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1. Introduction

Let D be the open unit disk in the complex plane C and H (D) the space of all analytic functions
inD. For a € D, let

a = — 1.1
Palz) = 7 — (1.1)
be the Mobius transformation of D and let
1-az
=1 1.2
8(z,a) =log | —— (1.2)

be the Green'’s function on D. Let D(a, r) denote the pseudo-hyperbolic metric disk centered at
a € D with radius r € (0,1), thatis, D(a,r) = {z € D : |pa(z)| < r}.
It is said that an analytic function f(z) = >,72,arz™ is defined by a lacunary series if

A= inf 2L S g, (1.3)
keN Mj

For some results in the topic, see, for example, [1-6] and the references therein.
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Given a function K : (0,00) — [0, ), we consider the space Qk(p,q) of all functions
f € H(D) such that

150 =500 [ £GP (1= =) K (32, 0)dAG) < o (14)
aeD
By Qxko(p, q) we denote the space consisting of all f € Qk(p, q) such that
lllimJ |f'(2)|P (1-1z*)'K (g(z,a))dA(z) =0, (1.5)
al-1)p

where 0 <p <o, -2< g <o, and dA(z) = (1/x)dxdy = (1/x)r dr d6.

For p = 2, g = 0, the space Qk(p,q) is reduced to Qx (see, e.g., [7]). If K(g(z,a)) =
(g(z,a))°,0< s < oo, then Qk(p,q) = F(p, q,s) (see, e.g., [8,9]).

Throughout the paper, we assume that the condition holds (see [7])

J:(l—rz)qK<log %) <o, (1.6)

so that the space Qk (p, q) we study is nontrivial. We also assume that K as a nondecreasing
function. An important tool in the study of Qk spaces is the auxiliary function ¢ defined by
(see [10])

K (st)

s) = su , 0<s<oo. 1.7
P (s) SUP R (D) (1.7)
The following condition
“ ds
f q)K(s)s—2 < oo (1.8)
1

is crucial in this paper. It has played an important role in the study of Qk spaces during the
last few years.

In this paper, we give some sufficient conditions for an analytic function f to belong to
the space Qg o(p, 9).

The followings are our main results in this paper.

Theorem 1.1. Let f € H(D), 0 < p < 00, =2 < g < oo, and let ¢ be a monotone increasing function in
ron (0,1) such that |f'(z)| < @(r), for |z| = r. If

1
I (Pp(r) (1 - r2>qK(1 - TZ)T dr < oo, (1.9)
0

then f € Qko(p, q).

Theorem 1.2. For 1 < p < 2,0 < g < oo, and 1 < p —2q < 3. If K satisfies condition (1.7) and is
a function with the property that K(t) = K(1) for t > 1, then a lacunary series f(z) = >.70 axz"
belongs to Qo(p, q) if

S ! ”K<l>< . 1.10
2l K (5 ) <o (1.10)

Throughout this paper, C stands for a positive constant, whose value may differ from
one occurrence to the other. The expression a = b means that there is a positive constant C such
that C'a <b < Ca.
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2. Main results and proofs

In this section, we give the proofs of Theorems 1.1 and 1.2. Before formulating the main results,
we give some lemmas which are used in the proofs.

Lemma 2.1 (see [7]). Let 0 <p < o0, =2 < g < oo, f € H(D). Then, f € Qko(p, q) if and only if

1im1fD|f'(z)|P(1 — 1zP)K (1 - |pa(2)|?)dA(z) = 0. (2.1)

|al —

Lemma 2.2 (see [5]). Let K be a function with the property that K(t) = K(1) for t > 1. If K satisfies
condition (1.8), then there exists a constant C > 0 such that K(2t) = K(t) for t > 0.

Lemma 2.3 (see [5]). If K satisfies condition (1.8), then we can find another nonnegative function K*
such that Qx = Q- and the new function K* has the following properties:

(a) K* is nondecreasing on (0, o0);

(b) K* satisfies condition (x);

(c) K*(2t) = K*(t) on (0, 00);

(d) K* is differentiable (up to any given order) on (0, o);
(e) K* is concave on (0, o0);

(f) K*(t) = K*(1) fort > 1;

(g) K*(t) = K(1) on (0,1].

Lemma 2.4 (see [5]). If K satisfies condition (1.8), then for any a > 1 and 0 < p < 1, one has

J:r“‘1<log%>_ﬂ (log — )drNC(ﬂ)(1 ‘B>1ﬁ <#), (2.2)

where C(P) is a constant depending on f3 alone.

Lemma 2.5 (see [11]). ForO<p<1,a€D,and z =re’ €D,

r’f do C

< , (2.3)
|1- Ere"9|2p (1-1alr)?

where C > 0 is a constant.

Proof of Theorem 1.1. Let z = re'®. By Lemma 2.3, we may also assume that K is concave, so that
the following inequality true holds

_fﬂK(l_ |pa(re®) | )d9<K< ! f (1- |pa(re®)] )d@) (2.4)



4 Abstract and Applied Analysis

From the definition of ¢k for 0 < s, t < 1, we have that K(st) < ¢k (s)K(t). Using these facts
and polar coordinates, it follows that

I(a) = ID|f’(z)|p(1 — 12P)TK (1 - |pa(2)|?)dA(z)
w1 e P PR  lpatre ) Fyrar e
< ZJ;I(pP(r)(l _rZ)q<% O”1<(1 - |tpa(rei9)|2)d6>rdr
< 2J:<p”(r)(l - rz)‘?K(% :”(1 — |pa(re®) |2)d9>rdr (2.5)
= 2J:<pr’(r)(1 - rﬂ%(%f”%dm - r2)>rdr
1-|af?

1
= 2J; o’ (r)(1- rz)qK<—1 yp (1- r2)>rdr

< ZJ‘I‘PP(”(l -r?) K (1 - )k (—1 —laf )rdr.
0

1 - |al>r?

The last integral exists for every a € D in view of (1.9), and ¢k ((1 - |a|?)/(1 - |a]*r?)) < 1.
Further, since

: 1-|aP
\£|1E11(PK W = ¢k (0) =0, (2.6)

then the last integral tends to zero for every r € (0,1) as |a| — 1. By Lebesgue’s dominated
convergence theorem, we obtain lim5—1I(a) = 0. By Lemma 2.1, we get f € Qko(p, ). O

From Theorem 1.1, we have the following corollary. Here, we give a different and
technical proof.

Corollary 2.6. Let f € HD),0<p < oo, -2 < g <o0,0<s<1,and let ¢ be a monotone increasing
function of r in (0, 1) such that |f'(z)| < @(r), for |z| = r. If

1
J‘ @ (r)(1-r)"rdr < oo, (2.7)
0

then f € Fo(p,q,s).

Proof. Let a € D. We have

@ = [ F@F (-1 (st 0) A

= P (1= 1z12)( 1 1 Sd _ ‘
<f]]])\]D)(a,1/2) +fn(a,1/2)>|f ()" (1= 1zF) < 0g —|(Pa(z)|> A(z) = Li(a) + I(a)
(2.8)
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Forze D\ D(a,1/2),1/|pa(z)| < 2, hence

= = 2 1 - 1212)(1 = |al?
log 1-az 1-az —1S4<1— a _z >=4( |z1*) ( |a|)' (2.9)
a-z a-z 1-az |1_azl2
For 0 < s <1, by Lemma 2.5, we have
1 S
Ii(a) =f "(z)|P (1 -|z? "(10 > dA(z)
D\D(a,uz)lf I )"\l lpa(2)]
—1al?)®
<o frara-ent it e
D\D(a,1/2) |1-az|
1 . . (2.10)
s . s (27 (1 - dae
34_1[‘ |fr(r€ze)|}7(1 ’7+ [I ( |al ) ]rdr
7 Jo |1 - arei®|®
2545 (1 vs (1=lal)®
< CI P(r)(1-r?)1 ——rdr
7€), ¢Oa-r) (1= jalr)

The last integral exists since fol(pp(r) (1-r*)7°rdr < oand (1-|al)/(1-|alr) < 1.Itis clear that

(A-la) _

lim —~ =0, 2.11
lal—1 (1 - |a|r) @11)
which implies
1 _ S
hm (pp(r)(l 2)‘”S(—m')sr dr=0. (2.12)
(1-|a|r)
By Lebesgue’s dominated convergence theorem, we get
|1‘1m Li(a) =0. (2.13)
al—
Now, we consider the case z € D(a, 1/2). Note that
1-az , (2.14)
a-z
in the case. By a well-known inequality (see, e.g., [12, page 3]), we have that
1 ~lal] _ 1 015
1-lalz|] — 2 '
and consequently, for z € D(a,1/2), we have
1+2
1) < L+ 2lal (2.16)

2+|al
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By the monotonicity of ¢, we have

_ ! Pr1 _1-12\9 °
b(a)-fmm)v @) (1-12P) (1og| ) dac)

1
(Pa(z)l

1+2|a|>J' 2 q( 1 >s
<P ———— 1-|z log— ) dA(z
¢ <2+|a| D(a,l/Z)( =) 8 |pa(2)] (=)
1+ 2]a| 2.4 1\*(1-laP)’

o 1~ | pa(w (10 —>—dAw

Y <2+Ial >J‘|w|<1/2( e 5Tl |1 -aw|* ()

1+2|a|>f 2 q+2 2 q( ]. >S ].
P 1-]a 1-|w log — ) ————dA(w
<2+|a| |w|<1/2( laf)™ (1= ) g|w| |1—Ew|2’7+4 «)
1 1+2|a|> ,,+2J' ( 1>SUM do ]
— P 1— 1- log — —— | tdt
o <2+|a| laf’) ( 8% 0 (1—|E|t)2q+4

1 " 1/2 S
< ;(pp<1+—2|a||>2‘7+2(1 —la])? 22,7rf (1- tz)q<log %) _;t dt
0

(1~ [alp*™

1l
<

IN

This implies

L(a) < qu(“—zl“') (1-1a))™?, (2.17)

2+ |a|

since the following integral exists

1/2 1 s
(1- t2)‘7<1og ?> tdt. (2.18)

0

Choosing s = 1, for every r € (0,1), it follows that

! ! 1 1 +
f ¢ (t)(1- )" edt > wP(r)j (=2) " et = 597 () 5 (1) (2.19)
This and
1
f ’(r)(1- rz)qu dr < oo (2.20)
0
imply that

limg? (r) (1 - r)i2 =0 (2.21)
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or

(Pp<1+2|a|><1_1+2|a|>‘7+2:q’p<1+2|a|>(1—|a|)q+2 0
2 +|a| 2+ |al 2+ |al (2+|a|)‘7+2

as |a] — 1. Consequently,

1+2|al
2 +|a|

\1|im112(a) < Cll‘iml(p’”< )(1 ~la)™* =o0.
Combining (2.8), (2.13) with (2.23) we see that
tim [ 7@ (1= |2)" (3(z,0)"dA ) =0,

which means f € Fy(p, g, s). The proof is complete.

Proof of Theorem 1.2. Consider the monotone increasing function
0

o(r) = an|ak|r"k‘1, O<r<l.
k=1

For every 6 € [0,2xr), we have

|f'(re)] = <o(r),

[e'e]
anakr"k‘l
k=1

By Theorem 1.1, we only need to prove

1 ) p
I= I <an|ak|r”k‘l> (1- rz)qK(l - r*)rdr < co.
0 \k=1

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

By the inequality 1 - r2<2 log(1/r), r € (0,1), and Lemma 2.2, there exists a constant C such

that
) 1 1
K(1-r)<K 2log; ~CK log; .
Then for 0 < g < oo, we have

1 0 p 1 q 1
ISCJ 1| axe|r™ rl’r’(log —) K(log—)dr.
o \& r r

For p > 1, assume I, = {k: 2" < k< 2™, k € N}. Since

0 oo 21 o -1/2
Zzn/ZTZ” < 21/ZZJ‘ t—l/Zrt/Zdt < 21/2'[ t—l/Zrt/Zdt - 21"<1> <10g1>
n=0 B n=0 & h 2 r

0

(2.28)

(2.29)

, (2.30)
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which together with Holder’s inequality gives

e P [ © P o P
[Sndastr| =[S S mlate| <[5 5 mlat|
k=1

| n=0 nrel, n=0 nxel,

- i p
= Z(Zn/zrzn)l e (r2"2(1—p)n/2)1/p Z nklakl]

| n=0 niel,
(2.31)
[ P . p-1
< Zr2"2((1—P)/2)n< Z nklak|> ] I:Zzn/ZrZ":I
| n=0 ni€l, n=0
1 -(p-1)/2 . p
< C<log —> Zrz 2((=p)/2)n Z nilax| ) -
r n=0 ni€ly
Hence,
= v 1\ 9 (-D/2) 1
I< Z 1| a| 2((1’7”)/2)"-]‘ rr ( log ;) K< log ;)dr. (2.32)
n=0 \ng€l, 0

For1<p<2,1<p-2g9<3,byLemma 24, choosinga=2"+2-p, = (p-29-1)/2, we obtain

ci:

S p< (1/2)(2q9-p +3) > (zq_p+3)/22<<1—p>/z>n1<< (1/2)@q —p +3) >
n=0 \nyel, 2+2-p Hr2op

c3.

<Z | |>P 1\ @a-p+3)/2 , 1\ (P~1/2 1
1 (—) <—) 1<<—) (2.33)
n=0 \ng€l, 2" Zn 2n
P 1+
o 1 q 1
-5 (Zmie) () ()
0 \nr€l,

If ng € I,, then ni< 21, The assumption that K is nondecreasing and Lemma 2.2 give

1\ /1 1\ 1 1 ~(1+q)
(z‘n) K(z—n)f@—n) WK<W>< K(m) (2.34)

Since f(z) is a lacunary series, the Taylor series of f has most [log,2] + 1 terms a,z" such that
ny € I,,. Combining this with the last inequality and Holder’s inequality, we obtain

P
~((1+q)/p) p( 1 >
I <Cn§ < > n |ax|K <nk >

nx€l,

IN

< CZ([loglz] )P A T a K ( ) (2.35)

ni€l,

= C([log,2] + 1)p_1Zni_q_1|ak|pK<nl> < 0.
k=1 k

This shows that f € Qko(p, q). O
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