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1. Introduction

In 1890, Mathieu in [1] defined S(r) for r > 0 by

S(r)=
∞∑

n=1

2n
(
n2 + r2

)2 (1.1)

and conjectured that S(r) < 1/r2. We call formula (1.1) Mathieu’s series.
There has been a lot of literature about the estimations of S(r) for more than 100 years

till 1998, for example, [2–14] and the references therein. In [9], Makai proved that

1
r2 + 1/2

< S(r) <
1
r2
. (1.2)

In 1998, Alzer et al. presented in [2] that

1
r2 + 1/2ζ(3)

< S(r) <
1

r2 + 1/6
, (1.3)

where ζ denotes the zeta function and the constants 1/2ζ(3) and 1/6 in (1.3) are the best
possible.
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After 2000, among other things, several open problems on the estimations and integral
representations of generalized Mathieu’s series were posed in [15–17] by Guo and Qi.
Stimulated by or originated from these open problems, a lot of articles such as [18–37]
have been published in variant reputable journals by many mathematicians all over the
world.

In this article, by utilizing the well-known telescope technique ever used in [9, 38], we
would like to improve or refine the sharp double inequality (1.3) and to establish a very
closer double inequality for ζ(3).

Our main results are the following four theorems.

Theorem 1.1. For r > 0,

S(r) >
1

r2 + 1/6 +
(
r2 + 6

)
/3
(
9r2 + 8

) = 1
r2 + 1/2− 2

(
4r2 + 1

)
/3
(
9r2 + 8

) . (1.4)

Remark 1.2. By standard argument, it is showed readily that inequality (1.4) is better than

the left-hand side inequality in (1.3) when r > 2
√(

5ζ(3)− 6
)
/
(
27− 11ζ(3)

)= 0.05 . . . .

Theorem 1.3. For r > 0,

1
r2 + 1/6 + 5/6

(
2r2 + 3

) = 1
r2 + 1/2− (4r2 + 1

)
/6
(
2r2 + 3

) < S(r)

<
1

r2 + 1/2− (4r2 + 1
)
/2
(
2r2− 3 + 4

√
r4 + 2r2 + 5

) .
(1.5)

Remark 1.4. It is not difficult to verify that the left-hand side inequality in (1.5) is bet-

ter than the left-hand side inequality in (1.3) when r >
√

(8ζ(3)− 9)/2[3− ζ(3)]= 0.41 . . .
and that the right-hand side inequality in (1.5) is better than the right-hand side inequal-
ity in (1.3) when r <

√
239/16= 3.86 . . . .

It is important to remark that inequality (1.4) and the left-hand side inequality in (1.5)
do not include each other, which can be proved straightforwardly.

Theorem 1.5. For r > 0,

S(r) <
1√

r4 + 2r2 + 2− 1
. (1.6)

Remark 1.6. It is easy to deduce that inequality (1.6) is better than the right-hand side
inequality in (1.3) when 0 < r <

√
23/12= 1.38 . . . .

Theorem 1.7. For m∈N, let S3(m)=∑m
n=1(1/n3). Then

1
2m2 + 2m+ 1− 1/6

(
m2 +m+ 3/2

) < ζ(3)− S3(m) <
1

2m2 + 2m+ 1− 1/6
(
m2 +m+ 1

) .

(1.7)

Remark 1.8. Calculation by Mathematica 5.2 shows that

ζ(3)= 1.202056903159594285399 . . . . (1.8)
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If taking m from 1 to 9, the sums of the right side term in (1.7) and S3(m) are

1.202247191011235955, 1.202064220183486239, 1.202057560382342322,
1.202057003155139651, 1.202056924652726768, 1.202056909039779896,
1.202056905080018071, 1.202056903877571143, 1.202056903458154800.

(1.9)

If taking m from 1 to 9, the sums of the left side term in (1.7) and S3(m) are

1.201923076923076923, 1.202054794520547945, 1.202056799882886839,
1.202056893315403149, 1.202056901714344462, 1.202056902872941459,
1.202056903088695828, 1.202056903138840387, 1.202056903152657143.

(1.10)

These numerical computations by mathematic 5.2 reveals that inequalities in (1.7) give
much accurate approximations from left and right.

Corollary 1.9. If 1≤ δ < 3/2 and m≥
√

(3δ2− δ + 1/12)/(6− 4δ)− 1, then

ζ(3) < S3(m) +
1

2m2 + 2m+ 1− 1/6
(
m2 +m+ δ

) . (1.11)

Remark 1.10. In [39, 40], the number ζ(3) was estimated by using Jordan’s inequality and
its refinements. In [41, 42], some more general conclusions were obtained.

Remark 1.11. Finally, an open problem is posed: find the best possible constants a and b
such that

1
r2 + 1/2− (4r2 + 1

)
/12
(
r2 + a

) < S(r) <
1

r2 + 1/2− (4r2 + 1
)
/12
(
r2 + b

) (1.12)

holds true for all r > 0.
It is clear that a≤ 3/2 and b ≥ 1/4.

2. Proofs of theorems and corollary

Now we are in a position to prove our theorems and corollary.

Proof of Theorem 1.1. For n∈N, let

wn(r)= n(n− 1) + r2 +
1
2
− θ

n2 + γ
, (2.1)

where θ = (1/3)(r2 + 1/4) and γ is a possible and undetermined positive function of r
such that

1
wn(r)

− 1
wn+1(r)

≤ 2n
(
n2 + r2

)2 . (2.2)
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Straightforward computation yields that

1
wn(r)

− 1
wn+1(r)

= 2n
{

1 + θ(1 + 1/2n)/
(
n2 + γ

)[
(n+ 1)2 + γ

]}

(
n2 + r2

)2
+ θQ(n,r,γ)/

(
n2 + γ

)[
(n+ 1)2 + γ

] , (2.3)

where

Q(n,r,γ)= n4 + 4n3 +
(
4γ− 2r2− 1

)
n2

+
(
6γ− 2r2− 2

)
n+ 3γ2 + 2

(
1− r2)γ− 2r2

3
− 5

12
.

(2.4)

It is easy to see that if

1 + 1/2n
Q(n,r,γ)

≤ 1
(
n2 + r2

)2 , (2.5)

then inequality (2.2) holds. Further, inequality (2.5) is equivalent to

n4 + 4n3 +
(
4γ− 2r2− 1

)
n2 +

(
6γ− 2r2− 2

)
n+ 3γ2

+ 2
(
1− r2

)
γ− 2r2

3
− 5

12
≥
(

1 +
1

2n

)(
n2 + r2

)2
,

(2.6)

which can be rewritten as

7n3 +
(
8γ− 8r2− 2

)
n2 +

(
12γ− 6r2− 4

)
n

+ 6γ2 + 4
(
1− r2

)
γ− 2r4− 4r2

3
− 5

6
− r4

n
≥ 0,

(2.7)

which can be further rearranged as

f (n,γ) � (n− 1)
[

7n2 +
(
8γ− 8r2 + 5

)
n+ 20γ− 14r2 + 1 +

r4

n

]

+6γ2 + 4
(
6− r2

)
γ− 3r4− 46

3
r2 +

1
6
≥ 0.

(2.8)

Direct computation reveals that

f
(
n,

9r2

8

)
= (n− 1)

[
7n2 +

(
r2 + 5

)
n+

17
2
r2 + 1 +

r4

n

]
+

3
32

r4 +
35
3
r2 +

1
6
> 0, (2.9)

but

f
(
n,r2)= (n− 1)

(
7n2 + 5n+ 6r2 +

r4

n

)
− r4 +

26
3
r2 +

1
6

(2.10)

is negative if r is large enough. Consequently, if taking γ = 9r2/8, then inequality (2.2) is
valid. Summing up on both sides of (2.2), with respect to n= 1,2, . . . , leads to (1.4). The
proof of Theorem 1.1 is finished. �
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Proof of Theorem 1.3. Now let us consider the sequence

νn(r)= n(n− 1) + r2 +
1
2
− θ

n(n− 1) +β
(2.11)

for n∈N, where θ and β are two undetermined functions of r, in order that

1
νn(r)

− 1
νn+1(r)

<
2n

(
n2 + r2

)2 . (2.12)

Direct calculation yields that

1
νn(r)

− 1
νn+1(r)

= 2n+ 2θn/
(
n2−n+β

)(
n2 +n+β

)

(
n2 + r2

)2
+P(n,r,θ,β)/

(
n2−n+β

)(
n2 +n+β

) , (2.13)

where

P(n,r,θ,β)=
(
r2 +

1
4
− 2θ

)
n4 +

(
r2 +

1
4

)
β2− θβ

(
2r2 + 1

)
+ θ2

+
[(

r2 +
1
4

)
(2β− 1)− θ(2β+ 2r2 + 3)

]
n2.

(2.14)

Letting r2 + 1/4− 2θ = θ and

(
r2 +

1
4

)
(2β− 1)− θ

(
2β+ 2r2 + 3

)= 2θr2 (2.15)

give

θ = 1
3

(
r2 +

1
4

)
, β = r2 +

3
2
. (2.16)

Consequently,

P(n,r,θ,β)= θn4 + 2θr2n2 + 3θβ2− θβ
(
2r2 + 1

)
+ θ2

= θ
(
n2 + r2)2

+ θ
[
3β2−β

(
2r2 + 1

)
+ θ− r4]

= θ
(
n2 + r2)2

+
16
3
θ
(
r2 + 1

)
.

(2.17)

As a result,

1
ν2(r)

− 1
νn+1(r)

= 2n+ 2θn/
(
n2−n+β

)(
n2 +n+β

)

(
n2 + r2

)2
+
(
θ
(
n2 + r2

)2
+ 16θ

(
r2 + 1

)
/3
)
/
(
n2−n+β

)(
n2 +n+β

)

<
2n+ 2θn/

(
n2−n+β

)(
n2 +n+β

)

(
n2 + r2

)2
+ θ
(
n2 + r2

)2
/
(
n2−n+β

)(
n2 +n+β

) = 2n
(
n2 + r2

)2 .

(2.18)
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Summing up on both sides of the above inequality with respect to n∈N leads to

S(r) >
1
ν1
= 1

r2 + 1/2− θ/β
= 1

r2 + 1/2− (4r2 + 1)/(12r2 + 18)
. (2.19)

As mentiond above, taking θ = (1/3)(r2 + 1/4) and simplifying yield that

P(n,r,θ,β)= θ
(
n2 + r2)2− θ

[(
4r2 + 6− 4β

)
n2− 3β2 +

(
2r2 + 1

)
β+ r4− θ

]

= θ
(
n2 + r2)2− θ

(
4r2 + 6− 4β

)(
n2− 1

)
+ θR,

(2.20)

where

R= 3β2− (2r2− 3
)
β− r4− 11

3
r2− 71

12
. (2.21)

Now choosing β > 0 such that R= 0 gives

β = 2r2− 3 + 4
√
r4 + 2r2 + 5

6
. (2.22)

It is observed that

4r2 + 6− 4β= 8
3

(
r2 + 3−

√
r4 + 2r2 + 5

)
> 0 (2.23)

and, for n∈N,

P(n,r,θ,β)= θ
(
n2 + r2)2− 8θ

3

(
r2 + 3−

√
r4 + 2r2 + 5

)(
n2− 1

)≥ θ
(
n2 + r2)2

. (2.24)

Therefore,

1
νn(r)

− 1
νn+1(r)

>
2n

(
n2 + r2

)2 . (2.25)

Summing up on both sides from n= 1 to∞ gives

1
ν1(r)

= 1
r2 + 1/2− θ/β

= 1
r2 + 1/2− (4r2 + 1)/2

(
2r2− 3 + 4

√
r4 + 2r2 + 5

) > S(r).

(2.26)

The proof of Theorem 1.3 is complete. �

Proof of Theorem 1.5. Let un(r)= n(n− 1) + r2 +μ(r) for n∈N, where

μ(r)=
√(

r2 + 1
)2

+ 1− (r2 + 1
)
> 0. (2.27)

Then,

1
un(r)

− 1
un+1(r)

= 2n
(
n2 + r2

)2− [1− 2μ(r)
]
n2 +μ2(r) + 2r2μ(r)

. (2.28)
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From (2.27), it is deduced that μ2(r) + 2r2μ(r)= 1− 2μ(r) > 0. Hence,

1
un(r)

− 1
un+1(r)

= 2n
(
n2 + r2

)2− [1− 2μ(r)
](
n2− 1

) ≥ 2n
(
n2 + r2

)2 , (2.29)

and then

∞∑

n=1

2n
(
n2 + r2

)2 <
1
u1
= 1

r2 +μ(r)
= 1√

r4 + 2r2 + 2− 1
. (2.30)

The proof of Theorem 1.5 is complete. �

Proof of Theorem 1.7. Let

tn = 2n2− 2n+ 1− 1
6
(
n2−n+ δ

) , (2.31)

where δ is a fixed positive number and n∈N. Direct computation gives

1
tn
− 1
tn+1

= 4n+ 2n/6
(
n2−n+ δ

)(
n2 +n+ δ

)

4n4 +
(
2n4 + (8δ− 12)n2 + 6δ2− 2δ + 1/6

)
/6
(
n2−n+ δ

)(
n2 +n+ δ

) .

(2.32)

If δ = 3/2, then 8δ− 12= 0 and

1
tn
− 1
tn+1

= 4n+ 2n/6(n2−n+ 3/2)(n2 +n+ 3/2)
4n4 +

(
2n4 + 32/3

)
/6
(
n2−n+ 3/2

)(
n2 +n+ 3/2

) <
1
n3

. (2.33)

Summing up on both sides of the above inequality for n from m+ 1 to infinity produces

1
tm+1

= 1
2m2 + 1− 1/6

(
m2 +m+ 3/2

) <
∞∑

n=m+1

1
n3

. (2.34)

Adding S3(m) on both sides of the above inequality leads to the left-hand side inequality
in (1.7).

If δ = 1 and n > 1, then

1
tn
− 1
tn+1

= 4n+ 2n/6
(
n2−n+ 1

)(
n2 +n+ 1

)

4n4 +
(
2n4− [4(n2− 1)− 1/6]

)
/6
(
n2−n+ 1

)(
n2 +n+ 1

) >
1
n3

. (2.35)

Summing up on both sides of the above inequality for n from m+ 1to infinity yields that

1
2m2 + 2m+ 1− 1/2

(
m2 +m+ 1

) >
∞∑

n=m+1

1
n3

. (2.36)

This is equivalent to the right-hand side inequality in (1.7). Theorem 1.7 is proved. �

Proof of Corollary 1.9. It is easy to see that

2n4 + (8δ− 12)n2 + 6δ2− 2δ +
1
6
= 2n4− (12− 8δ)

(
n2− 3δ2− δ + 1/12

6− 4δ

)
. (2.37)
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If 1≤ δ < 3/2 and n≥
√

(3δ2− δ + 1/12)/(6− 4δ), from (2.32), it is deduced that

1
tn
− 1
tn+1

≥ 1
n3

. (2.38)

By the same argument as mentiond above, when m≥
√

(3δ2− δ + 1/12)/(6− 4δ)− 1, in-
equality

1
tm+1

= 1
2m2 + 2m+ 1− 1/6

(
m2 +m+ δ

) >
∞∑

n=m+1

1
n3

(2.39)

is obtained, which is equivalent to (1.11). The proof of Corollary 1.9 is complete. �
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[30] T. K. Pogány, H. M. Srivastava, and Ž. Tomovski, “Some families of Mathieu a-series and al-
ternating Mathieu a-series,” Applied Mathematics and Computation, vol. 173, no. 1, pp. 69–108,
2006.
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