are

independent of the choice of the distribution space (Gg (B,7)), we only need the restriction
that g, y satisfy (5.23); see Proposition 5.7. Moreover, if we assume that max{s,0} < f < € and
max{n(l/p-1),,-s+n(l/p-1), —x(1-1/p),} <y < €, we can verify that the space of test
functions é(ﬁ,y) is contained in Bf,/q (X) and Pf,/q (X); see Proposition 5.10 below. Thus, the
spaces B;,q(ﬂé) and F;lq(,X) are nonempty if we restrict §, y as in (5.35).

5.2. Properties of B;rq (X) and F;,q(ﬂt) and boundedness of singular integrals

In this subsection, we first present some basic properties of Bf,,q(%) and F;,q(,%). Then we
establish a Lusin-area characterization of F;,q(ﬂé), and as an application, we discuss the

relation between the spaces F;,q(,K) and the atomic Hardy spaces Hft(,K) of Coifman and
Weiss in [28] and the Hardy spaces H (X) in [48]. Finally, we show that the singular integrals
considered by Nagel and Stein in [44] act boundedly on B;/q(,ﬂ() and F;/q (X).

Proposition 5.10. Let €1 € (0,1], €2>0, e € (0,€1 N €2), and |s| < e.

(i) For p(s,e) <p < coand 0 < qo < q1 < oo, B}, (X) C B, (X); and for p(s,€) <p < oo
and p(s,€) < qo < qi < oo, Fy  (X) CF, (X).

(ii) If p(s,€) <p < co and p(s,e) < q < oo, then B;/min(w) (X) CF;(X) C B;max(M) (X).

(iti) If B, y as in (5.23), then By ,(X) C (GS(B,Y)) when p(s,e) <p < ooand 0 < q < oo, and
F; (%) C (GS(B, 7)) when p(s,e) <p < ooand p(s,e) < q < co.
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(iv) If max{s, 0} < <eand max{n(l/p-1),, —s+n(l/p-1), -x(1-1/p),} <y <e,
then G(B,y) C BS (X) when p(s,e) < p < coand 0 < g < oo, and GB,y) c F; ,(X)
when p(s,€) <p < oo and p(s,e) < g < oo.

(v) If1 <p < oo, then F,S,z(x) = LP(X) with equivalent norms.

(vi) The spaces B, ,(X)/ N with p(s,e) < p < oo and 0 < q < oo and the spaces Fj, ,(X)/ N
with p(s,e) <p < oo and p(s,€) < q < oo are complete.

Proof. Property (i) is a simple corollary of (5.5). Property (ii) can be deduced from
Minkowski’s inequality, (5.5), and the following generalized Minkowski inequality that for
alll1 <g< oo,

© q 1/q 0 1/q
{Z[fhmmwmm]} sj{znwuw} () (536)
k=—co LV X X

k=-

see also [3, Proposition 2.3.2/2] and [6, Proposition 2.3].

Property (iii) is implied by the proof of Proposition 5.7 and Property (vi) can be easily
deduced from Property (iii).

To verify (iv), similarly to the proofs of (5.24) and (5.25), for f € G(ﬁ, ¥), we have that
fork e Z,,

1
Di(f)(x)| 27 , 5.37
|Dk(f)(x)| < ||f||G(ﬂ,Y)V1(x1) V() 1+ d(m, ) (5.37)
and that fork =-1,-2,...,
-k
DK@ £ 27 oo 1 = (539)
~ T Vo (1) + V(31 %) (27F 4 d(xy, %))
where y’ can be any positive number in (0, y). Moreover, since y > n(1/p-1),,
1 1 1/p
f P v Ap(x)
x (Vi(x1)+V (x1,x))" (1+d(x1,x)) 5.39)
_ 1 e 1 1|7 1
N at T ohyp N 1-1/p’
Vi ()P 120 Vai, (x1)77 2 Vi(x1)
and fork =-1,-2,...,
1 2-krp Y
f Pk v ()
x (Vo (1) + V(x1,%))" (275 + d (1, %))
(5.40)

< pkx(1-1/p),~kn(1/p-1), v/, (xl)l/i’—l'

~

5{ L L j_}
Vox (xl)P’l 3 Vot (21 )Pfl Jlyp
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Choose y' € (0,y) such that y’ > n(1/p-1), —s —«(1-1/p),. From the above estimates, it
follows that

_ 1/q
1 > ! ,
1A N800 S 1 ||c;<ﬂ,r>—_{ 2KCPa 4 N7 oklsty —"<1/P—1>++K<1—1/p>+]q}

" Vi (xp)' TP kZ:O k;m (5.41)

S llasy-

Thus, G(B,7) C B; ,(X), which together with (ii) implies that GB,y) c P;,q (X).
Property (v) is a simple conclusion of Proposition 3.15, which completes the proof of
Proposition 5.10. O

We next give a Lusin-area characterization for Triebel-Lizorkin spaces F;,q(%), which
will allow to establish some relations between the Triebel-Lizorkin spaces F;rq(,K), the atomic
Hardy spaces of Coifman and Weiss in [28], and the Hardy spaces H” (X) in [48].

Definition 5.11. Lets € R, a>0, g€ (0,0],and lete; € (0,1], €2 >0, €3 >0, € € (0,€1 A ez].
Let {Sk}iez be an (€1, €2, €3)-ATL. For k € Z, set Dy = Sk — Sk-1. The Lusin-area function (also
called the Littlewood-Paley S-function) S5 ,(f) for any f € (G5(B,y))' with0 < B, y < e and
x € X is given by

. . du(y) "
Sq,a (f) (X) = {Zfd(x,y)<a2k2k qle (f) (y)quank?x) } ’ (542)

keZ

where the usual modification is made when g = oo.

Remark 5.12. (i) By Lemma 2.1(vi), if we replace V-« (x), respectively, by Vo« (y), V- (y) +
Vap# (%), Vor(x), Vou(y), or Vpr(x) + Vou(y) in the definition of Sj,(f), then the
corresponding Littlewood-Paley S-functions wa( f) are pointwise equivalent. This is often
useful in applications.

(i) It is easy to see that S) (f) is a discrete version of the corresponding Littlewood-
Paley S-function in [48]. '

Theorem 5.13. Let ¢; € (0,1], €2 >0, €3 >0, € € (0,€1 A €2), and let {Sk}ey be an (€1, €2, €3)-
ATI. For k € Z, set Dy = Sk — Sk-1. Let a > 0, [s| <€, p(s,e) <p < oo, p(s,€) < g < oo, and let
S5 4(f) be as in Definition 5.11 for any f € (G5(B, 7))’ witﬁ B, y as in (5.35). Then f € F; (X) if
and only if f € (GS (B,Y))' for some B, y as in (5.35), and S4a (f) € LP(X). Moreover, in this case,

I les, 00 ~ 11S5,a(F)llrx)-

Proof. We use the notation as in the proof of Proposition 5.4. It is easy to check that for any
fixed constant C > 0,

sup | (DiDy) (z,y5")|
zeB(Zk ,C2k)

. " (5.43)

<2_|k_k,|€, 1yl 1 *
Vo) (257) 4 Vo (Y )4V (227, i) (2709 wd (257, 57

~




Yongsheng Han et al. 123

Using this to replace (5.10) and then repeating the proof of (5.8) in Proposition 5.4 yield

N(k,) q 1/q
‘ {ZZ > stq[ sup |Dk(f)(z)|] XQE,V}
keZrely v=1 zeB(ZK” ,C2k) Lr(X)
N(k) q /g (5.44)
~ {Z Z Z 2ksq[ inf |Dk(f)(z)|] XQ’J’“}
kezrel, v=1 zeQr” 1P(X)
~ 1 flleg, ),
which shows that
”SZa(f) ”LP(%)
N(k,7) q 1/q (5.45)
< {Z Z Z 2ksq[ sup |Dk(f)(2)|] XQ’;"’} ~ ||f||F';,q(x)-
keZ el v=1 zeB(zK C27k) LP(X)
On the other hand, noticing that if x € B(zf’v, min{a,1}C;2-*+)), then
B(zl;’v,min{a, 1}C27 ) c [y e £ :d(x,y) <a27F}, (5.46)
therefore, by Lemma 2.19,
N(k,T) d 1/q
. u(y)
8 alF)(0) = | 24| D () ()" ()
e f é% ; d(x,y)<a2* | f v | XQT VaZ‘k (x)
N(k,7) q 1/q
> 2ksd inf Di(f)(y) b ey ()
{IEZJ;Q ; [yEB(Zi’V,min{a,l}Cﬂ(k*j))l f v | XB(ZT nin(s,1}C727€7)
(5.47)
which together with the following estimate
1/q
‘ {szSQIDuf)lq}
kez Lr(X)
N(k,T) q 1/q
N {Z Z Z zksq[ . 'inf _ |Dk(f)(y)|] XB(zﬁ/V,min{a,qu<k+f))}
keZ tel, v=1 y€B(z7" min{a,1}C;2-k+N) (%)
(5.48)

yields that ||S'§,a( ey 2 £ £, (%) Using the notation as in Lemma 5.3, we can verify the
estimate (5.48) by repeating the proof of (5.8) in Proposition 5.4 and replacing Lemma 5.3 by
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the following estimate that for any fixed constant C > 0,

N(k,T) 1 zf(k/\k’)e

kv 7
K(@) W i
TEZIk ; T szwk) (x)+V27(k’Ak) (y’;ﬂ’)+V(x, y’;,V> (2 (k/\k).,.d(x, yl_;,V))S T
5.49
, N(k,7) v ( )
< kAR —kIn(1-1/7) {M<Z > |al7("v|rXB(zk/V cz-k)> (x)} ’
T€l v=1 o

which can be proved by the same way as the proof of Lemma 5.3 via the following facts
u(B(zr”,C27)) ~ p(Qr") and

u(B(25”,C27%)) gk ey (2) ~ Vark (2) X b o) (). (5.50)

This finishes the proof of Theorem 5.13. O

Definition 5.14. Let all the notation be as in Definition 5.8. The Hardy space H? (X)) when n/ (n+
€) < p < 1isdefined to be the Triebel-Lizorkin spaces F 2/2 (X), withnorm || f|| e (1) = [ f |l £ (0

We now recall the definition of atoms on spaces of homogeneous type in [28].

Definition 5.15. A function a on X is called an H” (X)-atom if

(i) supp a C B(xy, r) for some xy € X and some r > 0;
(ii) llallz2ce) < [p(B(xo, )] 7;
(iii) [ a(x)du(x) = 0.

If (i) to (iii) apply, we also say that a is an HP (X)-atom supported on B(xy,r).

Theorem 5.16. Assume that € and B, y are as in Definition 5.8. If n/(n + €) < p < 1, then
f € HP(X) if and only if there exist a sequence of numbers {A}i, C C with 32| k]P < o0
and a sequence of HP (X)-atoms {ay )y, such that f = 32 Acax in (GE(B,y))'. Moreover, in this
case, || f |y ~ inf{(Z20AklP) P}, where the infimum is taken over all the above decompositions

of f.

This theorem can be proved by a literal repetition of Theorem 2.21 in [48], with Lemma
2.22 therein replaced by Theorem 2.6 in this paper. We omit the details.

Remark 5.17. Theorem 5.16 shows that the Hardy spaces defined here are the same as those
in [48]. Moreover, by [48, Remark 2.27], we know that the Hardy space H'(X) also coincides
with the atomic Hardy space H,(X) of Coifman and Weiss in [28]. Moreover, when n/(n +
€) < p < land X is an Ahlfors n-regular metric measure space, H” (X) also coincides with the
atomic Hardy space H,(X) of Coifman and Weiss in [28]. However, if A is a general space
of homogeneous type, it is still unclear so far to us if H? (X) = Hft(%) when p < 1; see [48,
Remark 2.30].

We now recall the definition of the Lipschitz space Lip (X) with s > 0; see [28].
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Definition 5.18. Let s > 0. The Lipschitz (or Holder) space Lip (X) is defined to be the set of all
functions f on X such that

(x) - f(v)
||f||Lips(,K) = ii@% < 0. (5.51)

Observe that these classes are rather Lipschitz (or Holder) classes with respect to the
measure distance p(x,y) = inf{u(B) : x,y € B, B a ball}, not the distance d.

Following Coifman and Weiss [28], we immediately obtain from Theorem 5.16 in this
paper and [48, Remark 2.27] the duality between H'!(X) and BMO(X) and between H:t (X)
and Lip, Jp-1 (X) when p < 1, which is [48, Corollary 2.29].

Theorem 5.19. (i) The space BMO(X)/N is the dual space of H'(X), in the following
sense: if f = XCoMax € HY(X) is as in Theorem 5.16, then for each ¢ € BMO(X),
limy - o ZkN:O)‘k,[_xak (x)g(x)dp(x) is a well-defined continuous linear functional L, : f — (f, &)
with norm 3 |glleMo)-

Conversely, each continuous linear functional £ on H'(X)has the form £ = L, for some
g € BMO(X) with ||gllmocx) < [1£]l-

Moreover, L, = 0 if and only if g € N.

(ii) Assume that € is as in Definition 5.8, n/(n+e€) <p <1,and s =1/p — 1. Then Lip (X)
(more precisely, Lip (X)/N) is the dual space of HP (X) in the sense of (i).

Remark 5.20. 1t is easy to see that if X = R" and y is the n-dimensional Lebesgue measure,
then C"(X) = Lip,(X) with equivalent norms. Thus,

B (X) = FIs (X) = Lip (X) (5.52)

with equivalent norms. Therefore, the dual space of HP (X) withn/(n+e€) <p < 1is the space

BZJ},@”‘” (X); see also [3, Theorem 2.11.3(ii)]. However, for a general space X of homogeneous
type, it seems that C"(X) # Lips (X), unless u(B(x,r)) ~ r" for all x € X and r > 0, namely,
X is an Ahlfors n-regular metric measure space. Thus, one cannot expect that [3, Theorem
2.11.3] still holds when X is a general space of homogeneous type considered in this paper,
which demonstrates an essential difference between function spaces on general spaces of
homogeneous type considered in this paper and those on Ahlfors regular metric measure
space.

Using Proposition 5.10 and Theorem 2.6, we obtain the following density property of
B (X) and F; (X).

Proposition 5.21. Let €1, €2, €, and let |s| < € be as in Definition 5.8. Then Gb(el,ez) is dense in
B (X) when p(s,€) <p < oo and 0 < q < oo, and in F;, ,(X) when p(s,€) <p, q < .

Proof. By similarity, we only verify the conclusion on B; (X). Let f € B; ,(X) with s, p, qas
in the proposition. By Proposition 5.10(iii), we know f € (dg (B, 7)) with B, y asin (5.23). Let
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{Di }kez be an ATI with bounded support as constructed in Theorem 2.6. By Theorem 4.13
and using the notation as in Theorem 4.12, we have

=) N(K' 1)

f@= 3 3 3 wQ)De(xyi)De()(ve") (5.53)

K=o rely v=1

in (GS(,B, 7)) It is easy to check that for any fixed k' € Z and 7’ € Iy, N(k',7') is a finite set of
indices. For any fixed k' € Z, choose {I ,1(\7 } Nex such that I ]1(\,] clI ,i\,] T ,1(\,] is a finite set of indices,
and I} — Iy as N — oo.If for any N € N, setting

N(K'7")

e =3 3 3 w(QE")Di (x, yh ) D (F) (¥, (5.54)

KIEN rery V=1

then it is easy to check fn € Gb(el,ez). From the proof of Proposition 5.4 together with
Remark 5.5, it is easy to see that || f — fnllg;, (x) — 0,as N — oo (here we need p,q < o).
Thus, éb(el, €) is dense in B;rq (X) with s, p, g as in the proposition, which completes the
proof of Proposition 5.21. O

We now discuss the boundedness on B} (X) and Fj; (X) of the singular integral
operators introduced by Nagel and Stein in [44]. To state their definition, we need first to
recall the notion of a normalized bump function on X. A function ¢ on X is said to be an
e-bump function associated to a ball B(xg, 6) for some xy € X and 6 > 0, if it is supported in
that ball, and if there exists a constant C > 0 independent of ¢ such that [|¢||cix) < C67" for
all 7 € (0, €]. Notice that then ||¢||;»x) < C (see Remark 2.14(ii)). If C = 1 in this definition,
then such a bump function is called a normalized e-bump function for the ball B(xo, ).

Let € € (0,1]. A linear operator T, which is initially assumed to be continuous from
CZ (X) to (CZ (X)) foralln € (0,€), is called a singular integral of order € if T has a distributional
kernel K(x,y) which is locally integrable away from the diagonal of X x X, and satisfies the
following conditions.

(I-1) If ¢, ¢ € C}(X) have disjoint supports, then

Ty, ) = HMI«x,y)so(y)«p(x)du(x)dy(y). (5.55)

(I-2) If ¢ is a normalized e-bump function associated to a ball of radius r, then
ITollenxy < Crforall 17 € (0,€), where C > 0 is independent of ¢. More precisely,
for each 7 € (0,¢), there is another 77 € (0,€) and a constant C;5 > 0 so that

whenever ¢ is a CE(%) function supported in a ball B(xo,r), then r[|Tep||¢nx) <
Coiisup,, 5 7 lpllen x)-
(I-3) There exists a constant C > 0 such that

(I-3); forall x,y € X with x#y, |[K(x,y)| < C(1/V(x,y));
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(I-3); forall x, x', y € X with d(x,x") <d(x,y)/2and x #y,

d(x,x')*

Ko, = K, y) ] + K (y,) = K(v,%)] < Cr=na .

(5.56)

(I-4) Properties (I-1) through (I-3) also hold with x and y interchanged. That is, these
properties also hold for the adjoint operator T* defined by (T'¢, ¢r) = (¢, Tgs).

Remark 5.22. We remark that if T is a singular integral operator of order ¢, then T extends
to a continuous linear operator from C(X) to (Gy(11,7)) for all 7 € (0,€] and all y > 0 by
Proposition 2.12.

We also claim that for f € éb(n, 6) with 7 € (0,€¢] and 6 > 0, Tf can be defined as a
distribution in (G¢(B,y))' with 0 < 8, y < e. We first define Tf as a distribution in (G(8,y))’
with 0 < f < e and y > 0. In fact, for any given § € (0, €], noticing that éb(ql,é) C éb(qz,6)
when 71 > 7, without loss of generality, we may assume that 7 < f. Assume that supp f C
B(xo,r) for some xp € XL and r > 0. Let ¢ € CZ (X) such that ¢s(x) = 1 when x € B(x¢,2r) and
¢(x) = 0 when x ¢ B(xo,4r). Choose any g € G(f,y) with0 < f < e and y > 0. It is easy to

check that ¢gg € CZ (X). Notice that Gy (1,6) C CZ (X). Both facts show that (Tf, ¢ g) is well
defined. On the other hand, we define (T f, (1 - ¢)g) by

(Tf,(1- ¢)g) = Hx [KGoy) =K (o x0)l ) (1 ¢ 0)sdudp(y). (557)

By (I-3); and Lemma 2.1(i), it is easy to check that
KTf, A -¢)g)| S fllwoligl=w S fllams lglawy- (5.58)

Moreover, if g € G (B, ), since f%f(y)dy(y) = 0, we then obtain
(Tf,(1-¢)g) = J‘J‘x KEf® (1-¢(x))g(x)du(x)du(y), (5.59)

which coincides with (I-1). Furthermore, it is easy to verify that (Tf, ¢g) + (Tf, (1 — ¢)g) is
independent of the choice of ¢. Thus, we can define T f by

(Tf, &) =(Tf,pg) +(Tf,(1-¢)g). (5.60)

In this sense, we have Tf € (G(f,7))' with 0 < f < e and y > 0. Now for any g € G5(f,y) with
0<pBy<elet{gn), C G(e, €) such that lgn — gllgpy)y — Oasn — co. We then define
Tf e (GS(B,y)) with0 <, y <eby(Tf,g) =lim,_(Tf,g). Itis easy to check that (Tf, g)
is independent of the choice of {g,}, .y C G (e, €). In this sense, we have T fe (Gg(ﬁ, 7)) with
0<p, y<e

In what follows, for any € € (0,1] and 0 < 8, y < €, we set

Gou(B.Y) = {f € G5(B.Y) : f has bounded support}. (5.61)
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Theorem 5.23. Let €1, €2, €, and |s| < € be as in Definition 5.8. Let T be a singular integral of
order e satisfying (I-1) through (I-4). Then T is bounded on B;,q(JC) when p(s,€) < p < oo and

0 < g < oo and bounded from B;rq (X) N Gpler, ) to B;,q(ﬂé) when max{p, q} = oo, and T is also
bounded on P;,q(%) when p(s,€) < p, q < oo, and bounded from P;/q(k) N Gu(e1, €) to F;/q(%)
when p(s,e) <p < oo and q = oo.

Proof. By Propositions 5.21 and 5.10(vi) together with a density argument, to prove the
theorem, it suffices to verify the conclusions of the theorem only for all f € G(e),b (B, y) with
0 < B, v < easin (5.35). Let {Sk}rez be an ATI with bounded support as constructed in
Theorem 2.6. Put Dy = Sy — Si_1 for k € Z. We then interpret Dy T = T'(D} ), where D} (x,y) =

Di(y, x) for all x, y € X (cf. Lemma 3.12). By Remark 5.22, we have DT € (GS (B,7))". On the
other hand, let f € éfg,b(ﬂ' y). By Theorem 4.12, we have

N(K't")

f@=33 3 wQ")Du(zyt” ) D)), (5.62)

Kezvely v=1

where the series converges in G¢(f, y) and all the notation is as in Theorem 4.12. Thus, for all
x € X, we have

N(K', ")

DiTf(x) =3, >, >, w(Qx")(DkTDi (-, yn™))(x) De(f) (ys™). (5.63)

Kezrely v=1
Fork,k €Z, 7 €I, v =1,..., N(K,7'), yl;,,’vl € QI;,,’V,, and x € X, let
J (2, y™) = (DATDw (L y5™)) (). (5.64)
We now claim that for any fixed 1 € (0, ¢),

7oy

_ ' 1
< 2‘|k—k’11< 2 () > 1 . (5.65)
~ 2-(kAK') 4 d(x, yl;,’,v’) Vz—(k/\k’) (x) + V2—(k/\k’) (y’,;,,'v,) + V(x, yl;,’,v’)

To verify (5.65), by symmetry, we only need to verify that if k < k/, then

! J ! 1
K\ | < k=K
Gy S 25 (5.66)

and moreover, if d(x, yf,”’ ) > 257k then

7oy < 2 1 (5.67)
T Nd(x YY) Ve yEY)

r It
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To see this, for y € X, set
Y(y) = ’[ K(z,y)Di(x, z)du(z). (5.68)
pe

Notice that for any fixed x € X, Di(x, z) is an adjusted bump function in z associated with
the ball B(x,2>%). Conditions (I-2) and (I-4) show that for any fixed 7 € (0,¢),

—kn : < -
27 len ey S Vo (x) (5.69)
which further implies that for all y € X,
o d(y, yk,”vl)" 1
_ k' < T
|1P(y) IP‘(y’r’ ) | ~ 2—k11 Vz—k (X) . (570)
Thus,
795" = || ¥ @)De(y )ty
- Ux () = ¥ (5D (0 ) (w)| (571)
< 2<k—k’)11#_
~ Vo (x)

That is, (5.66) holds.
On the other hand, when k < k', z € B(x,2*%), y € B(y’;,’v ,27KY and d(x, y:”’) >
257k, then by Condition (I-3), we have

. 2—k’e
K(zy) - K(zy")| < — —, (5.72)
| (o)l d(x, ys™ )V (x, ye™)

which yields that

17 (x| = fo KG9 =K (295 ) Dz, 00D (0,5 ) )

K n
SJ 2 1 oy 1 N4
d(x,y:") /) Vo)

namely, (5.67) holds. Thus, (5.65) holds.

Notice that the estimate (5.65) is analogous to the estimate (5.10) in the proof of
Proposition 5.4. We can further proceed from here on exactly as in the proof of Proposition 5.4
in order to obtain the boundedness of T on Bf,,q (X) and F;,q (X). This finishes the proof of
Theorem 5.16. O

(5.73)
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5.3. Inhomogeneous Plancherel-Pélya inequalities and
definition of B, ,(X) and F; ,(X)

Throughout this and the next subsection, p(X) can be finite or infinite. We first introduce
the norms in B;, (X) and Foq (X) via certain IATI and then verify that these norms are

independent of the choices of IATIs and spaces of distributions; see [37]. To this end, we
need to establish inhomogeneous Plancherel-Polya inequalities; see [80]. In what follows, for

any dyadic cube Q, we set mg(f) = (1/,u(Q))fo(x)d,u(x).

Definition 5.24. Lete; € (0,1], e2 >0, e3 >0, € € (0,e1Ae2), and let {Sk}icz, be an (€1, €2, €3)-
IATI. Set Dy = Sg and Dy = Sy — Sy_1 for k € N. Let {Qg”’ ctely,v=1,...,N(0,7)} witha
fixed large j € N be dyadic cubes as in Section 4.

(i) Forall f € (C}S(ﬂ,y))' with0 <, y<e, |s| <€, p(s,€) <p<oo,and 0 < g < oo, we

define
N(0,7) 1/p . 1/q
£ 11835000 = { > #(QY) [mges ( Do(f)|)]p} + {szsq”Dk(f)”Zwo}
Tely v= k=1

(5.74)

with the usual modification made when p = oo or g = co.

(ii) For all f € (G5(B,7)) with0 < B, y <e, |s| <€, p(s,e) <p < oo, and p(s,€) < q <
oo, we define

N(0,7) 1/p . 1/q
Wi 0= {23 m@) g (001} [{ S210ipr]
Tely v=1 k=1 Lr(X)
(5.75)

with the usual modification made when g = oo.
The following theorem is the inhomogeneous Plancherel-Polya inequalities.

Proposition 5.25. Let €; € (0,1], €2 >0, €3 >0, € € (0,€1 A €2), and let {Sy}ycz, and {Py}yez,
be two (€1, €2, €3)-1ATIs. Set Dy = Sg and Qp = Py, and Dy = Sk — Sk_1 and Qr = Pr — P4
fork € N. Let {QY” : T € Ip,v = 1,...,N(0,7)} with a fixed large j € N be dyadic cubes as in
Section 4.

(i) Forall f € (G5(B,y)) with0< B, y <e, |s| <e p(s,e) <p < oo,and 0 < g < oo,

N(O,7) 1/p
{ 557 W) e Do(f)l)]p}

Tely v=1
1/q

w N (k,7) P v
S (3 S e seipunel] ) ]
k=1

Tel v=1 zte_;/"
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z
S

&)
a

1/p
{ (@2 e Qo(f)l)]”}
T€ly v

- N(k1) "\*
. {szsq<z S #(Q’;"’)[ ig{lek(f)(ZH] > }
T€l) S

k=1 v=1

1]
—_

1/q

(5.76)

with the usual modification made when p = co or g = .

(ii) Forall f € (C}g(ﬂ,y))' with0< f, y<e, |s|<e p(s,e) <p <oo,andp(s,e) <q< oo,

N(0,7) 1/p
{ 3 ST (@) e Do(f)l)]”}

Telp v=1

Nk, 1/q
{ZZ > stq[sup|Dk f)(z)|] kav}

k=171l v=1 zeQk” Lr(X) (5.77)
N, p
~ {Z D H(Q) [mgon ( Qo<f>|)]”}
Telp v=1
N(k,T) q 14
{Z Z Z ZkSq[ 1n£v|Qk(f)(Z)|] XQI;,V}
k=17el, v=1 2€Qy’ LP(X)

with the usual modification made when q = oo.

Proof. We first verify (5.76). By Theorem 4.16 together with Remark 4.17, there exists a family
of functions {Dy (x, y) } ., such that for all f € (G (B,y)) with0< g, y<eandall z € X,

N(OT)

f2) = f Do, ) du() QY (f)
T’EIU v'=1

5.78
o N(K,7') (5.78)

33 X QY )De (2 v )Que(H ("),

kK=17€lpy v'=1

where QS;”{ denotes the integral operator with kernel

QY (z) = @J‘QWQO(% z)dp(u) (5.79)
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and { Dy }kez, satisfy the same conditions as {Dy }kez, in Theorem 4.14. From (5.78) together
with

|QT’1(f)| - |f QT’l(Z)f(Z)d.u Z)

f Qo(f)(w)dp(u) (5.80)

e

<m Ov(

it follows that

mep- (D)) = Wj |Do(f)(2)|du(z)

N(0,7")

<Z Z mov’

T'ely v'=1

1 -
(10N~ s [ N [ IICEDEIETETS

N(K )

Y Z Qe (F) (W™ ) I(QE™) oG fQM|(D015k/><z,y’;,"”’)|dy<z>

kK'=17ely v= T )

=71+ 2.

(5.81)

By Lemma 3.19 together with Remark 3.3, we have that for any ¢ € (0,e1 A ep), all k' € Z, and
allz,y € X,

~ ) 1 1
DoDy)(z,y)| <275 : 5.82
|( 0 k)( 1/)| V1(Z)+V1(y)+V(Z,y) (1+d(2,y))€ ( )
From this together with Lemma 2.1(iii), it follows that
sup sup |(D0D0)(z DI 1nf inf ! ! (5.83)
Q¥ yegl o Vi(2) +Vi(y) + V(z,y) (1 +d(z,y))*
Thus,
N(0,7) 0 1 1
Z1 < m o A inf -
b Trzd:o vz::l Qi ( T 2eQl yeQ?” Vi(z) +Vi(y) + V(z,y) (1+d(z,y))

(5.84)
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Therefore, if n/(n +€) <p <1, by (5.5) and Lemma 5.2, we then have

N(,7) 1p N . o 1/p
{2 S wemer] {3 S g G0y k@ meEn

Tely v=1 rely v'=1

N(,7 1/p
{Z Z)MQ"")[m Ov(IQo(f)I)]} ,

T'ely v'=1
(5.85)
where in the last step, we used the fact that for any yg,’vl € ngvl,
Vi(ye") ~ (@) (5.86)
If 1 < p < oo, by Holder’s inequality and Lemma 5.2, we have
N, ) N 1 1 1/p
Z » v 1nf inf ,
1,-\.,{7%0 .,,/Z 0 QO(f)')] /’l(Q ) T yeQW V1(Z)+V1(]/)+V(Z y) (1+d(z y ) }
(5.87)

which together with Lemma 5.2 again yields that

N(0,7) 1/p 0, 1/p
{Z >, w(@Q) [lep} {Z Z () [mpy ( ]”} . (5.88)

Telp v=1 T'ely v'=

This is the desired estimate.
From (5.82), it also follows that

~ Ke 1 1
Sup |(DODk’) (Z/ | < 2 K lngv B K K '\ € 4
Q™ zeQY" Vi (z) + Vi (yT, )+V(zy.") L+d(z,y."))
(5.89)
which proves that
© N N(K' ") v
SRS X k@I D)
k'=1 Tely V= (5 90)
. 1 1
x inf

R

0 VA(2) + Vi) + V) (e d(z,5E7))
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Notice also that by Lemma 2.19 and (1.3), for any y’;,,’v, € Q’;,,’v/, \% (y’;,/’”,) < Z‘k/"y(Q’T‘,"”,). If
p(s,e) < p <1, then this fact together with (5.5) and Lemma 5.2 proves that

N(0,7) 1/p NK 7 a/p\ V4
{ 55 u(szz]P} {sz’sq<z S W@ e (D >|> } ,
Telp v=1 k' Tely  v'=1
(5.91)

where in the last step, we used (5.5) when q/p < 1 or Holder’s inequality when g/p > 1.
If 1 < p < oo, then by Holder’s inequality and Lemma 5.2, we first have

{zz-wz“z (@) E

Tely V=1

. 1 1 }I/P
% lng k' k' ’
220V Vi (2) + Vi(y™) + V(z,y5") (1 +d(z,v57))°

(5.92)
where max{-s,0} < € < e. This together with Lemma 5.2 again shows that
N(@©7) Up NK,) arpy M
{Z > Q) [zz]”} {Z 2"”< DINPINICH )IQkf(f)(y’L”)lp> } :
T€ly v=1 Tely V=
(5.93)

where we used (5.5) when gq/p <1 or Holder’s inequality when q/p > 1.
All the above estimates together with the arbitrary choice of yl;,,"’, yield that the first
term in the left-hand side of (5.76) is controlled by its right-hand side.

We now verify that the second term of the left-hand side of (5.76) is also controlled by
its right-hand side. To this end, by (5.78),

N(,7)

PAEIS S 3 mge (AN [ (DKo )|ty

T'ely v'=

N(K' ) .
c S S W@ OB e @y Y

k'=17ely v'=1

EYl +Y2.
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The estimate for Y5 is as in (5.7), and we only need to estimate Y;. In this case, by Lemma 3.19
together with Remark 3.3, for any € € (0, €1 A €2), we have

sup Yi
ZEQI;N
k N 1 1
<27 m oy inf inf ,
~ Téﬂ VZ Q) (|Q0(f)|).u(Q )zeQ‘,"" yeQﬂ;”' V1(Z) + Vl(]/) + V(Z,y) (1 + d(z,y))e

(5.95)

and therefore, if n/(n+¢) <p < 1and s < ¢, by (5.5) and Lemma 5.2 together with (5.86), we

obtain
((3 E e [zer] )]

Tel, v=1 zle’v (596)

1/q

N(0,7") 1/p
{Z > QY [ng;v’(|Q0(f)|)]p} ,

T'ely v'=1
while when 1 < p < oo, by Holder’s inequality and Lemma 5.2,

(S35 wan ] ) )

Tel, v=1 zeQ’;’v (5 97)

1/q

N, 1/p
{23 e denr|

T'ely v'=

All these estimates imply that the left-hand side of (5.76) is controlled by its right-hand
side, which together with the symmetry verifies (5.76).

Similarly, to establish (5.77), we only need to verify that its left-hand side is controlled
by its right-hand side. To this end, the estimates for Z; are still valid for the current case. To
estimate Z,, by Lemma 5.3 and (5.5) when g < 1 or Holder’s inequality when 1 < g < oo, we
have that for p(s,e) < r <min{1,p,q},

{Z N(g n(QY") Zz]”}l/p

Tely v=1
0 N(K' ") q/r 1/q
S {Z[ <Z Z 27| Qi (F) (v )Ika~>] } (5.98)
k'=1 Tely v'= )
) N 7 . - 1/q
S {Z 2 2 27N (v >|ka;,vf} ,
k=17ely v=1 - -

where in the last step, we used Lemma 3.14. This is the desired estimate.
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The estimation for Y5 is as in the proof of (5.8). To finish the proof of (5.77), we still
need to estimate Y;. In what follows, we set a = 1 whenp/q < 1and a = q/p whenp/q > 1.
The estimates (5.95) and (5.5) when p/q < 1 or Holder’s inequality when p/g > 1 show that

Nk q qp
{Z > ZkSq[sup Yl] kav}
k=17€elx v=1 zeQT LP(X)
0 N(k,T)
S/ sz(s—e)pa Z Z ‘I/l(Q

k=1 Tel v=1
N(0,7) 1 1 P
0/ nf f .

I:T%O VZ_ .”(Q )mQT’ (|Q0(f)|)zé in o ’V1(Z)+V1(_1/)+V(Z ]/) (1+d(z, )) ]

(5.99)

Ifn/(n+e) <p<1,by (5.5),s < e and Lemma 5.2 together with (5.82),

P N(,7")

<2 Z (@) gy (1Qu(HDI”;

LP(X) Tely V=

© N(k,1) q 1/q
{ZZ Z stq[squl] XQkV}

k=171ely v=1 zeQk”

(5.100)

and if 1 < p < oo, by Holder’s inequality and Lemma 5.2,

N (k) q Vayp N7
DI ER] EEE P RS b SO (ST o
=1 7€l »=1 zeQk” LP(X) Tely V=
(5.101)
which completes the proof of (5.77), and hence, that of Proposition 5.25. O

Remark 5.26. We point out that Remark 5.5 applies in a similar way to Proposition 5.25.

Similarly to Proposition 5.6, using Proposition 5.4, we can verify that the definitions of
I, x) and ||| 5, x) are independent of the choices of IATIs. We omit the details.

Proposition 5.27. Let all the notation be as in Proposition 5.25.
(i) Forall f € (G§(B, 7)) with0 < p, y<e,|s| <e p(s,e) <p<oo,and 0 < q < oo,

NO,7) 1/p 1/q
{ >3 u(QY) [m o (|D0(f)|)]p} {Z 259|| D (f) ”LP(%)}

Tely v=1 k=1
(5.102)
1/q

N(0,7) 1/p
~ {Z >, y(QS"’)[ng»(|Qo<f>|)]”} {szsqllemllw}

Tely v=1

with the usual modification made when p = oo or q = co.
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(ii) Forall f € (C}g(ﬂ,y))' with0< P, y<e, |s| <€ p(s,e) <p <oo,andp(s,e) <q< oo,

N(0,7) 1/p - 1/q
{ > > #(QQ’”)[ng,v(IDo(f)I)]”} + {szSﬂDk(f)W}
k=1

Tely v=1 LP(X)
N(O,7) 1/p - 1/q
~ {Z > ﬂ(Q?’”)[mgsrv(lQo(f)I)]p} + {Zst"le(f)lq}
Tely v=1 k=1 LP(X)
(5.103)

with the usual modification made when q = co.

We now verify that the definitions of the norm |-||;,(x) and the norm ||-[|F;, 1) are
independent of the choice of the underlying space of distributions as follows.

Proposition 5.28. Let all the notation be as in Definition 5.24.

(i) Let |s] < e, p(s,€) <p < oo,and 0 < g < co. If f € (G5(P1,11)) with

max{O,—s+n<%—1> }<ﬂ1 <eg, n(%—l) <1 <Eg (5.104)

and if || f || By, 1) < oo, then f € (Gg(p2, 12))' for every Ba, ya satisfying (5.104).

(ii) Let |s| < €, p(s,€) <p < oo, and p(s,e) < q < oo. If f € (Gg(ﬁl,)q))' with B1, y1 as in
(5.104), and if || fllp;,,x) < oo, then f € (G5 (B2, y2))' for every Bo, v, satisfying (5.104).

Proof. Similarly to the proof of Proposition 5.7, we only need to verify (i). Let ¢ € G(¢, €) and
all the notation as in Theorem 4.14 with N = 0. We first claim that for k € Z,,

D )| S 210t G ) (T A (5.105)
In fact, if k € N, (5.105) is just (5.24). If k = 0, then
(Do y), )
= Uxﬁo(z,y)qf(Z)d#(Z)
S”(p”q(ﬁz’”)jxV1(2)+V1(11/)+V(z,y) (1+d(1z,y))e Vl(x1)+1V(x1,z) (1+d(i1,z))” Ap(z)-

(5.106)
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Notice that Vi(x1) + V(x1,2) ~ Vi(x1) + Vi(2) + V(x1, 2). By Lemma 4.4, we have

. 1 1 1
. <
(Do, v), )| < llwllaipyn Vi) F Vi)V (wn g) { a0 - a +d(x1,y))”}

1 1
9 llG g *
PGB Gy + V(e y) (L+ d(xn, )

(5.107)

which shows that (5.105) also holds when k = 0.
From Theorem 4.16 together with (5.80), (5.105), and Lemma 2.1(iii), it follows that

[(f,¢)]

N(0,7) N(k,T)
f (Dol y), ‘P>dﬂ(]/)D0v(f)+ZZ > (@) (Di (L yr™), ¢)Dic(f) (™)
TGIQ V= 1

k=17el v=1
N(,7) o 1 1
SJ“(P”G([}Z/YZ){ZI Zl ,u(QT' )ng,V( DO(f)l) ( ) +V(X1 ) (1 +d(x1 ,V))Yz
N(k,T) 1 1
+ZZ kﬂz; Zl ‘[,[(Q )|Dk(f)(y v)| 1) V(X1 ,1)) (1+d(X1 ka))YZ}
(5.108)

Notice thatif p <1 and y, > n(1/p — 1), then (5.30) with f, = 0 still holds. Thus, when
p <1, by this fact and (5.5), we have

N(,7)

|| < ||(P||c,(ﬂz,rz>{z > u(QY) [mgor(

Telp v=1

Do(f)])]”

N(k,T) vp
+Zz [B2p-n(1-p)+sp] 2"3”<Z >, u(QF )|Dk(f)(y¥'v>|p>}
Tel v=1

S Nl Lf NlBs ),

(5.109)

where in the last inequality, we used the assumption that f, > —s + n(1/p — 1) whenp <1
and (5.5) when q/p < 1 or Holder’s inequality when q/p > 1
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If 1 < p < o, by Holder’s inequality, we have

N(0,7)

LADIPS ||<lf||c<ﬂz,m{<z 2 m(Q") [ (

Tely v=1

1/p
Do(f)|)]p>

3 U - L >]W
A Vi) + V(e y) (Lt d(e, ) 1Y

) s k 1/p (5.110)
; Zz-kﬂz(Z > u(QT”>|Dk<f><%"’>|”>
k=1 Tl v=1

) U 1 1 » )]1/19’}
KVi() +V(xy) (TrdGy)” Y

S ”‘/’”G(ﬂz/)’z)”f”BZ,q(JC)'

here, again, we used the assumption f, > —s in this case, and (5.5) when g < 1 or Holder’s
inequality when g > 1.

Using (5.109) and (5.110) together with an argument similar to that used in the proof
of Proposition 5.7 then completes the proof of Proposition 5.28. O

We can now introduce the Besov spaces B, (X) and Triebel-Lizorkin spaces F;,q(%).

Definition 5.29. Let €1 € (0,1], €2 >0, €3 >0, € € (0,€1 A €2), and let {Sk}icz, be an (€1, €2, €3)-
IATI. Set Dy = Sg and Dy = Sy — Si_1 for k € N. Let {Qg"’ cTt€ly,v=1,...,N(0,7)} witha
fixed large j € N be dyadic cubes as in Section 4.

(i) Let|s| < €, p(s,€) <p < oo, and 0 < g < oo. The space B .(X) is defined to be the set
of all f € (G5(B,y))', for some B, y satisfying

max s,O,—s+n<1—1> <p<e, n<1—1> <y<e (5.111)
p n p +
such that
N(0,7) 1/p . 1/q
0,v S
£ 1l5.,00 = {Z >0 u(Q) [mgon ( Do<f>|)]”} +{ 22" qIIDk<f>||Zp<x)} <o
Tely v=1 k=1
(5.112)

with the usual modifications made when p = oo or g = .
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(ii) Let [s| <€, p(s,€) <p < oo, and p(s,€) < g < oo. The space F;, ,(X) is defined to be
the set of all f € (G5(B,y))' for some f, y satisfying (5.111) such that

N(©O,) 1/p - 1/4

||f||F5,qu<>={Z > #(Qg”)[mgﬂfv(Do(f)l)]”} + {ZZkSqIDk(f)I"} <oo
tely v=1 k=1 L)

(5.113)

with the usual modification made when g = cc.

Remark 5.30. Propositions 5.27 and 5.28 show that the definitions of the spaces B; ,(X) and
F, ,(X) are independent of the choice of inhomogeneous approximations of the identity as
in Definition 2.2 and the distribution space (G§(f,7))" with p and y satisfying (5.111). We
also remark that to guarantee that the definitions of the spaces B (,X) and F q(ﬂ() are
independent of the choice of the distribution space (G§(f,y))’, we only need the restriction
that  and y satisfy (5.104). Moreover, if we assume that max{0, s} <f<eandn(l/p-1), <
Y <€, then we can verify that G(f, y) is contained in B; ,(X) and F ;(X); see Proposition 5.31
below.

5.4. Properties of B, ,(X) and F; ,(X) and boundedness of singular integrals

In this subsection, we first present some basic properties of B; ,(X) and F, ;(X). Then we
establish a Lusin-area characterization of the spaces Ff,,q(ﬂ() and the relations between the
spaces B;,q (X) and Bj, ,(X) and between the spaces F;,q(ﬂé) and Fy, ,(X). Using the Lusin-area
characterization of F; ,(X), we also obtain the relation between the spaces F; ,(X) and the
local Hardy spaces h? (X) in the sense of Goldberg [73]. Finally, we obtain the boundedness
on B; (X) and F; (X) of singular integrals with some natural extra size and regularity

Condltlons of Nagel -Stein type in [44].
The following proposition is an inhomogeneous version of Proposition 5.10.

Proposition 5.31. Let €1 € (0,1], €2 >0, ¢ € (0,€1 A €2), and |s| < e.

(i) For p(s,e) <p<ooand0< gy < g1 < o0, B (X) C By (X); and for p(s,e) <p < o0

Pao
and p(s,€) < qo < qu < oo, Fj 4 (X) C F . (X).

P

(ii) Let —e < s+ 6 < eand 0 > 0. Then for p(s,e) <p < wand 0 < qo, g1 < o0, B52(X) C

P40
B, (X); and for p(s,€) <p < oo and p(s,€) < qo, g1 < o, F;ffé(ﬂ() C Fp 4 (X).
(iii) If p(s,€) <p < o0 and p(s, €) < q < oo, then B;mm(pq) (X) c FSq(ﬂ() C Bpmax(p 0 (X).

(iv) If B, vy as in (5.104), then B; (,K (G5 (B, Y)) when p(s,e) <p < wand 0 < g < oo,
and Fy, ,(X) € (Gg(B, 1) when p(s,e) <p <ooandp(s,e) < q < oo.
v) If max{s, 0} < p < eand n(1/p-1), <y < e, then G(B,y) C B} ,(X) when p(s,€) <
p<ooand 0<q< oo, and G(B,y) C F;,q(%) when p(s,e) <p < ooand p(s,e) < q < 0.
(vi) If 1 < p < oo, then FS,z(%) = LP(X) with equivalent norms.

(vii) The spaces B; ,(X) with p(s,€) < p < ooand 0 < q < oo and the spaces F .(X) with
p(s,e) <p <ooand p(s,e) < q < oo are complete.
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Proof. Property (i) is a simple corollary of (5.5). To see (ii), we notice that

. 1/q: . 1/q1
{Zzswbklm} ssupz“*mkwkl{zzw} Ssup2t il (511
k=0 keZ, 1=0 keZ.

which combined with (i) verifies (ii); see also [3, the proof of Proposition 2.3.2/2].

The proof of (iii) is similar to that of Property (ii) in Proposition 5.10; see also [3, 6].

Property (iv) is implied by the proof of Proposition 5.28, and Property (vii) can be
easily deduced from Property (iv) and Property (vi) is just Proposition 3.30.

To see Property (v), similarly to the proof of (5.105), for f € G(p,y), we have that for
alke€Z,and x € X,

1 oy ! LS
VI (x1) + V(x1,x) (1+d(x1,x))!

|Dik(f)(x)] $2 (5.115)

Notice that (5.39) with = 0 is still true when y > n(1/p —1),. From this fact and > s, it
follows that

NGO 1/p - 1/q
115,000 ~ {Z >, ﬂ(QS”>[sz~(Do<f>|>]p} *{szsq”D"(f )”z”“‘)}
Tely v=1 k=
N(O,7) . 1 1 w
< T’v
N||f||c(ﬁlr>{|;€zlo 2, 1@ ) ) Vg (1+d(x1,y2’”)>”’]
+ I:Z 2ksq2kﬂq:| q}
k=1

S llgey-
(5.116)

Thus, G(B,y) C B;/q(%), which together with (i) also proves that G(f,y) C F;/q(,%). This
verifies (v) and hence, finishes the proof of Proposition 5.31. O

When p, g > 1, the following theorem implies that the norms of [|||s;,x) and |||k, %)
have the following equivalent and simple version.

Proposition 5.32. Let all the notation be as in Proposition 5.25.
(i) Forall f € (C,g(ﬂ,y))' with0< B,y <€, |s|<e1<p<oo,and0<q< oo,

1/p - 1/q
Do(f)l)]p} +{zzksq||nk<f>||zp(x>}

k=1

N(0,7)
{Z Z P‘(Qg'v) [mQ%“(

Ttely v=1

(5.117)

o 1/q
- {zzksq||Dk<f>||z,w}

k=0

with the usual modification made when p = oo or q = co.
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(ii) Forall f € (C}g(ﬂ,y))' with0< f,y<e |s|<e1<p<oo,andp(s,e) <q< oo,

o 1/q
{ZWWMmﬂ

k=1

N(O7) Up
{z 5 #(Qg'v)[mQS/V(Do(f)D]p} ;

Tely v=1

PR (5.118)

~

o 1/q
{ZWWMmﬂ
k=0

Lr(x)

with the usual modification made when q = oo.

Proof. We first verify (5.117). To see this, by p > 1, Holder’s inequality, and Lemma 2.19, we
have

N(@©) p N(O,7) 1/p
{Z > Q") [mges ( Do(f)|)]p} < {Z > w(QY)ymes ( Do(f)lp)}

Tely v=1 Tely v=1

(5.119)

= ”DO(f)”Ln(x)/

which shows that the left-hand side of (5.117) is controlled by its right-hand side.

To see the converse, by Lemma 2.19 and Theorem 4.16 together with a proof similar to
that of (5.76) in Proposition 5.25, we have that for all f € (G5(f,7)) with 0 < ,y < ¢, and
Is| <€,

N(0,7)

1/p
DDl {3 3 [ 1@ o |
T€El QT’V

0 v=1

N(0,7) py1/p
< { k(@) [sup IDo(f>(z)|] }
TEI

zeQ?

(5.120)

NOD 1p
{2 3 u@) b (001}
TE

- N(k,7) o\ 1P /4
ASe (2 S wen [ imoal])
k=1 ze:’

el v=1

which is, up to a bounded multiplicative constant, controlled by the left-hand side of (5.117).
This completes the proof of (5.117).

The estimate (5.119) also proves that the left-hand side of (5.118) is controlled by its
right-hand side. The converse inequality can be proved by a way similar to that of (5.77) in
Proposition 5.25, which completes the proof of Proposition 5.32. O

We next give an inhomogeneous Lusin-area characterization for the Triebel-Lizorkin
spaces F, (X).
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Definition 5.33. Lets € R,a>0,g € (0,00],and lete; € (0,1], €2 > 0,€e3 >0, € € (0,1 Aez]. Let
{Sk}kez, be an (e1, €2, €3)-IATL. Set Dy = S and Dy = Si — Sk-1 for k € N. The inhomogeneous
Lusin-area function (also called the inhomogeneous Littlewood-Paley S-function) S ,(f)(x) for

any f € (G5(B,7)) with0 < B, y < e and x € X is given by

s IS 2ksa|p s k) 1 5.121
q,a(f)(X) - kZ_OJ‘d(x,ykaZk | k(f)(]/)' VaZ*k(x) ’ ( ’ )

where the usual modification is made when g = .

Theorem 5.34. Let a > 0, €1 € (0,1], &2 > 0, 63 > 0, € € (0,€1 A €2), and let {Sk}rez, be
an (€1, €2, €3)-IATI with Ce2'"J < a. Set Dy = S and Dy = Sy — Sk_1 for k € Z. Let |s| < ¢,
p(s,e) <p < oo, 1< g < oo, andlet S ,(f) be as in Definition 5.33 for any f € (G5 (B, 7)) with
B, yasin (5.111). Then f € F, ,(X) if and only if f € (G5(P, Y))' for some B, y as in (5.111) and

S;/a( f) € LP(X). Moreover, in this case,

1A, ~ 155,00 o xy- (5.122)

Proof. Similarly to the proof of Theorem 5.13, there exists a constant C > 0 such that

(k) 1/q
ks q P‘(y
{ZZ 22 qfd(_w DLW =5 X <>}

”Sg,a(f)”LP(x) =

k=0 telx v=0 Lr(X)

w Nk q 14
(5555w o] o]

k=0 T€l, v=0 yeB(z8",C27k) LP(X)

N pyl/P

{3'X wen| s el )
Tely v=1 zeB(z2",C)
1/q (5.123)

N(k,T) !
{ZZ > ZkSq[ sup |Dk(f)(2)|] XQ?'”}

k=17€ely v=0 zeB(zk”,C27k)

LP(X)

N(©O,7) 1p
< { 55 h(@2) e Do<f>|>1"}

tely v=1

N(k7) g 1/q
o [ RN

k=1 7tely v=0

LP(X)

~ I fllEs, 0.

where the last inequality can be proved by a way similar to the proof of (5.76) in
Proposition 5.25; see also the proof of Theorem 5.13.
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On the other hand, since 1 < g < oo, by Holder’s inequality and Lemma 2.19 together
with C42!7/ < a, we have that for x € Q" with k € Z,, Q¥ c {y € X : d(y,x) < a2™*} and
Va(x) ~ u(Qz"), and

9 dy) )" dp(y)
{Jd(x,y)<a|DO (f) (y)l Va(x) } z fd(x,y)<a|D0 (f) (y)l Va(x)

N(0,7)

-3 5[, IPpwl e e

Ttely v=1

N(0,7)

23S mg

Tely v=1

DO(f)DXQO”

Therefore, similarly to the proof of Theorem 5.13, by the estimate as above and Lemma 2.19
again,

s < s duty) 1"
S5 (f)(x)= {Z f d<x,y><asz2k 1Dk (f )(y)lqvm & }

k=0
N(O,) N (k,7) . g 1/q
2> myu (|Do(f)])xger x)+{z > 3o sq[ inf |Di(f)( y)|]XQ§,v(x)} ,
Tely v=1 k=1 Ttelx v=1
(5.125)
which together with Proposition 5.25 and Lemma 2.19 proves that
1550 1y
N(0,7) 1/p o 1/q
2 { 2 2 Q) Imgy( Do<f>|>]”} + { 2 2’<”|Dk<f>|q} ~ £l 00
Tely v=1 k=1 LP(X)
(5.126)
This finishes the proof of Theorem 5.34. O

Remark 5.35. Comparing Theorem 5.34 with Theorem 5.13, we here need to require that 1 <
g < oo and Ce2'77 < a due to the inhomogeneity of Triebel-Lizorkin spaces F;,q (X).

From Theorem 2.29, we immediately obtain the following technical lemma, which will
be useful in applications.

Lemma 5.36. Let Sy be as in Definition 2.2 and € € (0,€1 A €e2]. Let 0 < B,y < €, and let Sf) be the
integral operator with the kernel S{(x,y) = So(y, x) for all x,y € X. Then S} is bounded on G(B,y),
namely, there exists a constant C > 0 such that for all g € G(B,v), Sh(g) € G(B,y), and

156l < Cliglapn- (5.127)



Yongsheng Han et al. 145

We now establish some relations between homogeneous Besov and Triebel-Lizorkin
spaces with the corresponding inhomogeneous ones.

Proposition 5.37. Let all the notation be as in Definition 5.29 and u(X) = oo. Then there exists a
constant C > 0 such that if f € B, ,(X) or F;, (X), then f - So(f) € B} ,(X) or F; ,(X), and

1 = So(H s, x) < Cllf Iz (5.128)
or

15 = So(h iy, ) < ClF Nz 0, (5.129)

respectively.

Proof. Let f € B; ,(X) or f € F} ,(X). By Proposition 5.28, without loss of generality, we may
assume that f € (GS(B,v)) with g,y as in (5.35). From G(B,y) C G(B,y), it follows that f €
(GS(,B, 7))". On the other hand, for any g € Gg(ﬁ, y), we have (So(f), g) = (f, Sg(g)), which
together with Lemma 5.36 also shows that So(f) € (GS(B,7))". Thus, f — So(f) € (GS(B,v))’
with B, y as in (5.35).

To verify the norm inequalities in the proposition, in what follows, we let I be the
identity operator on B, (X) or F, (X). Let  and y be as in (5.35), let {Dx}c, be as in

Definition 5.8, and let { Dy }wez, be as in Theorem 4.14. We first claim that for all k € Z and
kK ez,,

|(Di(I = So) D) (x, )|
1 - (knk)e (5.130)

< o-lk-Kle .
~ Vz—(k/\k’) (x) + VZ—(k/\k’) (y) + V(x, y) (2—(k/\k') " d(x, y))e

We verify (5.130) by considering the following three cases.

Case 1 (k' > 0 > k). In this case, we have
|(Dk(I = So) Die) (x, )|

-|f [Pk, = DiCe )] (1 - 50) D) 2 )ic2)

+

< Ux [Dx(x, z)- D (x, y)] D (2, y)du(z) Lc [Dk(x, 2) - D (x, )] (SoDk ) (2, y)du(2)|.

(5.131)

On the first term, an argument similar to the proof of (3.2) in Lemma 3.2 gives the desired
estimate. For the second term, by Lemma 3.19, we first have

1 1
Vi) + Vi) +V(z,y) (1+d(z,y))"

|(SoDy) (z,y)| S 27F¢ (5.132)
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which together with an argument similar to the proof of (3.2) in Lemma 3.2 also gives the
desired estimate for the second term.

Case 2 (k' > k > 0). In this case, we write
| (Dk(I = So)Di) (x, y)| < |(DxDi) (x, y) | + | (DxSoDk) (x, y) |- (5.133)

The estimate (3.2) in Lemma 3.2 directly gives the desired estimate for the first term. Denote
the second term by J and write

J= U Di(x,2) [So(z, 1) - So(z, ¥)] D (w, y)dp(u)du(z)
X xX
< j f Dk, 2)|| [So(z, ) — So(z )] D (1, ) | dpe(u)dp(z)
X d(u,y)§(1+d(z,y))/2
+j f Dk, 2)||So(z, 1) D (4, ) | dpe(ae) dpa(2) (5.134)
XY d(uy)>1+d(z,y)) /2
. j j Dk (x, 2)||S0(z, ¥) D (u, ) | dpe(w)dpa(2)
X/ d(u,y)>1+d(z,y))/2

=h+ ]2+ )5

The regularity of Sy together with Lemma 2.1(ii) yields that

dw,y) \° 1
<
hs ,[xfd(u,y)s(1+d(z,y))/2IDk(x'Z)| <1 + d(z,y)) Vi(z) +Vi(y) +V(z )
1 ~
x m@ (u, y)|dp(u)dp(z) (5.135)
1 1
Vi(z) +Vi(y) +V(z,y) (1+d(z,y))

< zk’efxwk(x, 2)| _du(2).

If d(x,y) < 27%, then by Lemma 2.1(ii) again, J; < 27%¢(1/V,«(x)), which is the desired
estimate. When d(x, y) > 2_k, we further control J; by

pert | ! 2
~ d(x,z)>d(x,y)/2 Vo (x) + Vo (2) + V(x, 2) (z‘k +d(x, Z))S

x ! L )+ f - }
Vi@ + Vi) +VEy) +dzy)) 0 Vawmeacmn |
(5.136)
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Notice that d(x, z) < d(x,y)/2 also implies that d(z,y) > d(x,y)/2. From this together with
Lemma 2.1(ii), it follows that

ookl L2 1 L lcpome_L 2% 55
b Vix,y)d(x,v)¢ V(x,y)d(x,y)° |~ V(x,y)d(x,y)¢’ )

which is also the desired estimate.
The estimate for J; is similar to that for J;.
To estimate J, choosing €’ > € and using Lemma 2.1(ii), we first have

2ke

1
[So(z, ) Dy (u, y)ldp) < Vi(z) (1+d(z, y))y

(5.138)

J'd(ury)>(1+d(z,y))/2

and by the fact that for d(u, y) > (1+d(z,v))/2, V(u,y) ~ V(y,u) 2 Vi(y) + V(y, z), we also
obtain

~ 1 27ke
So(z,u) Dy (u, y) |du(u) < (5.139)
Id(u,y)>(l+d(z,y))/2| ’ vldp Vily) +V(y,z) (1+d(z,y))°
Therefore, combining these estimates gives
<2 kef | Di(x, 2)| ! ! =dp(z), (5.140)
Vi(z) + Vi(y) +V(z,y) (1+d(z,y))

which together with some computations the same as for J; gives the desired estimate for J.

Case 3 (k > k' > 0). The proof for this case is similar to Case 2 by symmetry. We omit the
details for simplicity, which completes the proof of (5.130).

Theorem 4.16 together with (5.80), (5.130), and Lemma 5.3 yields that for n/(n + €) <
r<l,k€Z,andx € X,

|Dic(f = So(f)) ()]

N(0,7")
S 2—|k|€2(k/\0)n(1—1/r { < Z Z Qi;v’ |DO (f) I)] rXQz;v’> (x) }

T'ely v'=1

1/r

1/r

. N(K',7)
Z 2~ |k-k' \62 (kNK')=K'1n(1- 1/r){ < Z Z |Dk’ (f) (y )|rXQk’,v’> (x)}
k'=1 i

Tely V=

=71+ 2o.
(5.141)
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We now first consider the case of Besov spaces. Choosing p(s,€) < r < min{1,p} and
using s < € and the boundedness of M yield

1/q 0,7 r
(2220|533 @) g (20 )

ke T'ely V=

(5.142)

S W fllsg 00

which is the desired estimate.
Similarly, choosing r as above, when 1 < p < oo, by Minkowski’s inequality and the
boundedness of M together with the assumption s < €, we have

[e'e]
Z (k=K s—|k=K'|en [ (kAK')-K'In(1-1/r) g K's

{21zl }W <[z

kezZ keZ || k'=1
Nk ) rg 14
Am(z o)) |
Tely v'=1 T LP(X)
1/q
<{ S0l |
k/
S N fllsg, 0,
(5.143)

where in the second-to-last inequality, we used (5.5) when g < 1 and Holder’s inequality
when g > 1, while when r < p < 1, instead of Minkowski’s inequality by (5.5), we have

1/q

1/q
(Z2 100} 2 {20l

kez (5.144)
< W f g, 0,

where in the second-to-last inequality, we used (5.5) when g/p < 1 and Hélder’s inequality
when g/p > 1. Combining the above estimates completes the proof of Besov spaces.

We now turn to the case of Triebel-Lizorkin spaces. In this case, we also choose p(s, €) <
r <min{1,p} and use s < € and the boundedness of M to obtain

1/q
{521z

keZ

N7 , p
{23 @ 4oy ]

T'ely v'=1

Do (5.145)

S g, 0,
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while some computations similar to the proof of (5.8) in Proposition 5.4 also show that

1/q . 1/q
‘{Zzwzzw} < {Zz’“qwk«f)r’} Sl (5146)
keZ P (X) k'=1 LP(X)
which completes the proof of Proposition 5.37. O

Remark 5.38. Obviously, Sp in Proposition 5.37 can be replaced by Si, with kg € Z or any
integral operator with a kernel having similar properties.

Proposition 5.39. Let € be as in Definition 5.29,0 < s < ¢, and p(X) = oo. Then,
() ifl1 <p<ooand < q < oo, then By ,(X) = B;/q(ﬂC) N LP(X) and moreover, for any
f € B} 4(X),

£ llBs,0 ~ W fllss 0 + 1 fllze ) (5.147)

(ii) f 1 < p < coand p(s,€) < q < oo, then F, ,(X) = F;,q(,d() N L?(X) and moreover, for any
f € F,,(X),

I lEs 00 ~ Il 0 + N llr - (5.148)

Proof. We use the same notation as in Definition 5.8. Let f € B; ,(X) or f € F; (X). Then, by

Proposition 5.28, it is easy to see that f € ((38 (B, 7)) with B, y as in (5.35).
To verify (i), let f € B;,q(,d(). If 1 < p < oo, Proposition 3.18, Minkowski’s inequality,
and Holder’s inequality when 1 < g < oo or (5.5) when 0 < g < 1 show that

I fllex) < ”SO(f)”Lp(x) + Z”Dk(f)”LP(x)
k=1

1/9
2 . (5.149)
sh%thm+;fﬂWAmmm}
=1

S llsg -

If p = oo, by Theorem 3.29, we have that f = DySo(f) + 32, DxDi(f) holds in (G(B,y))’
with s < f < eand 0 < y < ¢, where Dy with k € Z, is as in Theorem 3.26. From this and
fe Bgo,q (X), it follows that for almost all x € X,

< s ]5 , da S 2—ks 15 ” d
vunwwmwm{hldeImw+§ _h'“xW|“”} (5.150)

S s, 0
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Moreover, when 1 < p < oo, Proposition 2.7(iii) further yields

o]

1/q
£ M50 ~ { > 2k5q||Dk(f)||ZP<x>}

k=-o0

0 Vi w a (5.151)
< {kz zksq||Dk<f>||zm} ; {kzzksqnnunnzm}
— 4

S L llsg -

Thus, f € B; ,(X) N LP(X) and || fllr ) + 1 fllgs, 00 < 1 B30
Conversely, if f € B;/q(,%) N LP(X), it is obvious that f € (G(B,y)) with B,y as in
(5.111); and moreover, Proposition 2.7(iii) also proves

% 1/q
. q k q
£ 185020 ~ {Ilso<f>llm) +k22;2 SqIIDk<f>||m} 5.152)

S Il + 11,00

which completes the proof of (i).
To prove (ii), let f € F;,(X). From Proposition 3.18 and Holder’s inequality when
1< g < oor (5.5) when p(s,€) < g <1, it follows that

Ifllr ey < |[[So(A)] + DDk (f)]
k=1 LP(X)
oo 1/q
< {Iso<f>|+22"”|Dk<f>Iq}
k=1 L (X)
S flles, 0.
» (5.153)
1Az, 0 ~ {szsq|Dk(f)|q}
keZ LP(X)
0 1/q » 1/q
S E2oanr} | o){Eoaor]
k=—co r(X) k=1 Lr(X)

S Z+ N f N0

If p/q <1, by (5.5), Proposition 2.7(iii), and s > 0,

0 0
(2" < 30 2PUDkONs iy S WAy 20 257 S F I ey (5.154)
k=—c0 k=-—c0
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while when p/q > 1, by Minkowski’s inequality, Proposition 2.7(iii), and s > 0,

0

0 1/q 1/q
z5 { )y 2’“qIIDk<f>||Zp(x)} S ||f||m<x>{ > 2"“f} Sl (5.155)

k=-o0 k=-o0

Thus, f € F; ,(X) N LP(X) and || fllr o) + I flleg, 00 < 1 fllEg,00-
Conversely, if f € F;,q(ﬂé) N LP(X), itis again obvious that f € (G(B,y))" with B,y as in
(5.111); and moreover, Proposition 2.7(iii) yields that

w 1/q
Iflleg, 0 ~ " { [So(F)|T+ szsq|Dk(f)|q}
pac}

LP(X) (5156)

S Il o + 1 lles, 0,

which completes the proof of (ii) and hence, the proof of Proposition 5.39. O
We now introduce the local Hardy spaces in the sense of Goldberg [73].

Definition 5.40. Let all the notation be as in Definition 5.29. The local Hardy space h? (X), for
n/(n+e€) < p <1,is defined to be the inhomogeneous Triebel-Lizorkin space FS,Z('%)’ with

norm || flln ey = 1 fllpo, x)-
We now introduce the definitions of h? (X)-atoms and h? (X )-blocks.

Definition 5.41. Let j € N be as in Theorem 5.34 and 0 < p < 1. A function a on X is called an
hP (X)-atom if a satisfies (i) through (iii) of Definition 5.15 with r < C427/, and a is called an
kP (X)-block if a satisfies (i) and (ii) of Definition 5.15 with 7 > C¢27/.

Applying Theorem 5.34 and Proposition 5.37, we obtain the following atomic and
block decomposition characterization for the local Hardy spaces h”(X), which is similar to
Theorem 5.16.

Theorem 5.42. Let € and B, y be as in Definition 5.29. If n/(n+¢€) < p < 1, then f € h”(X) if
and only if there exist two sequences of numbers {A}yey, and {pi} ey, with 3720k [P < oo and
Sirolpxl? < oo, a sequence of hP (X)-atoms {ay} ey, and a sequence of hP (X)-blocks {by } ey, such
that f = 320 kax + 2 opkbr in (G5B, Y))'. Moreover, in this case,

0 1/p w 1/p
Ilfllw ) ~ inf { <Z|)»k|”> + <Z|ﬂk|”> } (5.157)
k=0 k=0

where the infimum is taken over all the above decompositions of f.

Proof. Let f € h”(X). In order to derive the decomposition of f into atoms and blocks, we
will assume for simplicity that p(X) = co. The case where p(X) < oo can be proved by using
Theorems 5.34, 2.6, and 3.29 together with an argument similar to that used for the proof of
the necessity of Theorem 2.21 in [48].
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By Proposition 5.37, we have f — So(f) € HP(X) and moreover,
1 = S0 liar ey < If vy, (5.158)

where S is as in Definition 5.29. By Theorem 5.16, there exist a sequence of numbers {A} -, C
C with 372 |Ak|P < o0 and a sequence of H (X)-atoms {ay };-, such that in (dg(ﬁ, 1),

f - S()(f) = i -)Lkak/
. p k=0
<zmk|v> <1 S0P
k=0

(5.159)

Let S} denote the adjoint operator to Sy with integral kernel S (x,y) = Sy(y, x). Notice that
if ¢ € GE(B,y), then g — S!(g) € GE(B,y) by Lemma 5.36, which together with (5.159) shows
that

(f,8) = (250(F) - SoSolf), 8) + > heax - So(ax). g). (5.160)
k=0

Using Lemma 2.19, we have

N(,7)
2S0(f)(x) = SoSo(f)(x) = >, > [2S0(f)(x) = SoSo(f) ()] xgov (x)
e (5.161)
Nop 0,v 1.0,v
=D > (%),
Tely v=1
where
A% = [u(@W)]"” sup [250(f)(2) - SoSo(f) (=), (5.162)
2eQ?”
and b2 (x) = 0 when A\Y” = 0, otherwise,
b () = <55 [250(1) () = SoSo( )] (). (5.163)
It is easy to see that supp by” ¢ Q¥ ¢ B(zY”,C¢27) and
0, owmq1/2 1
1677|120 < [#(Q2™)] " 55 sup [250(f)(2) = SoSo(f) (=)
A= zegl (5.164)

N i 1/2-1/
< mBE" )
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Thus, b2" is an h? (X)-block multiplied with a normalizing constant. Moreover, noticing that
the kernel of S¢Sy has the properties similar to Sy by Lemma 3.19, applying Theorem 4.16,
and using an argument similar to the proof of (5.77) in Proposition 5.25, we obtain

N, 1p N(©O,7) py1/p
{Z > Iiﬁ'”l”} < {Z > MQS'”)[sup|2So(f><z>—soso<f)<z>l] }

Tely v=1 Tely v=1 zeQY”

N(0,7) 1/p
S {Z > #(Q2") [mgon Do<f)|>]”}

(5.165)
o N(k7) 2 172
MNEE S [t oo v}
k=17el, v=1 LzeQr LP(X)
~ N fllw -
We next show that
N(0,7) 0 0
(250(f) = S0So(f), 8) = >, D, A"(b:", Q). (5.166)
Tely v=0

which can be deduced by (b2, g)| < 1. To see this, by Holder’s inequality, Lemma 2.1(iii),
and (5.30) in the proof of Proposition 5.7 together with the assumption y > n(1/p - 1), we
have

|(by”, g)| < ||b2” |2 11820

L2(X)
1 1 ) 1/2

0v\11/2-1/p

0 d
< [m(Q")] {J‘Qﬂ'v [V1 (x1) +V(x1,x) (1+ d(xl,x))y] .”(x)} (5.167)
<t

[ViGe)]"

<1.

Notice that by (5.168) below, we have ||ax||wx) < 1. We can obtain a desired h?(X)-
block decomposition of Sy(ax) in the same way as 2S¢(f) — SoSo(f), which completes the
proof of the necessity.

We now use Theorem 5.34 to verify the sufficiency of the condition in the theorem. To
this end, by Fatou’s lemma, it suffices to prove that for any h” (X)-atom or any h” (X)-block b,

155, @)l ) S 1, (5.168)
)

where a > C¢2!77 is as in Theorem 5.34. If b is an h”(X)-atom, the estimate (5.168) can be
established by an argument similar to the proof of the sufficiency of Theorem 2.21 in [48].
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We omit the details. Now, we suppose b is an h”(X)-block supported on B(xg,r) with r >
Ce277. Choose N € N such that N > max{2,2/a} and write

15O = [, (S0 duco) + [
=N+

X\B(xo,Nar) o (5169)

Holder’s inequality together with the size condition of b shows that
1< [0(B(xo, Nar)) ' 72183 0y S (B0, ] bl S 1. (5170)

Now if x € X\ B(xo,Nar), d(y,x) < a2™* with k € Z, and u € B(xp,r), we then
have d(u,xy) < (1/2) (Z_k + d(y, xo)), which together with the size conditions of Dy and b,
Lemma 2.1(iii), and Holder’s inequality yields that

D) ()| < [u(B(xo,7))]" " L 27k . (a7l
IPOWIS B v ) V) @ ragmy)

From this, it follows that

1/2

S9,(0)(x) < [u(B(xo,7))]" UP{i[ 1 _ ke e]z}

| Vo () + Vo (x0) + V(x, X0) (275 + d(x, x0))
(5.172)

Therefore, if we choose €' € (0, €) such that p > n/(n +¢’), by (5.5), we then have

_100 _ o
25 o (B0 ) S 2

ST -
“ x
2\B(xo,Nar) \ Varr (%) + Vo (x0) + V (x, x0) 2" +d(x, xo)) g

1 -1 & _ v
S~ (B0, 1)) P Y 27k
r k=0

e 1 . 2-kep
x —du(x)
élezkNar<d(x,x0)<2’”szar Vo (x) + Vi (x0) + V(x,x0) (2*k +d(x, X()>)e p

<1

7

(5.173)

which completes the proof of Theorem 5.42. O

We now recall the definition of the Lipschitz space Lip,(X) with s > 0; see [74].
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Definition 5.43. Let s > 0. The Lipschitz (or Holder) space Lip (X) is defined to be the set of all
functions f on X such that

B 6 N ACo A ()]
Wlinco = S0 Wy T35 Voo

0o, (5.174)

where the first supremum is taken over all balls B of X with radius rp > 1.

Observe that these classes are rather Lipschitz (or Holder) classes with respect to the
measure distance p(x,y) = inf{u(B) : x,y € B, B a ball}, not the distance d.

The dual spaces of h' (X) and h? (X) when p < 1 are proved, respectively, to be bmo(X)
and Lipl/p_l(j() in [74] as follows.

Theorem 5.44. (i) The space bmo(X) is the dual space of h'(X), in the following sense: if f =
S0 Aeak + 25 pibk € h'(X), with atom’s ay and block’s by, is as in Theorem 5.42, then for each
g € bmo(X),

N N
Jim {z Akj a () g (X)dp(x) + 3 e f bk<x>g<x>du<x>} (5.175)
TP k=0 X k=0 X

is a well-defined continuous linear functional Ly : f w (f, g) with norm < || |lbmo(x)-

Conversely, each continuous linear functional £ on h'(X) has the form £ = L, for some
g € bmo(X) with ||gllomot) < 1211

(ii) Assume that € is as in Definition 5.29,n/(n+e€) <p <1,and s =1/p—1. Then Lip (X)
is the dual space of hP (X) in the sense of (i).

Remark 5.45. We point out that Remark 5.20 applies in a similar way to Theorem 5.44.

In what follows, for any f,y > 0, we let
Go(B,y) ={f €G(B,y) : f has bounded support}. (5.176)

Using Proposition 5.31, by an argument similar to the proof of Proposition 5.21, we
establish the following density result for B; ,(X) and F} ,(X). We omit the details.

Proposition 5.46. Let €1, €, €, and let |s| < € be as in Definition 5.29. Then Gy (€1, €2) is dense in
B} ,(X) when p(s,e) <p < ooand 0 < q < oo, and in Fy, ,(X) when p(s,e) <p, q < oo.

We now turn to boundedness results for singular integral operators on B,  (X) and
F;lq(OJC) spaces. In what follows, it will be convenient to put [|fllci(x) = IIfll=x) when
n=>uv

Let € > 0 and o > 0. A linear operator T, which is initially assumed to be continuous
from CZ (X) to (CZ(JC))' for all 7 € (0,¢), is called an inhomogeneous singular integral of order
(e,0) if T has a distributional kernel K which satisfies the conditions (I-1) through (I-4) of
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the kernel of a singular integral of order e in Subsection 5.2, and the following additional
“vanishing” condition that

(I-2)1 the property (I-2) also holds in the limiting case 7 = 7] = 0, for T and its adjoint
operator Tt that is, there exists a constant C > 0 such that for every normalized
e-bump function g, [|To||r=x) + [T ¢ll=x) < C, as well as the following additional
size condition that

(I-3); forall x,y € X with d(x,y) > 1, |K(x,y)| < C(1/V(x,y))(1/d(x,y)°).

Remark 5.47. We point out that if T is a singular integral operator of order (¢,0), then T
extends to a continuous linear operator from C"*(X) to (Gy(17,7))" for all 7 € (0,€] and all
y > 0; see Proposition 2.25.

We also claim that for f € Gy(7,6) with 7 € (0,¢] and 6 > 0, T f can be defined as a
distribution in (G§(B,y))' with 0 < B,y < e. We first define Tf as a distribution in (G(f,y))’
with 0 < g < e and y > 0. In fact, for any given p € (0, €], noticing that Gy (71, 6) C Gp(12,6)
when 71 > 1, without loss of generality, we may assume that 77 < . Assume that supp f C
B(xo,r) for some xg € X and r > 0. Let ¢ € CZ (X) such that ¢(x) = 1 when x € B(xg,2r) and
¢(x) = 0 when x ¢ B(xg,4r). For any g € G(B,y) with < f < e and y > 0, it is easy to see
that g € CZ (X). From this and G(7, 6) C CZ (X), it follows that (T f, ¢ g) is well defined. On
the other hand, we define (T'f, (1 - ¢)g) by

(TF,(1-)g) = HK K@ DFO)1 - p)sduCdu(y) (5.177)

Clearly, if supp f N supp{(l — ¢)g} = o, this definition coincides with (I-1). Moreover, by
(I-3)3 and Lemma 2.1(i), we have

KTf, A= ¢)g)| S Ifll=oliglinw < 1 fllamsllglaey- (5.178)

It is also easy to verify that (T f, ¢g) + (T f, (1 — ¢)g) is independent of the choice of ¢. Thus,
we can define Tf by (Tf,g) = (Tf,¢g) + (Tf,(1 - ¢)g), so that Tf € (G(B,y)) with 0 <
p < eandy > 0. Now for any g € G5(B,y) with 0 < B,y < ¢, let {gn},oy C G(e €) such
that [|gx — gllgpy — 0asn — oo. We then define Tf € (G5(f,y)) with 0 < B,y < e by
(Tf,g) = lim, (T f, gn)- It is easy to check that (T f, g) is independent of the choice of
{gn},en C Gle, €). In this sense, we have Tf € (G (f,y)) with0 < f,y <e.

In what follows, for e € (0,1] and 0 < , y < ¢, put
Gop(BrY) = {f€G5(B,y): f has bounded support}. (5.179)

Theorem 5.48. Let €1, €, €, and |s| < € be as in Definition 5.29. Let o > 0 and let T be a singular
integral of order (e,0) with o > n(1/p —1),. Then T is bounded on B, ,(X) when p(s,e) <p < co
and 0 < g < oo and bounded from B; ,(X) N Gy (€1, €2) to B ,(X) when max{p,q} = oo, and T is
also bounded on F; 4(X) when p(s,€) <p, q < oo, and bounded from Fp ,(X)NGy (e, €) to F; 4 (X)
when p(s,e) <p < ocoand g = oo.
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Proof. By Propositions 5.46 and 5.31(vii) together with a density argument, it suffices to verify
the conclusions of the theorem for all f € Gf (B, y) with f,y as in (5.111).

Let {Sk } ez, be an IATI with bounded support as constructed in Theorem 2.6. Put Dy =
So and Dy = Sk — Sk-1 for k € N. Using Remark 5.47 and Theorem 4.15 together with an
argument similar to the proof of Theorem 5.23, we see that forall k € Z, and x € X,

N(0,7")

DTf) =3 S Dﬂ'(ff (DATDo(, ) () du(y)
Tely v'=1 (5180)
Nk 7

IPWICRICEE AR s

k'=17ely v=1

where all the notation is as in Theorem 4.15.
For k,k' € Z,, 7 € Iy, v =1,...,N(K',7'), y € Q];,’V, and x € X, let Z(x,y) =
(DkTDy (-, y)) (x). We now claim that when k = k' =

1 g 1
26015 (i) vorrver Ve (318D

when k =0 and k' € N, for any fixed 1 € (0, €),

K 1 K 1 .
2G| 52 "(1 +d(x,y>> Vi) + Vi) + V(x y)’ (>182)

when k € Nand k' = 0, for any fixed 1 € (0, €),

1 1 1
Z(x,y)| < 2-’“1( > ; 5.183
222N T m ) v v Ve (5.183)
and when k, k' € N, for any fixed 7 € (0, ¢),
, 2 (kA ! 1
Z(x,y)| < 27kKin ) 5.184
| (x ]/)l ~ 2_(k/\k,) + d(x, y) sz(k/\k’) (X) + Vz—(k/\k’) (y) + V(x, y) ( )

Obviously, (5.184) is just (5.65). The estimate (5.183) is easily deduced from (5.182) by
symmetry. Thus, we only need to verify (5.181) and (5.182). Assume that k' € Z,. To prove
(5.181) and (5.182), it suffices to prove that

|Z(x,y)| S27Fm —— (5.185)

Vi(x)’

and that when d(x, y) > 2°, then

_K 2
IZ(x,y)|S< 27 > L (5.186)

dix,y) ] V(x,y)
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where when k' = 0,71 = 0, and 1, = 0, and when k' € N, 73 = 1, = 5. To see (5.185),
for z € A, set ¥(z) = fo(w, z)Dy(w, x)du(w). From the properties of Sy in Theorem 2.6,
Condition (I-2), Condition (I-4), and Condition (I-2), it follows that for any fixed 7 € [0, ¢),
¥llenxy S 1/Vi(x), which shows that for all z € X, [¥(z)| < 1/Vi(x), and for 1 € (0,€) and
allz,y € X,

[P - ¥ )] S ) (5.187)

Thus, when k' = 0, by size conditions of both ¥ and Sy, then

1Z(x, )| = |fxq'(z>so<z, )du(z) (5.188)

S
Vi(x)

while when k' € N, by the vanishing moment and the size condition of Dy together with the
regularity of ¥, for any fixed 7 € (0, ¢),

1

< pkn ,
~ Vi(x)

|Z(x,y)| = Ux [¥(z) - ¥(y)]| D (z,y)du(z) (5.189)

which verifies (5.185).

To see (5.186), we first notice that when d(z, y) < 22_",, d(w,x) < 22 and d(x,y) > 25,
then d(w, z) > d(x,y) - d(w,x) —d(z,y) > max{d(x,y)/2,8,8d(z,y)}, d(w,y) > d(x,y)/2,
and d(w, z) > d(w,y) —d(z,y) > d(w, y) /2. Therefore,

V(w,z) 2 V(w,y) 2 V(y,x) ~ V(x,y). (5.190)

Thus, if k' = 0, by (I-3)3, we have

1 1
2o < [ 1Potw )l g s Do pldutduc)

5.191
1 . (5.191)

So———=s,
V(x,y) d(x,y)

while when k' € N, by the regularity on K and the vanishing moment of Dy, for any fixed
1 € (0,€), we have

d , €
|Z(x, )| < J‘J‘wao(w/xﬂ%ww(zzyﬂd#(wdﬂ(@

(5.192)

€

< <d<2xky>> wi,y)'

which implies (5.186). Thus, the estimates (5.181) and (5.182) hold.
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Using these estimates and Remark 5.26, by a procedure essentially similar to the proof
of Proposition 5.25, we then obtain the boundedness on B; ;(X) and F;  (X) of T. The details
are left to the reader. O

5.5. T(1)-theorems

In this subsection, we will establish analogues of David and Journé’s T(1)-theorem [68] and
of Stein’s variant of this theorem in [75] for RD-spaces.

We begin with generalizing [71, Theorem 1, page 114] on R” to the setting of spaces of
homogeneous type which is of independent of interest; see also [69, Proposition 2].

Theorem 5.49. Let € € (0,1], p € (0,¢€), and let T be as in Proposition 2.12 with a distributional
kernel K satisfying the size condition (2.59). Then T can be extended as a continuous linear operator

on CP(X) ifand only if T € WBP(B) and T(1) = 0 in (Cf(ﬁ())'.

Proof. We first prove the sufficiency. To this end, for any k; € Z, let
By, = {x € X: 287 < d(x,x1) <2} (5.193)

Fix any x¢ € By, . Let 0 be as in Lemma 2.15. For any k; € Z, put 6, (y) = 0(d(xo, y)/3-2k2), and
define wy, = 1-0y,. Forany f € CP(X), following an argument as in the proof of Lemma 2.20
(see also [69, the proof of Proposition 2]), for a.e. x € B(xo, (3/2)2%2), we have

Tf(x) = LK‘X'” [F ) - £ 0 () dpw)

[ K@ ns @ wdu) + T ) (5194
=T (x) + T (x).
By Lemma 2.15, for a.e. x € B(xo, (3/2)2%), we also have
|T(6k,) (x)| < Cr + ITllwsrep), (5.195)
T(6k,)(x) = Cx, - L{ [K(x,y) — K(x0,y)]wk, (v)du(y), (5.196)

where C, is a constant independent of x.

For any x € B(xO,ZkZ/ 2), we then consider x' € X satisfying 2kl < d(x,x) < 2k,
Notice that if x € B(x,2%/2) and d(x, x') < 2%, then x' € B(xo, (3/2)2*), and that 6, (y)#0
implies d(x,y) < 14d(x,x'). Thus, if x, x' satisfy (5.194), (5.195), and (5.196), by the size
condition (2.59) of the kernel K, the definition of C#(X) and Lemma 2.1(i), we then have

IT1(x)| < I |K G| f (W) = f)|duy) < d(xx) Crllfllesn (5.197)

d(x,y)<14d (x,x')
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and a similar estimate also holds for I'; (x"), which clearly implies
T2 () = T3 (x) | < [Iflles o Crd (x, x')P. (5.198)

Moreover, by (5.196), we also have

L) ~Ta(@) = [ [Koy) - K9] [F0) - f @] ()du)
[ - £ [ K@)k )auty (5199)
=Ip1+Top.
The estimate (5.195) yields
IT22] < d(x, %) (Cr + I Tllevio ) I f ler - (5.200)

Notice that wy, (y) #0 implies that d(x,y) > 2d(x, x’). The regularity (2.49) on K and the
definition of CP(X) together with Lemma 2.1(i) and § < e then yield

A0 e yduty)

2] £ Crlf oo | _Axx)
e w0 dxy)>2d(xe) V(X y)d(x, ) (5.201)

< d(x X)) Crliflles -

Combining all the above estimates shows that for a.e. x € B(xp,2%/4) and ae. x' € X
satisfying 2271 < d(x, x') < 2, we have

ITf(x) = Tf (x')| < d(ax, ') (Cr + I Tllwsep) I fllescn- (5.202)

Then an argument via the Besicovitch covering lemma further shows that there exists an
extension of T f such that

ITfllesxy S (Cr + I Tlweee) [ flles ), (5.203)

which completes the proof of the sufficiency.
We now prove the necessity. Since T is extended as a continuous linear operator on

CP(X) and 1 = 0in CP(X). Thus, T(1) = 0in CP(X). Since CF(X) = Bfom(x) = (B, (X)) by
Theorems 6.11 and 8.11(i), and Cf (X) c B;’i (X) by Proposition 5.10(iv), we then have that
forall f € CP(X), (T(1), f) = 0, which just means that T(1) = 0 in (C}(%))"
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Let now ¢, ¢ € Cg(,%) as in Definition 2.13. Fix x;, € X such that 2r < d(x;, xo) < 3r.
Since x;,  supp ¢, by the size condition (2.59) of the kernel K and (2.55), we then have

IT() ()] = UB(x K )p0)duty)

1 (5.204)
<_ - - B(xo,
SV 1Pl ) (B(x0,7))
<1.
Since T is bounded on C#(X), when d(x, x,) < 51, we then have
IT@) )] S |T@) (x0)| +d(x,xp) [ llerce <1 (5.205)

When d(x, x;) > 5r, by the size condition (2.59) of the kernel K and (2.55) again, we also
have

1
|T(p)(x)| = UB(W)K (x, y¥)P(y)du(y)| < W||¢||Lw(K)ﬂ(B(xO/T)) SL (5.206)
Thus, [[T($)lL=x) < 1, which gives that (T($), ¢} < llgllixy S u(B(xo,7)). Thatis, T €

WBP(p), which completes the proof of Theorem 5.49. O

Remark 5.50. (i) The proof of Theorem 5.49 in combination with Corollary 2.23 shows that if

T is bounded on C(X), then there exists a constant C > 0 such that for all ¢ € Cg (X) and all
x€eX,

IT(¢)(x)| < C(Cr +ITlles ) - cr ) [diam(supp ) 1P|l - (5.207)

(ii) Let T be as in Theorem 5.49 and T(1) = 0 in (C‘S(,X))’. Then from (i) and
Theorem 5.49, it is easy to see that T € WBP(p) if and only if (5.207) holds.

Now we recall the notion of Carleson measures and establish their connection with
BMO(X) functions.

Definition 5.51. A positive measure v on X x (0, o) is said to be a Carleson measure if there
exists a constant C > 0 such that for every ball B(x, r) for some x € X and r > 0,

v(B(x,r) x (0,7)) < Cu(B(x,r)). (5.208)

The smallest bound C as above is defined to be the Carleson norm of v and is denoted by
Vlle-

For any given open set E of X, let

E={(x,t) € £ x(0,00): B(x,t) C E}. (5.209)
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We first establish a basic property of Carleson measures; see [75, pages 59-60] or [81,
page 198] for the case of R".

Lemma 5.52. If v is a Carleson measure in X x (0, 00) and E C X is open, then v(E) < Cllv|lep(E).

Proof. Without loss of generality, we may assume that E is a bounded open set of X. By the
Whitney-type covering lemma (see [28, Theorem (3.2)]), there exist a constant C > 0 and a
sequence of balls {B(yj,rj)}]. satisfying E = U;B(y;,7j), X XB(y;) < C and B(y;,3r;) 0 (X \

E)# o for each j. If (x,t) € E, then there exists jo such that x € B(yj,,7;j,), B(x,t) C E, and
B(yj,, 3rj,) N (X \ E) # @. From this, it follows that t < 6r),, and therefore, (x,t) € B(y;,, rj,) X
(0,6rj,). Thus, Ec Uj{B(yj,rj) x (0,6r;)}, which together with the definition of Carleson
measures implies that

v(E) < v (B(y; 1) x (0,6r))) < Ivlle (B (ys, 7)) (5.210)
i j
On the other hand, from E = U;B(y;, 1j) and 3 xB(y,r,) < C, it follows that
W(E) = #<UB(y,-,rj)> 2 ch X8y, W) (y) ~ 3 p(B(y;,17))- (5.211)
j j j

Combining both estimates yields v(E) < | v|le u (E), which completes the proof of

~

Lemma 5.52. O

Let {Sk} ez be an (€1, €2, €3)-ATI as in Definition 2.2. For (x,t) € X x (0, 00), we define

SN, 1) = D Si(H @)y ®)- (5.212)

j=—

Proposition 5.53. Let & be as in (5.212). For any p € (1, o), there exists a constant C, > 0 such
that for all f € LP(X) and all Carleson measures v,

_[ |S(f)(x, 1)|Pdv(x,t) < Cp||V||¢j |f ()P dp(x). (5.213)
A x(0,00) X

Proof. Let G be as in above. For any x € X, we define

Mg f(x) =sup {|&(f)(y,t)| : d(x,y) < t}. (5.214)
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We first claim that for all x € X, Mgf(x) < Mf(x), where M is the Hardy-Littlewood

maximal function. To see this, for any (y,t) € X x (0, o) satisfying d(x,y) < t, assuming
2771 <t <270 for some jy € Z, by Lemma 2.1(vi), we then have

16(f)(y. 1]

1 2- . 3
< - z)|du(z)+ f
[ e e et <z-f°+d<y,z>> FENE 2| iymears

S Mf(x),

(5.215)

which implies the claim.
Notice that

L o )IG(f)(x, | dv(x,t) = pf:oﬂ”v({(x, t) € X x (0,00) : |S(f)(x,£)] > A})dA.
’ (5.216)

LetEy = {x € X: Mg f(x) > A}. We then claim
{(x,t) € L x (0,00) : |&(f)(x,t)| > A} CE). (5.217)

In fact, for any (x,t) € A x (0, 00) such that |&(f)(x,t)| > A, assume that 27071 < t < 2770 for
some jo € Z. Then |&(f)(x,t)| > Lifand only if [S;, (f)(x)| > A. If d(y, x) < t, then Ms f(y) > A
and hence B(x, t) C E;, which implies the claim.

From this claim and Lemma 5.52, it follows that

v({(x,t) € X x (0,0) : I6(f)(x, D > 1)) <w(E)) S Ivllep(Er),  (5218)

which together with the L (X)-boundedness for p € (1, o0) of M yields
[ Jewnrasen < e - tu(E)a
Xx(0,00) 0
- vl [Me(£)(0)Pdutx)
* (5.219)

< Ivlle f M) @Iy

< Ivlle f e Pau),

which completes the proof of Proposition 5.53. O

The relation between Carleson measures and BMO(X) functions can be stated as
below.



164 Abstract and Applied Analysis

Proposition 5.54. Let b € BMO(X) and let { Sk} be an (€1, €2, €3)-ATl as in Definition 2.2. For
k € Z, let Dy = Sk — Sk-1. Then the measure v defined by

dv(x,) = 3, |D;(b) (x)|? X(T,;lz_j](t)dy(x)# (5.220)

j=—

2

is a Carleson measure such that ||v||¢ is dominated by “b”BMO(x)'

Proof. For any ball B = B(x,r) with some xy € X and r > 0, assume that 2701 < r < 277 for
some jy € Z. We then have

v(B(xo, ) % (0,7)) = j - f v,
[ele] 'd d
= Z fB(x T)j0|Dj(b)(x)|2X(2j1,2_j] (t)dﬂ(x)%L (5.221)

j=—

< Zj |D;(6) (x) ().
j=jo—17 B(xo,r)

Let B = B(xy,3r), EO =B, and By = B(x0,2k3r) for k € N. Set also

1
5= 5 | rwant (5222)
Since fxD,-(x, y)du(y) =0, we then have

v(Blxo,r) x 0.) 5 3 |D; (b= by)x5) ()| "dp(x)
B(xo,r)

o1
2 (5.223)

# 3D b)) )

j=jo-17 B(xo,)
= Yl + Y2.
By Lemma 3.9, we have
1 3| 1016 b)rs) ) aucx)
j=jo-17 X

(5.224)

< [ 106 - bp) s Petx)
X

S ”b”2BMO(JC)Au(B (x0,7)).
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To estimate Y5, we first notice that if d(x,x9) < r and y ¢ Ek for k € Z,, then d(y,x) >
2k3r — > 257137 and hence

1 27 ’
|D;(x, )| < Vo (x) + Vi (y) + V(x, ) <2‘7 + d(le/)>

(5.225)
<1 (ﬂ) ,
™ Voreage(x) \ 2k
From this, it follows that
[e'e] [e'e] 2
s> f [ZI i Ib(y)—bgllD;<x,y)Idﬂ(y)] dp(x)
j=jo—17 B(x0,7) L k=0~ Bi+1\Bk
S S ) - byldut) PR
~ r2€2 et B(xo,r) k:OZkez V2k+23r(x) B(x,2k+23r) y B /’l y ‘u
S ”b”lzaMO(x).”(B(xO/ r)),
where we used the well-known fact that
o inf sup oo 17() - Clauty) (5.227)
BMOLO CeC xeﬂC,Ir)>0 ‘u(B(x, 7’)) B(x,r) y # y ' .
This finishes the proof of Proposition 5.54. O

Combining Proposition 5.53 with Proposition 5.54 yields the following conclusion,
which will be used in the proof of T(1)-theorem.

Corollary 5.55. Let all the notation be as in Propositions 5.53 and 5.54. For any p € (1,0), there
exists a constant C, > 0 such that for all f € LP(X) and b € BMO(X),

> fx|sj<f><x>|”|Dj(b><x>|2du<x> < cpnbuém(x)fﬂ(|f<x>|’“du<x>. (5.228)
j=—
Proof. From Propositions 5.53 and 5.54, it follows that
L{ LIS vt ||b||§MO(x)Ix|f(x)|pd#(x), (5.229)
x (0,00

where &(f) is as in Proposition 5.53 and dv(x,t) is as in Proposition 5.54. Moreover,
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we have

[ st nrave
A x(0,00)

) 2-k
) k;mijz—k-l S 1) |pdv(x, t)

- - - gt (5.230)
= > fxlsk(fxx)l’”fo X(z‘k‘l,zk](t)< > |D,-<b><x>|2x@f1,2-f]<t>>du<x>7
k=—o0 j=—o0
= 1082{ > J‘Xlsk(f)(X) "1 D (b) (x) |2d#(X)}-
Combining both estimates completes the proof of Corollary 5.55. O

We now can state a variant of David-Journé T (1)-theorem on spaces of homogeneous
type. In what follows, for any € € (0,1], a continuous function on X x X \ {(x,x) : x € X}
is said to be a standard kernel of order € if it satisfies (I-3) in Subsection 5.2. Let § € (0,¢). A

continuous linear operator T from Cf(%) to (Cf (X)) is said to have a standard distributional
kernel K of order € if T and K satisfy (2.48). Also, the adjoint T* of T is given by that for all

f,g € Cﬁ(}(), (Tf,g) = (f, T*g). Then T* : Cg(%) — (Cg(%))' is a continuous mapping;
moreover, T* is associated to the kernel K*(x,y) = E(y, x) forall x,y € X.

Theorem 5.56. Let € € (0,1], p € (0,¢), and let T be a continuous linear operator from Cf (X)

to (Cg (X))'. Assume that T has a standard distributional kernel K of order € as in (2.48). Then T
extends to a bounded operator on L*>(X) if and only if the following conditions are true:

(i) T(1) € BMO(X),
(i) T*(1) € BMO(X),
(iii) T € WBP(f).

Proof. We first verify the sufficiency. By Proposition 2.12, both T and T* can be extended to
a continuous linear operator from CF(X) to (Cg(ﬂ())'. IfTA) =T*(1) =0in (Cg(%))', then
by Theorem 5.49, T and T* can be extended as continuous linear operators on C#(X). By this
fact, Theorem 5.23 and Proposition 5.10(v), we know that T extends to a bounded operator
on L2(X).

We now consider the general case. Let {S; }]. <, be as in Definition 2.2 and D; = S; -S4
forj € Z. Let {lpj]-}jeZ be as in Theorem 3.10. Let b € BMO(X). For any f € Ci(,%), we define
the paraproduct

P ) = S Bi(D;(0)S:()) (). (5.231)

j=o

We will show that the kernel of P, is a standard kernel of order ¢, that P, is bounded on L?(X),
and that P,(1) = b and P;(1) = 0. In order to be rigorous in the following calculations, we
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should consider Z;-\i, v instead of 372 and thenlet N — co. However, we will omit these
details; see [75, pages 302-305].
(1) The size of the kernel. The kernel of P, is

K(x,y) = Zj By (x, 2)D;(b)(2)S; (2, y)dpu(2). (5.232)

j=—o0

Let By = B(z,251277), for k € Z,, and bp, = (1/‘u(Bo))jBob(z)dy(z). Since
[ Dyt yaut -0 (5239
by the size condition of D; and (5.227), for any z € X, we have

|D;(b)(=)] < IB |Dj(z,y)||b(y) - bs, |du(y) +ZJ‘ |Dj(z, )||b(y) - ba,|du(y)

By \Bk-1

- 1 1
< E ————| |b(y) -bg,|d
~ Loke: .”(Bk),[Bk| (v) = b, |dp(y)

< lIbllemox)-
(5.234)

Let €' € (¢, €1 A €2). By the size conditions of 13]- and S, (5.234), Lemmas 4.4, and 3.5, we have

1 27 ¢
Kyl < “b”BMO“"ZI Vz,(x)+V2,(z)+V(x,z)<2—f+d(x,z)>

J=—®©

) 1 2 e du(z)
Voi(2) + Vi (y) + V(z,y) \ 27 +d(z,y) ' (5.235)

!

1 27 )
< |Ibllemox) Z 4 Vi (x) + Vi () + V(x, ) <2—f + d(x,y)>

Sl ”BMO(JC)V( %9

which verifies the size condition of the kernel K.



168 Abstract and Applied Analysis
If d(x,x') < d(x,y)/2 with x #y, by (5.234),
|K(x,y) - K(x, y)]|

by

j=—oo

J'x [Dj(x,z) - Dj(x',2)] D;(b)(2)S;(z, y)du(z)

< bllsvown S j | |B;(x,2) - Di(x, 2)||S; (2, v) | dpu(2)
j=—o0 d(x,x)<(27+d(x,z))/2

(5.236)

o B lIS eyl
d(x,x)>Q27+d(x,z))/2

o B |sf<z,y>|dy<z>}
d(x,x')>(27+d(x,z)) /2
= [bllsmow { Y1 + Yo + Y3}

The regularity of 157- and the size condition of S; together with Lemmas 4.4 and 3.5 give

/

o dix,x) \° 1 27 ¢
s ]._ZQOLC (2-]' +d(x,z) > Vyi(x) + Vori(2) + V(x, 2) <2‘f +d(x,z) >
y 1 2 ezd (2)
Vo (@) + Ve ) Vi \ 2T +dzy) )

< 3 (Axx) ) 1 27
S EN\2T v y) ) Vo) + Vo (y) + Ve y) \ 27 +d(x,y)

d(x,x")¢
~ V(g y)dxy)©

(5.237)

The size conditions of 157- and S; together with Lemmas 4.4 and 3.5 also yield

ey J’ 1 27 e
2 oo d(xx)>(27+d(x,2)) /2 Vi (x) + Vo (2) + V(x, 2) \ 277 + d(x, z)

) 1 < 2 > du(z)
Vai(2) + Vai(y) + V(z,y) \ 27 +d(z,y) (5.238)
% 1 d(x,x')27i€=9)
;Oo Vori (%) + Vari () + VX, ¥) (277 4 dx, y))el
d(x,x")°
SV ydxy)S

~

]
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Similarly, we have

d(x,x')°

) 5.239
Vi y)dx, y)° (5.239)

3

which shows that K has the desired regularity on the first variable.
An argument similar to above also proves thatif d(y, y') < d(x,y)/2 with x #y,

) d(y,y)*
|K(x,y) -K(x,¥)| < ||b||BMO(x)V( W.y) (5.240)

V(x,y)d(xy)"

Thus, K is a standard kernel of order €.
(2) Boundedness of P, on L*(X). For any f,g € L*(X), by Holder’s inequality,
Corollary 5.55, and Lemma 3.9 together with Remark 3.16, we have

(P9 =| 3. [ DS (65} ()t
j=—
oo 172 ¢ o B ) 1/2
S { > |Dj(b)(x)|2|5i(f)(x)|2d#(x)} { > [ 1Bl d#(x)}
j=—oo X j=—o0 X
< lIbliemocn | f 2o 1812 ).
(5.241)
which together with a duality argument yields that
P (Al 2y < NlBvOW) I fllE2(0)- (5.242)

(3) P,(1) =band P;(1) =0in (C‘g(ﬂ())/. Since fxﬁ]-(x, z)dpu(x) = 0, from this, it follows
that P;(1) = 0in (C’g(%))/. Also, since fo]- (y,z)du(z) = 1, from this and Theorem 3.29, it
follows that P,(1) = b.

We can now finish the proof of the sufficiency. For any given operator T which satisfies
(i), (ii), and (iii), let by = T(1) and b, = T*(1). Then, there exist paraproducts Pp, such that
P, (1) = b; and P{;(l) = 0 for i = 1,2. Then the operator T=T- b, - Pi:z lies in WBP(p)
and T(1) = T*(1) = 0. Thus, by Theorem 5.23, we know that T is bounded on L2(X), which
together with the boundedness of P, and P} on L%(X) also yields the boundedness of T on
L2(X). This completes the proof of the sufficiency.

We now check the necessity. By Remark 2.14(iii), we know T € WBP(f). To verify
T(1),T*(1) € BMO(X), we first claim that if T is as in Proposition 2.12 and T is bounded on
L*(X), then T is also bounded from Ly (X) to BMO(X), namely, for all f € Li°(X),

IT(H)llsmocy < 1 fllze(x)- (5.243)

The proof of this claim is standard; see, for example, [75, pages 156-157] or [81, pages 118-
119]. For any ball B = B(xo,r) with some xo € X and r > 0, let Cp = T (f Y x\B(xo,2r)) (X0). Since
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f € LP(X) and K is locally integrable away from the diagonal of X x X, it is easy to see that
|Cp| < oo. By the boundedness of T on L?(X) and (2.49) together with Lemma 2.1(i), we have

ﬁfg IT(F)(x) - Cy|dux)
<Lf |T(fXBx2 )(x)ldu(x)+¢f |T(fx2\Bxo2r)) (x) = Ci|dpu(x)
~u(B)) g (o) u(B) ), \Bo.2r)

1
STl - ool flle ) + —f f |K(x,y) = K(xo, ) || f () |du(y)dp(x)
H(B) ) B) x\B(xo,2r)

S (T2 — 2 + Coll fllz=(x),
(5.244)

which proves (5.243).
Using (5.243), we then can verify that if T is bounded on L?(X), then T(1) € BMO(X).

To see this, for any g € Cf(%) with supp g C B(xo,r) for some xp € L and r > 0, let ¢ €

Cg (X) be as in the proof of Proposition 2.12. By (5.243), T(¢) € BMO(X), which together
with Theorem 5.19(i) below yields that

(T (), )| < IT(@)llemoo gy < (1Tl -2 + Cr) gl (x)- (5.245)

On the other hand, by (2.49) and Lemma 2.1(i), we also have

(T - ), 8)] = 'Ud(yx Ky = K (o )] (-9 ()

e
5 CTJ‘J( { fd(y,xo)EZr V(.X'o, y)d<x0r y)e d‘u(y) } Ig(X) |d‘u(x) (5246)

S Crligllow
S CT||g||H1(x>~

Thus, (T(1), &)l < T2 + Cr)lgllax), which together with Corollary 2.11(i),
Proposition 5.21, Theorems 6.11, and 5.19(i) implies that T'(1) € BMO(X) and ||T(1)|lsmox) S
IT|lr2x)—r2x) + Cr. An argument similar to this also proves that T*(1) € BMO(X) and
IT*(L)lIsmocx) S ITNr2(x)—r2¢x) + Cr, which completes the proof of Theorem 5.56. O

We now state a variant of the T(1)-theorem in the sense of Stein [75, page 294]. Let € €
(0,1], p € (0,€), and let T be a continuous linear operator from Cf(,%) to (Cf (X))'. We assume

that associated to T, there is a standard kernel of order ¢, in the sense thatif f € Cl[j (X), then,
outside the support of f, the distribution T f agrees with the function

T(F)(x) = LK(x,y)f(y)d#(y) (5.247)
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Similarly to [75, page 294], we assume that T and T* are restrictedly bounded. Whenever
$R* is a normalized bump function for the ball B(xg, R) with some xo € X and R > 0, the
distributions T(¢®*) and T*(¢**) belong to L?(X), and the estimates

IT (%) [l 2y < Al (B(x0, R))]'?, (5.248)
IT* ($R*) |12 x) < A[p(B(x0,R))] "2 (5.249)

hold with an A > 0 that is independent of R, xo and ¢=*.

Theorem 5.57. Let € € (0,1], p € (0,¢€), and let T be a continuous linear operator from Cf (X) to

(Cf (X))" associated with a standard kernel of order e in the sense of (5.247). Then T extends to a
bounded linear operator on L?(X) if and only if both T and T* are restrictedly bounded in the sense of
(5.248) and (5.249).

Proof. The necessity is obvious. We only need to prove the sufficiency. We first make the
following claim that if f € Clﬂ,(%), then

Tf e L'(X). (5.250)

In fact, assume that supp f C B(xo,r) for some xg € X and r > 0. Since f is a multiple of a
bump function, Tf € L*(X) by (5.248), and hence fB(xOIZr)le(x)ldy(x) < oo. If x ¢ B(xo,2r),
then by (5.247), fxf(x)d//t(x) = 0, and the regularity on K, we have

r7el =| [ Koo seau)|

= ‘L [K(x,y) - K(x,xo)]f(y)d.u(]/)'
< CTJ‘ d(y, xO)E

7 T B V(x, x0)d (x, xo

S Crll flle (o (B(xo,7))

(5.251)

5 |f () |du(y)

re

V(x,x0)d(x, x0)€’

which implies that | H\B(x0,2r) |T f (x)|du(x) < oco. Thus, the claim (5.250) holds.

We now verify that T(1) € BMO(X). To this end, we first prove that there exists a
constant A > 0 such that whenever ¢$** is a normalized bump function for the ball B(xy, R)
with xg € £ and R > 0, then T(¢R*) € BMO(X) with

IT (") lppton) < A- (5.252)
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Let 1§1 = B(Xy, ﬁ) with some X, € X and R > 0 be any ball, and let 1§2 = B(5c'0,2ﬁ) and
Bs = B(%,3R). Fix a function 8 € C/(X) with 6(x) = 1 for d(x, %) < 2R and 6(x) = 0 for
d(x, %o) > 3R. Write

PR (x) = §R(x)0(x) + $R (1) (1 - 0(x)) = fi(x) + fol). (5.253)

Observe that f; is, up to a bounded multiplicative constant, a normalized bump function for
either the ball B(xy, R) or the ball B3, whichever has the smaller radius. Thus, by (5.248), we
have

[ 1A au) < Il

< Amin {u(B(xo, R)), u(B(%,3R))) 624
< A'p(B(%o, R)).
Since supp f, C (X \ Ez), for x € By, by (5.247), we have
Tfy(x) = LCK("’” fW)du(y). (5.255)

Let Cg = [,K(Xo,¥) fa(y)du(y). Then |Cg | < oo, and for x € By, by the regularity on K on
the first variable and Lemma 2.1(i),

|T f2(x) - Cg,| sf |K(x,y) = K (%o, y)|du(y)

d(%o,y)>2R

AN

d(x,%)¢ 5.256
f ) _A(x%0) =du(y) (5:256)
d(zoy)>2R V (X0, y)d (X0, y)

1.

N

Combining the estimates for f; and f, gives that for any ball B,
J‘N |T(¢"*) - C, |*dp(x) < Au(By), (5.257)
By

which shows (5.252).

Let 0 € C;(R) and 6(0) = 1. For any v > 0 and x € X, set 0,(x) = 0(vd(x,x1)).
By (5.252), {T(6,)},s is uniformly bounded in BMO(X). Since BMO(X) = (H'(X))' (see
Theorem 5.19(i)), as is well known, BMO(X) is weakly* compact in the dual topology. Thus,
every sequence {T(6,,)} oy has a subsequence which weakly* converges. Let f € Cg(ﬂ(). By
(5.250) and (T (6y), f) = (6, T*(f)), we know that whatever limit (denote it by a), we extract
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from a subsequence of {T(6)},., then (a, f) = (1,T*(f)). This shows that the limit a is
independent of the subsequence, and we are justified in setting a = T(1) = lim,,_¢T(6,) and

(T, f) = ij* (F) ()du(x), (5.258)

with a similar statement when the roles of T and T* are reversed. Thus, T(1), T*(1) €
BMO(X). Moreover, if T is restrictedly bounded, then T € WBP(f). Thus, by Theorem 5.56,
we know T is bounded on L?(X), which completes the proof of Theorem 5.57. O

Remark 5.58. From (5.258), we see that if T is bounded on L?(X), then T(1) € (Cg(%))' for a
certain f € (0,1] is constant if and only if for any f € Cf (X)),

L{T* (f) (x)dpu(x) = 0. (5.259)

6. Triebel-Lizorkin spaces with p = «

In this section, we will develop a theory for Triebel-Lizorkin spaces with p = oo by using
the Carleson characterizations. We again distinguish between the homogeneous and the
inhomogeneous cases and examine the relations between these cases as well as with BMO-
type spaces.

6.1. Plancherel-Pélya inequality and definition of F 5,3 (X)

Throughout this and the next subsection, we will assume that y(X) = oo. In this subsection,
we introduce the norm in F;,q(x) in a similar way as in [82] and, using the homogeneous
discrete Calderén reproducing formulae, Theorem 4.13, we will prove that the norm |-|| £5 o (X)
is independent of the choices of ATIs and spaces of distributions via some Plancherel-Polya
inequality; see also [83, 84].

Definition 6.1. Lete; € (0,1], €2 >0, €3 >0, € € (0,1 A €2), and {Sk}iez be an (€1, €2, €3)-ATL
For k € Z, set Dy = S — Sk_1. Let |s| < e and p(s,€) < q < 0. For any f € (GS(B,y)) with
0 < B,y <e, define

o 1/q
£l ) = sup sup{@f@zzk“ﬂmu)(m|"dﬂ(x>} , (6.1)

IeZ acl) k=1

where the supremum is taken over all dyadic cubes as in Lemma 2.19 and the usual
modification is made when g = oo.

Remark 6.2. (i) From Lemma 2.19 and the doubling property (1.2), it is easy to see that an
equivalent norm is obtained if the supremum in Definition 6.1 is taken with respect to all
balls with positive radius instead of all dyadic cubes as in Lemma 2.19.
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(ii) Let [y € Z. It is easy to see that there exists a constant C;, > 0 such that for all

fe@G By,

o 1/q
sup Sup{@f@ S zksq|Dk(f)(x)|qd#(x)} < Cill flles, - (6.2)

17 acl; k=I+ly

Thus,

o 1/q
3 25| Di(f) (x) |qdy(x)] . (6.3)

I flles, o) ~ SUPSUP{
i p(Qh) J gl i T+l

1€Z acl;

We now establish the following useful Plancherel-Polya inequality, which complements
Proposition 5.4(ii) for the case p = co.

Proposition 6.3. Let €1 € (0,1],€2>0,€e3> 0, € € (0,1 A€2), and let { Sk} ey, and { Pic} ey, be two
(e1,€2,€3)-ATls. For k € Z, set Dy = Si = Si—1 and Qi = P — Pr1. Let |s| < e and p(s, €) < g < oo.
Then for all f € (G5(B,7)) with0 <,y <e,

N(k,T)
sup sup

qy /4
259 (QF™) X (r: 05 0 (Trv)[sup | Dk (f)( x)|] }
ez acl} {P‘(Qa k 1 rel; v=1 HE): Qe cQal

err

1/q

1 v ) q
- Slugsgy{ N2 2 2 Q) Xt (7rY) L;gﬁ,JQHf)(ﬂl] } :
(6.4)

Proof. To prove Proposition 6.3, it suffices to show that for all f € (G5(B,y)) with0 < B,y <e,
the left-hand side of (6.4) is controlled by its right-hand side.

Let all the notation be as in the proof of Proposition 5.4. Then, by (5.9) and (5.10), we
have

N(k,T)

q
Z Z Z ksqﬂ(QT )X {(r,9):QF"cQl) (7, v) [ Sup |Dk (f)) |]
nu(Qvl k=l Tl v=1 xeQr”

N(k,T)

ZZ Z 2ksq#<Ql‘;/v)X{(T,V):Q'i’”CQfx}(T’v)

,“(Qu k=l el v=1

Nk 7" N N
[Z > Z 2R L (QE) [ Qe () (W)

kK=lTely v'=

1 Gmam)]
Ve (V) # Vo (UE7) +V (07, ) \2 090 d ()
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N (k,T)

ZZ > 2%9(Q) Xm0t (V)

1
(Q k=l el v=1

-1 N(K' ") o L L q
X[Z P 2"“"eﬂ(Q’E/”)IQkf(f)(y’é"’)l-~]

k'=—c '€l V=1

= Yl + Yz.
(6.5)

Then by Lemma 2.19, if x ¢ B(z},4Cs27") and y € Q!, then d(x,y) > 3Cs27!, where and in
what follows, Z/, is the “center” of Q!, as in Lemma 2.19. By Lemma 2.19 again, we can find
my € N such that B(z},4C¢27") UEQ’T“ 7 € I, B(Z.,4Cs27H) N QlTi # @ and m; is no more
than a constant which is independent of a and [; see the details for a proof of the last fact in
[85, pages 1385-1386]. Moreover,

p(QL) ~ w(Qh). 6.6)

With these choices, we further control Y; by

o N(k,7)

)X el (T¥)
( =] el v=1

Nk,

[z 5 S o ()

k=lrely v= .
1

V-t (Y8) + Voeiwnor (o) + V (g, 5

2~ (knK') 1

<2 (knk) 1 d (y”, y5 ')> ]
) e (6.7)
ZZ Z ZkSq//t(erc'v>X{(r,v):Q’;'VCQL}(T’v)
k=1 Teli

v=1

x |Qu (f) (ver ’>|

l
a

t

N(K.7)

kz Z o-lk-k'le (Q ) X 10 o Q,)m(T V)

1T'ely

v

1
Voo (") + Vo (™) + V (y5”, y5™)

< 2_(k/\k,) >€] q
X

_ , k / /
20K ¢ (R, )

x | Qi () (=)

= Y1,1 + Y1,2-
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We first estimate Y7 1. If g < 1, by (5.5), Lemma 5.2, (5.12), (6.6), and choosing €' € (0, €) such
thate' > sand g > p(s,€'),

TR

0]
ZZkqu‘ (T’/V’)iQZ'V’CQ’i } (T’, vl)
i N 119 lk—k
x [1(Q5™) |Que (F) (yE™ ) [] T2 tkK1ea
N(k,T)

x 30 2 QX ot (TY)

Tel, v=1

X
VZ—(k/\k’) (yl;'v) + VZ—(k/\k’) (]/ ) + V(y-,- , ]/T ) 2-(kAK') 4 d(yI; V, yq’f i )
m N(K' ")

KN\ 14
i=1 #(Ql k=lTely v=1 sq‘u(Q )|Qk, (f) (y-r’ Y )l X{(T’,v’):Qlj’vlCQ:—i } (T" v,)'
W V=

(6.8)

which together with the arbitrary choice of yk Ve QI;,I’V, shows that (Y1) is controlled by
the right-hand side of (6.4) in this case.

If 1 < g < oo, choosing €' > |s| together with Holder’s inequality and Lemma 5.2 yields

N(k’ r)

Z DI A R Lt (o V)X{(T’v)Qk”CQ’ (7",v)

k=lrely v=1

! J 1
x |Qu(f) (e - —
sz(k/\k') (y?' ) + sz(k/\k’) (yl;,' ) + V(yrl; , yT, )

2—(kAK) €
X kl )
2-(kAK') 4 d(yT ,yT, v )

& N(k,,T,) ! ! J 1 ) J
S {Z > > 2 RIS Q) X oo ) (V)

kK=lTely v'=1

J g ].
x| Qe (f) (") e
Ve (Ye™) + Ve (Y™ ) + V (ye” y™)

< 2—(k/\k’) >€}1/q
X

_ ) k k' ' 4
2-(kAK') 4 d(yT v, yT, )

(6.9)
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which together with Minkowski’s inequality, (6.6), and Lemma 5.2 yields that

N )

1/q
Z Z Z ZkSq#(Qk, )X{ T’v)QkVCQl (T V)|Qk’(f)(]/ >|} !

1
(Q k'=ltely v'=1

M) 5 Z{

(6.10)
which completes the estimate for Y7 ;.
We now estimate Y. To this end, for j € Z,, let
U={del:a#7,..., 7", 3C2" <d(z,,2) <3C2 ). (6.11)

We first claim that there exists m, € N which is no more than a constant independent of I and
j such that

UQec U Quw ”°<UQ> (6.12)

u’eIZ] """ o eI]

. . Ky 1
fori=1,...,my, and moreover, if Q" C Uu,d{ Q,,, then

pul U Q7 | svauE). (6.13)

i .
o EII,}

In fact, by Lemma 2.19, there exists my € N such that (6.12) holds. Notice that for any fixed
ig € {1,...,my}, ae[an’ C B(Z ,0,14C627 1. By an argument in [85, pages 1385-1386], we
know that the number of & € I_; such that Q,,, N B(z 14C62J !y # @ is no more than a

constant which is independent of j and I. Thus, the claim (6.12) holds.
To see the claim (6.13), we only need to notice that

aio”

U Q. cB(E, 9c2™), (6.14)
i=1,...,my
uiEL,j

which implies the claim (6.13).
We also notice that if Q]T‘,,’v, cQl, witha' € I}, then forall y € Qf,,

d(y,y&) > cs2. (6.15)



178 Abstract and Applied Analysis

Using these properties, we now estimate Y, by first considering the case g < 1. In fact,
in this case, from (5.5), (6.15), (6.12), and (6.13), it follows that

k/r

Y12<2216qn(1 q) 1—
=0 1#(Q k=lrely v=

X Xyt ey (T V) |Qe(F) (Ve )| (6.16)

kV)

(o)
x <Z 2—|k—k’|e’q2(k—k')sqz—(k/\k’)eqzk’n(l—q)2—ln(1—q)+leq> ,
k=l

which together with g > n/(n + €) and choosing €' > s further implies that

[ee] 1y N(k,’T,) k/ /
Yip S " Z 2k'sd (Q Y )
20 o (Q ) k=lrely »=1 (6.17)

X Xyt (T )| Qe () (W) |-

From this, it is easy to deduce the desired estimate for Y7, in this case.
If 1 < g £ oo, by Holder’s inequality and Lemma 5.2, we have

S N(K',7) 5 ek ek X
) ’ ' Iv/
Z Z Z ksprkKlep ks (QR) [ Q" U Q)= EI(T v)

k'=lTely v=1

1
x| Qu () (¥

Vi (Y5™) + Varaon (i) + V (", 5™

9—(kAK') €
X
<2<’“"” +d(ye”, v

N(K', ") -
{ZZ > 2503 kR kK15 QK |0 () (1)

k'=lTely v'=1

(6.18)

1
X
Vi (yr") + Voo (™) + V(v yi ™)

o~(kAK') ey1/q
Xy o e (TV)
V)L i &)= —(kAK' v v
(T RUAGIZEN T I\ 2R - d (i, ) ’

which together with (6.15), (6.12), and (6.13) yields that

N(K' ")

PR Y2 YRR b VD YR (et

j=0  i= 1#(Q Nedda, v 6.19)
X Xy @i gt (T V) Qi () (wr™) |,
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where we choose €' > s. From this, we deduce the desired estimate for Yi, when 1 < g < o,
which completes the estimate for Y.
We now estimate Y5 by using the following trivial estimate that

N(K,) /g
{Z > 2|Qu (f) ) (y~ )|"} < RHS of (6.4), (6.20)

el v'=1

where and in the sequel, RHS stands for “right-hand side.” From this, it follows thatif g < 1,
by choosing €' > s, we then have

o N(k,T)

1 < v
Yz S 1 Z Z Z zk qﬂ(Qﬁ )x{(T,v);Ql_:’Vchx}(Tlv)

b N 6.21
x<z ISR NIE >|> (621

K=—co 1€l v'=

< (RHSof (6.4))%;

if 1 < g < oo, by Holder’s inequality, Lemma 5.2, and (6.20),

) N (k) p
st‘iﬂ(QT'”)X ) 0k Ol (T,V)
,u(Qa kZ: Z]k ; [( v): Qr Csz]

-1 N(K' T
{ 33 Z 2 () Q1) () I

1 (6.22)
V2 (knk") (yT ) + VZ (knk') (yT’ ) + V(yT ’yT', ,)

2—(kAK') €
X
(2 (kNK") +d(y-r ,yT’ ’)) }

< (RHSof (6.4))7,

which completes the proof of Proposition 6.3. O
Remark 6.4. We point out that Remark 5.5 applies in a similar way to Proposition 6.3.

From Proposition 6.3, it is easy to deduce that the definition of the norm ||| Fs (%) 18
independent of the choice of ATIs. We omit the details.
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Proposition 6.5. Adopting the notation from Proposition 6.3, one has for all f € (GE(B,y)) with
0<pB, y<e

1/q
Zst‘ﬂDk (f)(x) |qd#(x)}

sup sup{ #(Ql ) o, &

€7 a€l;

» (6.23)
~ supsup{ i )fQ szsquk<f><x>|"du<x>} .

€7 acl;

The following theorem will show that the definition of the norm ||| £, (%) is
independent of the choice of the space of distributions.

Proposition 6.6. Let all the notation be as in Definition 6.1. Let |s| < € and p(s,e) < q < oo. If
fe (ég(ﬂl,y1))' with max{0,—s} < p1 < € and max{0,s} < y1 < €, and if”f”F'io,q(x) < oo, then

fe (dg(ﬁz,yz))'for every max{0, —s} < fr < € and max{0,s} <y <e.
Proof. We use the same notation as in the proof of Proposition 5.7. Let ¢s € (e, €). For any f €

(Gg(ﬁl,)q))’ with max{0,-s} < 1 < € and max{0,s} < y1 < ¢, when g < 1, by Theorem 4.13
together with (5.24), (5.25), and (5.5), we have

Ios) N (k)
[(f9)] = k; ZI Zl u(QF")Dic(f) (v ) (D (- v5"), ¢)
N(k,T)
<||<p||q<pm>[ZZ > 27 [u( Q) [De () (W) ]
k=0 Tl v=1

1 1 !
x kv kv\y 12
V1(x1)+V(x1,yT ) (1+d(x1,yT ))
1 N(k,T)

£ 33> Q) DU )

k=—cc TEl v=1

[ 1 2-kr2 ] 1 } Va
y )
Var (1) + V (x1, y57) 2"+ d(xhylrc’v))y2

(6.24)

Notice that for k € Z,, when d(xl,y’;’v) < 1, then Vi (x1) ~ Vl(ylﬁ’”) > ke, (yﬁ”’) >
1(QF”), while when 2! < d(x;, y¥”) < 2! for some | € Z,, then V(x1, y¥*) > Vu(ys") >
Vo (yl;’v) ~ y(Ql;’V). Therefore, for k € Z,,

M)

<1, (6.25)
Vl(xl) + V(xl,yT’ )

When k € Z \ Z,, noticing that if d(x1, yl;’v) <27% then

Vo (x1) 2 Vo (yh”) 2 u(Q”); (6.26)
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if 212°F < d(xy, y&”) < 2"*127F for some | € Z,, then
V(x1,y5”) 2 Vo (Ys”) 2 2%V (™) 2 p(Q5”), (6.27)

we also have

kv
Q") —t (6.28)
Vo (1) + V(x1,y77)

We also need the following trivial estimate that

N(k,T)

> 2 2D O SIS (6.29)

Tell v=1

Using (6.25), (6.28), and (6.29) yields that

© -1 1/q
[<f, 0] S Mellam I fllEs,, ) { PR RS 2"”2‘”"}
k=0

k=—c0

(6.30)

S lgllc@amlflles, 0

where we chose s <y, < 12.
If 1 < g < oo, Holder’s inequality, (6.25), (6.28), (6.29), and Lemma 2.1(ii) prove that

o N(k,T)
[{fe)] < II(If||G<ﬁz,rz>{Zz_kﬂzz_ks[z >, 25u(Q) |IDe()) (i) |
k=0 el v=1

) 1 1 ]” L
Vi(x) + V(1 y”) (1+d(x, y&7))"

1 1 . 1/4
- U Vi) + V() (L G )" "(y’]
-1 N (k,T)
rar [Z 3, 2 (@) D)

1 2k ]Uq
X
Vo (21) + V(a1 5" (275 + d (a0, y5")) "

» 1/q
S
Vas (1) + V(1 y) (275 4 d ()"

S @l I e, 00-
(6.31)
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Combining (6.30) and (6.31) with an argument similar to the proof of Proposition 5.7
then completes the proof of Proposition 6.6. O

Now we can introduce the homogeneous Triebel-Lizorkin spaces P;rq(%).

Definition 6.7. Lete; € (0,1], 2> 0,e3>0, € € (0,61 A€ep) and let { Sk} ey be an (€1, €2, €3)-ATL
For k € Z, set Dx = Sk — Sk-1. Let |s| < € and p(s, €) < g < oo. The space Fgolq(x) is defined to
be the set of all f € (ég(ﬁ, Y))', for some B, y satisfying

|s|]<p<e, max{s,0,—-s—x}<y<e (6.32)

such that

o k=l

1/q
1 &
1 lles 0 = sup i‘g[’{m’[@ 2.2 q|Dk(f)(x)|qd#(x)} < oo, (6.33)

where the supremum is taken over all dyadic cubes as in Lemma 2.19 and the usual
modification is made when g = oo.

Propositions 6.5 and 6.6 show that the definition of the spaces F 5,(X) is independent
of the choice of the ATI and the distribution space (d(ﬁ, 7)), with f and y satisfying (6.32).

Remark 6.8. To guarantee that the definition of the space Pi,/q (X) is independent of the choice

of the distribution space (é(ﬂ, 7)), we only need the restriction that max{0,-s} < < € and
max{0, s} < y < €. Moreover, if we assume that max{0,s} < f < e and max{0,s -k} <y <e,
we can then verify that G(f,y) C F;rq (X); see Proposition 6.9 below.

6.2. Properties of Fgo,q(x) and boundedness of singular integrals

In this subsection, we first present some basic properties of F %,q(X). By establishing a
maximal function characterization of F cfo’q(%), we then establish some relations between the
spaces F3,  (X) and the spaces C*(X) and between the spaces F%, ,(X) and the space BMO(X).

Finally, we obtain the boundedness on F;,q(.%) of the singular integrals considered by Nagel
and Stein in [44].

Proposition 6.9. Let € be as in Definition 6.7, |s| < €, and p(s,€) < g < 0. Then,

(i) F3, 0 (X) CFS, , (X) if p(s,€) <o < g1 < oo

(i) BS,(X) C F3, 4(X) C B, . (X);
(ifi) if max{0,—s} < f < € and max{0,s} <y < e, then E%, ,(2) € (GS(B, 7))’
(iv) if max{s, 0} < f < e and max{0,—s —x} < < ¢, then (B, ) C E5, ,(X);
(V) the spaces F3, ,(X)/ N are complete.
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Proof. Property (i) is a simple corollary of (5.5).

To see (i), BS, ,(X) C F3, ,(X) is obvious by the definitions of the both spaces B, ,(X)
and Pgo,q(%), while Fﬁo,q (X) C B, .. (X) can be obtained by their definitions together with the
Lebesgue differential theorem; we omit the details.

Property (iii) is a consequence of the second inclusion in Property (ii) of this
proposition and Proposition 5.10(iii) on B;m (X), while Property (v) can be easily deduced
from Property (iii), Property (iv) is a conclusion of the first inclusion in Property (ii) of
this proposition and Proposition 5.10(iv) on Bcs>o,q (X), which completes the proof of this
proposition. O

To obtain some relations between the spaces F. g (X) and the space BMO(X), we need
the following technical result which in fact gives a new characterization of Triebel-Lizorkin
space F go,q(x). We first introduce a maximal function.

For any x € X and | € Z, using Lemma 2.19, it is easy to prove that there exists a finite
number of a € I; such that

QLNB(x,2"") # 2, (6.34)

which will denote by Qfx ;withi=1,..., m(x),and moreover, m;(x) is no more than a positive

integer m € N which is ilndependent of I and x; see [85, pages 1385-1386] for a detailed proof.

In what follows, for convenience sake, we will always assume that m;(x) = m by letting

QLi =@ fori = my(x) +1,..., m when m;(x) < m. Let { Dy}, be as in Definition 6.7. Now
1

forany s € R, g € (0,00], f € (G(,7)) with0 < B, y < e and x € X, we define the maximal
function € (f)(x) by

1/q
. 1 c
@ =sup| ———— 2ks1| D d , 6.35
S()(x) Sllelgliﬂ(ulei;)J‘U,T"lQifkél' |Di(f) ()] ﬂ(y)] (6.35)

where the usual modification is made when g = .

Proposition 6.10. Let ¢, s, and g be as in Definition 6.7. Then f € Fgo,q(x) if and only if f €
(G(B,y)) with B, y as in (6.32) and ("2; (f) € L*(X). Moreover, in this case,

I

£z, 00 ~ NG oy (6.36)

Proof. Forany s € R, g € (0,0], f € (é(ﬁ,y))’ with B, y asin (6.32) and x € X, let

1/q
s _ 1 < ksq q
€ (Nx) = sup ch [#—( Q. )J‘QHZ_;Z |Dk(f) ()] dﬂ(y)] , (6.37)
a€cl;

where the usual modification is made when g = oo. Obviously,

”f”FSc,q(X) ~ ||é:2,1(f)||L°°(X)' (6.38)
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To prove the conclusion of this proposition, it suffices to verify that when

my(x)
J QL o B(x, 27, (6.39)
=1 !
for any iy,i> € {1,...,m(x)},
A I
#(Q) ~ #(Q): (6.40)

To verify (6.40), by symmetry, it suffices to verify that
1) < LY. 6.41
#(@) 5 1(Q) (641

To this end, suppose zi € B(x, 27y n Q! ., with k =1, 2. Then for any w € B(z! ,-1,C62_l), we
a 2l

have

d <w, z!

i2
L

) < d<w' Zi;a) + d<zi¢jl’zl> +d(z1,x) +d(x,z2) + d<z2’ Zlu?) (6.42)
< 3(:6271 + 2—l+2.

Ce2h ¢ B(z!,,,(3Cs + 4)2’1), which together with Lemma 2.19 and the

i’ o2

Thus, @', C B(Z!
a

a

double pi‘operty of U gives (6.41), and hence, completes the proof of Proposition 6.10. O

Using Theorem 5.19(i) and Proposition 6.10, and an argument similar to that in [86],
we can establish the connections between F3, ,(X) with BMO(X) and C*(X) with s > 0 as
follows.

Theorem 6.11. Let ¢ be as in Definition 6.7. Then,

(i) if 0 < s < e, then C5(X) = FS, . (X) = B, . (X) with equivalent norms;

(i) BMO(X) = F2 ,(X) with equivalent norm.

Proof. We first verify (i). Let f € C5(X) and let { D },¢;, be as in Definition 6.7. We first claim
that f € (Gg(ﬂ, 7)) when 0 < f < e and s < y < e. In fact, from f € C%(X), it follows that for
allx € X,

|f(x) = f(x1)| S ||f||c‘5(x)d(x/x1)s, (6.43)
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which implies that for any g € G(f,y) with0<f<eands <y <e,

.80 = [ L= £l

, s 1 1 ! (6.44)
< ||f||cs(x)||g||G(ﬂ,Y)jxd(xfx1) S o (1+ . (xl,x)) ()

Sfllesoligllapy,

where in the last step, we used Lemma 2.1 (ii).
Moreover, for all k € Z and x € X, by Lemma 2.1(ii) and 0 < s < € < €, we then have

1D = || Dt fany)|

-|[ Pex i - sane)|

1 2k @ .
Siflew] v vey e A )

S 270 flles )
(6.45)

which proves that

Ifllgs . cx) = sup sup 25| Di(F) ()] < I flles - (6.46)
keZ xeX

Thus, C5(X) C F5, . (X).

Conversely, let f € F5, _(X). By Proposition 6.6, without loss of generality, we may
assume that f € ((j(ﬂ, 7)) with §, y as in (6.32). Let all the notation as in Theorem 3.10. Then,
by Theorem 3.13, for any g € G(ﬂ, y) with B, y as in (6.32), since fxg(x)dy(x) = 0, we then
have

(f,9)= S (DD, g0) = S (BeDu(H)() - BeDu(F)(xa) 0)),  (647)
k=—0 k=—

which means that in (G(g,1))’, f(x) = %, [DiDi(f)(-) = DiDi(f)(x1)]. For x € X, we
now let h(x) = X2 _ [DkDi(f)(x) — DiDi(f)(x1)] and we first verify that h is a function
satisfying the following growth condition that

|R()| S S lles 0 d (2, x1)°. (6.48)
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In fact, for any x € A, assume that 270! < d(x, x;) < 27 with some Iy € Z and write that

)= S fx [Di(x, 2) — Di (x1,2)] Di () (2)da(2)

bl o, ) .
= fx [Di(x, z) — Di (x1,2)| Dk (f) (2)dp(z) + D -+ (6.49)
k=—co

k=l

=N+

For ]y, by the regularity of Dy, Lemma 2.1(ii) and s < € < ¢, we have

Ih-1 d(x, xl) €1 1 2—k €
12 [ (i 5) wmvm@ves (Thams) PHOEE

S lles, . od (2, x1)°.

(6.50)
To estimate J,, by s > 0 and Proposition 2.7(i), we obtain
JEBS ||f||F‘§°,w<JC)ZTkSI [|Dx(x, 2)| + |Dic(x1, 2) []dp(2)
k=lo X (6.51)
S fllescod (x,x1)°
Thus, our claim is true.
Notice that for any x,y € X,
h(x)-h(y) = 3, [DDi(f)(x) - DeDi(f) ()] (6.52)
k=-—c0
Repeating the above proof yields that for all x, y € X,
|h(x) = k()| SN flles,. c0d(x ). (6.53)
Thus, h € C5(X) and
IAlleso < MfNles - (6.54)

In this sense, we say that F5,  (X) ¢ C*(X), which finishes the proof of (i).
To see (ii), let f € BMO(X) and {Dk}c; be as in Definition 6.7. Proposition 5.10(iv)
and Theorem 5.19(i) immediately imply that f € (GS(B, 7)) with0 < B, y < e. Let now Q for

l € Z and a € I, be a dyadic cube as in Lemma 2.19. Set Bl, = B(z},2C¢27!) and write

f=(f =mu(A)xu, + (f —me ()X +me (/) = fi+ fat fo (6.55)
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Obviously, u(QL) ~ u(B%) and Di(f3) = 0; in combination with Proposition 3.15, this shows
that

1/2 1/2
{ (Qh) akZ_|Dk(fl ()] dﬂ(x)} { (Qa)f | f1(x)] d‘u(x)}

(6.56)

1/2
1 2
S {#(fo) Bg|f_mB£‘(f)| d#(x)}
S I fllmox)-

To estimate f>, notice that for x € Q% and y € X \ B, then d(x,y) > 27! + d(y, z}), which
together with the size condition of Dy yields that for x € Q' and k > I,

IDRI@I = [ | DxCe L7 -y (Dlanty)

1 1 (6.57)
< 2(FRe _— —-m du(y).
]ZozleZ V(Zu 2C62] Hl) d(y,zh)<2Ce2i1*1 |f(]/) B (f)l ‘u(y)
The definition of BMO(X) together with the double property of i gives that
| Mgt acoiy (f) = mg ()] S G+ Dl fllsmoc), (6.58)
which further implies that for x € Qf,‘ and k > I,
|Dic(f2) ()]
sphes 1) = 5 a0 () ()
j=0 2]62 V(fo, 2C62]_l+1) d(y,fo)<2C62j’l+l @6
+ |”115(z;,2c62]‘-l+l )(f ) — mpt (f )|}
< 2792 fllemo
(6.59)
From this, it follows that
1/2 - 1/2
|Dk(f2)(x)|2d#(x)} SIIfIIBMouc){ 22“"‘)52}
{ #(Q) Qa;? kZ; (6.60)

< I f llmo)-

Combining the above estimates, we know that f € FSOIZ(JC) and

Iflle 00 < 1S llBMo)- (6.61)
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We now prove the converse. Let f € Fgo,z(,ﬂ(). By Proposition 6.6, without loss of

generality, we may assume that f € (G(f,y)) with 8, y as in (6.32). In the rest of the proof of
this theorem, we denote &) and S}, simply by ¢ and S. Moreover, for j € Z, f as above and
x € X, we define

< duy) |
gi =13 i G :
e { k=j fd(x,y)<2k |Dk ) (]/)l Vo (x) } (662

Obviously, S (f)(x) = S(f)(x). Let the notation as in Theorem 3.11. For any f as above and
x € X, we also set

. d‘u(y) 1/2
= = 2
S @) = {k;wfm,yw PuUHWI 7 } . (6.63)

Theorem 5.13 together with Remark 5.5 shows that for all f € H'(X),

ISy S 1l (6.64)
For any fixed f as above and x € X, we define the “stopping-time” j(x) by
j(x) = inf{j € Z: SI(f) (x) < AE(F) ()]}, (6.65)

where A > 0 is a large constant to be determined later. We first claim that for any y € X and
I € Z, if we choose A to be large enough, then there exists a constant Ci, > 0 such that

p({xe x:d(x,y) <27,1>j(x)}) > Cropu(B(y,27")). (6.66)

In fact, let By = B(y,27"). Then Uxes, B(x, 27 ¢ B(y,27"*). Let

B(y,27") ¢ OQL =P (6.67)

as in the definition of €. Let w € B(y, 274 n QL,.. Then for any x € QL,., d(x,y) < d(x,w) +
1 1
d(w,y) < C27' + 271 which shows that

P B(y, (Ce+2)27). (6.68)
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Thus, u(By) ~ u(P). From this, it follows that

- R , dyu(z)
B [ SO —éﬂ(Bo)fBo [ o D o)

p(x )
Camy] f, D@ a7
(6.69)
< Co [ DN @ Pucz)
- #(P) Pi=
. 2
<Cus|infe(r) )|,
where C, Cy3 > 0 are constants independent of [ and x. Thus, if A? > Cy3, then
p({x € By : S'(f)(x) > AL(f)(x)}) < P‘(Bo) (6.70)

which in turn shows (6.66) with Ci; =1 — Cy3/A% > 0 if A% > Cy3.
Let g € Gp(€1,€2) and gl xy < 1. By Theorem 3.11, (6.66), the Fubini theorem,
Holder’s inequality, (6.64), and Proposition 6.10, we then have

(9] = Kf 5 Dk5k<g>>]
k=-c0

= i <D2<f>,5k<g>>'

k=-o0

< 3 [ DU D@ W) lduty)
k=—co¥ X

S s du(y)
S ; (6.71)
< L%Lu,ykzk DN WD) ] e
<[ $9(nESE) aut)
X

5f () (03 (g) () du(x)
X

SNEP =0 lIgllm o

< .
< flleo o0
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which together with Theorem 5.19(i) further implies that f € BMO(X) and
I fllevocey < M fllee - (6.72)

This finishes the proof of Theorem 6.11. O

We end this subsection by the boundedness on F3, ,(X) of singular integral operators
of order ¢, which satisfy (I-1) through (I-4) in Subsection 5.2.

Theorem 6.12. Let € and q be as in Definition 6.7. If T is a singular integral operator of order €, then
T is bounded from Gy(B,y) (with 0 < p < e and y > 0) to Fgo/q (X). Moreover, there exists a constant

C > 0 such that for all f € Gy(B,y) withO < p<eandy >0,

IT flles, 0 < CllfllEs, , x0)- (6.73)

Proof. Combining some estimates and technics used in the proof of Proposition 5.25 with
those used in the proof of Proposition 6.3 gives the desired conclusions. The details are left to
the reader. O

Remark 6.13. By Theorem 8.15 below, if p(s,e) < g < oo, then F;,q (X) is the dual space of
L (X). In this case, Theorem 6.12 can be deduced from Theorem 5.23 together with a duality
argument. This provides another proof of Theorem 6.12.

6.3. Inhomogeneous Plancherel-Pélya inequality and definition of F;, ,(X)

In this and the next subsection, y(X) can be finite or infinite. We first introduce the norm
in |||,y via some IATI and then verify that this norm is independent of the choices of
IATIs and the distribution spaces; see also [84]. Similarly to the case of the space F 5.0 (X)),
we need also first to establish an inhomogeneous Plancherel-P6lya inequality related to the
norm |[|||ps,, x)-

Definition 6.14. Let e; € (0,1], €2 >0, €3 >0, € € (0,€1 A €2) and let {Sk}; 7, be an (€1, €2, €3)-
IATIL. Set Dy = Sk — Sk for k € N, and Dy = Sy. Let { S"’ Tt €ly, v=1,...,N(0,7)} with
a fixed large j € N be dyadic cubes as in Section 4. Let |s| < € and p(s,€) < g < oo. For any
fe(Ggp, 7)) with 0 < 3, y < ¢, define

£ llEs, o)
o 1/q
= max sup me( Do(f)]), supsup[ f Z ks"|Dk(f)(x)|qdy(x):| ,
1 ’TE]\})(O ) leN ac€l; (Qa x k=1
v=1,..., T

(6.74)

where the supremum is taken over all dyadic cubes as in Lemma 2.19 and Section 4, and the
usual modification is made when g = co.



Yongsheng Han et al. 191

To verify that the definition of |||, (x) is independent of the choice of IATIs, we need
the following inequality of Plancherel-Polya type.

Proposition 6.15. Let €; € (0,1], €2 > 0, €3 >0, € € (0,€1 A €2) and let {Sk} ey and {Pr} ey be
two (€1, €2, €3)-ATls. Set Dy = Sk — Sk-1 and Qi = P — Py for k € N, Dy = Sy, and Qp = So.
Let {QY : 7t €Iy, v=1,...,N(0,7)} with a fixed large j € N be dyadic cubes as in Section 4. Let
|s| < e and p(s,€) < g < oo. Then forall f € (G5(B,y)) with0<p, y<e,

max sup  mpo (IDo(f)]),
T€El)
v=1,..,N(0,7)

N(k,T) qq1/q
supsup[#(Q ZZ Z stq‘u(QI;,V)X{(T,V):Q?VCQL}(T,v)<sup |Dk(f)(x)|>] }

leN ael; k [ T€l, v=1 XEQITW

~max sup ngﬂ’ <|Q0 (f) |),

Tel
v=1,..,N(0,7)
- N(k,T) . q71/4q
ks v .
sup sup 2%91(Q7) X (rm)-05 Ol (T,v)< inf |Qk( )(x)|> ] .
wpsup L35S U e o)t 0

(6.75)

Proof. To prove Proposition 6.15, it suffices to verify that for all f € (G5(B,y)) with0 < g, y <
€, the left-hand side of (6.75) is controlled by its right side.

Let all the notation be as in Proposition 5.25. Then, as in the proof of Proposition 5.25,
by (5.78) and (5.80), we still control M (IDo(f)]) by Z1 + Z,. Moreover, by (5.82) and
Lemma 2.1(ii), we have

Zis  sup moV(|Q0(f)|) (6.76)

which is the desired estimate.
To estimate Z,, we need the following trivial estimate that for k' € N,

N(K ) 1/q
[Z > 2% Qu (f) (v ”)I”’]

Tely V=1

N(k,T) q 1/q
Ssupsup[ Z > > 2y )X{w,v):Qi”cQL](T"’)( igﬁJQk(f)(x”) ] :

IeN a€l} ﬂ(Ql k=l Tel; v=1
(6.77)
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By this and (5.82) together with ‘u(Q’T‘,”V,) [ %! (y’;,,’v,) and (5.5), when g <1, we have

N(kr ) 1/11
R PIHER U]
Tely V=1 (6.78)
< RHS of (6.75),
where we used the assumption that |s| < €.
Similarly, when 1 < g < oo, by Holder’s inequality and Lemma 2.1(ii),
N( K, r) 1/11
223 ZZ"‘ <”S’{ 5 S Q! }
Tely v=1
1 1 1/q (6.79)
x 0,v 0,y 0,v € dﬂ(y)
«Vi(yz") + Vi) + V(=" y) 1 +d(y=",y))

< RHS of (6.75).

Thus, ng,v(lDO (f)) fort € Iyand v = 1,...,N(0, 7) is controlled by the right-hand side of
(6.75).

We now verify that the second term of the left-hand side of (6.75) is also controlled
by its right-hand side. To this end, for any k € N and z € Q”, we also control |Dy(f)(z)| by
Y1 +Y>. The estimate for Y is similar to the estimates for Y; +Y5 in the proof of Proposition 6.3
and we omit the details. To estimate Y3, by (5.95) and Lemma 2.1(ii), we have

squ1 2ks[ sup ng;v'(|Qo(f)|):|

XEQT ’:1::6]\[]0(0/7,)
x Z EO]T)#(QO") kv 1 : o
fely = Vie )+ Vi(y ) +V (i ve”) (+d (v, y2)"
S 2—k€[ Sup mQO,,v’ (lQO(f)D]’
7€l ’
V’:l,...,el\;](o ')

which together with Lemma 2.19 and |s| < € gives that for/ € Nand « € I},

N(k) . 1/q
[ QL ZZ D 2%(Q7") X mmyatreat) (T V) suP|Y1|q]

k=l T€ly v=1 xeQk”

S sup mge (|Qu(H))-

(6.81)

This is the desired estimate for Y7 and hence, we complete the proof of Proposition 6.15. [
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Remark 6.16. We point out that Remark 5.5 applies in a similar way to Proposition 6.15.

From Proposition 6.15 and Lemma 2.19, it is easy to deduce the following proposition.
We omit the details.

Proposition 6.17. Adopting the notation from Proposition 6.15, one has for all for f € (G5(B,y))'
with0 < f, y <e,

1/q
max sup  mpo( , 2ksq|Dk(f)(x)|qd.”(x):|
T€ly e IeN a€l; [F(Ql) Qa;
v=1,..,N(0,7)
1/q
~ maxq sup g [ l f szs"le(f)(x)qu#(x)]
TE]\(])(O : leN a€l; (Q ) Qi k=l

(6.82)

Proposition 6.17 shows that the definition of the norm ||-[|r , (x) is independent of the
choice of IATIs. We now verify that under some restrictions on § and y, it is also independent
of the choice of distribution spaces.

Proposition 6.18. Let all the notation be as in Definition 6.14. Let |s| < € and p(s,€) < g < co.
If f € (Gg(ﬂl,}q))' with max{0,-s} < p1 < eand 0 < y1 < € and if || fllr;,,(x) < oo, then
f € (G5B, 12))' for every max{0,—s} < <eand 0 <y, <e.

Proof. We use the notation from the proof of Proposition 5.28. Let ¢ € G(e,€), and f €
(C}S(ﬁl,)q))' with max{0,d(1-1/q), —s—-d} < pr <eand 0 <y < e and ||flr,,x) < co.

To verify that f € (C}S(ﬂz,yz))' with max{0,-s} < f» < e and 0 < y» < €, we need the following
trivial estimates that fort € [yand v =1,...,N(0, 1),

map (|Do(f)) < IfNIEs, 00 (6.83)
and that for k € N,
N(k,7) 1/q
[Z > 251 De(f) (vr )|"] Sflles - (6.84)
T€l v=1

When g <1, by Theorem 4.16, (5.80), (5.105), (5.5), (6.25), (6.83), and (6.84), we have

N(0,7)

[Fl=|2 3 [ (Boty) )DL
N (k) (6.85)
+ZZ >0 (@) (D ys™), ) Di(F) (™)
k=17el v=1

S el 1 e, 0,

where we used the assumption that y, > 0 and f, > —s.
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If 1 < g £ o0, by (6.83), Holder’s inequality, (6.25), and (6.84), we obtain

0 N(k,T)
|<f/<lf>|§||<P||C,<ﬂz,yz){||f||F§o,q(x)+22kﬂz[z 3 w(Q) D) () |
k=1 Telr v=1

1 1 ]”"
X
Vi(x1)+V (xy, y’;’v) (1+d(xl,y1;’v))y2

o] |
Vi) + V() T+ dGe, )™ T

S lella@m L e, 0.
(6.86)

where we used the assumption /o > -s and y» > 0 again. This finishes the proof of
Proposition 6.18. O

Based on Propositions 6.17 and 6.18, we can now introduce the inhomogeneous
Triebel-Lizorkin spaces F, q (X).

Definition 6.19. Let e; € (0,1], 62 >0, €3 >0, € € (0,1 A €z) and let {Si} ey be an (€1, €, €3)-
IATL Set Dy = Sk — S_q for k € Nand Dy = Sp. Let {Q% : 7€ Ip,v =1,...,N(0,7)} with
a fixed large j € N be dyadic cubes as in Section 4. Let |s| < € and p(s,€) < g < oo. The space
FZ, 4(X) is defined to be the set of all f € (Gg(p, Y))', for some |s| < f < eand 0 < y < ¢, such
that

I f1lEs,, 0

1/q

1 [oe]

=max sup  mpuor (|Do(f)]),sup sup[ 2k5q|Dk(f)(x)|qd‘u(x):| <o,
o Tej{?(o ) Q 1eN a€l; /"(Qa) Qﬁzé

(6.87)

where the supremum is taken over all dyadic cubes as in Lemma 2.19 and Section 4, and the
usual modification is made when g = co.

Propositions 6.17 and 6.18 show that the definition of the space FZ, ,(X) is independent

of the choices of IATIs and the distribution spaces, (G(,y))’ with f and y with |s| < < e and
O<y<e

Remark 6.20. To guarantee that the definition of the space F;, ;(X) is independent of the choice
of the distribution space (G(f,7))’, we only need to restrict max{0,-s} <f<eand 0 <y <e.
However, if max{0,s} < f < e and 0 < y < €, we can then verify that G(f,y) C Fq (X); see
Proposition 6.21 below.
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6.4. Properties of I3, ,(X) and boundedness of singular integrals

In this subsection, we first present some basic properties of F, ,(X) and the relation between
F3, 4(X) and I{fo/q (X). By establishing a maximal function characterization of F;, ,(X), we
then derive some relations between the spaces Fq (X) and C?(X) and between the spaces
F3, 4(X) and bmo(X). Finally, we prove boundedness results on the spaces F, ,(X) for the
classes of singular integral operators considered in Subsection 5.4.

Proposition 6.21. Let €1 € (0,1], €2 > 0, € € (0,e1 A€2), |s| < €, and p(s,€) < q < oo. Then, the
following hold.

() ooqo(x)CFooql(-K)lfP(Sre)<CI0§6]1SOO-
(ii) Let —e < s+ 60 < e and 6 > 0. Then for p(s, €) < qo, g1 < oo,

F39 (X) C FS, . (X). (6.88)
(iii) BZ, 4(X) C FS, o(X) C BE, o, (X).
(iv) If max{0,~s} < < eand 0 <y <e, then F3, ,(X) C (G§(B,7))".

(v

Ifmax{s, 0} < p<eand 0 <y <e, then G(p,y) C F, ,(X).

) B
)
)
(vi) The spaces F&, (,%) are complete.

Proof. Property (ii) can be established by an argument similar to that used for property (ii) of
Proposition 5.31, while property (i) and property (iii) through property (vi) can be proved by
an argument similar to those used for Proposition 6.9 via Proposition 5.31, which completes
the proof of Proposition 6.21. O

The following proposition gives a new characterization of the spaces FZ, ;(X) when
1<g< .

Proposition 6.22. Let € and { Dy} ¢y, be as in Definition 6.19. If 1 < q < oo, then f € Fg, ,(X) if
and only if f € (G5(B,Y))', for some |s| < p < eand 0 <y < e, and

1/q

sup su 2’@1 Die(f) () |du(x)| < co. (6.89)
p sup i H

I€Z, acl /l(Q ) Ql k=1

Moreover, in this case,
1/q
I fllFs,,x) ~ sup Sup[ ZkSqIDk(f)(x)qu#(x)] . (6.90)

i ez, ael, | #(QL) QakZz|

Proof. Fix 7 € Iy and v = 1,..., N(0,7). Since Q¥” ¢ QY, then it is easy to verify that Q0 C
B(zY”,2Cs), and hence u(QY") < u(Q%) < u(B(22¥,2C6)) < u(QY"). From thisand 1 < g < oo
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together with Holder’s inequality, it follows that

1 g 1/
mop (Do) < [W [IRLXOE u)
e (6.91)
o 5 o(f)(x)lqd#(x)]
Thus,
1/q
IfllFs,0 S ?UZP sup [y(Q’ ) J‘Q > 2ks”’|Dk(f)(x)|qd#(x):| . (6.92)
€L, acl; ak 1
To see the converse, it suffices to verify that for all f € FZ, ,(X) and 7 € Iy,
1 Va
i) o) < Wl e (693)
To see this, by the construction of {Q cte€ly,v=1,...,N(0,7)}, we have
[ J. 1/q N(0,7) qy1/q
D) = (LS e [sup ] }
(Q7) Q) = xeQy” (6.94)

< sup  sup |Do(f)(x)].
v=1..,N(0,7) xeQ¥

Using Theorem 4.16 together with some estimates similar to those for Z; + Z, in the proof of
Proposition 6.15, we can then verify that

sup  sup |Do(f)(x)| S flles, 0, (6.95)
=1, N(O7) zeQl”

which gives the desired estimate and hence, we complete the proof of Proposition 6.22. [

Using Proposition 6.22, we now complement Proposition 5.39(ii) for the case p = oo as
follows.

Proposition 6.23. Let € > 0 be as in Definition 6.19,0 < s <¢€,1 < q < oo and u(X) = co. Then
F3, ,(X) = F5, ,(X) N L*(X), and moreover, forany f € F; 5%,q(X),

IfllEs 0 ~ flEs, 0 + 1l - (6.96)
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Proof. Take f € FZ, ,(X). By Proposition 6.18, without loss of generality, we may assume that

f €(G(B,y)) withs <, y < easin (6.32). Thus, we also have f € (G(B,y)) withs <, y <e
as in (6.32); see the proof of Proposition 5.37. By Theorem 3.29, we have that

f = DoSo(f) + 3 DD () (6.97)
k=1

holds in € (G(f,7)) withs < f < eand 0 < y < €, where Dy with k € Z, is as in Theorem 3.26.
From this and Lemma 2.19, it follows that for any x € X,

N (0 7) ~ o N (k) ~
lf)] <] f Do [So(N W) |duy)+ 3] >0 D, J' DG )| |De(H) () | dp(y)
el v=l k=1 7el, v=1 7 QF
N(,7) 1 . .
< 0,1) 0,1
NT;IO % 1@ )Vl(x)+V1(y3’”) +V(x,y2”) <1+d(x,y3”’)> g (1S(H)
) N(k,T) 1
kv
' ég]k ; i )Vz-k (x) + Vok (ylr('v) + V(x,y’i’”)
2k €
X _— D .
<2k +d(x, y’;’v)> [;ZII?I k(f)(y)l]
(6.98)

Since f € Fgo,q(x), by its definition, we have that forr € [yandv =1,...,N(0,7),

mao(|So(H)]) S 1 flles 0, (6.99)

and the definition of F, ;(X) together with Proposition 6.15 also implies that for any k € N,
T€l,andv=1,..., N(k,1),

(k,7) gy 1/q
{Z > 2"S‘*[sup |Dk(f><y>|] } S fllrs, 00- (6.100)
Tel, v=1 yEQT

Notice that 1 < g < oo. Both estimates via Holder’s inequality, the fact that p(QY”) ~
Vo« (y+”), Lemma 5.2, and the assumption that s > 0 further yield that

. N(k,7) 9k eq
|f<x>|<||f||pm<x>{1+22‘5<2 > e (Zk—k>

T€l v=1 +d(x,3/7

1 >1/‘7 } (6.101)
X
Vor(x) + Vok (yf”’) +V(x, yl;’v)

S flles, 0.



198 Abstract and Applied Analysis

namely, f € L*(X) and
I flley S IF N, x0)- (6.102)

Moreover,

1/q
I flles,, 2 S sup sup[#(Qa)f Z2ksq|Dk(f)(x)|qdy(x):|

leN a€l] akl

1/q
+ sup sup 2ksq|Dk(f)(x)|qd.“(x):|
1€Z\N a€l) [#(QZ) Qa; (6 103)
1/q '
< ||f||F§g,q(JC) + sup sup[ l Z 2k5q|Dk(f)(x)|qdﬂ(x):|
len\N ael; | #(Qa)J 0L %7
1/q
+ sup sup f 259| Dy (f) () | " x)] :
IEZ\N acl; [ﬂ(Ql) szz
To estimate the second term, by Proposition 2.7(i), we have
|D(£) )] S Nl S Nflles, 0, (6.104)
which together with s > 0 shows
1/q 0 1/q
sup su 2ksq|Dk(f)(x)|qdﬂ(x):| < I fllrs, 00 sup [ 2’“"7]
zez& aef [ﬂ(Q’ ) QRZ_ " len\w é (6.105)
S flles, 0
To estimate the third term, forany I € Z \ N and a € I;, set
= {ﬁeh:Q;cQ;}. (6.106)
Lemma 2.19 proves that
D 1(Qp) = n(Qh), (6.107)

pely
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which together with Lemma 2.19 further yields that

1/q
254D id
P i:;f[ﬂm L2 P ”"”]
1/q
(6.108)

< 2ksa1 D id

S sup, SE[#(Qa)ﬂda #(Qﬁ)f ﬁ; IDie(f) ()] #(x)]

S flles,00-

Thus, f € FS %,q(X) N L*(X) and
=y + W flles 0 S N ITES 0 (6.109)

Conversely, let f € Fﬁo/q(%) N L*(X). Obviously, f € (G(B,7)) with s < p < € and
0 < y < €. On the other hand, Proposition 2.7(i) shows that for any x € X,

1So(H) )| S MIfllL=)- (6.110)

Since 1 < g < oo, by Proposition 6.22, (5.5) together with (6.110), and Lemma 2.19 together
with (6.107), we obtain

1/q
ZZ"%Dk(f)(x)Wdy(x)]

IfllEs, ) ~ sup SUP[
! #(Qa) QL=

leN ael;

) 1/q
+sup [@J@ <|50(f)(x)|q + é 2ksqle(f)(x)|q> dy(x)]

acly

1/q
S flles,, 0 + sup{ (QO)Z #(Qp) [#(Q)I Zstqle(f)(x)Wdy(x)]}
p

acly pels ﬂk 1
< flles.
(6.111)
which means that f € F;, ,(X). Thus,

ES, (%) NL®(X) C FS, (X), (6.112)

which completes the proof of Proposition 6.23. O
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From Proposition 6.23 and Theorem 6.11(i), we easily deduce the following results.

Corollary 6.24. Let € > 0 be as in Definition 6.19. Then,

(i) forany s € (0,1], C3(X) = C5(X) N L= (X), and moreover, for all f € C5(X),

Ifllcso = e + N1 fllescxys (6.113)

(ii) for any s € (0,€), C*(X) = By, . (X) = F3, ,,(X) with equivalent norms.

Proof. Property (i) is a simple consequence of the definitions of both C*(X) and C*(X).
When p(X) = oo, then Property (ii) can be deduced from Property (i), Theorem 6.11(i),
and Proposition 6.23, which completes the proof of Corollary 6.24 in this case.
An alternative way to prove Property (ii), which works when p(X) = oo and also when
U(X) < oo, follows the line of reasoning in the proof of Theorem 6.11(i). In fact, let f € C°(X)
and {Dx } ¢z, be as in Definition 6.19. Then from f € L*(X), it follows that f € (G(f, 7)) with
s <f <eand 0 <y < e. Moreover, by Proposition 2.7(i), we have that for all x € X,

IDo(F) ()] = UxDo(x/y)f(y)dﬂ(y) < flleeco, (6.114)

which together with (6.45) shows that f € Fj, (X) and
I fllEs ) S Mf Nl () (6.115)

Conversely, suppose f € Fg, (X). By Proposition 6.18, we can assume that f €
(G(B,y)) withs < p < eand 0 < y < e. Using the same notation as in Theorem 3.26, by
Theorem 3.29 and the definition of ||-||rs  (x) together with s > 0, we further obtain that for all
x € X,

)] = |3 DDA S Il 327 S Ul - (6.116)
k=0 k=0
Thus, f € L*(X) and
Iflleo) S N fIPs - (6.117)

Moreover, if d(x,y) > 1/2, then

[f(xX) = fFW)] S Mfllz=) S NfIEs 0 d(x, 1) (6.118)
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Assume that 27071 < d(x,y) <27 with [y € N. By the regularity of Dy, Lemma 2.1(ii) and
Proposition 2.7(i) together with 0 < s < € < €1, we then obtain

|fx) - f)] =

3 j [Di(x, 2) - Di(y, )] Di() (=) dp(2)
k=07 X

+ i{f |Be(x, 2)| | De () (2)|du(z) +j |15k<y,z>||Dk(f><z>|d/4<z>}
X X

k=l

o1 d(x,vy) e 1
s %f X (57 d(x,2) ) e W+ V(o y)

2—k € -
: (m) |Dk(F)(2)|du(z) + 1 fllEs 0 D 27

k=ly

S fllEs . c0d(x,y)°.

(6.119)

Thus, f € C(X) and
I fllcs S N FIES 2 (6.120)
which completes the proof of Corollary 6.24(ii). O

We now establish the connection between Fﬁc/q (X) and F;,  (X) for all admissible s
and g.

Proposition 6.25. Let €, s, q, and Sy be as in Definition 6.19 and let u(X) = co. Then there exists a
constant C > 0 such that for all f € F;,q(%), f=5So(f) € F;,q(X) and

”f - So(f)”l:io,q(ﬂ() < C”f”lf;,q(,ﬂ()‘ (6121)

Proof. Let f € Fﬁo,q(%). By Proposition 6.6, we may assume that f € (G5(6,y))’ with §, y as
in (6.32). On the other hand, for any g € G (B, y) with B, y as in (6.32), from Lemma 5.36 and
foO (x,y)dpu(x) =1, it is easy to deduce that g - Sg(g) € @(ﬂ, y) with B, y as in (6.32). Thus,
from

(f=So(f), ) =(f&-5,(8), (6.122)

we deduce that f — So(f) € (G5(, ) with B, y as in (6.32).
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We now verify (6.121). In what follows, let I be the identity operator, let { Dy } o7 be
as in Definition 6.7, and let {Dj },.c; be as in Theorem 4.11. We first claim that for all k' € Z
and x,y € X,

|(So(T = S0) Di) (x, )|

1 2—(0AK") € (6123)
< 2—|k’\e
~ sz((l/\k’) (x) + Vz—(OAk’) (y) + V(x,y) 2-(0AK') 4 d(x, ]/)

and thatforallk e N, k' € Z,and x,y € Z,

| (Di(I - So) D) (x, )|

< o-lk=Ke 1 - (kAK') € (6.124)
~ V-t (X) + Voo () + V (2, ) \ 276N + d(x,y) )

The estimate (6.124) is essentially the same as the estimate (5.130) by symmetry, while the
estimate (6.123) can essentially be obtained by an argument similar to Cases 1 and 2 of the
proof of the estimate (5.130).

Using the estimate (6.123) and Theorem 4.13, we have that for any x € X,

[So(I=S0)(f)(x)]
N 7

=X > > QL) (So(I-So)Dr) (x, s )Di (F) (ya™)

K'eztely v=1

Z Z N%T') w ( y V,) 1 (6.125)
< 275 QL g e
Kezvely v=1 ’ Voo (%) + Vo-onie) (yl;/’v )+ V(x, yT,,v )

7—(0AK') € L
( ) el

2- (O/\k’)+d( X,y T'v)

From Proposition 6.3, we deduce the following trivial estimate that for all k' € Z,

N(k,,T,) 1/q
{Z > 2’<S'1|Dk/(f>(y§'”>|q} S flles, 000 (6.126)

Tely v'=1
and from Lemma 2.19, it follows that

Q)

<1 (6.127)
V2 (0AK") (x) + Vz (0AK") (]/T, ) + V(x, yr’ )

~ °
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Both estimates together with (5.5) show that when g <1, for any x € X,

N(K,7) 1/q
ww>wumﬂsZﬁWﬂ{Z >, 22X De(f) (v @

k'ez Tely v'=1

(6.128)

S Iflles 200

while when 1 < g < oo, both estimates together with Holder’s inequality, Lemma 5.2, and
Lemma 2.1(ii) still yield that for all x € X,

|So(T = S0) (F)(x)]
) . N(K'") L 1
< ZZ |k |€2—k [ Z Z #(Qk

k!/ ! k!/ !
k'ez rely V=1 Va-ow) () + Va-ow) (yT, ” ) + V(X, Yo Y )

2-(0nK) T« N T
< )>] [ SS app w]

2_(0Ak’)+d(x/ Yo T'ely V=1

SAflles, -
(6.129)

Thus, fort € [yandv =1,...,N(0, 1),

maor (|So(I = S0)(f)]) = ﬁj‘goywo([ = S0) () () |dp(x) SN fllez, 20 (6.130)

which is the desired estimate.
Forl € Nand a € I, from Theorem 5.16 together with (6.124), it follows that

u(@ >f L 22Dk~ S () ')

o N(K', ") ) y 1
[ 325 5 5 e

fude, »a Vartsy () + Voo (9 ) 4V (2, 977

2~(kAK) o
< ) IDe(H) (5 >|] ().

2- (k/\k’)+d( ’ T, )

ﬂ(Qa)

(6.131)

Then, an argument similar to that used to estimate Y7 + Y; in the proof of Proposition 6.3
together with Proposition 6.3 yields that

M%Q%WMU%WMWWKMQW (6.132)
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Thus, (I - So)(f) € F5, ,(X) and

”(I - SO) (f) F5 0(X) /S ||f||F§,,,,(x)/ (6133)

which completes the proof of Proposition 6.25. O
Remark 6.26. We point out that Remark 5.38 applies in a similar way to Proposition 6.25.

To establish the equivalence between bmo(X) and F° 2(,9() we need the following
technical result which in fact gives a new characterization of Triebel-Lizorkin space FZ, ,(X)
when 1 < g < co. We first introduce an inhomogeneous maximal function.

For any x € X and | € Z,, we choose m € N by a way similar to that in the definition
of @2. Let { Dy} ez, be as in Definition 6.19. Then for any s € R, g € (0, 0], f € (G(B, 7)) with

0 < B, y <eand x € X, we define the inhomogeneous maximal function 63( f)(x) by

€ (f)(x) = sup

1/q
Iz [#(u 1Q’)f n0, f Z2’“"IDk<f (y)lqdﬂ(y] : (6.134)

where the usual modification is made when g = oo.
Using Proposition 6.22 and an argument similar to the proof of Proposition 6.10 yields
the following characterization of Fg, ,(X) with 1 < g < oo; we omit the details.

Proposition 6.27. Let € and s be as in Definition 6.7 and let 1 < g < oo. Then f € F, ,(X) if and
only if f € (G(B,y)) with |s| < p < eand 0 <y < e, and C(f) € L (X). Moreover, in this case,

If s, 00 ~ 1€ =0 (6.135)

Now, from Theorem 5.44(i), Proposition 6.22, and Proposition 6.27, we can deduce the
following relation between bmo(X) and F &,2(%).

Theorem 6.28. bmo(X) = Pgo,z (X), with equivalent norms.

Proof. Let f € bmo(X) and {Dg}iz be as in Definition 6.19. Proposition 6.21(v) and
Theorem 5.44(i) immediately imply that f € (G5(8,y)) with 0 < B, y < e. Let now Q},
for | € Z, and a € I be a dyadic cube as in Lemma 2.19. Let B, be as in the proof of
Theorem 6.11(ii). We then decompose f = fi + f, + f3 in the same way as in the proof of
Theorem 6.11(ii). The estimations for f; and f, are as in the proof of Theorem 6.11(ii) by
replacing Proposition 3.15 by Proposition 3.30. If | € N, then

1/2
{ @ )o Z|Dk(f3)(x)|dﬂ(x)} =0, (6.136)
a a k=1
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while when I = 0, we then have

) 1/2
{ﬂ(;z_) JQ,Z|Dk(f3)(X)|dﬂ(x)} = [ fa] < Iflbmo)- (6.137)

k=1

Thus, f € Fg,,(X) and [|fllro ) < 11 f lbmos)-
Conversely, using Theorem 5.44(i), Proposition 6.22, and Proposition 6.27 together

with an argument similar to the proof of Theorem 6.11(ii), we can prove that if f € F(o)o,Z (X),
then f € bmo(X) and || fllbmox) S Il fI o LK) which completes the proof of Theorem 6.28. [

We end this subsection by considering the boundedness on Fg  (X) of singular
integrals of order (¢, 0).

Theorem 6.29. Let ¢, s, and g be as in Definition 6.19. Let o > 0 and let T be a singular integral of
order (e,0). Then T is bounded from Gy(f,y) with 0 < p < e and y > 0 to F, ,(X). Moreover, there
exists a constant C > 0 such that for all f € Gp(B,y) with0 << eandy >0,

IT flles, 0 < CllfllEs ,20- (6.138)

Proof. Combining some estimates and technics used in the proof of Proposition 5.54 with
those used in the proof of Proposition 6.15 gives the desired conclusions. The details are left
to the reader. O

Remark 6.30. By Theorem 8.18 below, if p(s,€) < g < oo, then F, ,(X) is the dual space of
Fy 2, (X). In this case, Theorem 6.29 can be deduced from Theorem 5.48 together with a duality
argument, which provides another proof of Theorem 6.29.

7. Frame characterizations

In this section, using the discrete Calderén reproducing formulae, we establish a frame
characterization of Besov spaces and Triebel-Lizorkin spaces.

7.1. Frame characterization of B; . (X) and F; ,(X)

In this subsection, we assume that p(X) = oo. We first introduce some spaces of sequences,
b ,(X) and f; (X).
Let

A={\ kez, rel,v=1,..,Nkm1)) (7.1)

be a sequence of complex numbers. The space B;,q(,d() withs € Rand 0 < p, g < oo is the set
of all A as in (7.1) such that

N(k,7)

. 9/py1/q
woo-{ 22 S warmer] ) < 72)

T€l v=1

A
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and the space f;,q(%) withs € R,0 < p < o0, and 0 < g < oo is the set of all A as in (7.1) such
that

< 0. (7.3)
L (X)

. N(k,7) /4
(335 e

k=—co 7€l v=1

Wi in =

Moreover, the space f';,q (X) with s e Rand 0 < g < oo is the set of all A as in (7.1) such that

N(k,7) ) 1/q (7.4)
= sup sup{ P [Z >3 2k () A1 X emy0treon) (T v)] } < oo,

€7 a€l k=l Tl v=1

where {Ql},c; 4e;, are dyadic cubes as in Lemma 2.19.

Proposition 7.1. Let € be as in Definition 5.8, let |s| < €, and let p(s,€) < p < oo. Let A be a sequence
of numbers as in (7.1) and all the other notation as in Theorem 4.11. Then, the following hold.

(i) If0<g < 0 and ||)L||[,;,q(x) < oo, then the series

0 N(k,7)

> > > Mu(Q)Di(x v (7.5)

k=—co T€l} v=1

converges to some f € By, ,(X) both in the norm of B; ,(X) and in (GE(B, 7)) with

1 1 K
max O,—s+n<——1> }< <eg, max{n(——l) ,s——}< <e 7.6
{ p + p p + p ’ 7:6)

when p,q < oo and only in (GE(B,y)) with B and y as in (7.6) when max(p,q) = oo.
Moreover, in all cases,

£ 11,0 < CllMlgs, 2)- (7.7)

(ii) If p(s,€) < q < oo and ||’\||f,§,q(x) < oo, then the series in (7.5) converges to some f €
E; ,(X) both in the norm of F; ,(X) and in (GS(B,Y)) with B, y asin (7.6) whenp,q < oo

and only in (GE(B,Y)) with B and y as in (7.6) when max(p,q) = co. Moreover, in all
cases,

IfllEg ) < CllM g5, - (7.8)
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Proof. We first verify that the series in (7.5) converges in (ég(ﬂ, 7)) with  and y as in (7.6)
if A € b;/q(,ﬂ() with s, p, g as in (i). By Lemma 2.19 and the definition of N (k,T) together
with (2.59) in [85, page 1385], we know that for all k € Z and 7 € Iy, N(k, ) is a finite set.
Without loss of generality, since y(X) = oo, we may assume that Iy = N for all k € Z. With
this assumption, for L € N, we define

L L N(kr7)

fr(x) = Z 3> u(QF) A D (x, yi”). (7.9)

=—L7=1 wv=1

Then f; € G(€',€') with € € (0,€; A e;), and fr € ((jg(ﬂ,y))' with any f,y € (0,¢). For any
¢ E G(ﬁ, y) with 8, yasin (7.6), L1,L, € Nand L; < L, we have

-Li-1 Ly N(k1)

|[(fro = froo)l < 30 30 30 (@) | [(Di(ye™). )]

k=-L, t=1 w»=1

L, Ly N(kr)

32 2 m@) Dy )

k=Li+17=1 v=1 (7.10)

L L, N(kr)

+ > > > Q) (D yE) )

k=—L, T=L1+1 wv=1

EZ1+Zz+Z3.

Let us now consider two cases, respectively. We first consider the case p < 1. In this
case, letting y' € (max{0,s —x/p},y), by (5.25) and y > n(1/p — 1) together with (5.31) and
Holder’s inequality, we have

7inliN§T) ky' ( kV)l kv| 1 2ky
Z1 S gl 2w (QF ) |4y
=A== COT Wak(x) + V(e pE) (278 4 d(x,y5))
-Li-1 L, N(k7) . . 1/p
lirlay 3 200075 e |
k= Lz =1 w»=1
(7.11)
If g <1, by (5.5), we further obtain
“L,-1 L, N(k7) a/py /4
VAR ||qf||q<p,y>{ 3 2k [Z > 2Pu(Q) A ] }
k=-L, =1 wv=1
(7.12)

1/q

“Li-1[ L N(k) . ) q/p
<irtasn{ 8|8 S 2] 1

k=-L, L =1 v=1
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while if 1 < g < oo, by Holder’s inequality, we have

-Li-1 [ Ly N(k7) . . alpy 14 -Li-l , 1/q
Z 5 ”‘I’”G(ﬁ,}f) { Z [Z Z 2ksp‘u (Qr'v)lf\r'vlp] } { Z 2k(y—s+x/p)q}
k:—Lz =1 w»=1 k:—Lz
, “Li-1[ Ly N(k1) - alpy Va
S ||‘I’||G(ﬂ/Y)Z_L1(Y_S+K/p){ 2 [Z 2 2’“”#<QT'”>WI”] }
k=—L, L7=1 wv=1
(7.13)
Thus,
Iim Z;=0. (7.14)
L, Ly —

Replacing the estimates (5.25) and (5.31) respectively by the estimates (5.24) and
(5.30), and using some similar computations to the estimate for Z;, we obtain

S5 S T | ——— !
Z S gl 27K (QEYY | A
Pt & T ) Ve ) (e d (e )

Ly Li N(k7) ) ) 1/p
Syl 3 270 [Z > ZkS”ﬂ(QT”)IAT"’IP]
=1 wv=1

k=L1+1

L, [ L N(kn7) ok alpy M
LS 85 wemmer] gs1
k=Li+1L7=1 »=1
S llgllaen 4
L, [ L Nk7) alpy M
2—L1[s+ﬂ—d(1/p—1)]{ Z I:Z Z 2k5p[/l(Ql;’v)|)Ll;’v|p:| } , 1< q < co.
L k=Li+1L7=1 »=1

(7.15)

where we used the assumption that f > —s + d(1/p — 1). Thus,
lim Z, =0. (7.16)

Li,Ly— 0
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The estimates (5.24) and (5.25) together with (5.5), (5.30), and (5.31) further yield that

L, L, N(k,T

) o1 1 1
VAR IquIIc(ﬂ,y){Z S 2 u(QF) [AF]

k=0 7=Li+1 v=1 Vi (xl) + V(xlr]/;’v) (1 n d(xll yl;,V))Y
i i Ngf) ky' ( kV)l kv| 1 2-ky }

+ 2 Yﬂ Q Yy

T N )V (o, ) 2 (7))

L. -1 , L, N(k7) A 1/p

S ||(P||C;(ﬁ,y) {sz[ﬂJrsd(l/Pl)] + Z ok(y s+1c/p)} [ Z Z 2ksp#<QT,V) |)LT,V|P] ,
k=0 k=-L, T=L1+1 w»=1
(7.17)

where we chose y’ > 0 as in the estimate for Z;. For any given 6 > 0, since y' > s — x/p and
p>d(1/p-1)-s, we can fix LI € N such that

-L9-1

i sz[[ﬂsfd(l/p—l)] + Zz 2k(y’fs+x/p) <é. (718)
k=L9+1 k=-o0

Since for all k € Z,

L, Nk ; ; 1/p N(k,7) ) ) 1/p
[ >y zkswgﬂww] s[z 5 zksm(gmung] Wl 719
T=L1+1 v=1 Tel v=1
we can choose N € N such thatif L; > N, then
L, Nk 1/p
[ 3oy zkspy(Q’;ﬂ’)M’;"’V] <6 (7.20)
t=L1+1 v=1

forallk =-LJ, —LY+1,..., L). From (7.18), (7.19), and (7.20), it follows that if L, > L; > N,
then

L -1
Z3 5 lgllag {ZZ"‘W”“’“/”‘”] + 3, 2 }6

k=0 k=-L9
o -t (7.21)
+ C||¢||G(ﬂ,}’)||)‘||5;q(,x){ Z o=k[p+s=d(1/p-1)] L Z ok(y —S+7€/p)}
k=L3+1 k=-o0
S lyllaend,
which just means that
lim Z; =0. (7.22)

L1,L2—>OO
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We now consider the case 1 < p < 0. Replacing (5.5) by Holder’s inequality and using
Lemma 5.2, similarly to the estimate for the case p < 1, we obtain

-Li-1 [ L N(k7) . .
Z Syl >, 207 [Z D 2P (@) [
k=-L, =1 wv=1
1 2-kr ]l/ g
X
Vo (1) + V(xl/ylrw) (2_k + d(xl,y];”’))y
. (7.23)
1 2Ky g
X J‘ -k Y d‘u (y)
x Vo (1) +V(x1,y) (27 + d(x1,y))
Ll L, N(k7) A Vp
Sllgllgpy D, 280s+/p) [Z > 2Pu(Qr”) |)tr’v|p] .
k=-L, =1 wv=1
Then repeating the proof of the case p <1 yields that
lim Z; =0. (7.24)
L1,L2—>OO
Similarly, for Z,, Holder’s inequality and Lemma 5.2 imply that
L, L N(k7) A 1p
Zy S lyligpy2 <eP [ DT D 2MPu(Qr”) |)»T’V|p]
k=Li+17=1 v=1
1/p'
1 1
x d (7.25)
U Vil + Ve ) (L e, )] ”“”]
L, L N(k7) A p
Slllpy D, 2767 [Z > 2MPu(QrY) |)~T’”|p] -
k=L1+1 =1 w»=1
Using the fact that § > —s and repeating the proof of the case p < 1 show that
lim Z,=0. (7.26)
L],Lz—>00
To estimate Z3, let
L L Nkm)
= U o (7.27)

T=L1+1 v=1
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The Holder inequality shows that

& k(prs) 1 1 W
zsunc,,{ > U d()]
3 ~ Wlaen ,;) £ Vi) + V() A+ dGy)

71 ’ 7kY 1/pl
" Z ok(y'-s+x/p) [J 1 2 Ydﬂ(y):l }

1, 12 Vo (x1) + V(x1,9) (279 + d(x1, 7))

L, Nk . ) 1p
X[Z > st”#(Qf’”)V‘T’”V] '

T=L1+1 v=1

(7.28)

where we chose y' € (max{0, s —x/p},y). If p € (1,00), using the facts that y’ > s — x/p and
p>-s,(7.19), (7.20),

1 1
chl(xl) +V(xn,y) (1+ d(xlly))rd#(y) <1

(7.29)

J 1 20w St
1V () + V(L y) @7 +d(x,y)), o

and repeating the argument for the case p < 1, we can verify that

lim Z; = 0. (7.30)

Ll,L2—>OO

If p = oo, replacing (7.20) by

lim j ! : aply) =0
wi ) 2 i) V) () Y Y
. 1 2Ky du(y) =0 o
LiLhso xﬁ,k Vok (xl) + V(xl,y) (Z—kY + d(X1,y))Y

for any given k € Z, by an argument similar to the case p < 1, we still obtain that

lim Z; = 0. (7.32)

L1,L2—>00

Thus, for any give ¢ € G(B,y), {{fL, ¢)} oy is @ Cauchy sequence, which means that

the series in (7.5) converges to some f € (GS (B,7)) with B, y asin (7.6) if A € bfj,q (X) with
S, p, q as in the theorem.
Ifle f;‘/q (X), by the proved fact on bzrq(ﬂé) and

B inpa) (20 € fpg(2) CBS oy (KO (7.33)
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(see [87, Proposition 2.3]), we also obtain that the series in (7.5) converges in (Gg(ﬂ, 7)) with
pand y asin (7.6).

Let us now verify that the series in (7.5) converges in the norm of B ,(X) or F; (X)
when p,q < w0 if A € by ,(X) or A € f; (X), respectively. To this end, let f be the series in
(7.5). For L € N, in (dg(ﬂ, 7)) with g and y as in (7.6), we then have

0 N (k)

f-fi=> 3 > w(Q¥)AF" Diclx, yr™)

k=L+1 7€l v=1

-L-1 N(k,T)

+ 333 u(QF) A Dic(x, yE) (7.34)

k=—co €l v=1

L o N(k,1) B ey B
+ 20 2 > Q)AL Di(x, ).
k=—L t=L+1 wv=1

Replacing Qi (f) (y’;,”vl) in the proof of Proposition 5.4 by A5 here and repeating the proof of
Proposition 5.4, we can verify that

o Nep o 3 v
1f = fellss, 0 = { 2 stq[z 2 #(QTW)MT,VF] }
k=L+1 Tel v=1
~L-1 (k,7) 17
SR bR TETE
k=—oo el v=1 )
L oo N(k,7) 197
{Z ksq[ 3 (@) || } ,
k=—L T=L+1 wv=1 E (735)
Nk, ; a
1f = fill g0 { 2"“’IM”I"szv}
+1 ’TGIk v= 1 LP(X)
11 Nk a
k=—co TE€l} v=1 i Lr(X)
L o Nk Y
2SS )
k=—L7=L+1 v=1 ’ LP(X)

Thus, from Lebesgue’s dominated convergence theorems on the integral and the series, it is
easy to deduce that

1~ filly 0 —

(7.36)
”f fL”F;q(x)
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as L — oo. Moreover, by Proposition 5.10(iv), we know that f; € B;,q(%) and f; € F;/q (X)
if we choose €' large enough. Thus, f € B (X) if A € b5 ,(X) and f € F} (X) if A € f5,(X)
when p, g < oo.

The same arguments as in the proof of Propositions 5.4 and 6.3 for the space B;,q (X)

and the space F;,q (X) with all p, g as in the assumption of the theorem yield (7.7) and (7.8),
respectively, which completes the proof of Proposition 7.1. O

From Theorem 4.13, Proposition 7.1, and the Plancherel-Polya inequalities, Proposi-
tions 5.4 and 6.3, we obtain the following frame characterizations of the spaces B;,q(,ﬂ() and

£ (2.

Theorem 7.2. Let € be as in Definition 5.8, let |s| < €, and let p(s,e) < p < oo. Let all the other
notation be as in Theorem 4.11 and A% = Dk(f)(y’;”’)for keZ rteliandv =1,...,N(k,T),
where y’;’” is any fixed element in Q. Then, the following hold.

(i) If0 < q < oo, then f € B;, (X)), if and only if f € (G§(B,))' for some p, y as in (5.35),

© N(k,T)

f=> 3 3 wQr")De(f) (yr")Di(x, ™), (7.37)

k=—co TEl, v=1
holds in (GS (B,y)) and L € l')f,,q (X). Moreover, in this case,

||f||B;,q(x) ~ ||)L||b;,q(x)- (7.38)

(i) If p(s,€) < g < oo, then f € Fj (X) if and only if f € (G5(B,y)) for some P, y as in
(5.35), (7.37), holds in (GE(B,y)) and \ € f54(X). Moreover, in this case,

If e 0 ~ Mg, 20 (7.39)

7.2. Frame characterization of B, .(X) and F, (X)

Again, in this subsection, p(X) can be finite or infinite. We also first introduce some spaces of
sequences, by (X) and f, . (X).
Let

A=\ kez, rel,v=1,..,Nk7)) (7.40)

be a sequence of complex numbers. The space b}, ,(X) with s € Rand 0 < p, g < oo is the set
of all A as in (7.40) such that

N(k,7)

) q/py1/q
Mlbs, 20 = {szsq[z > y(Qb”)M’;'”V’] } < oo, (7.41)
k=0

el v=1
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and the space f; ,(X) with s € R, 0 <p < o0, and 0 < g < oo is the set of all A as in (7.40) such
that

N(k,7)

=) 1/q

k=0 t€l, v=1

Mg, 0 = < 0. (7.42)

Lr(x)

Moreover, the space f;,q (X) with s € Rand 0 < g < oo is the set of all A as in (7.40) such that

0,
lAllfs,,x) =max|  sup [A77],
TEI
v=1,...,N(0,7)

1 © N(k,7) . . 1/4q
ksq v s
sup sup 250 (Q7) A1 im0k o (T,v)]} ]<oo,
leN acl; {.”(QZX) [g reli ; ()" )
(7.43)

where {Q}, }ien aer, are dyadic cubes as in Lemma 2.19.

Proposition 7.3. Let € be as in Definition 5.29, let |s| < €, and let p(s,€) < p < oo. Let A be a
sequence of numbers as in (7.40) and all the other notation as in Theorem 4.14. Then, the following
hold.

() If0 < g < oo and || M|lp;, (1) < oo, then the series

N(0,7) N(k,T)

> ASf"fQO,vﬁo<x,y>dy<y)+ZZ S A u(QF") Dic(x, i) (7.44)

Tely v=1 k=1 Ttelx v=1

converges to some f € leq(%) both in the norm of Bf,/q(ﬂ() and in (G (B,y)) with

max{O, —s+n<1—1> }<ﬁ<e, n<1—1> <y <eg (7.45)
P + P +

when p,q < oo and only in (GS(B,y))" with p and y as in (7.45) when max(p,q) = co.
Moreover, in all cases,

£ 1153400 < CliMles o0 - (7.46)

(ii) If p(s,€) < g < oo and ||A]|g;,(x) < oo, then the series in (7.44) converges to some f €
Fp ,(X) both in the norm ofF;,q(X) and in (G§(B, Y)) with B, y as in (7.45) when p,q <
oo and only in (G (B, Y)) with B and y as in (7.45) when max(p, q) = oo. Moreover, in all
cases,

IfllEs 0 < CliAl g0 (7.47)
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Proof. In what follows, for simplicity, we set

- 1 -
D o = — Dy(x,y)d . 7.48
= Qg,v)fggv o, y)dp(y) (7.48)

Let us first show that the series in (7.44) converges in (G(f,y))’ with fand y as in (7.45). As in
the proof of Proposition 7.1, we know that for all k € Z, and 7 € Iy, N(k, 7) is a finite set. Let
us suppose I = N for all k € Z,; the other cases are easier. With this assumption, for L € N,
we define

N(0,7) N (k)

L L L
fix)=> u(Q¥")AY Do (x) + 3. > w(QEAE" Dy (x, y&). (7.49)

=1 wv=1 k=171=1 w»=1

Then fr € G(e,€) and f, € (C}g(ﬁ,y))' with any B,y € (0,€), where € can be any positive
number in (0, €1 A €;). In what follows, we choose ¢ > max(f, y) such that p > p(s, €) for the
spaces b;, . (X), and p,q > p(s, €) for the spaces f, . (X).

For any ¢ € G(B, y) with (B,y) asin (7.45), L1, L, € Nand L; < L,, we have

L, N(QO7)
[(fro = frogdl < >0 >0 Q") IAY[[(Dgor, )|
t=L1+1 wv=1

L, L, N(k7)

+ > > > QA I(D (), )|

k=Li+17=1 wv=1 (7.50)
L1 Lz N(k T

30D > (@) Ak (v ) 90|

k=1 71=L1+1 w»=1
= Yl + Yz + Y3.

From (5.105), (5.5) when p < 1 or Hoélder’s inequality when 1 < p < oo, and y >
n(1/p - 1), together with (5.30), it follows that when p <1,

L, N(O,) 1/p
< el | 33 @MW) -
T=L1+1 »=1
while when 1 < p < oo,
L, N(©O7) 1/p
=L1+1 w»=1

(7.52)

1/p
X {J‘ ! ! d.u(y)} ’
220 Vi(xn) + V(x,y) (1+d(x,y))'

where %E’O is as in the proof of Proposition 7.1.
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For Y,, by (5.105), (5.5) when p < 1 or Holder’s inequality when 1 < p < oo, y >
n(1/p - 1), together with (5.30), and Lemma 2.1(ii), we obtain

L L, N(k7) 1/p
Z 2k[ﬂ+sn(1/p1)]2ks|:Z Z //l(QI;V)PLI;le] ) Pfl
< k=Li+1 =1 w»=1
Vel Sligllagn ) N p (7.53)
S roe| S5 w@wer] . repse
k=L1+1 =1 wv=1

From this and (5.5) when g < 1 or Holder’s inequality when 1 < g < oo again, it further
follows that whenp <land g <1,

L, L, N(k7) ) ) a/py 1A
|Y2|§||‘If||c(ﬂ,y){ > 2"5‘1[2 > ﬂ<QT'”>|AT'”|"] } , (7.54)
k=L1+1 =1 v=1l
while when1 < g < oo,
L, L, N(k7) alpy Y 1/q
|Yz|s||<p||c<ﬂ,y>{ > 2’“‘*[2 > #(Q’T"”)IA’T"”IP] } { > 2‘”“5‘"(“”‘1”"'} :
k=L +1 =1 v=1 k=L +1
(7.55)
and that when1 <p < oo,
L, L, Nk alpy V4
{ 5295 S warmer] 1 g<1
Y, | < k=Li+1 =1 w»=1
12| Sllgllgey N L N NP 14
LSS S ] | Saew] ) cgea
k=L1+1 T=1 v= k=L1+1
(7.56)

where we used the fact that f > max(0,n(1/p—-1), —s).
Similarly, by (5.105), (5.5) when p < 1 or Holder’s inequality when 1 < p < o0, and
y > n(1/p - 1), together with (5.30), we have

"

L L Nk vy
Zz—k[ﬂ—n(l/p—l)][z Z ”(QITW)MI;VV:I , p<l

k=1 oL+l =1
L L, Nk . . p

13| < llwllawn 4 S, 2"”[ > D #(QT"’)IAT’VIP]
k=1 T=L1+1 v=1

xzVi(x) +V(xuy) (1+d(x,y)) )
(7.57)

where %E’k is as in the proof of Proposition 7.1.
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From this and (5.5) when g < 1 or Holder’s inequality when 1 < g < oo, we further
deduce that whenp <1,

Ly L, N(kr) . B a’p 14
13| < llellapy {ZZ"W[ > u(Q) |AT”|”] } ) (7.58)
k=1 t=L1+1 v=1
and that when1 <p <owandg<1,
L, N(kr alpy 14
[v3| < ||<P|Ic<ﬂ,r>{z 2ksq[ Z Z Q) |47 ] } , (7.59)
k=1 L vel

orthatwhenl<p<owand1<g< oo,

1/q

Ly . L, N(k) R q/p
|Y3|5||qf||o<ﬂ,y>{225q[z Zu(QT'>|ATf|] }

k=1 T=L1+1 v=1 (760)
L 1 1 q/p
% o-k(p+s)q J du(y) ,
{; 22 Vi(x) + V(x,y) (L+d(x,y)) Y
where we used the fact that > max(0,n(1/p - 1), - s).
Combining (7.51) through (7.60), by A € b, . (X),
I ! ! du(y) < (7.61)
o) .
AV + Ve y) (rdey)
when p = oo, and
i 27 klprs=n(1/p=DI ¢ o (7.62)
k=1
whenp <1and g = oo, or
27K+ < o0 (7.63)
k=1

when 1 < p < o0 and q = o, it is easy to see that {(fr,¢)}, oy is @ Cauchy sequence. This just

means that the series in (7.44) converges to some f € (G5(B,y))" with p, y satisfying (7.45) if
L€ by (X) with s, p, g as in the theorem. If A € f7(X) with s, p, g as in the theorem, by
this fact and

S
br’ min(p,q)

y(X) C fpq(X) Cby (X) (7.64)

, max(p,q)
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(see [87, Proposition 2.3]), we also obtain that the series in (7.44) converges in (G5 (B, y))' with
pand y as in (7.45).

Let us now verify that the series in (7.44) converges in the norm of B ,(X) when
p,q < oo, if X € by ,(X). Let f be the series in (7.44). We estimate the norm in By, (X) of f - fr
by writing

N(0,7)

=SS M@ B o)

T=L+1 v=1
o N(k7)

+3 S S @Dy (x, ) (765)

k=17=L+1 v=1

+ > Z u(Q’J”)A’;'”ﬁk(x,y’;”).

Replacing QT, 1 ( f) and Qg (f) (y ) in the proof of Proposition 5.25 respectively by 12'” and
A% here, and repeating the proof of Proposition 5.25, we then obtain

® NOD . 1/p
1=l 0= { 375wy
T=L+1 v=1
© oo N(k,T) a’p a
AS2| & wemney] |
k=1 T=L+1 v=1
© L N(kr) " a’p 14
A S2|s S uenner] |
k=L+1 =1 wv=1 (7 66)
» N(O7) N 1/p
1=l 0 = { 3535 w@) o}
=L+1 wv=1
o0 [e's) N(k,T) 1/q
g 58 e
k=171=L+1 wv=1 ! LP(X)
w L Nk 1/q
NS S e
k=L+17=1 v=1 ’ LP(X)

Then Lebesgue’s dominated convergence theorems on the integral and the series show that

”f fL”Bf,q(,K)
1f = feles, ) —

(7.67)

as L — oo. Moreover, by Proposition 5.31(v), we know that f; € B (X) and f. € F; ,(X)
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if we choose € large enough. Thus, f € B ,(X) if A € by ,(X) and f € F} (X)if A € f; (X
when p, g < o.

The same arguments as in the proof of Propositions 5.25 and 6.15 for the space By, ,(X)
and the space Fj ,(X) withallp, qasin the assumption of the theorem yield (7.46) and (7.47),
respectively, which completes the proof of Proposition 7.3. O

From Theorem 4.16, Proposition 7.3, and the Plancherel-Polya inequalities, Proposi-
tions 5.25 and 6.15, we obtain the following frame characterizations of the spaces B, . (X) and
F5 (X).

P4

Theorem 7.4. Let € be as in Definition 5.29, let |s| < €, and let p(s,e) < p < oo. Let all the other

notation be as in Theorem 4.14, A2 = ng,V(DO(f))for Te€lpandv =1,..., N0, 1), and A’;’v =

Dy (f)(y’j"’)for keN,relyandv=1,...,N(k,t), where y~" is any fixed element in QX" Then,
the following hold.

(i) If0 < q < oo, then f € B ,(X) ifand only if f € (G;(p, Y))' for some B, y as in (5.111),

N(0,7) N(k,7)

F= 3 30 [  Butoydut)+ 3 33T w(@ DA 6 Bl )
Tely v= Q k=1tel, v=1
(7.68)
holds in (Gg (B, Y)), and A € bf,,q(ﬂ(). Moreover, in this case,
1 fllBs, 00 ~ [1Alg,0)- (7.69)

(ii) If p(s,€) < q < oo, then f € F, (X) if and only if f € (G5(p, Y))' for some P, y as in
(5.111), (7.68) holds in (G (B, 7)), and L € f;,q()(), Moreover, in this case,

IfllEg 00 ~ NI £, 20 (7.70)

8. Real interpolation and dual spaces

In this section, using the frame characterization of Besov spaces and Triebel-Lizorkin spaces
in the last section, we characterize real interpolation spaces for our scales of Besov and
Triebel-Lizorkin spaces and determine their dual spaces (whenp > 1).

8.1. Real interpolation spaces

Let us first recall some general background on the real interpolation method; see [3, pages
62-64] or 88, 89].

Let S be a linear complex Hausdorff space, and let <%y and «/; be two complex quasi-
Banach spaces such that <4y C # and «#; C K. Let 4y + 41 be the set of all elements a € H
which can be represented as a = ap+a; with ag € H#pand a; € #1.If0 <t < ccand a € Hy++41,
then Peetre’s K-functional is given by

K(t a) = K(t, a; Ao, ) = inf (||a0||g40 + t||a1||g41), (8.1)
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where the infimum is taken over all representations of a of the form a = ag + a; with ay € &
and a; € 4.

Definition 8.1. Let0 < 0 < 1.If 0 < g < oo, then one defines the interpolation space
> gdt 1"
(°40/°41)a,q =qa:acdo+A, lalyyun,, = {fo [FOK(t a)] T} <oop. (8.2)

If g = oo, then one defines

(940,41)0,00 = {a a € Ao+ oA lall iy, = sup 7K a) < oo}. (8.3)

O<t<oo

The following basic properties of (4o, <#1),,, are proved in [3, pages 63-64] and [88,
page 64].

Proposition 8.2. Let 4y and <41 be two complex quasi-Banach spaces. Let 0 <o <1and 0 < g < co.
Then,

(i) (Ao, e41)0,q is a quasi-Banach space;
(11) (JO/ e41)0',11 = (941/ 040)170-,17/‘

(iii) let H be a linear complex Hausdorff space, and let By and By be two complex quasi-Banach
spaces such that Ay C By C H and 41 C By C H. Then (JO,Jl)W C (By, Bl)glq.

Using Theorems 7.2 and 7.4 together with the method of retraction and coretraction
as in the proofs of Theorems 2.4.1 and 2.4.2 in [89], we can easily deduce the following
interpolation theorems; see also [90].

Theorem 8.3. Let € be as in Definition 5.8 and o € (0, 1).

(i) Let —e < 50, 51 < €,50#51, 1 <p<oo,and 1< qo, qi, g < oo. Then

(Biay (20, B3Lq, (), = B4 (K0, (8.4)

where s = (1 —0)sg + 0s1.

(ii) Let —e < s <e,1<p< o0, 1< qo, g1 < o0, and go#qr. Then

(Bjq (K), B, 4, (X)), . = B4 (X), (8.5)

wherel/q=(1-0)/q0+0/q1.
(iii) Let —e < sg, 51 <€, 1 < py, p1 < o0, and po #p1. Then

(Bivpo (K, B, (X)), = B (), (8.6)

where1/p=(1-0)/po+o0/p1and s = (1 -0)sy + Os1.
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Theorem 8.4. Let € be as in Definition 5.8, —€ < s9, 51 < €,1 < po, p1 < o0, 1 < go, g1 < o,
c€(0,1),s=(1-0)so+0s1,1/p=(1-0)/po+0c/p1,and1/q=(1-0)/q0+0/q.

(1) IfSo 75 S1, then

(Fonago (K), B0, (90),,, = B3 p (20). (8.7)

(i) If so = s1 =8, Po = qo, P1 = q1, and qo # qu, then

(F Popo('x) p1p1( ))O-,p:F;,p(’K)' (8.8)

(iii) If so = s1 =5, g0 = q1 = q, and po # p1, then

(Fpoq (00, B3, (), = Fp (K. (8.9)

Theorem 8.5. Let € be as in Definition 5.29 and o € (0, 1).

(i) Let —e < 59, 51 < €,50#51, 1 <p<oo,and 1 < qo, qi, g < oo. Then

(quﬂ(’x)’ Pth ('x))o;q = B;,q(%)l (810)

where s = (1 —0)sg + 0s1.

(i) Let e <s<e, 1 <p< oo, 1< qo, g1 < oo, and qo# qu. Then

(Bjq (K), B g, (X)), . = B y(X), 8.11)

where1/q=(1-0)/q0+0/q.
(iii) Let —€ < s, 51 <€, 1 < po, p1 < o0, and pg # p1. Then

(Byop (20), B3y (X)), , = By p(X), (8.12)

where1/p=(1-0)/po+o0/p1and s = (1 - 0)sy + Os1.

Theorem 8.6. Let ¢ be as in Definition 5.29, —€ < sp, 51 < €,1 < pg, p1 < 0,1 < qo, q1 < oo,
0€(0,1),s=(1-0)so+0s1,1/p=(1-0)/po+o/p1,and1/q=(1-0)/q0+0/q.

(i) If so # 51, then

(Fpan (K), Fjt g, (X)), = Fj,(X). (8.13)

(ii) If so = 51 =5, po = qo, p1 = qu, and qo # 1, then

(B (), By (N) = By (X). (8.14)
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(iii) If so = s1 =5, g0 = q1 = q, and po # p1, then

(Fpoa(X), Fyy g(2)),,, = Fp g (X)- (8.15)

Proofs of Theorem 8.3 through Theorem 8.6. The proofs of Theorem 8.3 through Theorem 8.6 are
similar by using [89, Theorem 1.2.4]. We only give an outline here; see also [90, the proofs of
Proposition 3.3 and Theorem 3.1].

To prove Theorems 8.3 and 8.4, by Proposition 5.10(iii), we know that

B, (X, E5 0 (X0 € (GS(Biy), (8.16)

where max{0,-s; + n(1/p;-1),} < f;i < € and max{n(1/p;i-1),,si — x/pi} < yi < € with
i =0,1. We then let f = max(fo, f1) and y = (yo,71). Then

By 4,20, Fyig (20 € (G5 (BY)) - (8.17)
In this sense, {By;) 4, (X), By, 4, (X)} and {E}0 ; (X), F;! ; (X)} are interpolation couples in the

sense of [89, Section 1.2.1]. Now, for f € (GE (B,7))', with the notation of Theorem 4.11, we
can define the coretraction operator S by

S(H)x) = {S(N) ). (8.18)
where for k € Z,
. N(k,T)
SN =D, > Di(f)(yr”) xger (%); (8.19)
Tell v=1

and the corresponding retraction operator R by
% N(k 7)

RUADE = 30 3 3 [ frtwau|Beeyi™) 820

k=—co T€l} v=1

By Theorem 4.13, for any f € (ég(ﬁ, 7)), we have RS(f)(x) = f(x).In what follows, for s € R,
0<g<oo,and0<p < oo, wesay {fi}r . € €5(LP)(X), if

1/q
”{fk}lzo:foo”ésﬂi(lj)(x) = { Z zksq”fk”m(x)} < ©o; (8.21)
and we say { fx )72 . € LP(€59)(X), if

<o, (8.22)
LP(X)

1/q
i eoo o ooy 0y = “{ > zksqlfk<x>|"}
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where the usual modifications are made when p = o or g = cc. If F is an interpolation functor,
then one obtains by [89, Theorem 1.2.4] that

A Wlea30,0, 0085 0N ~ ISCONEqaom @y, esvm ey (8.23)

e, 00,3 con = IS equm @omy ), 1 @y )y

P0-40 P11

Using Proposition 7.1 and Theorem 7.2, we can then finish the proofs of Theorems 8.3 and 8.4
by the same procedures as those in [89, pages 182-183] and [89, pages 185-186].
To prove Theorems 8.5 and 8.6, by Proposition 5.31(iv), we know that

Brs’;,qi (%)’F;::,qi (»%) c (G(e) (ﬂi/ Yi))lr (824)

where max{0,-s; + n(1/p; - 1),} < i <eand n(1/p;-1), <y; < e withi = 0,1. We then let
p = max(fo, p1) and y = (yo,y1). Then

By 0. (X), Fyi 0. (X € (GS(B,Y)) - (8.25)

In this sense, { By 5, (X), Byl 4, (X)} and {F,;) 4, (X), Fp! 4, (X)} are interpolation couples in the
sense of [89, Section 1.2.1]. Now, for f € (G5(8,y)), with the notation of Theorem 4.14, we
can define the coretraction operator S by

S(f)(x) = {S(N) ()}, (8.26)
where
N(0,7)
S(fo(x) =% >, mgo (Do(f)) xor (%) (8.27)
Tely v=1
and for k € N,
N (k,T)
S(Ne(x@) = >, > Di(f)(yr”) xger (%); (8.28)
Tell v=1

and the corresponding retraction operator R by

N(07) ~ w N7 ~
RUAN@=5 3 [[ o)auw)] Do 03 5 3| frtwrduw|Bece v,

(8.29)

where 5Qg,v (x) is as in the proof of Proposition 7.3. By Theorem 4.16, for any f € (G§(f, 7)),
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we have RS(f)(x) = f(x). In what follows, for s € R,0 < g < oo, and 0 < p < oo, we say
{fihizo € €79(LP) (X)), if

o 1/q
1{fe}izo LY (K) {szsq”fk”Zp(x)} < oo; (8.30)
k=0
and we say { fx} o, € LP(€°7)(X), if

< oo, (8.31)
Lr(X)

) 1/q
” {fk}liollm(gs,q)(x) = H {Z 2ksq|fk(x)|q}
k=0

where the usual modifications are made when p = oo or g = cc. If F is an interpolation functor,
then one obtains by [89, Theorem 1.2.4] that

”fHF([B;g,qO K),B}l 4 (20~ ”S(f) “F([(Jso,qo (LPO)(X), €511 (LP1)(X)))” (8.32)

”f”p({psﬂ (x),p’j},ql wy = IIS(f)”F([Llﬂo(esorqo),LFl (£s191)})*

P0-490

Using Proposition 7.3 and Theorem 7.4, we then finish the proofs of Theorems 8.5 and 8.6 by
the same procedures as those in [89, pages 182-183] and [89, pages 185-186], which completes
the proofs of Theorem 8.3 through Theorem 8.6. O

We remark that Theorem 8.3 through Theorem 8.6 only deal with Besov spaces and
Triebel-Lizorkin spaces which are Banach spaces, since p,gq > 1. Using Theorems 7.2 and 7.4
together with the following fact that for 0 < pp#p1 < wand o € (0,1),if 1/p = (1 -0)/po +
o/p1,

(épo’épl)o,p - g'PI

(8.33)
(gPolglﬂl)U’p =¢P

(see [88, Theorem 5.2.1] and also [89, Remark 1.18.6/5]), by a method similar to the proofs
of Theorem 8.3 through Theorem 8.6 (see also [82, Corollary 6.6]), we can easily establish the
following interpolation theorem which covers also cases when p < 1. We omit the details.

Theorem 8.7. Let € be as in Definition 5.8, sy, s1 € (—€,€), p(s0,€) < po < o0, p(s1,€) < p1 < o,
and po#p1. Let 0 € (0,1),1/p=(1-0)/po+0/p1,and s = (1 - 0)sy + os1. Then,

(1) (B (), B}y (), = B p(X);
(i) (By)p (X), Byl (200),, ) = B ().

Making use of Calderén reproducing formulae in place of frame characterizations,
we can also directly establish the following real interpolation theorems for Besov and Triebel-
Lizorkin spaces which are only quasi-Banach spaces; see also [3, Theorem 2.4.2] and [91].
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Theorem 8.8. Let ¢ be as in Definition 5.8, o € (0,1), so,s1 € (—€,€), so#s1,and s = (1 — 0)sp +
o0s1. Then

(i) if max{p(so, €),p(s1,€)} <p <ooand0<qgo,q1,q < oo, then
(Bigo (X), By, (X)) = By y(X); (8.34)
(ii) if max{p(so, €),p(s1,€)} <p < oo, p(si,€) <gi<oofori=0,1and 0 < g < oo, then
(Fpigy (), Bl (X)), = B} 1 (X). (8.35)

Proof. We first verify (i). By Proposition 5.10(iii), we know that
B3l (0, By, (20 € (G5 (B,7)) (8.36)

withmax{0, —=sp+n(1/p-1),, —si+n(1/p-1),} < <eand max{n(l/p-1),, so-«x/p, 51—
x/p} <y < e. Thus, we can take & = (G (ﬂ,y))’ with f and y as above.
We now verify that

(Bioo(K0), B}op (), © By (20). (8.37)

By Proposition 8.2(ii), without loss of generality, we may assume that sy > s;.
Assume that f € (B;f’w(x),B;}m(x))Uq and f = fo+ f1 with fo € B (X) and f; €
B\, (X). Let { Dy} iz, be as in Definition 5.8. Then,

2| DNl ey S 2 NPk (fo) Iy + 252 I Dic (F) [l 1
(8.38)

k —
N ”fO”B;?m(x) + 2K sl)”fl”B;}w(x)'
Taking the infimum on all representations f = fo + f; yields that

2D ()| iy S K@, 3 Bploo (X), Bylon (X)) (8.39)
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If 0 < g < oo, from (8.39), it follows that

IO EOU[K (¢, f; Bf,?w(%),B;fm(%))]q%

o zk(sgfs]) dt
_ oK t, ;Bsooo , le -
k;w J 2(k=1)(s9-51) [K(E £ Bpeo () P )] t
2 Z 2~0qk(so=s1) [K (zk(so—sl),f; B;(,]oo (X), B;}oo (’X))] 9 (840)
k=-c0
Z > 2%DNIE )
k=-c0
> q .
2N, o
and if g = oo, by (8.39), we then have
||f||B;m(x) = Supsz”Dk(f)”LP(X)
kezZ
< sup 2K K (28070, £ B (X), B, (X)) (8.41)

keZ
< sup £OK(t, f; Bpo (X), Byl (X))

O<t<oo

Thus, (8.37) holds.
We now prove that if 0 < r < g, then

B4 (%) < (Byr (%), B, (20), . (8.42)

Without loss of generality, we may assume that sy > s; again. Then we also have sp > s > 5.
In what follows, we only consider the case g < co and we omit the details for the case g = oo
by similarity and simplicity. Let now f € B (X). We then write

® i . dt

q _ -0q . DS S q_

If ”(BZf’r(x),B:?,(x)m ) f o LKt f3 Bpr (K0, Byl D)
. (8.43)
5 Z 2—j0‘q(50—51) [K (2]'(50—51)1 f; B;(,)r (’X), Bz}r (%))] q.

j=—oo

Let all the notation be as in Theorem 4.11. For any j € Z, we write

j N(k,T) 0 N(k,T)

f@ =33 > w@)De(f)(yr")De(xys™)+ > > >

k=-co 7€l v=1 k=j+1 7€l v=1 (8.44)

= fo+ fl.
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From this and the definition of K-functional, it follows that

<zzwmﬁwm

j=—o0

. _ 5 q
B%.(X) +2/(%0 Sl)”f{"Bf,},(x))

NK ) o
N Z 2jals SO){k; 2"50’[21 Z n(QE )| D (£) (v )I] } (8.45)

q/r

N(K' ") r/p
+ZW“{ZW{ZZﬂ@mDmmw]}

k'=—c0 Tely vV

=+ o

We first estimate J; in the case p < 1. In this case, by (5.10), (5.5), Lemma 5.2, and
(5.12), we have

j
5 < i 2iq(s—s0){ i zkf50r< N7 2 K-Kepgnlk-(enk)l1-p)

j=—o0 k'=—c0 k=-o0

. (8.46)
N(k,T) a/

x>, > Q) D) (wr”) |p>r/p}

Tel v=1

Now, we choose ¢’ € (|syl, €) such thatp > n/(n+so+¢’). Using (5.5) when r/p < 1 or Holder’s
inequality when 1 < r/p < co then further shows that

o ) j
]1 S Z zjq(s—s(]){ Z 2k’sor[ Z 2—|k’—k|e’r2n[k—(k/\k’)](1/p—1)r
k

j=— kK'=—o0 =—

q/r

N(k,T) r/p
X(Z S Q)| Di(f) (v )|> ]} (8.47)

Tel v=1

q/r

< Z 2/t SO){ 2 2k50r<z NZkT Q") |Dk(f)<yl;/v)|p>r/p}

j=—w T€lR v=1

Since g/r > 1, by Holder’s inequality and sy > s, we have

- N (k,T) a’p
< Z zfq(s—so)/Z{ Z 2k(so- S)q/22k5q<z Z ‘u(Q )le(f) (yl;,v)|7’> } ( )
8.48

j=—w k=-c0 Tl v=1

q

which is the desired estimate in the case p < 1.
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While when 1 < p < oo, letting €' € (|so|, €), by Holder’s inequality and Lemma 5.2, we

have
© N(K' 1)
]1 5 Z zjq(s—so){ Z 2k’sor< Z Z ﬂ(Qk, v
j=— = TElpy V=

N (k,T)
[Z KD S S (@) IDe(H) ()]

k=—c0 Tel, v=1
1
V2 (kAK') (y.[., ) + Vz (kAK") (yT ) + V(ykl VI/ yl;v)

- (knK) SN
X
<2—(k/\k’) + d(yl;,,v , lec,V) > ] > }

% % j Nk "
<3 2;‘q<sso>{ S 2k’svr[z 2"""'*’(2 >, 1(Q")|D(f) (vi™)] >] }
j=—o0 k'=—o0 k=-c0

q/r

Tel, v=1

(8.49)

Lete” = ¢ whenr/p <1and €" € (|sg|,€') when r/p > 1. By (5.5) when r/p < 1 or Holder’s
inequality when r/p > 1, we further obtain

q/r

s $eof 3 o] 5 o (575 weimnwr) )

j=—» k'=—o0 Tel, v=1

S oy
(8.50)

where in the last step, we omit some estimates similar to the case p < 1. This completes the
estimate for J;.

We now turn to the estimate for J,. We also need to consider two cases. We first assume
that p < 1. In this case, the estimate (5.10) and Lemma 5.2 prove that

Z 2]q(s sl){ Z 2k S1r< i 2—|k’—k|ep2n[k—(k/\k’)](1—p)

j=— k'=—c0 k=j+1

(8.51)
N(k,T) alr

r/p
x> > #(Q’T"")IDk(f)(y’T"”)lp> }

T€l, v=1
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Now let ¢ = 0whenr/p <lore € (0,5 —s;) when r/p > 1. Using (5.5) when r/p < 1 or
Holder’s inequality when r/p > 1 gives that

]2 < i qu(s—sl—e’){ i 2k’slr|: i 2—|k’—k|er2n[k—(k/\k’)](1/p—1)r2ke’r

jE-» k'=-o0 k=j+1
N(k,T) r/p 47
X(Z > #(Qﬁ’”)le(f)(y’T"”)lp> ]} (8.52)
Telr v=1
q/r

o ) o0 } N(k,7) "
s Z 2]61(S—51—€){ Z 2k(sl+e)r<z Z #(Q )|Dk(f)(]/ v)| > }

j=— k=j+1 Tel v=1

Using q/r > 1 together with Holder’s inequality then further yields that

" - N(k) alp
]2 5 Z qu(ss]e’)/z{ Z 2k(51+e’—s)q/22ksq <Z Z H(Ql;v) |Dk(f) (yl;m) |P> }
(8.53)

j=—o0 k=j+1 Tel v=1

q
ST

If 1 < p < oo, letting €” € (0, s — 51), by Holder’s inequality and Lemma 5.2, we obtain

q/r

N (k,T) r/p
< 37 gjate-ss >{ )) zk’w< > 2R S 3 w(Q) DR (v >|p> }

j=—o0 k=j+1 T€l v=1
(8.54)

Now, if r/p < 1, we then take ¢’ = 0, and if r/p > 1, we take €' € (0,5 — €” - s1); by (5.5) or
Holder’s inequality, we obtain

[ee) oo} (oo}
]2 5 Z zjq(s—sl—e”—e’){ Z 2k’51r[ Z 2—|k’—k\erzk(e”+e’)r
j=—

k'=-c0 k=j+1
q/r

N(k7) r/p (8.55)
x(Z > #(Q’T"")IDk(f)(y’?"’)lp> ]}

Tel v=1

< q. .
S A s (0

Thus, (8.42) holds.
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From (8.37), (8.42), and Proposition 8.2(iii) together with Proposition 5.10(i), by taking
0<r<goand 0 <7 < g1, we deduce that
B}, (40 € (B (%0, B}, (X)),
C (Bpg (X, By, (%))
C (Bpio(X), poo(%))
C B . (X).

(8.56)

Thus, (i) holds.
To see (ii), by (i) and Proposition 8.2(iii) together with Propositions 5.10(ii) and 6.9(ii),
we have

S Sy
BP/‘? (‘K) (Bpomlnlp qo} ’x) Bp min{p,q1 } ('x))a,q
C (Fpa (20, Fplgy (X)),
(8.57)
C ( pmax{pqo}(x) pmax p.q1) (%)) 0q
= B, ,(X).
Thus, (ii) holds, which completes the proof of Theorem 8.8. O

Theorem 8.9. Let € be as in Definition 5.29, 0 € (0,1), so, 51 € (—€,€), So #51,and s = (1 — 0)sg +
osy. Then

(i) if max{p(so, €),p(s1,€)} <p < coand 0 < qo,q1,9 < oo, then

(Bya(X0), By, (1)), = By (X); (8.58)

(ii) if max{p(so, €),p(s1,€)} <p < o, p(si,€) <gi < owfori=0,1and 0 < g < oo, then

(FSOQO (’K)’ P q1 (’x))o.’,7 = B;si,q ('K) (859)

Proof. Similarly to the proof of Theorem 8.8, we only need to verify (i), while (ii) can be
deduced from (i), Propositions 8.10, 5.31, and 6.21.
To prove (i), by Proposition 5.31(iv), we know that

By, (), Byl (X) € (G5(B,Y))’ (8.60)

with max{0, —sp+n(1/p-1),,-si+n(l/p-1),} <p<eandn(l/p-1), <y <e. Thus, in
this case, we can take & = (G5 (f,7))' with f and y as above.
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We now verify that

(Bpes (X), Byl (X)), € By 4(K0). (8.61)

By Proposition 8.2(ii), without loss of generality, we may assume that sg > s1.
Assume that f € (B,S,‘,)OO(JC),Bf,foo(%))m7 and f = fo+ fi with fo € B} (X) and f; €
B, (X). Let { Dy} ¢y, be as in Definition 5.29. Then,

2k ”Dk(f) ”U’(x) < 2k ”Dk (fO) ”Ln(x) + 2K (omsn) ke ”Dk (fl) ”LP(j()

P (8.62)
S ”fOHB;‘?w(ﬂC) + 27 ||f1||B;}m(ﬂC)'
Taking the infimum on all representations f = f, + f; yields that for all k € Z,,
250 | De()| iy S K (@5, £ By (X), B3lon (X)) (8.63)
If 0 < g < oo, from (8.63), it follows that
. =Y S0 s q dt
UKt f; Byeo (X), B (X))
0
0 2k(sp-s1) dt
= EOT[K (L f3 By (X), Bylor (K0)]T
k= Z(kfl)(sofsl)
> 3 preakss) [k (2K, £ B (X), B (X))] q (8.64)
k=0
2 Z zksq”Dk(f) ”Zp(x)
k=0
A Vi
and if g = oo, by (8.63), we then have
||f||B;,m(x) = sup zks”Dk(f)”LPuo
keZ,
< sup 2k(S*SU)K(2k(SO*51),f; B;?oo (X), B;}w (x)) (8.65)

keZ.,

< sup t7K(t, f; Bpoo (X), By (X))

O<t<oo

Thus, (8.61) holds.
We now prove that if 0 < r < g, then

B;4(X) € (By(X), By, (X)), - (8.66)
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Without loss of generality, we may assume that sp > s; again. Then we also have sy > s > 5.
In what follows, we only consider the case g < oo and we omit the details for the case g = oo
by similarity and simplicity. Let now f € Bj ,(X). We then write

[oe]

LI “W<mm:j K 1, B 0, By )]

0

< f o [K(t, £ By (20, B, (20)] "
~J, pr P t (8.67)

+ 3 o) [K (216, £ B (), B3, (4))]]

j=0
= Yl + Yz.

To estimate the first term, by Proposition 5.31(ii), we have
K (b, £ B (20, B3, () < fllgs oy S 1l (8.68)

which shows that

1
Yi = f K B 20, B "X <171 ey (8.69)

To estimate the second term, let all the notation be as in Theorem 4.14. For any j € N,
we write

N(0,7) _ j N(k,T) _
ﬂw{zLZu@?m@uMﬁwwuwzzjzu@Pwmmﬁﬂm@mPﬂ
Tely v=1 k=1 7€l v=1

N(k,7)

£33 w(Q) D) (5 Be(x, )

k=j+1 7€l v=1

=fo+ £,
(8.70)

where 15Q2,v (x) is as in the proof of Proposition 7.3. From this and the definition of K-
functional, it follows that

i(s0— ind
JERS ZZ ot Sl)<||fo”1350 (%) +2/( sl)”f{”Bﬁ},(x))

]0

o0 N(©O,7) ) ) q/p
< $ - so>{ S S u@)im Ov(IDo(fé)I)]}

j=0 T'ely v'=

N(K ) arr

*22”“‘3‘”{22’”“[2 S, K@) DR () >|]r/p}

T'ely v'=1
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N(,7") . p a/p
Sl 575 @) g (0D
T'ely v'=1
© N(K ') » ey
+Zz;q<ssﬂ{22ks”[z Z (@) Dk () (v ] }
j=0 k'=1 TeEly V=
=h+L+ 3+ s
(8.71)
The estimate (5.82), (5.5), and Lemma 5.2 show that when p <1,
N(0,7) a/p
I < Zz](s so)q{z Z ‘I/l(QgV) ngv Do(f)l)] }
Tely v=1
o N - iy ar(8.72)
S $rie s S @ b 6 1]
j=0 Tel v=1

q
<1, oy

where in the last inequality, we used (5.5) when q/p < 1 or Holder’s inequality when 1 <

q/p < oo.
When 1 < p < oo, from (5.82), Holder’s inequality, and Lemma 5.2, it follows that

N(0,7")

T <Zz](5 sO)q{Z Z #(QOV)

T'ely v'=

N(0,7)
x <Z 2 w(Q2) [ (DoAY

Tely v=1

1 1 >}"/”
X )
Vi(ye”) + Vi) + V(e ye”) L+ d(yY, v27))°

[o'e) . N(OT)
Saenl 575 e
j=0 T'ely V=

N(k,7)
[Zz v s S @ D ()

el v=1

1 1 ]}"/’”
X
Vi(yy") + Vi(ys”) + V(e ) (L+d(y, yEv)°

SIS oy
(8.73)

where we chose €' € (|s], €).
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By (5.82), we write

o) . ') , N(K', ") K v ,
I S Z 2](5—50)4{ Z ok'sor < Z Z [/l(Q
=0 k=1 Tely vl

0,7)
[Z > 2u(Q)mgy (IDo(H])

Tely v=1

1
x k' 0,v k'
Vi(ye”) + Vi(ye”) + V(yh” vy

p\ /Py T
+dys”, ye")"

N 7 o , N(k,7)
+zzf<s 5“”{22"’3“(2 >, wQ) [22"‘ eSS @) D) ()]

k'= Tely V=1 Telp v=1

x | (DDx) (vi™ v ”] )”P}

q/r

=Jo1+ Jop.
(8.74)

The estimate J,, is completely similar to that for J;. Thus, we only need to estimate /> .
When p <1, by (5.5) and Lemma 5.2, we have

- © N(O) a/p
12,1sj}ézﬂs-%’q{kzlzk“re”} <§I] Z; u(QY” [mQS'”(Do(f)|)]p> S N30
= = T€ly Vv

(8.75)

while when 1 < p < oo, Hélder’s inequality and Lemma 5.2 give that

% o N(K, )
Jo1 S zg: Zi(S_SO)q{Z 2k’5°r< > ZT p(Q")
p=

k'=1 Tely v'=1

N(0,7) )
: [Z >, 2 ()

Tely v=1
1

x [mgor , > 0
° Vi) Vi) + V(e v

r/py 47
i) |
(L+d(E”,y2")’

Do(f)])]”

SIS, oy
(8.76)

which is also the desired estimate.
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Similarly, from (5.82), (5.5), Holder’s inequality, and Lemma 5.2, it follows thatif p < 1,

N(0,7)

I3 < Zzi(s 51)q{ Z Z ‘u(Q

T'ely v'=

© N(k,T)
x[kz S W@ DA )]

=j+ltelxy v=1

» 1 1 py4/P
x 0,
Vi ) Vi)V (@ v (ed (Y, yE )™

. N (k,T) a’p
NI s»q[ 3 oktermnipp § Z n(Q¥ )|Dk(f)(y’;"’)|p]
j=0

k=j+1 Tel, v=1

SIFIE oy
(8.77)

where we choose a; = 1if g/p < 1and a; € (0,1) if g/p > 1 such that a;s > (1 -

ai)(e + n —n/p) + s;, while when 1 < p < oo, by Holder’s inequality and Lemma 5.2, we
have

N(,7")

Js < Zzﬂs an{ Z Z #(Q

T'ely v'=

© N(k,T)
x[z S ST W@ DN )

k=j+1 1€l v=1

q/p
% -ke'p — 1 1 ]}
V(e )+ V(v ) +V (v et (Ld (2, i)
N IIfIIq;,q(,Q,
(8.78)

where we chose €' € (|s1],€) and a; € (0,1) such that aze' > (1 — az)s — s1.
The estimate J; is similar to that for J, and we omit the details, which completes the
proof of Theorem 8.9. O

8.2. Dual spaces

In this subsection, we are going to identify the dual spaces of some classes of Besov spaces and
Triebel-Lizorkin spaces. To this end, we first recall the definitions of some auxiliary function
spaces. Let 0 < p, g < oo. The spaces LP (€9)(X) and £(LF)(X) are respectively defined to be
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the set of all sequences f = { fi}rcz of p-measurable functions on X such that

< oo,
Lr(X)

o 1/q
||f||Lp(e'q)(x) = H{ Z |fk|q}
k=-—c0

(8.79)
o0 /a
||f||g’q(Ln)(x) = { Z “fk”Z”(%)} < %;
k=-c0

and the spaces L? (€9)(X) and €9(LF)(X) are respectively defined to be the set of all sequences
f = {fk}kez, of p-measurable functions on X such that

(s w}w

k=0

< oo,
LP(X)

||f||m(eq)(x) =

(8.80)
F) 1/q

Ifllgazry ey = {Z ”fk”Zp(x)} < .
k=0

The following result is well known (cf., e.g., [3, Proposition 2.11.1, pages 177-178]).

Proposition 8.10. Let 1 < p < oo and 0 < q < co. Then the following hold.

(i) g € (LP(89)(X))" if and only if there exists a sequence {g;} s € LY (£9)(X) such that

j€

sH=3 fxgj(x)fj(x)d#(x) (8.581)

j=—

fOT everyf = {f]}]EZ (S L"’(@q)(ﬂ), and ”g” ~ ||{gj}]‘eZ||Lp’(g'q’)(_X).

(i) g € (61(LP)(X))" if and only if there is a sequence {g;}._, € €7 (LP')(X) such that

j€

s = 3 | ge0f@au 5.82)

j==o0

for everyf = {f] }jEZ (S eq(LP)(X)/ ﬂnd ||g|| ~ ||{g]}]eZ||gq’(Lp’)(x)

Using Proposition 8.10, by a procedure similar to the proof of Theorem 2.11.2 in [3],
we can establish the following duality theorem for homogeneous Besov spaces and Triebel-
Lizorkin spaces. In what follows, when 0 < g < 1, we also let ¢’ = co.
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Theorem 8.11. Let € be as in Definition 5.8 and |s| < e. Then, the following hold.
(i) If1<p<oocand0<g< oo, then

(B}q(£0)' = B,y (X). (8.:83)

More precisely, given g € B;;f'q, (X), then L.(f) = (f,g) defines a linear functional on G(e,€) N
BS ,(X) such that

|‘£g(f)| < C”f”B;/q(x)||g||3;,slq,(x)/ (8.84)

wﬁere C > 01s independent of f, and this linear functional naturally extends to Bf,,q(,%) by continuity
with norm at most C||g g+ (x)-
v

Conversely, if £ is a linear functional on BZ,q (X), then there exists a unique g € B;,fq, (X)
such that £ is the natural extension of L, with ||g|lg- ,x) < ClI£]|.
rq
(ii) If 1 < p, g < oo, then

(Fpq(20) = B2 (X). (8.85)

More precisely, given g € F;,fq, (X), then L4(f) = (f,g) defines a linear functional on G(e, €) N
F; ,(X) such that

2P < Cl s oI o (8.86)

where C > 0 is independent of f, and this linear functional naturally extends to P;j,q(ﬂ() by continuity
with norm at most C||g ¢ (x)-
rAa

Conwversely, if £ is a linear functional on Ff,,q(ﬂ(), then there exists a unique g € F;,fq, (X)
such that £ is the natural extension of L, with ||g|lp- x) < ClI£]|.
rAq

Proof. Let s € (—¢,€). We first claim thatif 1 < p < oo and p(s, €) < g < oo, then
F (X)) c (F;,(0), (8.87)
and thatif 1 <p <occand 0 < g < oo,

B2, (X) C (B (X)) (8.88)
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We first verify (8.87). Observe first that 1 < p’' < cwand 1 < ¢’ < co. Let f € F;,fq, (X)

and all the notation be as in Theorem 3.10. For any ¢ € Gler, e), by the definition of Frf m (X)
and Theorem 3.13 together with Holder’s inequality and Remark 5.5, we have

[ee]

> <Dk<f>,5,i<so>>'

—00

|f (@) =

p (8.89)

k=

. > |Di(f) ()| D (o) (x) | dpa(x)
k=—c0

S ”f”F;,fq,(ﬂC)||(‘0“F;,q(ﬂ()'

which together with the Hahn-Banach theorem and Proposition 5.21 shows (8.87).
Similarly, to see (8.88), for any f € B;,fq, (X) with1 < p,q < and ¢ € Gler, ), we
have

@) = | 3 (Du(), BL@)
k=—c0

& ~ 8.90
< 30 1P s DL (8.90)

< ”f”Br;flq,(j()”‘P”B;[q(_x)r

which together with the Hahn-Banach theorem and Proposition 5.21 again proves (8.88).
We now complete the proof of (ii). Let s € (—¢,€) and let 1 < p,g < oo. Let { Dy}, be
as in Definition 5.8. Then

feEs (%) — (2%Di(H))] ., (8.91)

is a one-to-one mapping from P;/q(ﬂé) onto a subspace of LP(£9)(X), and every functional g €
(Fyq (X))' can be interpreted as a functional on that subspace. By the Hahn-Banach theorem,
g can be extended to a continuous linear functional on L?(¢7)(X), where the norm of g is
preserved. If ¢ € Gg(ﬁ,y) with some fixed |s| < f < eand max{s-x/p, 0, —s—x(1-1/p)} <
y < €, then Proposition 8.10(ii) yields

8(p) = i I 8k (x) D (@) (x)dp(x), (8.92)
k=—” X

~lgll- (8.93)

—sk ©
”{2 gk}k=—°° LV (64 (X)

The formula (8.92) can be written as

s@) =3 f DL (g) ()9 (x)du(x), (8.94)
k=—o0” X
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which means that in (ég(ﬂ,y))' with |s| < f < eand max{s-«/p, 0, —s-x(1-1/p)} <y <e,
we have

g(x) = > Di(gk)(x). (8.95)
k=-c0

Repeating the proof of Proposition 5.4(ii), we find that

_ < ||{2-skg, 1°
||g||pqu,(x)~ ||{2 gk}k:_w (@) (8.96)

Thus, g € F;,fq, (X), which shows (ii).

To finish the proof of the theorem, we still need to establish the converse of (8.88). To
this end, we firstlet s € (-¢,¢), 1 < p,q <o, and g € (B, (X))'. Repeating the above proof
with €7 (L") (X) instead of LV (¢7)(X), for any ¢ € (38([5, y) with some fixed |s| < f < € and
max{s - «/p, 0,—s —x(1-1/p)} <y < €, we see that (8.92) holds, and that

~ lIgll- (8.97)

—sk ©
”{2 &b | v )t

Similarly, (8.92) means that (8.95) holds in (GS (B,7)) with |s| < < e and max{s-x/p, 0,—s—
x(1-1/p)} <y < e. Repeating the proof of Proposition 5.6(ii), we obtain

(8.98)

v w0 S {27 8k :
I8l oo S (1278 5 s o

Thus, g € B;,fq, (X), which proves (i) when s € (—¢,e) and 1 < p,q < oo.
Finally, let s € (-¢,€), 1 < p < o, and 0 < g < 1. Then B} (X) C B;/l(x) by
Proposition 5.10(i), which gives
B (X0) = (B, (X)) € (B ,(X)" (8.99)

On the other hand, if g € (B; ;(X))' with s € (-¢,€),1 < p < o0, and 0 < g < 1 and letting
{Dx } ez be as in Definition 5.8, we then have that for all [ € Z,

|(Dig) ()] = [8(Di(@))] < ISIIIDI @), - (8.100)

We now estimate ||Dlt (p)]] B;,(x)- For any k,1 € Z, by Theorem 3.10, we have

DiDj(p) = >, DkD;DyDi(p) (8.101)

k'=—o0
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in G¢(B,y) with p and y as above. Using (3.2) of Lemma 3.2 and (iii) of Proposition 2.7
together with Holder’s inequality and the Fubini theorem gives

”DkD;ﬁk’Dk’(‘P) ”LPUQ S 2t ”13k’Dk’((P) ”Lp(x) S 2 lklle ”Dk’ (¢) ”LP(,K)’

- _ o (8.102)
”DletDk’Dk’(‘/’)”Ln(x) S ”DltDk’Dk’((P)”Ln(x) S 27Kl ”Dk’(‘/’)”m(x)f

where €] and €] can be any positive number in (0,€1). These estimates together with the
geometric means and Proposition 2.7(iii) again yield that for any o € (0, 1),

|DxD} Dic D (@) || ) S 2719927 KIGEO | Die ()| 1 (8.103)
S 2 GG |

If we choose o € (0,1) and €] € (0,€;) such that €{c > |s|, then from the above estimate and
(8.101) together with Definition 5.1 and (5.5), it follows that

© 1/q
1Dl % | 5 210D |

N I N (8.104)
S PIEA DY R [ 9
k=—o0 k'=—co
< 21lly e
Thus,
[(Dig)(@)| < 27 llll (8.105)
which implies that
~Is
sup (2D} 5 sl (8.106)
Thatis, g € B;,Sw (X), which completes the proof of (i), and hence, Theorem 8.11. O

To determine the dual space of F;,q (X) when p =1, following [82], we first consider the
corresponding spaces of sequences. Let A be a sequence asin (7.1). Thenfors € R, 0 < g < oo,
and x € X, we define

0 N (k,t

) a
() = { $3¥ 2ksq|)t'§'”|qu¢,v(x)} ,

k=—co €l v=1

(8.107)

[oe]

1/q
sLow-{ 5 3 F o)

K gl
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Let mi Z,v()L) denote the “1/4-median” of &

T,k,v

(A) on Q¥¥, namely,

6}) < #(QTITW)}

LA mf{6>0 u((x e Qe 671 () > (8.108)

We also set

m> (1) (x) = iup mTkv()L)Xka(x) (8.109)

The following conclusion is trivial by the definition of fgo,q(%)'

Proposition 8.12. Let 6 € (0,1], s € R, and 0 < g < oo. Assume that for each dyadic cube Q, there
exists a measurable set Eg C Q such that uw(Eq)/pu(Q) > 6. Then

N(k,7) 1/q
”)LHfoso,q(X) ~ supsup {#(Q I:Z Z Z ZkSq‘u(E kv )lkvl X{(zv): 08 cal) (T,V)]} .

I€Z a€l k=l Tl v=1
(8.110)
We now establish a characterization of f;,q (X) by means of m*1.
Proposition 8.13. Let s € Rand 0 < q < oo. Then
Mg, ) ~ ||ms"7()t)||m(x). (8.111)
Proof. By Chebyshev’s inequality, we see that
v 1
u({xe Qs : 62 W) >6)) < j (64 ()] dp(x)
#(Q ") T (8.112)
foa(X)
kv
< 4#(QT )’
; 1/6 .
if 6> 4 ”.A,”foso,q(’x) Hence,
||ms"7()t)||Lw(x) S Mg, x)- (8.113)

To establish the converse, we introduce the extended integer-valued stopping time
k(x) for x € X by

- Nk, 1/q
k(x):inf{keZ: <Z > Z 2k5‘4|/\k”| Xgi» > gmsfff(x)(x)}. (8.114)

k'=kT'elpy  v'=1
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Also, for any QF”, set
Eger = {x € QF: k(x) <k} (8.115)
Then, obviously,

kv . S
Eqgw = {x€Q;”: &1

T,k,v

(V) (x) <m™ (1) (x)}. (8.116)
From (8.108), it follows that

p(fxe Q671 (M)(x) > m™ (1) (x)})

v . 4o . . (8.117)
<p(freQr”: 671 () >l ()]) < 7u(Qr"),
and hence, y(EQ;Tc,v) > (3/4)#(Q’T""), and
o N(k,T) 1/q
< >3 > 2 e, (x)> < () (x), (8.118)
k=-o0 €l v=1 @
which together with Proposition 8.12 yields
M g2, 00 S 1A e - (8.119)
This finishes the proof of Proposition 8.13. O

We next prove the following duality for f7 (X).

Proposition 8.14. Assume that s € Rand 0 < q < oo. Then (fiq(j())' = .fo_os,q' (X). In particular, if
A={\:kezZ rel,v=1,.. Nk} e 2 (X), then the map

t={tgw:k€Z 1€l v=1,. N(k1)}— (t1), (8.120)
where
S N (k) p f
tHH=> > > toerds 1 (Qr”), (8.121)

k=—co 7€l v=1

defines a continuous linear functional on ff,q(%) with operator norm ”)L”(f;q(x))' equivalent to
. L . .
||)L||ff,q(x), and every € € (ffrq(%)) is of this form for some \ € ff/q(ﬂé).
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Proof. We first assume that 1 < g < oo. Similarly to the proof of Proposition 8.13, let
Eger = {x € Q"+ 57 (1) (x) < it (1) (x) ). (8.122)

Then p(Eger) > (3/4)u(Q5") and

) N (k,T) , 1/9
<Z > 2 Z_ks”'li’?”|qXEQk,v(X)> < i (A) (x). (8.123)

k=—co 7€l v=1

From this, Holder’s inequality, and Proposition 8.13, it follows that

© N(k,T)

33D Mgt

k=—co €l v=1

0 N (k)
S PP WA
X

=—oo 7€l v=1

® Nkr) Va o N(k,7) , . 1/q
SLC{ SN 2t qxgg,v(x)} {Z SS ok ke xEQz;,v(x)} dp(x)

k=—wo 1€l v=1 k=—o 1€l v=1

o () (275 P L . () ()

S el o T O[] oy
< ||t||f';q(x>||)‘||f;§q,(1)'
(8.124)
which yields

g ooy S I (8.125)

if 1 < g < co. The case 0 < g < 1 then follows from the trivial imbedding f (X) C f;5(X).

Conversely, by Proposition 8.10(i), it is easy to see that every ¢ € ( fls q (X)) is of the
form:

N(k,7)

b >3 > p(QF gAY (8.126)

k=—co €l v=1

for some A as in (7.1). Assume first again that 1 < q < co. Fix a dyadic cube Q. Let ¥ be the

sequence space of all dyadic cubes Q¥ such that Q" c Q!, and let ¢ be a measure on Y such
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that the o-measure of the point Q¥ is 1(Q¥")/u(QL). Then

N(k,7) . oid 1/q
-k WV v
{ ZZ D 28R A X{(T,v>:Q$”cQL}(T’V)}
#(Qa k=l T€ly v=1
ks kv
H A=) grcq 07 (Y, do)
N (k) — (8.127)
— sup Z Z Z lrc/v2_ks)t,r'v
 ileran <! #(Qa i e
< JIAl sup {2 kst ! }
s Ml oy o oy :
i 1t oy, doy <1 ﬂ(Qa) QFeql f‘ls,q('x)
However, by Holder’s inequality, we have
1
{Z’kst _}
QT’ l
Q) ) gegy f2,(0
1 (k,7) 1/q
= |t v oo (T V)X k,v(x)} dpu(x)
ﬂ(QL)I QL{;‘% Z; XimmQieQly o (8.128)
N(k7) . 1/q
{ Z Z Z (Tv):Q’T("’CQ,II}(T/v)/’l(QT’v)}
(Qa k=l Tel v=1
~ ||t||gq(y,dg)-
Thus, if 1 < g < oo, then
||)t||f;q,(x) S ||)L||(fls'q(x))’- (8.129)

For 0 < g <1,wehave g = co. In this case, for any QF”, we set (tQT ) g = =2 ks/‘u(ka) for

Q = ka and 0 otherwise. Clearly, ||th || =1 and hence,
¥/ £i,(0
kv
IMlfs. 0 < sup [(£9, D1 S 1Ml s, 0y (8.130)
which completes the proof of Proposition 8.14. O

From Proposition 7.1, Theorem 7.2, and Proposition 8.14, by a standard method as in
[82, pages 79-80], we can obtain the dual space of F}, ,(X) when p = 1 as follows. We omit the
details.
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Theorem 8.15. Let € be as in Definition 6.1, |s| < €, and p(s,e) < q < oo. Then (Pflq(ﬂ())’ =
P;f, g (X) in the sense of that in Theorem 8.11(ii).

A slight modification of the proof of Proposition 2.11.1 in [3, pages 177-178] again gives
the following inhomogeneous version of Propositions 8.10 and 8.14. We omit the details.

Proposition 8.16. Let 1 <p < oo and 0 < g < oo. Then the following hold.

(i) g € (LP(€9)(X))" if and only if there is a sequence {gj}].e € L¥' (€7)(X) such that

7.

sH=3 f 51 (0 f;(x)dp(x) (8.131)
=0 %

for every f = {filicz, € LP(€7)(X), and ||g|| ~ ||{gf}j€Z+”LP’(e-7’)(x)'

(ii) g € (€9(LP)(X))" if and only if there is a sequence {gj }],E% € 07 (LF)(X)
8= [ sefimduo (8132)
=07«

fOT every f = {fj}j€Z+ (S Eq(U’)(ﬂC), and ”g” ~ ”{g] }]'eZJ,”gq’(Lp’)(x).

Theorem 8.17. Assume that s € R and 0 < q < co. Then (fls,q(jC))’ = f;q, (X). In particular, if
A={\ ' kez, rel,v=1,...,Nk71)} e f;jq,(%), then the map

t= {to ck€Zy, T, v=1,...,Nk1)} — (t1), (8.133)
where
0 N(k,T) . f
H=>> 3 toer s (Qr”), (8.134)
k=0 tel, v=1

defines a continuous linear functional on f7 q(,ﬂ() with operator norm ||M|es (xyy equivalent to
’ A4
[IMl5s (), and every € € (ffq(%))' is of this form for some A € f7 (X).
q / y

With Proposition 8.16 and Theorem 8.17, respectively, in place of Propositions 8.10 and
8.14, by a procedure similar to the proof of Theorem 8.11 (see also [3, the proof of Theorem
2.11.2]) and Theorem 5.6 in [82, pages 79-80], we can establish the following inhomogeneous
version of Theorems 8.11 and 8.15, which describes the dual spaces of some inhomogeneous
Besov and Triebel-Lizorkin spaces. We omit the details.



246 Abstract and Applied Analysis

Theorem 8.18. Let € be as in Definition 5.8 and |s| < e. Then, the following hold.
(i) If1<p<oocand0<g< oo, then

(B;g(2)) = B, (X). (8.135)

More precisely, given g € B,* (X), then L(f) = (f,g) defines a linear functional on G(e,€) N
B} ,(X) such that

|25 < Cllfllgy 018115, v (8.136)

where C > 0 is independent of f, and this linear functional naturally extends to B; . (X) by continuity
with norm at most C||gll -+ (x)-
v
Conversely, if £ is a linear functional on B, ,(X), then there exists a unique g € B,? (X)
such that £ is the natural extension of Lg, with ||g||p-s 4 < CII£]|.
v

(i) Ifl1<p,g<oo,orp=1landp(s,e) <q < oo, then
(F;4(£0) = F.2 (X). (8.137)

More precisely, given g € F,° (X), then Ly(f) = (f, &) defines a linear functional on G(e, e) N
F, o (X) such that

[ £5(H1 < Cllfllgs 018l o (8.138)

where C > 0 is independent of f, and this linear functional naturally extends to Fy, ,(X) by continuity
with norm at most ClIgllp-s (x)-
v

Conversely, if £ is a linear functional on F, ,(X), then there exists a unique g € E, (%)
such that £ is the natural extension of L, with ||g]| p- w < cll2|l.
v
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