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1. Introduction

Let u = (un) be a sequence of real numbers. Throughout this paper the symbols un =
o(1) and un =O(1) mean, respectively, that un→0 as n→∞ and that (un) is bounded for

large enough n. Denote by ω(0)
n (u)= nΔun the classical control modulo of the oscillatory

behavior of (un). For each integer m≥ 1 and for all nonnegative integer n, define by

ω(m)
n (u)= ω(m−1)

n (u)− σn
(
ω(m−1)(u)

)
(1.1)

the general control modulo of the oscillatory behavior of order m. For a sequence u =
(un),

un− σn(u)=V (0)
n (Δu), n= 0,1,2, . . . , (1.2)

where σn(u)= (1/(n+ 1))
∑n

k=0uk, V (0)
n (Δu)= (1/(n+ 1))

∑n
k=0kΔuk, and

Δun =
⎧
⎨

⎩
un−un−1, n≥ 1,

u0, n= 0.
(1.3)
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For each integer m≥ 1 and for all nonnegative integer n, define

V (m)
n (Δu)= σn

(
V (m−1)(Δu)

)
. (1.4)

A sequence u= (un) is said to be left one-sidedly bounded if un ≥ −C for all nonnegative
integers n and for some C ≥ 0. A sequence u= (un) is said to be left one-sidedly bounded
with respect to sequence (Cn) if un ≥ −Cn for all nonnegative integers n. A sequence (un)
is said to be Abel limitable if the limit

lim
x→1−

(1− x)
∞∑

n=0

unx
n = A(u) (1.5)

exists and is finite. A classical Tauberian theorem of Hardy and Littlewood [1] says that

if (ω(0)
n (u)) is left one-sidedly bounded and (1.5) exists, then limnun = A(u). Dik [2] im-

proved Hardy and Littlewood’s theorem [1] by proving that if (ω(1)
n (u)) is left one-sidedly

bounded and (1.5) exists, then limnun = A(u).
Č. V. Stanojević and V. B. Stanojević [3] proved the following theorem.

Theorem 1.1. For the real sequence u = (un), let there exist a nonnegative sequence M =
(Mn) such that

( n∑

k=1

Mk

k

)

is slowly oscillating (1.6)

and (ω(2)
n (u)) is left one-sidedly bounded with respect to the sequence (Mn). If

lim
x→1−

(1− x)
∞∑

n=0

V (1)
n (Δu)xn =A

(
V (1)(Δu)

)
(1.7)

exists, then u= (un) is slowly oscillating.

We remind the reader that a sequence (un) is slowly oscillating [4] if

lim
λ→1+

limsup
n

max
n+1≤k≤[λn]

∣
∣
∣
∣
∣

k∑

j=n+1

Δuj

∣
∣
∣
∣
∣= 0, (1.8)

and more generally, it is moderately oscillating [4] if, for λ > 1,

limsup
n

max
n+1≤k≤[λn]

∣
∣
∣
∣
∣

k∑

j=n+1

Δuj

∣
∣
∣
∣
∣ <∞, (1.9)

where [λn] denotes the integer part of λn.
An equivalent definition of slowly oscillating sequence (un) is given by Dik [2] in terms

of (V (0)
n (Δu)). A sequence u= (un) is slowly oscillating if and only if (V (0)

n (Δu)) is slowly

oscillating and bounded. Clearly, (1.9) implies that V (0)
n (Δu)=O(1).
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2. The main theorem

The main goal of this paper is to generalize Č. V. Stanojević and V. B. Stanojević’s [3]
result for the general control modulo of the oscillatory behavior of the order m, where m
is any integer greater than or equal to 1.

Theorem 2.1. For the real sequence u = (un), let there exist a nonnegative sequence M =
(Mn) such that

( n∑

k=1

Mk

k

)

is moderately oscillating (2.1)

and for some integer m≥ 1,

(
ω(m)
n (u)

)
is left one-sidedly bounded with respect to the sequence

(
Mn
)
. (2.2)

If (1.7) exists, then u= (un) is moderately oscillating.

There would be some cases that for some integer m ≥ 1, (ω(m)
n (u)) is not left one-

sidedly bounded with respect to any nonnegative sequence (Mn) with the property (1.6).
In this case, we cannot get any information related to the asymptotic behavior of the
sequence (un) out of (2.2) and (1.5). But for an integer k greater than m, (σn(ω(k)(u)))
could be left one-sidedly bounded with respect to some nonnegative sequence (Mn) with
the property (1.6) as provided in the following example.

Example 2.2. For the sequence (un) defined by

un =
⎧
⎨

⎩
1, n= 2 j , j = 1,2,3, . . . ,

0, for other values of n,
(2.3)

we have

nΔun =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

j, n= 2 j , j = 1,2,3, . . . ,

− j, n= 2 j + 1, j = 1,2,3, . . . ,

0, for other values of n.

(2.4)

Since the sequence (un) has two subsequences ((u2n) and (u2n+1)) converging to dif-
ferent values (1 and 0, resp.), (un) does not converge. Consider the series

∑∞
n=1Δunx

n.
We may rewrite this series as f (Δu,x)=∑∞

n=1(x2n − x2n+1). Notice that if 0≤ x < 1, then
f (Δu,x)≥ 0. Hence, it follows that

lim inf
x→1−

f (Δu,x)≥ 0. (2.5)

Also, observe that from the rewritten form of f (Δu,x), we have

f (Δu,x)= (1− x)
∞∑

n=1

x2n ≤ (1− x)

⎛

⎜
⎝x2 + x4 + x8 +C

(√√
√
√In

(
1
x

))−1⎞

⎟
⎠ . (2.6)
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Since In(1/x)∼1− x as x→1−, we have

lim sup
x→1−

f (Δu,x)≤ 0. (2.7)

From (2.5) and (2.7), it follows that (un) is Abel limitable to zero.
It is clear that (ω(0)

n (u)) is not left one-sidedly bounded with respect to any nonnegative
sequence (Mn) with the property (1.6). Indeed, there were such a nonnegative sequence
(Mn) with the property (1.6), we would have −1= lim infnΔun ≥ − limn(Mn/n)= 0. We

also note that for any integer m ≥ 1, (ω(m)
n (u)) is not left one-sidedly bounded with re-

spect to any nonnegative sequence (Mn) with the property (1.6). If (ω(m)
n (u)) is not left

one-sidedly bounded with respect to any sequence (Mn) with the property (1.6) and

A(u) exists, then (ω(m+1)
n (u)) is not left one-sidedly bounded with respect to the non-

negative sequence (Mn) with the property (1.6). Suppose that (ω(m+1)
n (u)) is left one-

sidedly bounded with respect to any nonnegative sequence (Mn) with the property (1.6)
and A(u) exists. Then by Corollary 2.9, the sequence (un) converges and this implies that

(ω(m)
n (u)) is left one-sidedly bounded with respect to some nonnegative sequence (Mn)

with the property (1.6), which is contrary to the fact that (ω(m)
n (u)) is not left one-sidedly

bounded with respect to any nonnegative sequence (Mn) with the property (1.6).

Since (V (0)
n (Δu)) is bounded, then V (0)

n (Δu)≥ −C and

ω(1)
n

(
σ(u)

))= nΔV (0)
n

(
Δσ(u)

)= nΔV (1)
n (Δu)≥ −C (2.8)

for some C ≥ 0. Since (σn(u)) is Abel limitable, by Corollary 2.9, we obtain that (σn(u))
converges.

Remark 2.3. The condition ω(0)
n (u)≥ −Mn with the properties (1.6) and (2.2) is a Taube-

rian condition for Abel limitable method, but σn(ω(0)(u))≥ −Mn is not. However,

ω(1)
n (u)= ω(0)

n (u)− σn
(
ω(0)(u)

)≥ −Mn (2.9)

is a Tauberian condition for Abel limitable method as proved in Theorem 2.1.
If (un) is slowly oscillating or moderately oscillating in the sense of Stanojević [4], then

(V (0)
n (Δu)) is bounded. Hence, for any integer m ≥ 1, (σn(ω(m)(u))) is left one-sidedly

bounded with respect to the constant sequence (Mn)= (C). Also, from the definition of
slow oscillation, one obtains that the arithmetic means of (ω(m)

n (u)) is slowly oscillating.
But, that the converse is not true is provided by example.

We need the following identities and observations for the proof of Theorem 2.1.

Lemma 2.4 [2, 4]. (i) For λ > 1,

un− σn(u)= [λn] + 1
[λn]−n

(
σ [λn](u)− σn(u)

)− 1
[λn]−n

[λn]∑

k=n+1

k∑

j=n+1

Δuj , (2.10)

where [λn] denotes the integer part of λn.
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(i) For 1 < λ < 2,

un− σn−[(λ−1)n]−1(u)= n+ 1
[
(λ− 1)n

]
+ 1

(
σn−[(λ−1)n]−1(u)− σn(u)

)

+
1

[
(λ− 1)n

]
+ 1

n∑

k=n−[(λ−1)n]

n∑

j=k+1

Δuj ,
(2.11)

where [λn] denotes the integer part of λn.

Proof. (i) For λ > 1, define

τn,[λn](u)= 1
[λn]−n

[λn]∑

k=n+1

uk. (2.12)

The difference τn,[λn](u)− σn(u) can be written as

τn,[λn](u)− σn(u)=
(
[λn] + 1

)
σ [λn](u)− (n+ 1)σn(u)

[λn]−n
− σn(u)

= [λn] + 1
[λn]−n

(
σ [λn](u)− σn(u)

)
.

(2.13)

This completes the proof.
�

(ii) Proof of Lemma 2.4(ii) is similar to that of Lemma 2.4(i).
For a sequence u= (un), we define

(nΔ)mun = (nΔ)m−1

(
(nΔ)un

)= nΔ
(
(nΔ)m−1un

)
, m= 1,2, . . . , (2.14)

where (nΔ)0un = un and (nΔ)1un = nΔun.

Lemma 2.5. For each integer m≥ 1,

ω(m)
n (u)= (nΔ)mV

(m−1)
n (Δu). (2.15)

Proof. We do the proof by induction. By definition, for m= 1, we have

ω(1)
n (u)= ω(0)

n (u)− σn
(
ω(0)(u)

)= nΔun−V (0)
n (Δu)= nΔV (0)

n (Δu). (2.16)

Assume the observation is true for m= k. That is, assume that

ω(k)
n (u)= (nΔ)kV

(k−1)
n (Δu). (2.17)

We must show that the observation is true for m= k+ 1. That is, we must show that

ω(k+1)
n (u)= (nΔ)k+1V

(k)
n (Δu). (2.18)

Again by definition,

ω(k+1)
n (u)= ω(k)

n (u)− σn
(
ω(k)(u)

)
. (2.19)



6 Abstract and Applied Analysis

By (2.17),

ω(k+1)
n (u)= (nΔ)kV

(k−1)
n (Δu)− (nΔ)kV

(k)
n (Δu)

= (nΔ)k
(
V (k−1)
n (Δu)−V (k)

n (Δu)
)

= (nΔ)k
(
(nΔ)V (k)

n (Δu)
)

= (nΔ)k+1V
(k)
n (Δu).

(2.20)

Thus, we conclude that Lemma 2.5 is true for every positive integer m. �

Lemma 2.6. For each integer m≥ 1,

ω(m)
n (u)=

m−1∑

j=0

(−1) j
(
m− 1

j

)

nΔV
( j)
n (Δu), (2.21)

where
(m−1

j

)= (m− 1)(m− 2)···(m− j + 1)/ j!.

Proof. We do the proof by induction. For m= 1, we have

ω(1)
n (u)= nΔun−V (0)

n (Δu)

= nΔV (0)
n (Δu)

=
0∑

j=0

(−1) j
(

0
j

)

nΔV
( j)
n (Δu).

(2.22)

Assume the observation is true for m= k. That is, assume that

ω(k)
n (u)=

k−1∑

j=0

(−1) j
(
k− 1
j

)

nΔV
( j)
n (Δu). (2.23)

We must show that the observation is true for m= k+ 1. That is, we must show that

ω(k+1)
n (u)=

k∑

j=0

(−1) j
(
k
j

)

nΔV
( j)
n (Δu). (2.24)

By definition,

ω(k+1)
n (u)= ω(k)

n (u)− σn
(
ω(k)(u)

)
. (2.25)

By (2.23),

ω(k+1)
n (u)=

k−1∑

j=0

(−1) j
(
k− 1
j

)

nΔV
( j)
n (Δu)

−
k−1∑

j=0

(−1) j
(
k− 1
j

)

nΔV
( j+1)
n (Δu).

(2.26)
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Let j + 1= i in the second sum. Using this substitution,

ω(k+1)
n (u)=

k−1∑

j=0

(−1) j
(
k− 1
j

)

nΔV
( j)
n (Δu)

+
k∑

i=1

(−1)i
(
k− 1
i− 1

)

nΔV (i)
n (Δu).

(2.27)

In the second sum of (2.27), we rename the index of summation j, split the first term off

in the first sum and the last term in the second sum of (2.27), we have

ω(k+1)
n (u)= (−1)0

(
k− 1

0

)

nΔV (0)
n (Δu) +

k−1∑

j=1

(−1) j
(
k− 1
j

)

nΔV
( j)
n (Δu)

+
k−1∑

j=1

(−1) j
(
k− 1
j− 1

)

nΔV
( j)
n (Δu) + (−1)k

(
k− 1
k− 1

)

nΔV (k)
n (Δu).

(2.28)

Rewritten (2.28), we have

ω(k+1)
n (u)= (−1)0

(
k− 1

0

)

nΔV (0)
n (Δu)

+
k−1∑

j=1

(−1) j
[(

k− 1
j

)

+

(
k− 1
j− 1

)]

nΔV
( j)
n (Δu)

+ (−1)k
(
k− 1
k− 1

)

nΔV (k)
n (Δu).

(2.29)

Since
( k−1

j

)
+
( k−1
j−1
)= ( kj

)
, the last identity can be written

ω(k+1)
n (u)= (−1)0

(
k− 1

0

)

nΔV (0)
n (Δu)

+
k−1∑

j=1

(−1) j
(
k
j

)

nΔV
( j)
n (Δu)

+ (−1)k
(
k− 1
k− 1

)

nΔV (k)
n (Δu)

=
k∑

j=1

(−1) j
(
k
j

)

nΔV
( j)
n (Δu).

(2.30)

Thus, we conclude that Lemma 2.6 is true for every positive integer m. �

Corollary 2.7 is an improved version of the main theorem in [3, Theorem 3.1]. Corol-
laries 2.8 and 2.9 are analogous to classical Tauberian theorems.

Corollary 2.7. For the real sequence u= (un), let there exist a nonnegative sequence M =
(Mn) such that (

∑n
k=1(Mk/k)) is slowly oscillating and condition (2.2) is satisfied. If (1.7)

exists, then u= (un) is slowly oscillating.
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Proof. Since slow oscillation of (
∑n

k=1(Mk/k)) implies that σn(M)=O(1), we have

lim
n
V (1)
n (Δu)= A

(
V (1)(Δu)

)
,

nΔV (0)
n (Δu)≥ − (Mn +C

) (2.31)

for some constant C as in Theorem 2.1. Applying Lemma 2.4(i) to (V (0)
n (Δu)) and notic-

ing that

nΔV (0)
n (Δu)≥ − (Mn +C

)
(2.32)

for some constant C, we have

V (0)
n (Δu)−V (1)

n (Δu)≤ [λn] + 1
[λn]−n

(
V (1)

[λn](Δu)−V (1)
n (Δu)

)

+
1

[λn]−n

[λn]∑

k=n+1

k∑

j=n+1

Mj +C

j

≤ [λn] + 1
[λn]−n

(
V (1)

[λn](Δu)−V (1)
n (Δu)

)

+
1

[λn]−n

[λn]∑

k=n+1

k∑

j=n+1

Mj

j
+C1 log

(
[λn]
n

)

(2.33)

for some constant C1. From the last inequality, we have

V (0)
n (Δu)−V (1)

n (Δu)≤ [λn] + 1
[λn]−n

(
V (1)

[λn](Δu)−V (1)
n (Δu)

)

+ max
n+1≤k≤[λn]

k∑

j=n+1

Mj

j
+C1 log

(
[λn]
n

)
.

(2.34)

Taking lim sup of both sides, we have

lim sup
n

(
V (0)
n (Δu)−V (1)

n (Δu)
)≤ λ

λ− 1
lim sup

n

(
V (1)

[λn](Δu)−V (1)
n (Δu)

)

+ lim sup
n

max
n+1≤k≤[λn]

k∑

j=n+1

Mj

j
+C1 logλ.

(2.35)

Since the first term on the right-hand side of the inequality above vanishes,

lim sup
n

(
V (0)
n (Δu)−V (1)

n (Δu)
)≤ lim sup

n
max

n+1≤k≤[λn]

k∑

j=n+1

Mj

j
+C1 logλ. (2.36)

Taking the limit of both sides as λ→1+, we obtain

lim sup
n

(
V (0)
n (Δu)−V (1)

n (Δu)
)≤ 0. (2.37)
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In a similar way from Lemma 2.4(ii), we have

lim inf
n

(
V (0)
n (Δu)−V (1)

n (Δu)
)≥ 0. (2.38)

From (2.37) and (2.38), we have

lim
n
V (0)
n (Δu)= lim

n
V (1)
n (Δu). (2.39)

Since

σn(u)= u0 +
n∑

k=1

V (0)
k (Δu)

k
, (2.40)

from identity (1.2), we can write (un) as

un =V (0)
n (Δu) +

n∑

k=1

V (0)
k (Δu)

k
+u0. (2.41)

Thus, u= (un) is slowly oscillating. �

It should be noted that if we take m= 2 in Corollary 2.7, we get Č. V. Stanojević and
V. B. Stanojević’s result.

Corollary 2.8. For the real sequence u= (un), let there exist a nonnegative sequence M =
(Mn) such that (

∑n
k=1(Mk/k)) is slowly oscillating and condition (2.2) is satisfied. If A(σ(u))

exists, then limnun =A(σ(u)).

Proof. Existence of the limit A(σ(u)) implies that A(V (1)(Δu))= 0. By Corollary 2.7, we

have V (0)
n (Δu) = o(1) and hence A(V (0)(Δu)) = 0. From (1.2), it follows that A(u) = 0.

By Tauber’s second theorem [5], limnun =A(σ(u)). �

Corollary 2.9. For the real sequence u= (un), let there exist a nonnegative sequence M =
(Mn) such that (

∑n
k=1(Mk/k)) is slowly oscillating and condition (2.2) is satisfied. If (1.5)

exist, then limnun =A(u).

Proof. Since existence of A(u) implies that of A(σ(u)), proof follows from Corollary 2.8.
�

Corollary 2.9 with m= 3 follows from Corollary 2.9 with m= 2. Indeed, we have for a
sequence u= (un),

ω(3)
n (u)= (nΔ)3V

(2)
n (Δu)= (nΔ)2

(
nΔV (2)

n (Δu)
)

= (nΔ)2

(
V (1)
n (Δu)−V (2)

n (Δu)
)

= (nΔ)2

(
V (0)
n

(
ΔV (1)(Δu)

))
.

(2.42)

We note that for a sequence u= (un),

V (0)
n (Δu)−V (1)

n (Δu)=V (0)
n

(
ΔV (0)(Δu)

)
. (2.43)
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Taking the arithmetic means of both sides of (2.43), we have

V (1)
n (Δu)−V (2)

n (Δu)=V (1)
n

(
ΔV (0)(Δu)

)
. (2.44)

Using (1.2), the identity (2.44) can be expressed as

V (1)
n (Δu)−V (2)

n (Δu)=V (0)
n

(
ΔV (1)(Δu)

)
. (2.45)

From (2.44) and (2.45), we have

V (1)
n

(
ΔV (0)(Δu)

)=V (0)
n

(
ΔV (1)(Δu)

)
. (2.46)

We have, by (2.45) and (2.42),

ω(3)
n (u)= (nΔ)2

(
V (1)
n

(
ΔV (0)(Δu)

))
. (2.47)

Existence of the limit A(u) implies that A(V (0)(Δu))= 0. By Corollary 2.9 with m= 2,

we obtain that V (0)
n (Δu)= o(1). By Tauber’s second theorem [5], limnun = A(u).

3. Proof of Theorem 2.1

Proof. From the condition (2.1), it follows that σn(M) = O(1). Taking the arithmetic
mean of both sides of (2.2), we obtain

σn
(
ω(m)(u)

)= (nΔ)mV
(m)
n (Δu)≥ − σn(M)≥ −C0 (3.1)

for some constant C0. By the existence of the limit (1.7),

lim
x→1−

(1− x)
∞∑

n=0

(nΔ)m−1V
(m)
n (Δu)xn = 0. (3.2)

Since

nΔ
(
(nΔ)m−1V

(m)
n (Δu)

)≥ −C0, (3.3)

by Hardy and Littlewood’s theorem [1],

(nΔ)m−1V
(m)
n (Δu)= o(1). (3.4)

From

nΔ
(
(nΔ)m−1V

(m)
n (Δu)

)= (nΔ)m−1V
(m−1)
n (Δu)− (nΔ)m−1V

(m)
n (Δu)≥ −C0 (3.5)

and (3.4), it follows that

(nΔ)m−1V
(m−1)
n (Δu)≥ −C1 (3.6)

for some constant C1. The existence of the limit (1.7) implies that

lim
x→1−

(1− x)
∞∑

n=0

(nΔ)m−2V
(m−1)
n (Δu)xn = 0. (3.7)
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Since

nΔ
(
(nΔ)m−2V

(m−1)
n (Δu)

)≥ −C1, (3.8)

again by Hardy and Littlewood’s theorem [1],

(nΔ)m−2V
(m−1)
n (Δu)= o(1). (3.9)

Continuing in this way, in (m− 2)th step we get

(nΔ)2V
(2)
n (Δu)≥ −Cm−3 (3.10)

for some constant Cm−3. Since

lim
x→1−

(1− x)
∞∑

n=0

nΔV (2)
n (Δu)xn = 0, (3.11)

we get

nΔV (2)
n (Δu)= o(1). (3.12)

From

nΔ
(
nΔV (2)

n (Δu)
)= nΔV (1)

n (Δu)−nΔV (2)
n (Δu)≥ −Cm−3 (3.13)

and (3.12) we get

nΔV (1)
n (Δu)≥ −Cm−2 (3.14)

for some constant Cm−2. By the existence of the limit (1.7), we obtain that (V (1)
n (Δu))

converges to A(V (1)(Δu)). From Lemma 2.6, convergence of (V (1)
n (Δu)), and condition

(2.2), it follows that

nΔV (0)
n (Δu)≥ − (Mn +C

)
(3.15)

for some constant C. Applying Lemma 2.4(i) and (ii) to (V (0)
n (Δu)), we have V (0)

n (Δu)=
O(1). Thus, u= (un) is moderately oscillating. �
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