
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2008, Article ID 829701, 35 pages
doi:10.1155/2008/829701

Research Article
Generalized Solutions of Functional
Differential Inclusions

Anna Machina,1, 2 Aleksander Bulgakov,3 and Anna Grigorenko4

1 Center for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, 1432 Aas, Norway
2Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences,
1432 Aas, Norway

3Department of Algebra and Geometry, Tambov State University, 392000 Tambov, Russia
4Department of Higher Mathematics, Faculty of Electronics and Computer Sciences,
Moscow State Forest University, 141005 Moscow, Russia

Correspondence should be addressed to Anna Machina, annama@umb.no

Received 12 March 2007; Revised 4 July 2007; Accepted 12 September 2007

Recommended by Yong Zhou

We consider the initial value problem for a functional differential inclusion with a Volterra multi-
valued mapping that is not necessarily decomposable in Ln1[a, b]. The concept of the decomposable
hull of a set is introduced. Using this concept, we define a generalized solution of such a problem
and study its properties. We have proven that standard results on local existence and continuation
of a generalized solution remain true. The question on the estimation of a generalized solution with
respect to a given absolutely continuous function is studied. The density principle is proven for the
generalized solutions. Asymptotic properties of the set of generalized approximate solutions are
studied.

Copyright q 2008 Anna Machina et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

During the last years, mathematicians have been intensively studying (see [1, 2]) perturbed
inclusions that are generated by the algebraic sum of the values of two multivalued map-
pings, one of which is decomposable. Many types of differential inclusions can be repre-
sented in this form (ordinary differential, functional differential, etc.). In the above-mentioned
papers, the authors investigated the solvability problem for such inclusions. Estimates for
the solutions were obtained similar to the estimates, which had been obtained by Filip-
pov for ordinary differential inclusions (see [3, 4]). The concept of quasisolutions is intro-
duced and studied. The density principle and the “bang-bang” principle are proven. In pa-
pers [5–8], the perturbed inclusions with internal and external perturbations are consid-
ered, and the conjecture that “small” internal and external perturbations can significantly
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change the solution set of the perturbed inclusion is proven. Let us remark that, in the
cited papers, the proofs of the obtained results essentially depend on the assumption that
the multivalued mapping, which generates the algebraic sum of the values, is decompos-
able. Therefore, these studies once again confirm V. M. Tikhomirov’s conjecture that decom-
posability is a specific feature of the space Ln1[a, b] and plays the same role as the con-
cept of convexity in Banach spaces. The decomposability is implicitly used in many fields
of mathematics: optimization theory, differential inclusions theory, and so forth. If a mul-
tivalued mapping is not necessarily decomposable, then the methods known for multival-
ued mappings cannot even be applied to the solvability problem of the perturbed inclu-
sion. Furthermore, in this case, the equality between the set of quasisolutions of the per-
turbed inclusion and the solution set of the perturbed inclusion with the decomposable
hull of the right-hand side fails. This equality for the ordinary differential inclusions was
proven by Ważewski (see [9]). The point is that, in this case, the closure (in the weak
topology of Ln1[a, b]) of the set of the values of this multivalued mapping does not coin-
cide with the closed convex hull of this set. As a result, we have that fundamental proper-
ties of the solution sets (the density principle and “bang-bang” principle) do not hold any
more (see [3, 10–13]). The situation cannot be improved even if the mapping in question is
continuous.

In this paper, we consider the initial value problem for a functional differential inclusion
with a multivalued mapping. We assume that this mapping is not necessarily decomposable.
Some mathematical models can naturally be described by such an inclusion. For instance, so
do certain mathematical models of sophisticated multicomponent systems of automatic con-
trol (see [14]), where, due to the failure of some devices, objects are controlled by different
control laws (different right-hand sides) with the diverse sets of the control admissible values.
This means that the object’s control law consists of a set of the controlling subsystems. These
subsystems may be linear as well as nonlinear. For example, this occurs in the control theory of
the hybrid systems (see [15–20]). Due to the failure of a device, the control object switches from
one control law to another. The control of an object must be guaranteed in spite of the fact that
failures (switchings) may take place any time. Therefore, the mathematical model should treat
all available trajectories (states) corresponding to all switchings. The generalized solutions of
the inclusion make up the set of all such trajectories. The concept of a generalized solution
should be then introduced and its properties should be studied.

We consider a functional differential inclusion with a Volterra-Tikhonov type (in the se-
quel simply Volterra type) multivalued mapping and we prove that for such an inclusion, the
theorem on existence and continuation of a local generalized solution holds true. This justifies
one of the requirements, which were formulated in the monograph of Filippov [4] for gener-
alized solutions of differential equations with discontinuous right-hand sides. In the present
paper, it is also proven that in the regular case, that is, when a multivalued mapping is de-
composable, a generalized solution coincides with an ordinary solution. At the same time, the
concept of a generalized solution discussed in the present paper does not satisfy all the re-
quirements that are usually put on generalized (in the sense of the monograph [4]) solutions
of differential equations with discontinuous right-hand sides. For instance, the limit of general-
ized (in the sense of the present paper) solutions is not necessarily a generalized solution itself.
The reason for that is that a multivalued mapping that determines a generalized solution (the
definition is given below) may not be closed in the weak topology of Ln1[a, b], as this mapping
is not necessarily convex-valued.
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2. Preliminaries

We start with the notation and some definitions. Let X be a normed space with the norm ‖·‖X.
Let BX[x, ε] be the closed ball in the space X with the center at x ∈ X and of radius ε > 0; if
ε = 0, then BX[x, 0] ≡ x. Let U ⊂ X. Then U is the closure of U, coU is the convex hull of U;
coU ≡ coU, extU is the set of all extreme points of U; extU = extU. Let ‖U‖X = sup u∈U‖u‖X.
Let Uε ≡ ⋃

u∈UB[u, ε] if ε > 0 and U0 ≡ U.
Let ρX[x;U] be the distance from the point x ∈ X to the set U in the space X; let

h+X[U1;U] ≡ sup x∈U1
ρX[x,U] be the Hausdorff semideviation of the set U1 from the set U;

let hX[U1;U] = max {h+X[U1;U];h+X[U;U1]} be the Hausdorff distance between the subsets U1

and U of X.
We denote by comp [X] (resp., comp [X∗]) the set of all nonempty compact subsets of X

(resp., the set of all nonempty, bounded, closed in the space X, and relatively compact in the
weak topology on the spaceX subsets ofX). Let 2X be the set of all nonempty bounded subsets
of X.

Let P be a system of subsets of X (a subset of X). We denote by Ω(P) the set of all
nonempty convex subsets of X, belonging to the system P (the set of all nonempty convex
subsets of X, belonging to P).

Let R
n be the space of all n-dimensional column vectors with the norm |·|. We denote

by Cn[a, b] (resp., Dn[a, b]) the space of continuous (resp., absolutely continuous) functions
x : [a, b] → R

n with norm ‖x‖Cn[a,b] = max {|x(t)| : t ∈ [a, b]} (resp., ‖x‖Dn[a,b] = |x(a)| +
∫b
a |ẋ(s)|ds). Let U ⊂ [a, b] be a measurable set μ(U) > 0 (μ—the Lebesgue measure). We

denote by Lnp(U) the space of all functions x : U → R
n such that (x(s))p is integrable (if p <∞)

and the space of all measurable, essentially bounded (if p = ∞) functions x : U → R
n with the

norms

‖x‖Lnp(U) =
(∫

U

∣
∣x(s)

∣
∣pds

)1/p

, ‖x‖Ln∞(U) = vraisup
s∈U

∣
∣x(s)

∣
∣, (2.1)

respectively.
Let Φ ⊂ Ln1[a, b]. The set Φ is called integrally bounded if there exists a function ϕΦ ∈

L1
1[a, b] such that |x(t)| ≤ ϕΦ(t) for each x ∈ Φ and almost all t ∈ [a, b]. The set Φ is said to

be decomposable if for each x, y ∈ Φ and every measurable set U ⊂ [a, b] the inclusion χ(U)x +
χ([a, b] \ U)y ∈ Φ holds, where χ(V ) is the characteristic function of the set V . We denote by
Q[Ln1[a, b]] (resp., Π[Ln1[a, b]]) the set of all nonempty, closed, and integrally bounded (resp.,
nonempty, bounded, closed, and decomposable) subsets of the space Ln1[a, b].

Let F : [a, b] → comp [Rn] be a measurable mapping. Then by definition, S(F) =
{y ∈ Ln1[a, b] : y(t) ∈ F(t) for almost all t ∈ [a, b]}. By C1

+[a, b] (resp., L1
+[a, b]), denote the

cone of all nonnegative functions of the space C1
1[a, b] (resp., L1

1[a, b]).
Let f : P → Q be a mapping between two partially ordered sets P and Q (the partial

order of both sets is denoted by ≤). The mapping f is isotonic if f(x) ≤ f(y), whenever x ≤ y.
In this paper, the expression “measurability of a single-valued function” is always used

in the sense of Lebesgue measurability and “measurability of a multivalued function” in the
sense of [21]. Let (T,Σ, μ) be a space with finite positive measure and let F be a multivalued
mapping from T to R

n. A set {xν(·)} (ν ∈ N) of measurable mappings from T to R
n is said to

approximate the multivalued mapping F if the set {t ∈ T | xν(t) ∈ F(t)} is measurable for any
ν ∈ N, and the set F(t) belongs to the closure of its intersection with the set

⋃
ν∈N

{xν(t)} for
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almost all t ∈ T. A multivalued mapping F from T to R
n is called measurable if there exists a

countable set of measurable mappings from T to R
n that approximates the mapping F.

Further, let us introduce the main characteristic properties of a set that is decomposable.

Lemma 2.1. Let Φ ∈ Π[Ln1[a, b]]. Then there exists a function u ∈ L1
1[a, b] such that |ϕ(t)| � u(t)

for each function ϕ ∈ Φ and almost all t ∈ [a, b].

Proof. Let ϕi ∈ Φ, i = 1, 2, . . . , be a sequence of functions such that

lim
i→∞

∥
∥ϕi

∥
∥
Ln1 [a,b]

= ‖Φ‖Ln1 [a,b]. (2.2)

Let us show that there exists a sequence of functions ϕ̃i ∈ Φ, i = 1, 2, . . . , such that the
equality (2.2) holds and

∣
∣ϕ̃1(t)

∣
∣ �

∣
∣ϕ̃2(t)

∣
∣ �

∣
∣ϕ̃3(t)

∣
∣ � · · · �

∣
∣ϕ̃i(t)

∣
∣ �

∣
∣ϕ̃i+1(t)

∣
∣ � · · · (2.3)

for almost all t ∈ [a, b].
Indeed, let ϕ̃1 = ϕ1 and ϕ̃i+1 = χ(Ui)ϕ̃i + χ([a, b \ Ui)ϕi+1, i = 1, 2, . . . , where Ui = {t ∈

[a, b] : |ϕ̃i(t)| � |ϕi+1(t)|}. Since Φ ∈ Π[Ln1[a, b]], we see that the sequence ϕ̃i ∈ Φ, i = 1, 2, . . . ,
has the following properties: for almost all t ∈ [a, b], the inequalities (2.3) hold and ‖ϕ̃i‖Ln1 [a,b] �
‖ϕi‖Ln1 [a,b] for each i = 1, 2, . . . . Hence, from this property and equality (2.2), it follows that the
sequence ϕ̃i, i = 1, 2, . . . , satisfies (2.2). Further, we consider a measurable function u : [a, b] →
[0,∞) defined by

u(t) = lim
i→∞

∣
∣ϕ̃i(t)

∣
∣. (2.4)

Since the set Φ is bounded, we see, using Fatou’s lemma (see [22]), that u ∈ L1
1[a, b]. Moreover,

by the definition of the function u and due to (2.2),
∫

U
u(t)dt = ‖Φ‖Ln1 (U) (2.5)

for every measurable set U ⊂ [a, b]. Now, let us show that the function u defined by (2.4)
satisfies the assumptions of the lemma. Indeed, if the contrary is true, then there exist a function
ϕ ∈ Φ and a measurable set U1 ⊂ [a, b] (μ(U1) > 0) such that |ϕ(t)| > u(t) for each t ∈ U1. This
implies that

∫

U1
|ϕ1(t)|dt >

∫

U1
u(t)dt, which contradicts (2.5). This completes the proof.

Lemma 2.2. Let Φ ∈ Π[Ln1[a, b]] and ϕi ∈ Φ, i = 1, 2, . . . , be a sequence that is dense in Φ. Further,
let a measurable set F : [a, b] → comp [Rn] be defined by

F(t) =
{
ϕi(t), i = 1, 2, . . .

}
. (2.6)

Then S(F) = Φ.

Proof. Since ϕi ∈ S(F) and the sequence ϕi, i = 1, 2, . . . , is dense in Φ, we have, due to the
closedness of the set Φ, the relation Φ ⊂ S(F). Let us prove that S(F) ⊂ Φ. Let x ∈ S(F). For
each k, i = 1, 2, . . . , put

Eki =
{

t ∈ [a, b] :
∣
∣x(t) − ϕi(t)

∣
∣ � 1

k

}

, (2.7)
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which are measurable sets. For i = 1, let Ẽk1 = Ek1 , and for i = 2, 3, . . . , let Ẽki = Eki \ ⋃ i−1
j=1E

k
j .

Then Ẽki
⋂
Ẽkj = ∅ if i /= j. By the definition of the mapping F : [a, b] → comp [Rn], for each

k = 1, 2, . . . , we have

μ

( ∞⋃

i=1

Ẽki

)

= b − a. (2.8)

Let xk : [a, b] → R
n, k = 1, 2, . . . , be a sequence of measurable functions such that

xk(t) =

⎧
⎪⎨

⎪⎩

ϕi(t) if t ∈ Ẽki , i = 1, 2, . . . , k,

ϕ1(t) if t ∈ [a, b] \
k⋃

i=1

Ẽki .
(2.9)

Since the set Φ is decomposable, we see that xk ∈ Φ for each k = 1, 2, . . . . Moreover, from
Lemma 2.1 and the definition of the set Ẽki , it follows that for the functions xk, k = 1, 2, . . . , we
have the estimates

∥
∥x − xk

∥
∥
Ln1 [a,b]

� b − a
k

+ 2
∫

[a,b]\∪ki=1Ẽ
k
i

u(t)dt, (2.10)

where u satisfies the assertions of Lemma 2.1. From (2.8) and (2.10), it follows that xk → x
in Ln[a, b] as k → ∞. Since the set Φ is closed, we have that x ∈ Φ. Hence S(F) ⊂ Φ. Thus
S(F) = Φ.

Lemma 2.3. Let measurable sets Fi : [a, b] → comp [Rn], i = 1, 2, . . . , be integrally bounded, then
S(F1(·)) ⊂ S(F2(·)) if and only if F1(t) ⊂ F2(t) for almost all t ∈ [a, b].

Proof. First of all, it is evident that if for almost all t ∈ [a, b], F1(t) ⊂ F2(t), then S(F1(·)) ⊂
S(F2(·)).

Let S(F1(·)) ⊂ S(F2(·)) and let ϕi ∈ Ln1[a, b], i = 1, 2, . . . , be a countable set, which is dense
in S(F1) and which approximates F1 : [a, b] → comp [Rn] (see [21]). Thus ϕi ∈ S(F2(·)) for each
i = 1, 2, . . . and by the definition of the set S(F2(·)), we have that {ϕi(t) : i = 1, 2, . . . } ⊂ F2(t)
for almost all t ∈ [a, b]. Since the sequence ϕi, i = 1, 2, . . . , approximates the map F1 : [a, b] →
comp [Rn], it follows from the previous inclusion that F1(t) ⊂ F2(t) for almost all t ∈ [a, b].

Corollary 2.4. LetΦ ∈ Π[Ln1[a, b]] and let Fi : [a, b] → comp [Rn], i = 1, 2, be measurable sets such
that Φ = S(F1) = S(F2). Then F1(t) = F2(t) for almost all t ∈ [a, b].

Remark 2.5. If Φ ∈ Π[Ln1[a, b]], then a measurable set F : [a, b] → comp [Rn], that satisfies
S(F) = Φ, uniquely determines the set Φ.

3. Decomposable hull of a set in the space of integrable functions

We introduce the concept of the decomposable hull of a set in the space Ln1[a, b]. We consider a
multivalued mapping that is not necessarily decomposable. For such a mapping, we construct
its decomposable hull and investigate topological properties of this hull.
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Definition 3.1. Let Φ be a nonempty subset of Ln1[a, b]. By decΦ, we denote the set of all finite
combinations

y = χ
(U1

)
x1 + χ

(U2
)
x2 + · · · + χ(Um

)
xm (3.1)

of elements xi ∈ Φ, i = 1, 2, . . . , m, where the disjoint measurable subsets Ui, i = 1, 2, . . . , m, of
the segment [a, b] are such that

⋃m
i=1Ui = [a, b].

Lemma 3.2. The set decΦ is decomposable for any nonempty set Φ ⊂ Ln1[a, b].

Proof. Let y1, y2 ∈ decΦ. Let also U ⊂ [a, b] be a measurable set. Without loss of generality, it
can be assumed that

yi = χ
(Ui

1

)
xi1 + χ

(Ui
2

)
xi2 + · · · + χ(Ui

m

)
xim, (3.2)

where xij ∈ Φ, j = 1, 2, . . . , m, i = 1, 2, and the measurable disjoint sets Ui
j ⊂ [a, b], j = 1, 2, . . . , m,

i = 1, 2, are such that [a, b] =
⋃m

j=1Ui
j , i = 1, 2, (if the number of summands in (3.2) is not the

same, we may use arbitrary functions multiplied by the characteristic functions of the empty
sets). Further, from the equality

χ(U)y1 + χ
(
[a, b] \ U)

y2 =
m∑

i=1

χ
(U ∩U1

i

)
x1
i +

m∑

i=1

χ
((
[a, b] \ U) ∩ U2

i

)
x2
i , (3.3)

it follows that χ(U)y1 + χ([a, b] \ U)y2 ∈ decΦ. Hence, the set decΦ is decomposable.

Remark 3.3. Note that even if a set Φ ⊂ Ln1[a, b] is bounded, the set decΦ is not necessarily
bounded. For example, let us check that

dec
[
BLnp[a,b][0, 1]

]
= Lnp[a, b]

(
p ∈ [1,∞)

)
. (3.4)

Indeed, let z ∈ Lnp[a, b] and ei, i = 1, 2, . . . , m, be measurable sets with the following properties:
ei ∩ ej = ∅ if i /= j, i, j = 1, 2, . . . , m,

⋃m
i=1ei = [a, b]; for each i = 1, 2, . . . , m, the inequality

∫

ei

∣
∣z(s)

∣
∣pds < 1 (3.5)

holds. Then zi = χ(ei)z ∈ BLnp[a,b][0, 1], i = 1, 2, . . . , m, and

z = χ
(
e1

)
z1 + χ

(
e2

)
z2 + · · · + χ(em

)
zm. (3.6)

Therefore, z ∈ dec [BLnp[a,b][0, 1]] and consequently, the equality (3.4) holds.

Remark 3.4. From (3.4), it follows that if a set Φ ⊂ Ln1[a, b] is relatively compact in the weak
topology of Ln1[a, b], then the set decΦ does not necessarily possess this property.

Remark 3.5. Note that if a set is convex in Ln1[a, b], then this set is not necessarily decomposable.
The ball BLn1 [a,b][0, 1] is an example of such a set.
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Remark 3.6. If a set Φ ⊂ Ln1[a, b] is integrally bounded, then by Lemma 2.2, for the set
decΦ ∈ Π[Ln1[a, b]], there exists a measurable and integrally bounded mapping FdecΦ :
[a, b] → comp [Rn] such that

decΦ = S
(
FdecΦ(·)

)
. (3.7)

Lemma 3.7. If a set Φ ⊂ Ln1[a, b] is decomposable, then decΦ = Φ.

Proof. Evidently, Φ ⊂ decΦ. We claim that decΦ ⊂ Φ. The proof is made by induction over
m. By the definition of the switching convexity, any expression (3.1) including two elements
x1, x2 ∈ Φ and two measurable sets U1,U2 ⊂ [a, b] belongs to Φ.

Suppose now that for m = k, the combination of the form (3.1) belongs to Φ. Let
x1, x2, . . . , xm+1 ∈ Φ and let U1,U2, . . . ,Um+1 ⊂ [a, b] be disjoint measurable sets such that
[a, b] =

⋃m+1
i=1 Ui. Let

z = χ
(U2 ∪ U1

)
x2 + χ

(U3
)
x3 + · · · + χ(Um+1

)
xm+1. (3.8)

By the inductive assumption, z ∈ Φ and therefore χ(U1)x1 + χ([a, b] \ U1)z ∈ Φ. Since

χ
(
[a, b] \ U1

)
z = χ

(U2
)
x2 + χ

(U3
)
x3 + · · · + χ(Um+1

)
xm+1, (3.9)

we have that

χ
(U1

)
x1 + χ

(U2
)
x2 + · · · + χ(Um+1

)
xm+1 ∈ Φ. (3.10)

Hence decΦ ⊂ Φ. This concludes the proof.

Corollary 3.8. If Φ ⊂ Ln1[a, b], then the set decΦ is the minimal set which is decomposable and which
contains Φ.

Proof. Consider any set U ⊂ Ln1[a, b] which is decomposable and which satisfies Φ ⊂ U. Then,
by Lemma 3.7, we have Φ ⊂ decΦ ⊂ decU = U.

Lemma 3.9. If a set Φ ⊂ Ln1[a, b] is convex, then so is the set decΦ ∈ Ln1[a, b].

Proof. Let y1, y2 ∈ decΦ be given by the formula (3.2). It follows from the convexity of the set
Φ ⊂ Ln1[a, b] and the equality

λy1 + (1 − λ)y2 =
m∑

i,j=1

χ
(U1

i ∩ U2
j

)(
λx1

i + (1 − λ)x2
j

)
(3.11)

that λy1 + (1 − λ)y2 ∈ decΦ for any λ ∈ [0, 1]. Thus, the set decΦ is convex.

Similar to the definition of the convex hull in a normed space, the set decΦ will, in the
sequel, be called the decomposable hull of the setΦ in the space of integrable functions, or simply the
decomposable hull of the set Φ. Likewise, decΦ is addressed as the closed decomposable hull of the
set Φ.
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Remark 3.10. If Φ ∈ Q[Ln1[a, b]], then the closed decomposable hull of the set Φ (the set decΦ)
can be constructed as described in Remark 3.6. To do it, one needs a measurable and integrally
bounded (see Remark 3.6) mapping FdecΦ : [a, b] → comp [Rn] that satisfies (3.7). Note that
finding this mapping FdecΦ is easier than constructing the set decΦ. At the same time, when
one studies the metrical relations between the sets Φ1,Φ2 ⊂ Ln1[a, b] and their decomposable
hulls (see Lemma 3.12), it is more convenient to use Definition 3.1.

Lemma 3.11. Let v ∈ Ln1(U) (U ⊂ [a, b]) and let a set Φ ⊂ Ln1[a, b] be decomposable. Then for any
disjoint measurable sets U1,U2 ⊂ U such that U1 ∪ U2 = U, one has

ρLn1 (U)[v;Φ] = ρLn1 (U1)[v;Φ] + ρLn1 (U2)[v;Φ]. (3.12)

Proof. Indeed, let ε > 0 and y ∈ Φ satisfy ‖v − y‖Ln1 (U) < ρLn1 (U)[v;Φ] + ε. It follows from this
estimate that

ρLn1 (U1)[v;Φ] + ρLn1 (U2)[v;Φ] � ‖v − y‖Ln1 (U1) + ‖v − y‖Ln1 (U2) < ρLn1 (U)[v;Φ] + ε. (3.13)

This yields

ρLn1 (U1)[v;Φ] + ρLn1 (U2)[v;Φ] � ρLn1 (U)[v;Φ]. (3.14)

Further, let us show that the opposite inequality is valid. Let yi ∈ Φ|Ui
, i = 1, 2, where

Φ|Ui
is the set of of all mappings from Φ, restricted to Ui, i = 1, 2, and suppose that the functions

yi, i = 1, 2, satisfy
∥
∥v − yi

∥
∥
Ln1 (Ui)

< ρLn1 (Ui)[v;Φ] +
ε

2
, i = 1, 2. (3.15)

Since the set Φ is decomposable, it follows that the map y : U → R defined by

y(t) =

{
y1(t) if t ∈ U1,

y2(t) if t ∈ U2
(3.16)

belongs to the set Φ|U. By (3.15), we have

ρLn1 (U)[v;Φ] � ‖v − y‖Ln1 (U) < ρLn1 (U1)[v;Φ] + ρLn1 (U2)[v;Φ] + ε. (3.17)

This implies that

ρLn1 (U)[v;Φ] � ρLn1 (U1)[v;Φ] + ρLn1 (U2)[v;Φ]. (3.18)

Comparing (3.14) and (3.18), we obtain (3.12).

Lemma 3.12. If Φ1,Φ2 ∈ Q[Ln1[a, b]] and there exists a function ω ∈ L1
+[a, b] such that

h+Ln1 (U)

[
Φ1;Φ2

]
�

∫

U
ω(s)ds (3.19)

for any measurable set U ⊂ [a, b], then

h+Ln1 (U)

[
decΦ1; decΦ2

]
�

∫

U
ω(s)ds (3.20)

for any measurable set U ⊂ [a, b].
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Proof. Let U ⊂ [a, b] be a measurable set, μ(U) > 0. Let z ∈ decΦ1 and zi ∈ Φ1, i = 1, 2, . . . , m.
Suppose also that the functions zi and disjoint measurable sets ẽi ⊂ [a, b], i = 1, 2, . . . , m, such
that [a, b] =

⋃m
i=1ẽi, satisfy the equality

z = χ
(
ẽ1

)
z1 + χ

(
ẽ2

)
z2 + · · · + χ(ẽm

)
zm. (3.21)

Further, by z, zi, i = 1, 2, . . . , m, we denote the restrictions of these functions to U and put
ei = ẽi ∩ U, i = 1, 2, . . . , m.

From (3.21) and Lemma 3.11, it follows that

ρLn1 (U)

[
z; decΦ2

]
=

m∑

i=1

ρLn1 (ei)
[
zi; decΦ2

]
�

m∑

i=1

ρLn1 (ei)
[
zi;Φ2

]
. (3.22)

From (3.19), we obtain that

ρLn1 (ei)
[
zi;Φ2

]
�

∫

ei

ω(s)ds (3.23)

for each i = 1, 2, . . . , m.
Therefore, (3.22) and (3.23) imply

ρLn1 (U)

[
z; decΦ2

]
�

∫

U
ω(s)ds. (3.24)

Since (3.24) holds for any z ∈ decΦ1, it follows from (3.24) that (3.20) holds as well.

Remark 3.13. Note that the function ω ∈ L1
+[a, b] (see (3.19)) provides a uniform with respect

to measurable sets U ⊂ [a, b] estimate for the Hausdorff semideviation of the set Φ1 from the
set Φ2.

Remark 3.14. The inequality (3.20) holds true even if the set decΦi is replaced with its closure
decΦi, i = 1, 2.

We say that a multivalued mapping Φ : Cn[a, b] → Q[Ln1[a, b]] is integrally bounded on a
set K ⊂ Cn[a, b] if the image Φ(K) is integrally bounded.

Let Φ : Cn[a, b] → Q[Ln1[a, b]]. We introduce an operator Φ̃ : Cn[a, b] → Π[Ln1[a, b]] by
the formula

Φ̃(x) = decΦ(x). (3.25)

Note that even if a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] is continuous, the mapping
Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) may be discontinuous. To illustrate this, let us
consider an example.

Example 3.15. We define an integrable function ϕ : [0, 2] × [0, 1] × [0, 2] → R
1 by

ϕ(x, r)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if t ∈ [x, x + r] ∩ [0, 2], r /= 0,

0 if t∈ [x, x + r] ∩ [0, 2], r /= 0,

0 if r = 0.

(3.26)
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ϕ
(x
,r
)(
t) 1

x x + r 2
t

Figure 1

We also define a multivalued mapping Φ : [0, 1] → Q[L1
1[0, 2]] by the formula

Φ(r) =

⎧
⎪⎨

⎪⎩

⋃

x∈[0,2]
ϕ(x, r) if r /= 0,

0 if r = 0.
(3.27)

Note that

hL1
1[0,2]

[
Φ
(
r1
)
;Φ

(
r2
)]

=
∣
∣r1 − r2

∣
∣ (3.28)

for any r1, r2 ∈ [0, 1], but at the same time,

hL1
1[0,2]

[
Φ̃(0); Φ̃(r)

]
= 2 (3.29)

for any r ∈ (0, 1].

Using Lemma 3.12, we obtain the following continuity conditions for the operator Φ̃ :
Cn[a, b] → Π[Ln1[a, b]] given by (3.25).

Definition 3.16. Let U ⊂ Cn[a, b]. One says that a mapping P : U ×U → L1
+[a, b] is symmetric

on the set U if P(x, y) = P(y, x) for any x, y ∈ U. One says that a mapping P : U×U → L1
+[a, b]

is continuous in the second variable at a point (x, x) belonging to the diagonal of U ×U if for
any sequence yi ∈ U such that yi → x as i → ∞ it holds that P(x, x) = lim i→∞P(x, yi). One
says that a mapping P : U ×U → L1

+[a, b] is continuous in the second variable on the diagonal
of U ×U if P is continuous in the second variable at each point of this diagonal. Continuity in
the fist variable is defined similarly.

Definition 3.17. Let U ⊂ Cn[a, b]. Suppose also that P(x, x) = 0 for any x ∈ U. One says that a
mapping P : U × U → L1

+[a, b] has property A on the set U if it is continuous in the second
variable on the diagonal of U ×U; it has property B on the set U if it is continuous in the first
variable on the diagonal of U × U; it has property C on the set U if it is continuous on the
diagonal of U ×U and symmetric on the set U.

Theorem 3.18. Let U ⊂ Cn[a, b]. Suppose also that for a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] there
exists a mapping P : U ×U → L1

+[a, b] such that

h+Ln1 (U)

[
Φ(x),Φ(y)

]
�

∥
∥P(x, y)

∥
∥
L1

1(U) (3.30)
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for any x, y ∈ U and any measurable setU ⊂ [a, b]. Then for the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]]
given by (3.25), the inequality (3.30), where Φ(·) ≡ Φ̃(·), is satisfied as well as for any x, y ∈ U and
any measurable set U ⊂ [a, b].

Corollary 3.19. If the mapping P : U ×U → L1
+[a, b] in Theorem 3.18 has property A (resp., B, C)

on the set U ⊂ Cn[a, b], then the operator Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) is Hausdorff
lower semicontinuous (resp., Hausdorff upper semicontinuous, Hausdorff continuous) on the set U ⊂
Cn[a, b].

We say that the mapping P : U × U → L1
+[a, b] satisfying the inequality (3.30) for any

measurable set U ⊂ [a, b] is a majorant mapping for Φ : Cn[a, b] → Q[Ln1[a, b]] on the set U.
Let a mapping Fi : [a, b] × R

n → comp [Rn], i = 1, 2, be measurable as a composite
function for every x ∈ Cn[a, b]. Let also Fi be integrally bounded for every bounded setK ⊂ R

n.
Consider a mapping M : Cn[a, b] → Q[Ln1[a, b]] given by

M(x) = N1(x) ∪N2(x), (3.31)

where the mapping Ni : Cn[a, b] → Π[Ln1[a, b]], i = 1, 2, is the Nemytskii operator gener-
ated by the mapping Fi : [a, b] × R

n → comp [Rn], i = 1, 2. For the operator M : Cn[a, b] →
Q[Ln1[a, b]] given by (3.31), the majorant mapping P̃ : Cn[a, b] × Cn[a, b] → L1

+[a, b] can be
defined as

P̃(x, y)(t) = max
{
h+

[
F1

(
t, x(t)

)
; F1

(
t, y(t)

)]
; h+

[
F2

(
t, x(t)

)
;F2

(
t, y(t)

)]}
. (3.32)

It follows from Theorem 3.18 that the operator P̃(·, ·) given by (3.32) is also a majorant
mapping for the mapping M̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25), where Φ(·) ≡ M(·). If
the mapping Fi : [a, b] × R

n → comp [Rn], i = 1, 2, is Hausdorff lower semicontinuous (resp.,
Hausdorff upper semicontinuous and Hausdorff continuous) in the second variable, then by
Corollary 3.19, the mapping M̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) is Hausdorff lower
semicontinuous (resp., Hausdorff upper semicontinuous and Hausdorff continuous).

Definition 3.20. One says that a multivalued mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property
A (resp., B and C) if for this mapping there exists a majorant mapping P : Cn[a, b]×Cn[a, b] →
L1
+[a, b] satisfying Property A (resp., B and C).

4. Basic properties of generalized solutions of functional differential inclusions

Using decomposable hulls, we introduce in this section the concept of a generalized solution
of a functional differential inclusion with a right-hand side which is not necessarily decom-
posable. Using, as mentioned in Section 3, basic topological properties of a mapping given by
(3.25), we study the properties of a generalized solution of the initial value problem.

Consider the initial value problem for the functional differential inclusion

ẋ ∈ Φ(x), x(a) = x0
(
x0 ∈ R

n), (4.1)

where the mapping Φ : Cn[a, b] → Q[Ln1[a, b]] satisfies the following condition: for every
bounded set U ⊂ Cn[a, b], the image Φ(U) is integrally bounded. Note that the right-hand side
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of the inclusion (4.1) is not necessarily decomposable. Note also that ẋ in (4.1) is not treated as
a derivative at a point but as an element of Ln1[a, b] (see [10, 23–25]). When we study such a
problem, there may appear some difficulties described in the introduction. In this connection,
we will introduce the concept of a generalized solution of the problem (4.1) and study the
properties of this solution. Using the Nemytskii operator, which is decomposable, the initial
value problem for a classical differential inclusion, that is, one without delay (see [10, 23–25]),
can be reduced to (4.1).

Definition 4.1. An absolutely continuous function x : [a, b] → R
n is called a generalized solu-

tion of the problem (4.1) if

ẋ ∈ decΦ(x), x(a) = x0
(
x0 ∈ R

n). (4.2)

Note that from Lemma 3.7, it follows that if the set Φ(x) (see(4.1)) is decomposable, then
a generalized solution of the problem (4.1) coincides with a classical solution.

Example 4.2. Consider an ordinary differential equation, x ∈ [0, 1],

ẋ = kx, x(0) = 1. (4.3)

Its solution is the function x = ekt.
We assume that the parameter k may take two values: 1 or 2. Then the trajectories of

such a system are described by the differential inclusion

ẋ ∈ Φ(t)x(t), x(0) = 1, (4.4)

where Φ(t) is a multivalued function with the values from the set {1, 2}. Note that
decΦ(t) = Φ(t), that is, the set in the right-hand side of the inclusion is decomposable. In
this case, a generalized solution of the inclusion coincides with a classical solution.

The latter differential inclusion describes the model that is controlled by the differential
equation either with the parameter value k = 1 or with the parameter value k = 2. In this
model, switchings from one law (equation) to another may take place any time.

In the limit case, all possible solutions fill entirely the set of all points between the graphs
of the functions et and e2t.

Example 4.3. Consider a simple pendulum. It consists of a mass m hanging from a string of
length l and fixed at a pivot point P . When displaced to an initial angle and released, the
pendulum will swing back and forth with periodic motion. The equation of motion for the
pendulum is given by

ẍ = −a sin x, (4.5)

where x(t) is the angular displacement at the moment t, a = g/l, g is the acceleration of gravity,
and l is the length of the string.

If the amplitude of angular displacement is small enough that the small angle approx-
imation holds true, then the equation of motion reduces to the equation of simple harmonic
motion

ẍ = −ax. (4.6)
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Figure 2: The solution of the differential inclusion that corresponds to switching from k = 1 (control law 1)
to k = 2 (control law 2) at the moment t = 1/2.
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Figure 3: The solution of the differential inclusion that corresponds to two switchings: from k = 1 to k = 2
at the moment t = 1/4 and from k = 2 to k = 1 at the moment t = 1/2.

Let us now assume that the length of the string l may change, that is, it may take an value from
a finite set {l1, . . . , lm}. In this case, the equation of simple harmonic motion transforms to the
differential inclusion with a multivalued mapping

ẍ ∈ Φ(x), (4.7)

where Φ(x) =
⋃m

i=1 − (g/li)x.
We assume that switching from one length (equation) to another may take place any

time. Then the generalized solutions of the inclusion treat all available trajectories (states) cor-
responding to all switchings.

Definition 4.4. An operator Φ : Cn[a, b] → Q[Ln1[a, b]] is called a Volterra-Tikhonov (or simply
a Volterra) operator (see [26]) if the equality x = y on [a, τ], τ ∈ (a, b], implies (Φ(x))|τ =
(Φ(y))|τ , where (Φ(z))|τ is the set of all functions from Φ(z) restricted to [a, τ].
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In what follows, we assume that the operator Φ : Cn[a, b] → Q[Ln1[a, b]] (the right-hand
side of the inclusion (4.1)) is a Volterra operator. This implies that the operator Φ̃ : Cn[a, b] →
Q[Ln1[a, b]] given by (3.25) is also a Volterra operator.

Let τ ∈ (a, b]. Let us determine the continuous mapping Vτ : Cn[a, τ] → Cn[a, b] by

(
Vτx

)
=

{
x(t) if t ∈ [a, τ],

x(τ) if t ∈ (τ, b].
(4.8)

Definition 4.5. One says that an absolutely continuous function x : [a, τ] → R
n is a generalized

solution of the problem (4.1) on the interval [a, τ], τ ∈ (a, b], if x satisfies ẋ ∈ (decΦ(Vτ(x)))|τ
and x(a) = x0, where the continuous mapping Vτ : Cn[a, τ] → Cn[a, b] is given by (4.8).

A function x : [a, c) → R
n, which is absolutely continuous on any interval [a, τ] ⊂ [a, c),

c ∈ (a, b], is called a generalized solution of the problem (4.1) on the interval [a, c) if for each
τ ∈ (a, c) the restriction of x to [a, τ] is a generalized solution of the problem (4.1) on the
interval [a, τ].

A generalized solution x : [a, c) → R
n of the problem (4.1) on the interval [a, c) is said

to be nonextendable if there is no generalized solution y of the problem (4.1) on any larger
interval [a, τ] (here, τ ∈ (c, b] if c < b and τ = b if c = b) such that x(t) = y(t) for each t ∈ [a, c).

In Theorems 4.6–4.12 below, we assume that the mapping Φ : Cn[a, b] → Q[Ln1[a, b]]
has Property A. Due to Corollary 3.19, the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25)
is lower semicontinuous. Due to [27, 28], the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] admits a
continuous selection. Therefore, the following propositions on local solutions of the problem
(4.1) are straightforward.

Theorem 4.6. There exists τ ∈ (a, b] such that a generalized solution of the problem (4.1) is defined
on the interval [a, τ].

Theorem 4.7. A generalized solution x : [a, c) → R
n of the problem (4.1) admits a continuation if and

only if lim t→c−0|x(t)| <∞.

Theorem 4.8. If y is a generalized solution of the problem (4.1) on the interval [a, τ], τ ∈ (a, b), then
there exists a nonextendable solution x of the problem (4.1) defined on the interval [a, c) (c ∈ (τ, b]),
or on the entire interval [a, b], such that x(t) = y(t) for each t ∈ [a, τ].

Let H(x0, τ) be the set of all generalized solutions of the problem (4.1) on the interval
[a, τ] (τ ∈ (a, b]).
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We say that generalized solutions of the problem (4.1) admit a uniform a priori estimate
if there exists a number r > 0 such that for every τ ∈ (a, b], there is no generalized solution
y ∈ H(x0, τ) satisfying ‖y‖Cn[a,τ] > r.

Theorems 4.6–4.8 yield the following result.

Theorem 4.9. Let the generalized solutions of the problem (4.1) admit a uniform a priori estimate.
ThenH(x0, τ)/=∅ for any τ ∈ (a, b] and there exists a number r > 0 such that ‖y‖Cn[a,τ] � r for any
τ ∈ (a, b], y ∈ H(x0, τ).

Definition 4.10. One says that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γ1 if there
exists an isotonic continuous operator Γ1 : C1

+[a, b] → L1
+[a, b] satisfying the following condi-

tions:

(i) for any function x ∈ Cn[a, b] and any measurable set U ⊂ [a, b], one has
∥
∥Φ(x)

∥
∥
Ln1 (U) �

∥
∥Γ1(Zx)

∥
∥
L1

1(U), (4.9)

where the continuous mapping Z : Cn[a, b] → C1
+[a, b] is given by

(Zx)(t) =
∣
∣x(t)

∣
∣; (4.10)

(ii) the local solutions of the problem

ẏ = Γ1(y), y(a) =
∣
∣x0

∣
∣ (4.11)

admit a uniform a priori estimate.

Lemma 4.11. Suppose that a multivalued mappingΦ : Cn[a, b] → Q[Ln1[a, b]] has Property Γ1. Then
so does the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25).

Proof. It suffices to show that
∥
∥decΦ(x)

∥
∥
Ln1 (U) �

∥
∥Γ1(Zx)

∥
∥
L1

1(U) (4.12)

for any function x ∈ Cn[a, b] and any measurable set U ⊂ [a, b]. Indeed, let a function y ∈
decΦ(x) be as in (3.1). By (4.9),

∫

Ui∩U

∣
∣xi(s)

∣
∣ds �

∥
∥Γ1(Zx)

∥
∥
L1

1(Ui∩U) (4.13)

for each i = 1, 2, . . . , m. Hence, we have that for the function y ∈ decΦ(x), the estimate
∫

U

∣
∣y(s)

∣
∣ds �

∥
∥Γ1(Zx)

∥
∥
L1

1(U) (4.14)

is satisfied as well. This gives the inequality (4.12). The proof is complete.

Let a continuous operator Θ : Dn[a, b] → C1
+[a, b] be given by

(Θz)(t) =
∣
∣z(a)

∣
∣ +

∫ t

a

∣
∣ż(s)

∣
∣ds. (4.15)
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Theorem 4.12. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γ1. Then the set
H(x0, τ) is nonempty for any τ ∈ (a, b] and there exists a number r > 0 such that ‖y‖Cn[a,τ] � r for
any y ∈ H(x0, τ), τ ∈ (a, b].

Proof. Indeed, let x ∈ H(x0, τ) (τ ∈ (a, b]). From Lemma 4.11, it follows that for any t ∈ [a, τ],

(Θx)(t) �
∣
∣x0

∣
∣ +

∫ t

a

(
Γ1(Zx)

)
(s)ds �

∣
∣x0

∣
∣ +

∫ t

a

(
Γ1(Θx)

)
(s)ds, (4.16)

where the function Θx is given by (4.15). Due to the theorem on integral inequalities for an
isotonic operator (see [29]), this implies that we actually have Θx � ξ0, where ξ0 is the up-
per solution of the problem (4.11). Thus, there is no x ∈ H(x0, τ) satisfying the inequality
‖x‖Cn[a,τ] > ‖ξ0‖C1[a,b]. From this, it follows that the set of all local generalized solutions of
the problem (4.1) admits a uniform a priori estimate. Applying Theorem 4.9 completes the
proof.

Let a linear continuous operator Λ : Ln1[a, b] → Cn[a, b] be given by

(Λz)(t) =
∫ t

a

z(s)ds, t ∈ [a, b]. (4.17)

We say that Λ : Ln1[a, b] → Cn[a, b] is the operator of integration.

Theorem 4.13. Let the set of all local generalized solutions of the problem (4.1) admit a uniform a
priori estimate. Suppose also that Φ : Cn[a, b] → Q[Ln1[a, b]] has Property C. Then for any function
v ∈ Ln1[a, b] and any ε > 0, there exists a generalized solution x ∈ Dn[a, b] of the problem (4.1) such
that

∥
∥ẋ − v∥∥Ln1 (U) � ρLn1 (U)

[
v,decΦ(x)

]
+ εμ(U) (4.18)

for any measurable set U ⊂ [a, b].
If Φ : Cn[a, b] → Ω(Q[Ln1[a, b]]), then the theorem is also valid for ε = 0.

Proof. Let Φ : Cn[a, b] → Q[Ln1[a, b]] have Property C. Then by Corollary 3.19, the map-
ping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) is continuous. Therefore (see [30–32]),
given a number ε > 0 and a function v ∈ Ln1[a, b], there exists a continuous mapping
ϕ : Cn[a, b] → Ln1[a, b] satisfying ϕ(y) ∈ Φ̃(y) and

∥
∥ϕ(y) − v∥∥Ln1 (U) � ρLn1 (U)

[
v,decΦ(y)

]
+ εμ(U) (4.19)

for any y ∈ Cn[a, b] and any measurable set U ⊂ [a, b]. It follows from Theorem 4.9 that
H(x0, τ)/=∅ for any τ ∈ (a, b], and that there exists a number r > 0 such that ‖y‖Cn[a,τ] � r
for each τ ∈ (a, b], y ∈ H(x0, τ). Now, we show that there exists x ∈ H(x0, b) satisfying (4.18).
Consider the problem

ẋ ∈ decΦ
(
Wr(x)

)
, x(a) = x0

(
x0 ∈ R

n), (4.20)
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where the continuous mapping Wr : Cn[a, b] → Cn[a, b] is given by

(
Wrx

)
(t) =

⎧
⎪⎨

⎪⎩

x(t) if
∣
∣x(t)

∣
∣ � r + 2,

r + 2
∣
∣x(t)

∣
∣
x(t) if

∣
∣x(t)

∣
∣ > r + 2.

(4.21)

We denote by H(W) the set of all solutions of the problem (4.20). Let us show that H(W) =
H(x0, b). It follows from the definition of the mapping Wr : Cn[a, b] → Cn[a, b] (see (4.21))
that H(x0, b) ⊂ H(W). Let us prove that H(W) ⊂ H(x0, b). Assume the converse. Then there
exists y ∈ H(W) such that ‖y‖Cn[a,b] > r+2. Since y(a) = x0,we have |y(a)| < r+2. This implies
that there exists a number τ ∈ (a, b] such that ‖y|τ‖Cn[a,τ] = r + 1 (y|τ is the restriction of the
function y to [a, τ]). By (4.21), we have y|τ ∈ H(x0, τ). This contradicts to the definition of the
number r. Hence, H(x0, b) = H(W). Consider a continuous operator Ψ : Cn[a, b] → Cn[a, b]
given by

Ψ(x) = x0 + Λϕ
(
Wr(x)

)
, (4.22)

where the operator Λ : Ln1[a, b] → Cn[a, b] is the operator of integration defined by (4.17), and
ϕ : Cn[a, b] → Ln1[a, b] is a continuous selection of the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]]
given by (3.25). The function ϕ ia also assumed to satisfy (4.19). Since the operator Wr :
Cn[a, b] → Cn[a, b] is bounded, we obtain that the image Ψ(Cn[a, b]) is a relatively compact
subset of Cn[a, b].Hence, the setU = coΨ(Cn[a, b]) is a convex compact set. Since the operator
Ψ : Cn[a, b] → Cn[a, b] given by (4.22) takes the set U into itself, we have, by Schauder theo-
rem, that the mapping Ψ(·) has a fixed point. This fixed point x is the solution of the problem
(4.20). It follows from the above equality H(W) = H(x0, b) that this solution x ∈ H(W) is a
generalized solution of the problem (4.1). Since ẋ = ϕ(x), we see that (4.19) implies (4.18).

Let us prove the second statement of the theorem. Let Φ : Cn[a, b] → Ω(Q[Ln1[a, b]]).
Suppose also that Φ has Property C. Then by Lemma 3.9, Φ̃ : Cn[a, b] → Ω(Π[Ln1[a, b]]).Hence
for each i = 1, 2, . . . , there exists a generalized solution xi ∈ Dn[a, b] of the problem (4.1) such
that for any measurable set U ⊂ [a, b], the inequality (4.18) is valid for ẋ = ẋi and ε = 1/i.
Since the set H(x0, b) is bounded, we see that the sequence {ẋi} is weakly compact in Ln1[a, b].
Without loss of generality, it can be assumed that ẋi → ẋ weakly in Ln1[a, b] and xi → x in
Cn[a, b] as i → ∞. Let us show that x is a generalized solution of the problem (4.1). In other
words, we have to prove that ẋ ∈ decΦ(x). Assume that the functions yi ∈ decΦ(x), i =
1, 2, . . . , satisfy

∥
∥yi − ẋi

∥
∥
Ln1 [a,b]

= ρLn1 [a,b]
[
ẋi; decΦ(x)

]
(4.23)

(as decΦ(x) ∈ Π[Ln1[a, b]], these functions do exist). It follows from (4.23) that

∥
∥yi − ẋi

∥
∥
Ln1 [a,b]

� hLn1 [a,b]
[
decΦ

(
xi
)
; decΦ(x)

]
. (4.24)

Since the mapping Φ̃ : Cn[a, b] → Ω(Π[Ln1[a, b]]) given by (3.25) is continuous, we obtain, by
(4.24), that yi − ẋi → 0 in Ln1[a, b] as i → ∞. Since ẋi → ẋ weakly in Ln1[a, b] as i → ∞, we have
that yi → ẋ weakly in Ln1[a, b] as i → ∞. Therefore, the convexity of the set decΦ(x) implies
that ẋ ∈ decΦ(x) (see [21]). Thus, x is a generalized solution of the problem (4.1).
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Further, let us show that (4.19) holds for the solution x and for ε = 0. Since ẋi → ẋ
weakly in Ln1[a, b] as i → ∞, we have, by [21], that for each m = 1, 2, . . . , there exist numbers
i(m), λmj � 0, j = 1, 2, . . . , i(m), satisfying the following conditions:

∑ i(m)
j=1 λ

m
j = 1; the sequence

{βm =
∑ i(m)

j=1 λ
m
j ẋj+m} tends to ẋ in Ln1[a, b]. Since

∥
∥ẋ − v∥∥Ln1 [a,b]

�
∥
∥ẋ − βm

∥
∥
Ln1 [a,b]

+
i(m)∑

j=1

λmj
∥
∥ẋj+m − v∥∥Ln1 [a,b]

(4.25)

for each m = 1, 2, . . . , it follows, due to the choice of the sequence {ẋi}, that

∥
∥ẋ − v∥∥Ln1 [a,b]

�
∥
∥ẋ − βm

∥
∥
Ln1 [a,b]

+
i(m)∑

j=1

λmj ρLn1 [a,b]
[
v; decΦ

(
xj+m

)]
+ (b − a)

i(m)∑

j=1

λmj
1

j +m
(4.26)

for each m = 1, 2, . . . .
Since

lim
i→∞

ρLn1 [a,b]
[
v; decΦ

(
xi
)]

= ρLn1 [a,b]
[
v; decΦ(x)

]
, (4.27)

it follows that letting m→ ∞ in the previous inequality, we obtain

∥
∥ẋ − v∥∥Ln1 [a,b]

= ρLn1 [a,b]
[
v; decΦ(x)

]
. (4.28)

Finally, note that by the decomposability of the set decΦ(x), this equality holds for any mea-
surable set U ⊂ [a, b]. This completes the proof.

Theorems 4.12 and 4.13 yield the following result.

Corollary 4.14. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Properties Γ1 and C. Then
for any function v ∈ Ln1[a, b] and any ε > 0, there exists a generalized solution x ∈ Dn[a, b] of the
problem (4.1) such that (4.18) holds for any measurable set U ⊂ [a, b].

If Φ : Cn[a, b] → Ω(Q[Ln1[a, b]]), then the corollary is also valid for ε = 0.

Remark 4.15. Consider the convex compact set U = co Ψ̃(Cn[a, b]) ⊂ Cn[a, b], where the map-
ping Ψ̃ : Cn[a, b] → 2Cn[a,b] is given by

Ψ̃(x) = x0 + ΛΦ̃
(
Wr(x)

)
. (4.29)

Here, the operators Φ̃ : Cn[a, b] → Π[Ln1[a, b]] and Wr : Cn[a, b] → Cn[a, b] are determined by
(3.25) and (4.21), respectively. If a number r > 0 is such that ‖y‖Cn[a,τ] � r for any τ ∈ (a, b],
y ∈ H(x0, τ), then due to the the coincidence of the sets H(W) and H(x0, b) (see the proof of
Theorem 4.13), H(x0, b) ⊂ U.

Definition 4.16. Given ε ≥ 0, p ≥ 0, u ∈ L1
+[a, b], one says that a mapping Φ : Cn[a, b] →

Q[Ln1[a, b]] has Property Γu,ε,p2 if there exists an isotonic and continuous Volterra operator Γ2 :
C1

+[a, b] → L1
+[a, b] satisfying the following conditions:
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(i) Γ2(0) = 0;
(ii) for any functions x, y ∈ Cn[a, b] and any measurable set U ⊂ [a, b], one has

hLn1 (U)
[
Φ(x);Φ(y)

]
�

∥
∥Γ2

(
Z(x − y))∥∥L1

1(U), (4.30)

where the continuous mapping Z : Cn[a, b] → C1
+[a, b] is determined by (4.10);

(iii) the set of all local solutions of the problem

ẏ = u + ε + Γ2(y), y(a) = p, (4.31)

admits a uniform a priori estimate.

Given y ∈ Dn[a, b] and κ ∈ L1
+[a, b], the following estimate will be used in the sequel:

ρLn1 (U)

[
ẏ;Φ(y)

]
�

∫

U
κ(s)ds (4.32)

for each measurable set U ⊂ [a, b].

Theorem 4.17. Let functions y ∈ Dn[a, b] and κ ∈ L1
+[a, b] satisfy the inequality (4.32) for each

measurable set U ⊂ [a, b]. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γκ,ε,p

2 ,
where ε � 0, p = |x0−y(a)|, and x0 is the initial condition of the problem (4.1). Then for any generalized
solution of the problem (4.1) satisfying

∥
∥ẋ − ẏ∥∥Ln1 (U) � ρLn1 (U)

[
ẏ; decΦ(x)

]
+ εμ(U) (4.33)

for any measurable set U ⊂ [a, b], the following conditions are satisfied:

(1)

Θ(x − y)(t) � ξ(κ, ε, p)(t) (4.34)

for each t ∈ [a, b], where the function ξ(κ, ε, p) ∈ D1[a, b] is the upper solution of the problem
(4.31) for u = κ and p = |x0 − y(a)|, and the mapping Θ : Dn[a, b] → C1

+[a, b] is given by
(4.15);
(2)

∣
∣ẋ(t) − ẏ(t)∣∣ � κ(t) + ε +

(
Γ2

(
ξ(κ, ε, p)

))
(t) (4.35)

for almost all t ∈ [a, b].

Proof. First, note that since the mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γκ,ε,p

2 , it
follows from Theorem 3.18 that so does the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] determined
by (3.25). Further, the inequality (4.33) yields that

∥
∥ẋ − ẏ∥∥Ln1 (U) � ρLn1 (U)

[
ẏ; decΦ(y)

]
+ hLn1 (U)

[
decΦ(y); decΦ(x)

]
+ εμ(U) (4.36)

for any measurable set U ⊂ [a, b].
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Remark 4.15 and relations (4.36), (4.32), and (4.30) imply that for any measurable set
U ⊂ [a, b], we obtain the inequality

∥
∥ẋ − ẏ∥∥Ln1 (U) �

∫

U

(
κ(s) + ε + Γ2

(
Z(x − y))(s))ds, (4.37)

where the mapping Z : Cn[a, b] → C1
+[a, b] is given by (4.10). It follows from this inequality

that

∣
∣ẋ(t) − ẏ(t)∣∣ � κ(t) + ε + Γ2

(
Z(x − y))(t) (4.38)

for almost all t ∈ [a, b]. Since Z(x − y)(t) � Θ(x − y)(t) for all t ∈ [a, b] (see (4.10), (4.15)) and
the operator Γ2 : C1

+[a, b] → L1
+[a, b]] (see (4.38)) is isotonic, we have that

∣
∣ẋ(t) − ẏ(t)∣∣ = Θ̇(x − y)(t) � κ(t) + ε + Γ2

(
Θ(x − y))(t) (4.39)

for almost all t ∈ [a, b]. Therefore, (4.39) and the theorem on differential inequalities with an
isotonic operator (see [29]) imply (4.34) for any t ∈ [a, b]. The inequality (4.35) follows from
(4.34) and (4.39). The proof is complete.

Theorems 4.13 and 4.17 yield the following result.

Theorem 4.18. Let functions y ∈ Dn[a, b] and κ ∈ L1
+[a, b] satisfy (4.32) for each measurable set

U ⊂ [a, b]. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γκ,ε,p

2 , where ε ≥ 0,
p = |x0−y(a)|, x0 is the initial condition in the problem (4.1). Let the set of all local generalized solutions
of the problem (4.1) admit a uniform a priori estimate. Then for ε > 0, there exists a generalized solution
x ∈ Dn[a, b] of the problem (4.1) which satisfies (4.34) and (4.35) for all t ∈ [a, b] and for almost all
t ∈ [a, b], respectively.

If Φ : Cn[a, b] → Ω(Q[Ln1[a, b]]), then the theorem is also valid for ε = 0.

Corollary 4.19. Let functions y ∈ Dn[a, b] and κ ∈ L1
+[a, b] satisfy (4.32) for each measurable set

U ⊂ [a, b]. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has properties Γ1 and Γκ,ε,p

2 , where
ε ≥ 0, p = |x0 − y(a)|, x0 is the initial condition in the problem (4.1). Then for ε > 0, there exists a
generalized solution x ∈ Dn[a, b] of the problem (4.1)which satisfies (4.34) and (4.35) for all t ∈ [a, b]
and for almost all t ∈ [a, b], respectively.

If Φ : Cn[a, b] → Ω(Q[Ln1[a, b]]), then the corollary is also valid for ε = 0.

Remark 4.20. It follows from the proof of Theorem 4.17 that Theorems 4.17, 4.18, and
Corollary 4.19 are also valid if the functions y ∈ Dn[a, b] and κ ∈ L1

+[a, b] satisfy

ρLn1 (U)

[
ẏ; decΦ(y)

]
�

∫

U
κ(s)ds (4.40)

for each measurable set U ⊂ [a, b].

Definition 4.21. An absolutely continuous function x ∈ Dn[a, b] is called a generalized quasiso-
lution of the problem (4.1) if there exists a sequence of functions xi ∈ Dn[a, b], i = 1, 2, . . . , such
that the following conditions hold:
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(i) xi → x in Cn[a, b] as i→ ∞;
(ii) ẋi ∈ decΦ(x) and xi(a) = x0 for each i = 1, 2, . . . .

Note that by Lemma 3.7, if the set Φ(x) mentioned in Definition 4.21 is decomposable,
then a generalized quasisolution coincides with a quasisolution defined in [9, 33], where Φ(·)
is the Nemytskii operator. Note also that this definition of a generalized quasisolution differs
from the definition of a quasitrajectory given in [9, 33, 34] due to the condition ẋi ∈ decΦ(x).
Using Definition 4.21, we can obtain more general results on the properties of quasisolutions
(see Remark 4.23). Moreover, this definition is more suitable for applications.

Let H(x0) be the set of all generalized quasisolutions of the problem (4.1).
We define a mapping Φ̃co : Cn[a, b] → Ω(Π[Ln1[a, b]]) by the formula

Φ̃co(x) = co
(
decΦ(x)

)
. (4.41)

We call Φ̃co : Cn[a, b] → Ω(Π[Ln1[a, b]]) the convex decomposable hull.
Consider the problem (4.1) with the convex decomposable hull Φ̃co : Cn[a, b] →

Ω(Π[Ln1[a, b]]) given by (4.41) leading to

ẋ ∈ Φ̃co(x), x(a) = x0
(
x0 ∈ R

n). (4.42)

Let Hco(x0, τ) be the set of all solutions of the problem (4.42) on the interval [a, τ] (τ ∈
(a, b]).

Theorem 4.22. H(x0) = Hco(x0, b).

Proof. First, we will show that Hco(x0, b) ⊂ H(x0). Let x ∈ Hco(x0, b). By [35], for ẋ ∈
Ln1[a, b], there exists a sequence yi ∈ decΦ(x), i = 1, 2, . . . , such that yi → ẋ weakly in
Ln1[a, b] as i → ∞. This implies that xi = x0 + Λyi → x in Cn[a, b] as i → ∞, where
Λ : Ln1[a, b] → Cn[a, b] is the operator of integration (see (4.17)). Hence, Hco(x0, b) ⊂ H(x0).

Let us now prove that H(x0) ⊂ Hco(x0, b). Let x ∈ H(x0). Then there exists a sequence
xi ∈ Dn[a, b], i = 1, 2, . . . , satisfying the following conditions: (1) ẋi ∈ decΦ(x) (see (4.41))
and xi(a) = x0 for each i = 1, 2, . . . ; (2) xi → x in Cn[a, b] as i → ∞. Since the sequence ẋi,
i = 1, 2, . . . , is weakly compact, we can assume without loss of generality that ẋi → ẋ weakly
in Ln1[a, b] as i → ∞. Since ẋi ∈ Φ̃co(x) (see (4.41)), it follows that ẋ ∈ Φ̃co(x) (see [21]). Hence
x ∈ Hco(x0, b) and therefore H(x0) ⊂ Hco(x0, b).

Remark 4.23. Theorem 4.22 may still remain valid even if the mapping Φ : Cn[a, b] →
Q[Ln1[a, b]] is discontinuous and its image Φ(B) is not integrally bounded for every bounded
set B ⊂ Cn[a, b]. The proof of Theorem 4.22 is only based on the fact that every value of this
mapping is integrally bounded, rather than on the assumption that Φ is a Volterra operator.

Definition 4.24. One says that a compact convex set U ⊂ Cn[a, b] has Property D if H(x0) ⊂ U,
and for any x ∈ H(x0), there exists a sequence of absolutely continuous functions xi : [a, b] →
R
n, i = 1, 2, . . . , such that

(i) xi → x in Cn[a, b] as i→ ∞;
(ii) xi ∈ U, ẋi ∈ decΦ(x) and xi(a) = x0 for each i = 1, 2, . . . .
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Lemma 4.25. Suppose that the set of all local solutions of the problem (4.41) admits a uniform a priori
estimate. Then, there exists a setU ⊂ Cn[a, b] satisfying Property D.

Proof. It follows from Theorem 4.22 and Remark 4.15 that the set U = coΨ̃(Cn[a, b]) has Prop-
erty D. Here, the mapping Ψ̃ : Cn[a, b] → 2Cn[a,b] is determined by (4.29), where Φ̃(·) ≡
Φ̃co(·).

Lemma 4.26. Let sets Φi ∈ Π[Ln1[a, b]], i = 1, 2, satisfy Φi = S(Fi(·)), i = 1, 2, where Fi : [a, b] →
comp [Rn] are measurable mappings. Then for any measurable set U ⊂ [a, b], one has

hLn1 (U)
[
Φ1;Φ2

]
�

∫

U
h
[
F1(t);F2(t)

]
dt � 2hLn1 (U)

[
Φ1;Φ2

]
. (4.43)

Proof. Let U ⊂ [a, b] be a measurable set. Put

Ũ =
{
t ∈ U : h+

[
F1(t);F2(t)

] ≥ h+[F2(t);F1(t)
]}
. (4.44)

The set Ũ ⊂ U is measurable. Since
∫

U
h
[
F1(t);F2(t)

]
dt =

∫

Ũ
h+

[
F1(t);F2(t)

]
dt +

∫

U\Ũ
h+

[
F2(t);F1(t)

]
dt, (4.45)

we have
∫

U
h
[
F1(t);F2(t)

]
dt = h+

Ln1 (Ũ)

[
Φ1;Φ2

]
+ h+

Ln1 (U\Ũ)

[
Φ2;Φ1

]
. (4.46)

This implies (4.43), and the proof is completed.

Let F : [a, b] → comp [Rn] be a measurable mapping. Let a mapping coF : [a, b] →
comp [Rn] be defined by

(coF)(t) = co
(
F(t)

)
. (4.47)

Corollary 4.27. Let sets Φi ∈ Π[Ln1[a, b]], i = 1, 2, satisfy Φi = S(Fi(·)), i = 1, 2, where Fi : [a, b] →
comp [Rn] are measurable mappings. Then for any measurable set U ⊂ [a, b], one has

hLn1 (U)
[
co

(
Φ1

)
; co

(
Φ2

)]
� 2hLn1 (U)

[
Φ1;Φ2

]
. (4.48)

Proof. By [35], we have that co(Φi) = S(coFi(·)), i = 1, 2. Therefore,

hLn1 (U)
[
co

(
Φ1

)
; co

(
Φ2

)]
�

∫

U
h
[(

coF1
)
(t);

(
coF2

)
(t)

]
dt (4.49)

for any measurable set U ⊂ [a, b]. Since, for any measurable set U ⊂ [a, b],

∫

U
h
[(

coF1
)
(t);

(
coF2

)
(t)

]
dt �

∫

U
h
[(
F1

)
(t);

(
F2

)
(t)

]
dt, (4.50)

we obtain, due to (4.43), the inequality (4.48).
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Definition 4.28. One says that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γ3 if Property
Γ0,0,0

2 is satisfied and the following conditions hold:

(i) Γ2(0) = 0;
(ii) on every interval [a, τ] (τ ∈ (a, b]), there exists a unique zero solution of the problem
(4.31), where u = 0, ε = 0, p = 0.

Theorem 4.29. Suppose that the set of all local generalized solutions of the problem (4.1) admits a
uniform a priory estimate. Suppose also that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] satisfies Property
Γ3. Then,H(x0, b)/=∅ and

H
(
x0, b

)
= Hco

(
x0, b

)
, (4.51)

whereH(x0, b) is the closure of the setH(x0, b) in Cn[a, b].

Proof. Let us first prove that the set Hco(x0) is closed in Cn[a, b]. Indeed, suppose that a se-
quence xi ∈ Hco(x0), i = 1, 2, . . . , tends to x in Cn[a, b] as i → ∞. Since the sequence {ẋi} is
integrally bounded, it follows that xi ∈ Dn[a, b] and ẋi → ẋ weakly in Ln1[a, b] as i → ∞. For
each i = 1, 2, . . . , let the function zi ∈ Φ̃co(x) satisfy

∥
∥ẋi − zi

∥
∥
Ln1 [a,b]

= ρLn1 [a,b]
[
ẋi; Φ̃co(x)

]
, (4.52)

where Φ̃co : Cn[a, b] → Ω(Π[Ln1[a, b]]) is the convex decomposable hull given by (4.41). Since
the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) is Hausdorff continuous, it follows
from (4.48) that so is the mapping Φ̃co(x) : Cn[a, b] → Ω(Π[Ln1[a, b]]). Therefore, (4.52) implies
that ẋi − zi → 0 in Ln1[a, b] as i → ∞. Hence, zi → ẋ weakly in Ln1[a, b] as i → ∞. Since the set
Φ̃co(x) is convex, we have (see [21]) that ẋ ∈ Φ̃co(x). Therefore, the set Hco(x0) is closed in
Cn[a, b].

Now, let us prove the equality (4.51). The closedness of the set Hco(x0) yields that
H(x0, b) ⊂ Hco(x0). Further, let us show that Hco(x0) ⊂ H(x0, b). Suppose x ∈ Hco(x0). Then
from Theorem 4.22, it follows that there exists a sequence yi ∈ Dn[a, b], i = 1, 2, . . . , such that
yi ∈ Φ̃(x), yi(a) = x0, i = 1, 2, . . . (x0 is the initial condition in the problem (4.1)) and yi → x in
Cn[a, b] as i → ∞. Since the mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γ3, we see that,
due to (4.30),

ρLn1 (U)

[
ẏi;Φ

(
yi

)]
� hLn1 (U)

[
Φ(x);Φ

(
yi

)]
�

∫

U

(
Γ2

(
Z
(
x − yi

)))
(s)ds (4.53)

for each i = 1, 2, . . . and any measurable set U ⊂ [a, b]. Here, the operator Z : Cn[a, b] →
C1

+[a, b] is given by (4.10). Since the mapping Γ2 : C1
+[a, b] → L1

+[a, b] is continuous and Γ2(0) =
0, we have that κi = Γ2(Z(x−yi)) → 0 in L1

1[a, b] as i→ ∞. Since the problem (4.31) with u = 0,
ε = 0, and p = 0 only has the zero solution on each interval [a, τ] (τ ∈ (a, b]), we see that the
set of all local solutions of the problem (4.31) with u = κi, ε = 1/i, and p = 0 admits a uniform
a priori estimate starting from some i = 1, 2, . . . (see [36]). Renumerating, we may assume
without loss of generality that this holds true for all i = 1, 2, . . . . This implies (see [29]) that for
each i = 1, 2, . . . , there exists the upper solution ξ(κi, 1/i, 0) of the problem (4.31) with u = κi,
ε = 1/i, and p = 0. Hence, it follows from Theorem 4.18 that for each i = 1, 2, . . . , there exists
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a generalized solution xi ∈ Dn[a, b] of the problem (4.1) satisfying Θ(xi − yi) � ξ(κi, 1/i, 0),
where the continuous operator Θ : Dn[a, b] → C1

+[a, b] is given by (4.15). Since ξ(κi, 1/i, 0) → 0
in C1[a, b] as i → ∞, we have that Θ(xi − yi) → 0 as i → ∞. Since yi → x in Cn[a, b] as
i → ∞, we see that xi → x in Cn[a, b] as i → ∞. Therefore, x ∈ H(x0, b) and consequently
Hco(x0) ⊂ H(x0, b). This yields (4.51). The proof is complete.

Corollary 4.30. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Properties Γ1 and Γ3. Then
H(x0, b)/=∅ and the equality (4.51) is satisfied.

Remark 4.31. If the solution set of a differential inclusion with nonconvex multivalued map-
ping is dense in the solution set of the convexified inclusion, then such a property is called the
density principle. The density principle is a fundamental property in the theory of differential
inclusions (see [13]). Many papers (e.g., [3, 4, 6, 10–12, 23–25, 29–32, 37–39]) deal with the jus-
tification of the density principle. Theorem 4.29 and Corollary 4.30 justify the density principle
for the generalized solutions of the problem (4.1).

5. Generalized approximate solutions of the functional differential equation

Approximate solutions are of great importance in the study of differential equations and inclu-
sions (see [4, 40–43]). They are used in the theorems on existence (e.g., Euler curves) as well
as in the study of the dependence of a solution on initial conditions and the right-hand side
of the equation. In [40, 41], the definition of an approximate solution of a differential equation
with piecewise continuous right-hand side was given, using so-called internal and external
perturbations. This definition not only deals with small changes of the right-hand side within
its domain of continuity, but also with the small changes in the boundaries of these domains. A
more general definition of an approximate solution, which can be used not only for the study of
functional differential equations with discontinuous right-hand sides but also for differential
inclusions with upper semicontinuous convex right-hand sides, was given in [4]. In this paper,
the following important property was justified for such an inclusion: the limit of approximate
solutions is again a solution of functional differential inclusion. In the present paper, we in-
troduce various definitions of generalized approximate solutions of a functional differential
inclusion. The main difference of our definitions from the one given in [4] is that the values of
a multivalued mapping are not convexified. Due to this, the topological properties of the sets
of generalized approximate solutions are studied and the density principle is proven.

Since a generalized solution of the problem (4.1) is determined by the closed decom-
posable hull of a set, it is natural to raise the following question: how robust is the set of the
generalized solutions of (4.1) with respect to small perturbations of decΦ(x)? It follows from
Remark 3.10 that constructing decΦ(x) for each fixed x ∈ Cn[a, b] is equivalent to finding a
measurable, integrally bounded mapping Δx : [a, b] → comp [Rn] satisfying

decΦ(x) = S
(
Δx(·)

)
. (5.1)

The mapping Δx : [a, b] → comp [Rn] is, in the sequel, written as Δ : [a, b] × Cn[a, b] →
comp [Rn] and called a mapping generating the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by
(3.25).

Denote by K([a, b]×[0,∞)) the set of all continuous functions η : [a, b]×[0,∞) → [0,∞)
satisfying the following conditions:
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(1) for each δ � 0, η(·, δ) ∈ L1
1[a, b];

(2) for each δ � 0, there exists a function βδ(·) ∈ L1
1[a, b] such that η(t, τ) � βδ(t) for almost

all t ∈ [a, b] and all τ ∈ [0, δ];
(3) lim δ→0+0η(t, δ) = η(t, 0) = 0 for almost all t ∈ [a, b].

Since the mappings Δ(·, ·) and Φ(·) are related by the equality (5.1), we have that the
robustness of the set of the generalized solutions of (4.1) with respect to small perturbations
of decΦ(x) can be studied via the robustness properties of Δ. Assume that the perturbation
Δη(t, x, δ) (e.g., an error in measurements of Δ(t, x)) is given by

Δη(t, x, δ) =
(
Δ(t, x)

)η(t,δ)
, (5.2)

where η(·, ·) ∈ K([a, b]× [0,∞)) (here, (Δ(t, x))η(t,δ) is an η-neighborhood of the set Δ(t, x), see
Preliminaries).

Note that (5.2) yields

h
[
Δ(t, x);Δη(t, x, δ)

]
= η(t, δ) (5.3)

for all (t, x) ∈ [a, b] × Cn[a, b]. Thus, (5.3) implies that

lim
δ→+0

h
[
Δ(t, x);Δη(t, x, δ)

]
= 0 (5.4)

for each function η(·, ·) ∈ K([a, b]× [0,∞)), almost all t ∈ [a, b], and all x ∈ Cn[a, b]. Therefore,
all mappings Δη : [a, b] × Cn[a, b] × [0,∞) → comp [Rn] defined by (5.2) and depending on
η(·, ·) ∈ K([a, b] × [0,∞)) are close (in the sense of (5.4)) to the mapping Δ : [a, b] ×Cn[a, b] →
comp [Rn]. The mapping Δη : [a, b] ×Cn[a, b] × [0,∞) → comp [Rn] is called the approximating
operator.

We define a mapping Φ̃η : Cn[a, b] × [0,∞) → Π[Ln1[a, b]] by the formula

Φ̃η(x, δ) = S
(
Δη(·, x, δ)

)
, (5.5)

where the operator Δη : [a, b] × Cn[a, b] × [0,∞) → comp [Rn] is given by (5.2). The equalities
(5.3) and (5.5) imply that

hLn1 [a,b]
[
Φ̃η(x, δ); Φ̃(x)

]
=

∫b

a

η(t, δ)dt (5.6)

for any x ∈ Cn[a, b].
It follows from (5.6) and the Lebesgue theorem that

lim
δ→0+0

hLn1 [a,b]
[
Φ̃η(x, δ); Φ̃(x)

]
= 0. (5.7)

Thus, all mappings Φ̃η : Cn[a, b] × [0,∞) → Π[Ln1[a, b]] defined by (5.2) and (5.5) and
depending on η(·, ·) ∈ K([a, b] × [0,∞)) are close (in the sense of (5.7)) to the mapping Φ̃ :
Cn[a, b] → Π[Ln1[a, b]] given by (3.25).
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Lemma 5.1 (see [6]). Let X be a normed space and letU ⊂ X be a convex set. Then

hX
[
BX

[
x1, r1

] ∩U;BX
[
x2, r2

] ∩U]
�

∥
∥x1 − x2

∥
∥
X +

∣
∣r2 − r1

∣
∣ (5.8)

for all x1, x2 ∈ U and all r1, r2 > 0.

Denote by P(Cn[a, b] × [0,∞)) the set of all continuous functions ω : Cn[a, b] × [0,∞) →
[0,∞) such thatω(x, 0) = 0 for any x ∈ Cn[a, b] andω(x, δ) > 0 for any (x, δ) ∈ Cn[a, b]×(0,∞).

Let U ⊂ Cn[a, b] be a closed convex set and let ω(·, ·) ∈ P(Cn[a, b] × [0,∞)). We define a
multivalued mapping MU(ω) : U × [0,∞) → Ω(U) by

MU(ω)(x, δ) = BCn[a,b]
[
x,ω(x, δ)

] ∩U. (5.9)

The inequality (5.8) yields the following result.

Lemma 5.2. Let U ⊂ Cn[a, b] be a closed convex set and let ω(·, ·) ∈ P(Cn[a, b] × [0,∞)). Then, a
multivalued mappingMU(ω) : U × [0,∞) → Ω(U) given by (5.9) is Hausdorff continuous.

We define a mapping ϕU(ω) : [a, b] ×U × [0,∞) → [0,∞) by the formula

ϕU(ω)(t, x, δ) = sup
y∈MU(ω)(x,δ)

h
[
Δ(t, x);Δ(t, y)

]
, (5.10)

where the mapping MU(ω) : U × [0,∞) → Ω(U) is given by (5.9) and the mapping Δ :
[a, b] × Cn[a, b] → comp [Rn] generates the mapping Φ̃ given by (3.25).

It is natural to address the value of the function ϕU(ω)(·, ·, ·) at the point (t, x, δ) ∈ [a, b]×
U × [0,∞) as the modulus of continuity of the mapping Δ : [a, b] × Cn[a, b] → comp [Rn] at
the point (t, x) with respect to the variable x ∈ U. We call the function ω(·, ·) the radius of
continuity, while the function ϕU(·, ·, ·) itself is called the modulus of continuity of the mapping
Δ : [a, b] × Cn[a, b] → comp [Rn] with respect to the radius of continuity ω(·, ·).

Definition 5.3. One says that a mapping Φ : Cn[a, b] → Q[Ln[a, b]] has Property C̃ if the map-
ping Δ : [a, b] × Cn[a, b] → comp [Rn] generating the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]]
given by (3.25) is Hausdorff continuous in the second variable for almost all t ∈ [a, b].

Lemma 5.4. Suppose that for a mapping Φ : Cn[a, b] → Q[Ln[a, b]], there exists an isotonic contin-
uous operator Γ : C1

+[a, b] → L1
+[a, b] satisfying the following conditions:

(i) Γ(0) = 0;
(ii) the inequality (4.30), where Γ2 ≡ Γ, is satisfied for any x, y ∈ Cn[a, b] and any measurable set
U ⊂ [a, b].

Then the mapping Φ(·) has Property C̃.

Proof. Let xi → x in Cn[a, b] as i→ ∞. Let us show that

lim
i→∞

h
[
Δ
(
t, xi

)
;Δ(t, x)

]
= 0 (5.11)

for almost all t ∈ [a, b].
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For each i = 1, 2, . . . , put yi = sup j�i‖xj − x‖Cn[a,b]. Due to Theorem 3.18, (4.43), and the
isotonity of the operator Γ : C1

+[a, b] → L1
+[a, b], for each i = 1, 2, . . . and almost all t ∈ [a, b],

we have

h
[
Δ
(
t, xi

)
;Δ(t, x)

]
� 2Γ

(
Z
(
xi − x

))
(t) � 2Γ

(
yi

)
(t). (5.12)

Since the sequence Γ(yi), i = 1, 2, . . . , decreases, we obtain, due to the continuity of the mapping
Γ(·) and the equality Γ(0) = 0, the equality (5.11). This completes the proof.

Lemma 5.5. Let U be a nonempty, convex, compact set in the space Cn[a, b] and let ω(·, ·) ∈
P(Cn[a, b] × [0,∞)). Suppose also that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property C̃.
Then the mapping ϕU(ω) : [a, b] ×U × [0,∞) given by (5.10) has the following properties:

(i) ϕU(ω)(·, x, δ) is measurable for any (x, δ) ∈ U × [0,∞);
(ii) ϕU(t, ·, ·) is continuous onU × [0,∞) for almost all t ∈ [a, b];
(iii) for any x ∈ U and for almost all t ∈ [a, b],

lim
z→x,δ→0+0

ϕU(ω)(t, x, δ) = 0; (5.13)

(iv) there exists an integrable function pU : [a, b] → [0,∞) such that ϕU(ω)(t, x, δ) � pU(t) for
almost all t ∈ [a, b], any x ∈ U, and all δ ∈ [0,∞).

Definition 5.6. Let U ⊂ Cn[a, b]. One says that the function η(·, ·) ∈ K([a, b] × [0,∞)) provides
on U a uniform with respect to the radius of continuity ω(·, ·) ∈ P(Cn[a, b] × [0,∞)) estimate
from above for the modulus of continuity of the mapping Δ : [a, b] × Cn[a, b] → comp [Rn]; if
for any ε > 0 there exists δ(ε) > 0 such that for almost all t ∈ [a, b], all x ∈ U, and δ ∈ (0, δ(ε)],
one has

ϕU(ω)(t, x, δ) � η(t, ε), (5.14)

where ϕU : [a, b] ×U × [0,∞) → [0,∞) is given by (5.10).

Let U ⊂ Cn[a, b] and ω(·, ·) ∈ P(Cn[a, b]× [0,∞)). One defines a function λU(ω) : [a, b]×
[0,∞) → [0,∞) by

λU(ω)(t, δ) = sup
x∈U

ϕU(ω)(t, x, δ). (5.15)

Lemma 5.1 yields the following result.

Corollary 5.7. Let U be a nonempty, convex, compact set in the space Cn[a, b] and let ω(·, ·) ∈
P(Cn[a, b] × [0,∞)). Suppose also that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property C̃. Then
the mapping λU(ω) : [a, b]×[0,∞) → [0,∞) given by (5.15) belongs to the setK([a, b]×[0,∞)) and
provides a uniform (in the sense of Definition 5.6) estimate from above for the modulus of continuity of
the mapping Δ : [a, b] × Cn[a, b] → comp [Rn].

Remark 5.8. Corollary 5.7 yields that if U is a nonempty, convex, compact set in the space
Cn[a, b] and a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property C̃, then for a given ω(·, ·) ∈
P(Cn[a, b] × [0,∞)), there exists at least one function η(·, ·) ∈ K([a, b] × [0,∞)) that provides a
uniform (in the sense of Definition 5.6) estimate from above for the modulus of continuity of
the mapping Δ : [a, b] × Cn[a, b] → comp [Rn].
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Let η(·, ·) ∈ K([a, b] × [0,∞)). For each δ ∈ [0,∞), consider the initial value problem

ẋ ∈ Φ̃η(x, δ), x(a) = x0
(
x0 ∈ R

n), (5.16)

where the mapping Φ̃η : Cn[a, b] × [0,∞) → Π[Ln1[a, b]] is given by (5.1) and (5.5).
Since the operator Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) is a Volterra operator, we

see that the mapping Δ : [a, b] × Cn[a, b] → comp [Rn] has the following property: if x = y
on [a, τ] (τ ∈ (a, b]), then Δ(t, x) = Δ(t, y) for almost all t ∈ [a, τ]. This property, (5.1), and
(5.4) imply that the operator Φ̃η : Cn[a, b]× [0,∞) → Π[Ln1[a, b]] is a Volterra operator for each
δ ∈ [0,∞).

Any solution of the problem (5.16) with a given δ > 0 is said to be a generalized δ-
solution (a generalized approximate solution with external perturbations) of the problem (4.1).
We denote by Hη(δ)(U) the set of all generalized δ-solutions of (4.1) belonging to U ⊂ Cn[a, b].

Theorem 5.9. Suppose that a set U ⊂ Cn[a, b] has Property D. Then for any function η(·, ·) ∈
K([a, b] × [0,∞)) that provides a uniform (in the sense of Definition 5.6) estimate from above for
the modulus of continuity of the mapping Δ : [a, b] × Cn[a, b] → comp [Rn], one has

Hco
(
x0, b

)
=

⋂

δ>0

Hη(δ)(U), (5.17)

whereHη(δ)(U) is the closure ofHη(δ)(U) in Cn[a, b].

Proof. First, let us prove that

Hco
(
x0, b

) ⊂
⋂

δ>0

Hη(δ)(U). (5.18)

Let x ∈ Hco(x0, b). Let us show that x is a limit point of the set Hη(δ)(U) for any δ > 0. By
Theorem 4.22, x is a generalized quasisolution of the problem (4.1). Moreover, x ∈ U. Since the
set U has Property D, we see that there exists a sequence of absolutely continuous functions
xi : [a, b] → R

n, i = 1, 2, . . . , such that the following conditions hold: xi → x in Cn[a, b] as
i → ∞; xi ∈ U, ẋi ∈ decΦ(x), and xi(a) = x0 for each i = 1, 2, . . . . Suppose that η(·, ·) ∈
K([a, b] × [0,∞)) provides a uniform (in the sense of Definition 5.6) estimate from above for
the modulus of continuity of the mapping Δ : [a, b] × Cn[a, b] → comp [Rn]. Then there exists
i1 such that ‖x − xi‖Cn[a,b] < ω(x, δ) for each i � i1. This implies that xi ∈ BCn[a,b][x,ω(x, δ)] for
each i � i1. Therefore, xi ∈MU(ω)(x, δ) for each i � i1. By Definition 5.6, there exists a number
i2 � i1 such that

ϕU(ω)
(
t, x,

∥
∥x − xi

∥
∥
Cn[a,b]

)
� η(t, δ) (5.19)

for any i � i2 and almost all t ∈ [a, b].
The inequality (5.19) yields that

ρ
[
ẋi(t);Δ

(
t, xi

)]
� h

[
Δ(t, x);Δ

(
t, xi

)]
� ϕU(ω)

(
t, x,

∥
∥x − xi

∥
∥
Cn[a,b]

)
� η(t, δ) (5.20)

for each i � i2 and almost all t ∈ [a, b]. By (5.20), xi ∈ Hη(δ)(U) for each i � i2. This implies
that x is a limit point of the set Hη(δ)(U). Therefore, x ∈ Hη(δ)(U), and consequently (5.18), is
satisfied.
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Let us prove the opposite inclusion

⋂

δ>0

Hη(δ)(U) ⊂ Hco
(
x0, b

)
. (5.21)

Let x ∈ ⋂
δ>0Hη(δ)(U). This implies that for each i = 1, 2, . . . , there exists xi ∈ Hη(1/i)(U)

satisfying ‖x − xi‖Cn[a,b] < 1/i. Suppose that functions zi ∈ decΦ(x) satisfy

∣
∣ẋi(t) − zi(t)

∣
∣ = ρ

[
ẋi(t);Δ(t, x)

]
(5.22)

for each i = 1, 2, . . . and almost all t ∈ [a, b]. Let us show that

lim
i→∞

∥
∥ẋi − zi

∥
∥
Ln1 [a,b]

= 0. (5.23)

Since η(·, ·) ∈ K([a, b] × [0,∞)), by the Lebesgue theorem, we have that

lim
i→∞

∫b

a

η

(

t,
1
i

)

dt = 0. (5.24)

By (5.22), the estimates

∣
∣ẋi(t) − zi(t)

∣
∣ � h

[
Δ
(
t, xi

)η(t,1/i);Δ(t, x)
]

� η

(

t,
1
i

)

+ h
[
Δ(t, x);Δ

(
t, xi

)]
(5.25)

are satisfied for each i = 1, 2, . . . and almost all t ∈ [a, b]. Therefore,

∫b

a

∣
∣ẋi(t) − zi(t)

∣
∣dt �

∫b

a

η

(

t,
1
i

)

dt + 2hLn1 [a,b]
[
decΦ(x); decΦ

(
xi
)]

(5.26)

for each i = 1, 2, . . . . By (5.24) and due to the continuity of the mapping Φ̃ : Cn[a, b] →
Π[Ln1[a, b]] given by (3.25), we have (5.23).

Since ẋi → ẋ weakly in Ln1[a, b] as i → ∞, we have that zi → ẋ weakly in Ln1[a, b] as
i → ∞. Therefore, by [21], ẋ ∈ Φ̃co(x) and hence x ∈ H(x0, b). Thus, (5.21) is valid. Hence,
(5.17) holds and the proof is complete.

Theorem 5.10. Suppose that a setU ⊂ Cn[a, b] has Property D. Then,

H
(
x0, b

)
=

⋂

δ>0

Hη(δ)(U) (5.27)

for any η(·, ·) ∈ K([a, b] × [0,∞)) if and only if the equality (4.51) is satisfied.

Proof. Let us prove the sufficiency. Assume that (4.51) holds. Let us show that the equality (5.27)
is satisfied for any function η(·, ·) ∈ K([a, b] × [0,∞)). By the definition of the problem (5.16),
the inclusion

H
(
x0, b

) ⊂ Hη(δ)(U) (5.28)
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is satisfied for any δ > 0. Therefore, for any δ > 0, we have the inclusion

H
(
x0, b

) ⊂ Hη(δ)(U) (5.29)

and consequently the inclusion

H
(
x0, b

) ⊂
⋂

δ>0

Hη(δ)(U) (5.30)

holds. Now, let us check that the opposite relation
⋂

δ>0

Hη(δ)(U) ⊂ H(
x0, b

)
, (5.31)

which is, by (4.51), equivalent to the inclusion
⋂

δ>0

Hη(δ)(U) ⊂ Hco
(
x0, b

)
, (5.32)

holds as well. The latter relation can be proven similarly to Theorem 5.9.
The necessity follows readily from Theorem 5.9. The proof is complete.

Remark 5.11. Note that the equality (5.27) describes the robustness property of the set H(x0, b)
with respect to external perturbations η(·, ·) ∈ K([a, b] × [0,∞)). These external perturbations
(e.g., η(·, ·) ∈ K([a, b] × [0,∞))) characterize an error in measurements of the values of the
mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25).

On the other hand, each generalized solution x : [a, b] → R
n of the problem (4.1) may

also be measured with a certain error. This error may be described by a function belonging
to the set P(Cn[a, b] × [0,∞)) and it may be characterized by so-called internal perturbations,
which are defined below. Let us show further that internal perturbations influence essentially
the properties of generalized solutions of the problem (4.1).

We define a mapping Δext : [a, b] × Cn[a, b] → comp [Rn] by

Δext(t, x) = ext
(
coΔ(t, x)

)
, (5.33)

where Δ : [a, b] × Cn[a, b] → comp [Rn] is the mapping generating the operator
Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25); see the definition of ext(coΔ(t, x)) in Section 2.
Let us remark that the mapping Δext(·, x) is measurable (see [25]) and integrally bounded for
each x ∈ Cn[a, b].

Consider the operator Φ̃ext : Cn[a, b] → Π[Ln1[a, b]] given by

Φ̃ext(x) = S
(
Δext(·, x)

)
, (5.34)

where the mapping Δext : [a, b] × Cn[a, b] → comp [Rn] is given by (5.33).

Remark 5.12. Note that for each x ∈ Cn[a, b], the set Φ̃ext(x) has the following property

co
(
Φ̃ext(x)

)
= co

(
decΦ(x)

)
. (5.35)

Also, Φ̃ext(x) is the minimal set among all nonempty closed in Ln1[a, b] decomposable subsets
of decΦ(x) satisfying (5.35).
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Consider the problem

ẋ ∈ Φ̃ext(x), x(a) = x0
(
x0 ∈ R

n). (5.36)

We call any solution (resp., quasisolution) of (5.36) a generalized extreme (in the sense of the
definition in Section 2) solution (resp., generalized extreme quasisolution) of the problem (4.1).

Let Hext(x0) be the set of all generalized extreme quasisolutions of the problem (4.1).
Theorem 4.22, Remark 4.23, and equality (5.35) imply the following result.

Corollary 5.13. Hext(x0) = Hco(x0, b).

Let η(·, ·) ∈ K([a, b]× [0,∞)), ω(·, ·) ∈ P(Cn[a, b]× [0,∞)). Let also U be a convex closed
set in Cn[a, b]. We define mappings Φ̃η,ω : U × [0,∞) → comp [Ln1[a, b]

∗], Δext,η : [a, b] ×
Cn[a, b] × [0,∞) → comp [Rn], Φ̃ext,η : Cn[a, b] × [0,∞) → Π[Ln1[a, b]], Φ̃ext,η,ω : Cn[a, b] ×
[0,∞) → comp [Ln1[a, b]

∗] by the formulas

Φ̃η,ω(x, δ) = Φ̃η

((
MU(ω)(x, δ)

)
, δ

)
,

(
Δext,η

)
(t, x, δ) =

(
Δext(t, x)

)η(t,δ)
,

(
Φ̃ext,η

)
(x, δ) = S

(
Δext,η(·, x, δ)

)
,

Φ̃ext,η,ω(x, δ) = Φ̃ext,η
((
MU(ω)(x, δ)

)
, δ

)
,

(5.37)

where the mappings Φ̃η : Cn[a, b] × [0,∞) → Π[Ln1[a, b]], MU(ω) : U × [0,∞) → Ω(U),
Δext : [a, b] × Cn[a, b] × [0,∞) → comp [Rn] are given by the equalities (5.5), (5.9), and (5.33),
respectively.

For each δ > 0, consider the following problems on U ⊂ Cn[a, b]:

ẋ ∈ Φ̃η,ω(x, δ), x(a) = x0
(
x0 ∈ R

n
)
, (5.38)

ẋ ∈ Φ̃ext,η,ω(x, δ), x(a) = x0
(
x0 ∈ R

n
)
, (5.39)

where the mappings Φ̃η,ω :U×[0,∞)→ comp[Ln1[a, b]
∗], Φ̃ext,η,ω :U×[0,∞)→ comp[Ln1[a, b]

∗]
are given by (5.37).

We call any solution of the problem (5.38) with a fixed δ > 0 a generalized δ-solution of the
problem (4.1), or a generalized approximate solution of (4.1) with external and internal perturba-
tions. For each δ > 0, we denote by Hη(δ),ω(δ)(U) (Hext,η(δ),ω(δ)(U)) the set of all solutions of the
problem (5.38) ((5.39)) on U ⊂ Cn[a, b]. Since Φ̃ext,η,ω(x, δ) ⊂ Φ̃η,ω(x, δ) for any δ > 0 and any
x ∈ U, we see that Hext,η(δ),ω(δ)(U) ⊂ Hη(δ),ω(δ)(U) for any δ > 0.

Theorem 5.14. Let the set U ⊂ Cn[a, b] have Property D. Then for any η(·, ·) ∈ K([a, b] × [0,∞)),
ω(·, ·) ∈ P(Cn[a, b] × [0,∞)), one has

Hco
(
x0, b

)
=

⋂

δ>0

Hext,η(δ),ω(δ)(U) =
⋂

δ>0

Hη(δ),ω(δ)(U), (5.40)

where Hext,η(δ),ω(δ)(U) and Hη(δ),ω(δ)(U) are the closures of the sets Hext,η(δ),ω(δ)(U) and
Hη(δ),ω(δ)(U), respectively, in the space Cn[a, b].
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Proof. First of all, let us check that

Hco
(
x0, b

) ⊂
⋂

δ>0

Hext,η(δ),ω(δ)(U). (5.41)

Let x ∈ H(x0, b). We show that x is a limit point of the set Hext,η(δ),ω(δ)(U) for any δ > 0. By
Corollary 5.13, x is a generalized extreme quasisolution of the problem (4.1). Since the setU has
Property D, we see that x ∈ U and there exists a sequence of absolutely continuous functions
xi : [a, b] → R

n, i = 1, 2, . . . , with the following properties: xi → x in Cn[a, b] as i → ∞; xi ∈ U,
ẋi ∈ Φ̃ext(x), and xi(a) = x0 for each i = 1, 2, . . . . Here, the operator Φ̃ext : Cn[a, b] → Π[Ln1[a, b]]
is given by (5.33) and (5.34).

Let us prove also that there exists a number i0 such that for each i � i0,

xi ∈ Hext,η(δ),ω(δ)(U). (5.42)

Since ω(·, ·) ∈ P(Cn[a, b]× [0,∞)), we see that there exists a number i0 such that for each i � i0,
x ∈ BCn[a,b][xi;ω(xi, δ)]. This implies that for each i � i0, we have that x ∈ MU(xi, δ) (see
(5.9)). Therefore, for each i � i0, the inclusion Φ̃ext(x) ⊂ Φ̃ext,η,ω(xi, δ) holds. Hence, for each
i � i0, we have (5.42). This means that x is a limit point of the set Hext,η(δ),ω(δ)(U). Therefore,
x ∈ Hext,η(δ),ω(δ)(U) and (5.41) is satisfied.

The relation

⋂

δ>0

Hext,η(δ),ω(δ)(U) ⊂ Hco
(
x0, b

)
(5.43)

can be proven similarly to (5.21) (see the proof of Theorem 5.9). The second equality of (5.40)
can be proven in the same way. This completes the proof of the theorem.

Remark 5.15. Theorem 5.14 says that no measurement accuracy of the values of the map-
ping Δ : [a, b] × Cn[a, b] → comp [Rn] could guarantee the “reconstruction” of the set
H(x0, b) by means of Hη(δ),ω(δ)(U). That is only possible if the density principle holds for the
generalized solutions.

6. Conclusion

The main results of the paper can be summarized as follows. For the decomposable hull of a
mapping, we have obtained the conditions for the property of the Hausdorff lower semicon-
tinuity (resp., upper semicontinuity and continuity). We considered a functional differential
inclusion with a Volterra multivalued mapping which is not necessarily decomposable. The
concept of a generalized solution of the initial value problem for such an inclusion was in-
troduced and its properties were studied. Conditions for the local existence and continuation
of a generalized solution to the initial value problem were obtained. We have offered some
estimates, which characterize the closeness of generalized solutions and a given absolutely
continuous function. These estimates were derived from the conditions for the existence of a
generalized solution satisfying the inequality (4.18) (see Theorem 4.13 and Corollary 4.14).

The concept of a generalized quasisolution of the initial value problem was introduced.
We proved that the set of all generalized quasisolutions of the initial value problem coincides
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with the solution set of the functional differential inclusion with the convex decomposable
hull of the right-hand side. Using this fact as well as the estimates characterizing the closeness
of generalized solutions and a given absolutely continuous function, we obtained the density
principle for the generalized solutions.

Asymptotic properties of the set of generalized approximate solutions (generalized δ-
solutions) were studied. It was proven that the limit of the closures of the sets of generalized
approximate solutions coincides with the closure of the set of the generalized solutions if and
only if the density principle holds for the generalized solutions.
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