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1. Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin
in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms.

We are given a group G and a metric group G’ with metric p(-,-). Given € >0, does
there exist a § >0 such that if f : G — G’ satisfies p(f(xy), f(x) f(y)) <d forallx,y € G,
then a homomorphism /i : G — G’ exists with p(f(x),h(x)) < € for all x € G?

In 1941, Hyers [2] considered the case of approximately additive mappings f : E — E’,
where E and E’ are Banach spaces and f satisfies Hyers inequality

Ifx+y)—fx) - fll<e (1.1)

for all x, y € E. It was shown that the limit L(x) = lim,_ (f(2"x)/2") exists for all x € E
and that L: E — E’ is the unique additive mapping satisfying

IIf (x) = L(x)|| < e. (1.2)

In 1978, Rassias [3] provided a generalization of Hyers’ theorem which allows the
Cauchy difference to be unbounded.
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Let f: E — E’ be a mapping from a normed vector space E into a Banach space E’
subject to the inequality

IfGe+y) = fx) = DIl < ellxll? + Ml yl17) (1.3)

for all x, y € E, where € and p are constants with € >0 and p < 1.
Then, the limit L(x) = lim,—o(f(2"x)/2") exists for all x € E and L: E — E’ is the
unique additive mapping which satisfies

2€

1f G = L)l = 555 I (1.4)

for all x € E. If p < 0, then inequality (1.3) holds for x, y # 0 and (1.4) for x # 0.

In 1991, Gajda [4], following the same approach as in Rassias [3], gave an affirmative
solution to this question for p > 1. It was shown by Gajda [4] as well as by Rassias and
Semrl [5] that one cannot prove a Rassias-type theorem when p = 1. Inequality (1.3)
that was introduced for the first time by Rassias [3] provided a lot of influence in the
development of a generalization of the Hyers-Ulam stability concept. This new concept
of stability is known as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability
of functional equations (cf. the books of Czerwik [6], Hyers et al. [7]).

Gavruta [8] provided a further generalization of Rassias’ theorem. During the last two
decades, a number of papers and research monographs have been published on various
generalizations and applications of the generalized Hyers-Ulam stability to a number of
functional equations and mappings (see [9-14]).

Gilanyi [15] and Rtz [16] showed that if f satisfies the functional inequality

12f ) +2f () = f ey DIl < [ f el (1.5)

then f satisfies the Jordan-von Neumann functional equation
2f(x)+2f(y) = fxy) + f(xy~"). (1.6)
Gilanyi [17] and Fechner [18] proved the generalized Hyers-Ulam stability of the func-

tional inequality (1.3).
Now, we consider the following functional inequalities:

e

F@+ for+2f @ < 27 (57 +2)

522 seas

'+¢>(x,y,2), (1.7)

+¢(x,9,2), (1.8)

which are associated with Jordan-von Neumann-type Cauchy-Jensen additive functional
equations.

The purpose of this paper is to prove that if f satisfies one of the inequalities (1.7)
and (1.8) which satisfies certain conditions, then we can find a Cauchy-Jensen additive
mapping near f, and thus we prove the generalized Hyers-Ulam stability of the functional
inequalities (1.7) and (1.8).
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2. Stability of functional inequality (1.7)

We prove the generalized Hyers-Ulam stability of a functional inequality (1.7) associated
with a Jordan-von Neumann-type 3-variable Cauchy-Jensen additive functional equa-
tion. Throughout this paper, let G be a normed vector space and Y a Banach space.

<[r(%57+)

Proof. Letting x, y,z:=01n (2.1), we get |4/ (0)]l < | f(0)Il. So, f(O)

And by setting y := —x and z:= 0 in (2.1), we get || f(x) + f(—x)[l < ||f 0)]| = 0 for
all x € G. Hence, f(-x) = —f(x) forallx € G.

Also by letting x := 0, y :=2x, and z:= —x in (2.1), we get [| f(2x) +2f(—x)|l <
12 (0)[l = 0 for all x € G. Thus, f(2x) = 2f(x) forall x € G.

Letting z = (—x — y)/2 in (2.1), we get

LemMa 2.1. Let f: G — Y be a mapping such that

(52 -2) +rm+2f@ | @)

forallx,y,z € G. Then, f is Cauchy-Jensen additive.

Hf<x;y x+)’)+f(y +2f< )H<I|f 0)l=0 (2.2)

forallx,y € G. Thus, f(x+y) = f(x)+ f(y) forall x, y € G, as desired. g

THEOREM 2.2. Assume that a mapping f : G — Y satisfies the inequality

Hf(% —z) +f(y)+2f(2)|| = Hf(HTy +z> '+¢(x,y,z) (2.3)
and that the map ¢ : GX G X G — [0, 00) satisfies the condition
D(x,y,2): Z J¢<3—] '3 3%) < 00 (2.4)

for all x,y,z € G. Then, there exists a unique Cauchy-Jensen additive mapping A: G — Y
such that

X x\ 3. _(xx X
) - Fll <o - S-5 ) +50(55,-F) 25)
forallx € G.
Proof. Letting y := x and z:= —x in (2.3), we get
[12f (%) +2f (=x)[] < p(x,x, =) + | £(O)]] (2.6)

for all x € G. And by letting x := —x, y := 3x, and z:= —x in (2.3), we get

[13f (=) + f(3x)]| < p(—x,3x,—x) + || f(0)]] (2.7)
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for all x € G. It follows from (2.6) and (2.7) that
3 5
[|f(3x) =3 f(x)|| < ¢(—x,3x,—x) + E([)(x,x, —x) + §||f(0)|| (2.8)

Also letting x, ¥,z := 0 in (2.3), we get 3| f(0) || < ¢(0,0,0) = 0. Hence, we have f(0) =
Now, it follows from (2.8) that for all nonnegative integers m and [ with m >

r(5) -G )l= Slr(35) -5 (50|

X X 3 X X X
] = b A A
= 23 [ ( 3]+1’3] 3j+1>+2 <3j+1’3j+1’ 3j+1>]

(2.9)

for all x € G. It means that a sequence {3" f(x/3")} is a Cauchy sequence for all x € G.
Since Y is complete, the sequence {3" f (x/3")} converges. So, one can define a mapping
A:G— Y byA(x):=lim,_«3"f(x/3") for all x € G. Moreover, letting / = 0 and passing
the limit m — oo in (2.9), we get the approximation (2.5) of f by A.

Next, we claim that the mapping A : G — Y is Cauchy-Jensen additive. In fact, it follows

easily from (2.3) and condition of ¢ that
5 (727 -9) o (3) 2 (5]
f<3” ( 2 3n 3n
x

(57555

(3249

=

= hm 3"

HA(%—Z)MQ)HA(Z)

< lim 3”[

n—oo

(2.10)

Thus, the mapping A : G — Y is Cauchy-Jensen additive by Lemma 2.1.
Now, let T : G — Y be another Cauchy-Jensen additive mapping satisfying (2.5). Then
we obtain

IAGx) = T()|

3
X X X X
(@) ) )
(5)-r Gl -5
X X X 3 X X X
= S 3ey ~ 3egen ) Y2\ G 3 T 3

_ X X x N 3.(x x _ X%
3j+1’3j’ 3j+1 2¢ 3j+1’3j+1’ 3j+1 ’

(2.11)
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which tends to zero as n — 0. So, we can conclude that A(x) = T(x) for all x € G. This
proves the uniqueness of A. Hence, the mapping A : G — Y is a unique Cauchy-Jensen
additive mapping satisfying (2.5). O

THEOREM 2.3. Assume that a mapping f : G — Y satisfies inequality (2.3) and that the map
¢:GX GX G — [0,00) satisfies the condition

¢(3/x,37y,3/z) < (2.12)

w|,_.

Xy, z

forallx,y,z € G.
Then, there exists a unique Cauchy-Jensen additive mapping A : G — Y such that

IAG) = F ]| = 30(-25%,-x) + 3065, —0) + 2| fO)] (2.13)

forallx € G.

Proof. We get by (2.8)

|53 - 57 67|

SF30) 5 ()

3Jx

oo ot

—

m—
<

2.5 [(/)( —30x,3/ %, ~3/x) + §¢(3jx, 3ix,-3/x) + §||f(o)||]
(2.14)

for all nonnegative integers m and [ with m >/ and all x € G. It means that a sequence
{(1/3")f(3"x)} is a Cauchy sequence for all x € G. Since Y is complete, the sequence
{(1/3™") f(3"x)} converges. So, one can define a mapping A : G — Y by A(x) := lim, . (1/
3") f(3"x) for all x € G. Moreover, letting [ = 0 and passing the limit m — oo in (2.14), we
get (2.13).

The remaining proof goes through by the similar argument to Theorem 2.2. O

THEOREM 2.4. Assume that a mapping f : G — Y satisfies inequality (2.3) and that the map
¢:GX GX G — [0,00) satisfies the condition

hm3"¢>(— ’a 3) -0 (2.15)

n—oco > 3n



6  Abstract and Applied Analysis

for all x,y,z € G. If there exists a number L with 0 < L <1 such that the mapping x —
= ¢(—x,3x,—x) + (3/2)p(x, x, —x) satisfies

Y0 < Ty, 2.16)

then there exists a unique Cauchy-Jensen additive mapping A : G — Y such that

L v (x)
£ @) = AN < 57— (2.17)
forallx € G.
Proof. We get by (2.8)
[[f(3x) =3f(x)|| < w(x) = ¢(—x,3x,—x) + %(/)(x,x, —x) (2.18)
for all x € G. Hence, we get
X el X - . X N
e(5) - G )l= Slbr(3) o550
(2.19)

-1

ELEREEANE

for all nonnegative integers m and [ with m > and all x € G. It means that a sequence
{3" f(x/3")} is a Cauchy sequence for all x € G. Since Y is complete, the sequence {3" f (x/
3")} converges. So, one can define a mapping A : G — Y by A(x) := lim,_« 3" f (x/3") for
all x € G. Moreover, letting I = 0 and passing the limit m — oo in (2.19), we get (2.17).
The remaining proof goes through by the similar argument to Theorem 2.2. O

COROLLARY 2.5. Assume that there exist nonnegative numbers 0 and a real p > 1 such that
a mapping f : G — Y satisfies the inequality

X — X+
(552 -2) +r+ar@| < |[r (552 +2) | +0txie 4 1y1e 121 2.20)
forallx,y,z € G.

Then, there exists a unique Cauchy-Jensen additive mapping A : G — Y such that

0(13+2-3P)

2ot 3 I’ (2.21)

1f(x) - AW)]| =

forallx € G.
THEOREM 2.6. Assume that a mapping f : G — Y satisfies inequality (2.3) and that the map
¢:GX GX G — [0,00) satisfies the condition

hm (,b( "x,3"y,3"z) =0 (2.22)

nﬁoo
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for all x,y,z € G. If there exists a number L with 0 < L <1 such that the mapping x —
= ¢(—x,3x,—x) + (3/2)p(x,x, —x) satisfies

v(3x) <3L- y(x), (2.23)

then there exists a unique Cauchy-Jensen additive mappingA : G = Y such that

1/ () = Al = 3(1 —||f<0 il (2.24)

forallx € G.
Proof. We get by (2.8)

1

SFO%) - 5 F(77)
St [y 21170 2.25)

]l
=3[P 2 irol]

for all nonnegative integers m and [ with m > and all x € G. It means that a sequence
{(1/3") f(3"x)} is a Cauchy sequence for all x € G. Since Y is complete, the sequence
{(1/3™) f(3"x)} converges. So, one can define a mapping A : G — Y by A(x) := lim, . (1/
3") f(3"x) for all x € G. Moreover, letting [ = 0 and passing the limit m — oo in (2.25), we
get (2.24).

The remaining proof goes through by the similar argument to Theorem 2.3. O

COROLLARY 2.7. Assume that there exist nonnegative numbers 0, 8, and a real p < 1 such
that a mapping f : G — Y satisfies the inequality

J(*

forallx,y,z € G.
Then, there exists a unique Cauchy-Jensen additive mapping A : G — Y such that

)+ s ar@||<|r (552 +2) ||+ o0l 4 1y1e 4 1200) 45
(2.26)

() - AG)|| < "““2'3";|(ﬂf’3:;'>8+5||f<o>||

(2.27)

forallx € G.

3. Stability of functional inequality (1.8)

We prove the generalized Hyers-Ulam stability of a functional inequality (1.8) associated
with a Jordan-von Neumann-type 3-variable Cauchy-Jensen additive functional equa-
tion.
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THEOREM 3.1. Assume that a mapping f : G — Y satisfies the inequality

IfGo)+fn+2f(2)| < HH(HT}/ +Z> +¢(x,,2)

and that the map ¢ : GX G X G — [0, c0) satisfies the conditions
(1) p(x) i= 5.54(1/27 1) [$(~27%1x,0,27) + 1 (2771 x)] < oo,
(2) limy—.e (1/2")$(2"x,2"y,2"z) = 0 for all x, y,z € G,
where

$1(x) = min{(p(x, —x,0) +4]|£0)]| %(p(x,x, )+ |<f(0)||}.

Then, there exists a unique Cauchy-Jensen additive mapping A : G — Y such that

[[A(x) — f(x)]] = p(x)

forallx € G.

Proof. Letting x, y,z:=01n (3.1), we get || f(0)]l < (1/2)¢(0,0,0).
And by setting x := 2x, y := 0, and z:= —x in (3.1), we get

|1 2x) +2f(=x)| < 3] f(0)[| + $(2x,0,~x)

forall x € G.

(3.1)

(3.2)

(3.3)

(3.4)

Also by letting y := —x and z := 0 or by letting y := x and z:= —x in (3.1), we get

1)+ £ (=]l = 916) = min | 9,=,0) + 4] F O] 3¢, —0)+ L FO)] ]

for all x € G. Hence, we get by (3.4) and (3.5)

[¢(=27"1x,0,27x) +¢1 (27" x) ]

(3.5)

jlﬂ f(- Zf*lx)H " H 2jl+1 @)+ ﬁf( - szx)H]

(3.6)
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for all nonnegative integers m and [ with m > and all x € G. It means that a sequence
{(1/2") f(2"x)} is a Cauchy sequence for all x € G. Since Y is complete, the sequence
{(1/2") f(2"x)} converges. So, one can define a mapping A : G — Y by A(x) := lim,— (1/
2") f(2"x) for all x € G. Moreover, letting | = 0 and passing the limit m — oo in (3.6), we
get (3.3).

The remaining proof is similar to that of Theorem 2.3. O

THEOREM 3.2. Assume that a mapping f : G — Y satisfies inequality (3.1) and that the map
¢ : GX GX G — [0,00) satisfies the conditions

(1) p(x) := X027 §(x/27,0,—x/27+1) + 27+ ¢y (x/21) < o0,

(2) limy—.e 2"Pp(x/2", y/2",2/2") = O for all x, y,z € G,
where

¢2(x) := min {(/)(x, —x,0), %(,b(x,x, —x)}. (3.7)
Then, there exists a unique Cauchy-Jensen additive mapping A : G — Y such that

|A(x) = f(x)]| < p(x) (3.8)

forallx € G.
Proof. Letting x, y,z:=01n (3.1), we get || f(0) | = (1/2)¢(0,0,0) = 0. So f(0) = 0.

Now, it follows from (3.4) and (3.5) that for all nonnegative integers m and [ with
m >,

() -G

Sr(3) ()

|
= S{pr () s (- )l (= 5i) 20 ()]

X

. X il X
276 (50~ 57 ) 2" ¢z(2,-+1)]

3
L

—
Il

A
3

-
I

(3.9)

for all x € G. It means that a sequence {2" f(x/2")} is a Cauchy sequence for all x € G.
Since Y is complete, the sequence {2" f(x/2")} converges. So, one can define a mapping
A:G— Y by A(x) :=lim,— 2" f(x/2") for all x € G. Moreover, letting [ = 0 and passing
the limit m — oo in (3.9), we get (3.8).

The rest of proof is similar to that of Theorem 2.2. O
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Remark 3.3. Assume that a mapping f : G — Y satisfies inequality (3.1) and that the map
¢:GXGXG— [0,00) satisfies the conditions

(1) p(x) := X 72(172772) [¢(=27%"%,0,27x) + $(27x,0, =2/ x)] < o0,

(2) limy—.o (1/2")$(2"x,2"y,2"z) = 0 for all x, y,z € G.
Then, there exists a unique Cauchy-Jensen additive mapping L : G — Y such that

e - L=

x) +3|[£(0)]] (3.10)

forall x € G.

Proof. Let g(x) := (f(x) — f(—x))/2. Then, we get by (3.4)

[12g(x) — g(2x)[| <

‘ (x)+ %f(—Zx) n Hf(—x) n %f(Zx)H

X (3.11)
=< 5 [$(=2%,0,2) + $(2x,0,—x)] + 3{ | f (O)]]

for all x € G. Hence, we get by (3.11)

H%g(w e @)

m—

= Z 21 [HZg (1) -¢ 2j+1x)m (3.12)

1 .
ng ij 2j+]g(2]+1x)

¢(=2/"1x,0,27x) +¢(2/"1x,0,-27x) +6|| f(O)]l]

for all nonnegative integers m and [ with m > and all x € G. It means that a sequence
{(1/2")g(2"x)} is a Cauchy sequence for all x € G. So, one can define a mapping L: G —
Y by L(x) := lim, .o (1/2")g(2"x) = lim, . (1/2")[( f(2"x) — f(—2"x))/2] for all x € G.
Moreover, letting I = 0 and passing the limit m — o in (3.12), we get (3.10). Next, we
claim that the mapping L: G — Y is a Cauchy-Jensen additive mapping. Note that
L(—x) = —L(x) because g(—x) = —g(x). Then

IL(x) +L(y) = L(x + )| = lim 2—1,1||g(2”x) +8(2"y) —g(2"x+y)l|, (3.13)
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and so we obtain by (3.1) and (3.4),

2flnllg(2”x) +g(2"y) +g(2"(—x - y))||

= %”f(z"ﬂ +f(2ny)+2f 2 (=x - p)]

ol = F(=2%) = F(=2%) ~2f (@ e+ )|

il =2f @ x= ) - @ )

ol @ xm ) 12 (27 et )|

+

[6(27x,2"y,2" N (—x — y)) + ¢ (—2"x,—2"y,2" N (x+ y)) +4|| £ (0)][]

<
T on+l

[[60)][+¢(—2"(x+),0,2" (x+y)) + (2" (x+»),0, 2" (x + y)) ],
(3.14)

+

1
on+l

which tends to zero as n — oo for all x € G. Hence, we see that L is additive.
The remaining proof is similar to the corresponding part of Theorem 2.3. O

Remark 3.4. Assume that a mapping f : G — X satisfies inequality (3.1) and that the map
¢:GXGXG— [0,00) satisfies the conditions

(1) p(x) := X702 p(=x/27,0,x/27%) + $(x/27,0, —x/27*1)] < o0,

(2) limy—.e 2"Pp(x/2", y/2",2/2") = 0 for all x, y,z € G.
Then, there exists a unique Cauchy-Jensen additive mapping L : G — Y such that

(x) — f(~x)
2

HL(x) i H < p(x) (3.15)

forall x € G.

Proof. Letting x,y,z:=01n (3.1), we get || f(0)[l < (1/2)¢(0,0,0) = 0. So f(0) = 0.
Let g(x) := (f(x) — f(=x))/2. Then, we get by (3.4)

ll2g(x) - g(2x)|| < Hf(x) + %f(—Zx) + Hf(—x) + %f(Zx)H

1 (3.16)
< 5 [9(=2x,0,%) +¢(2x,0,-x)]
for all x € G. Hence, we get by (3.16)
m—1
X m X ; X . X
Pe(G) o5l < Z[e(3) -2 e(55)|
. (3.17)

m—1

g X g X X _x>]
S-zzz [(’5( 2/"0’2J'+1>+¢<2J’0’ 2i+1
P
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for all nonnegative integers m and [ with m > [ and all x € G. It means that the sequence
{2"g(x/2")} is a Cauchy sequence for all x € G. So, one can define a mapping L: G — Y by
L(x) := lim,— o 2"g(x/2") = lim,— 2" [(f (x/2") — f(=x/2"))/2] for all x € G. Moreover,
letting / = 0 and passing the limit m — oo in (3.17), we get (3.15).

Next, we claim that the mapping L : G — Y is a Cauchy-Jensen additive mapping. Note
that L(—x) = —L(x) because g(—x) = —g(x). So, we obtain by (3.1) and (3.4)

[ILGx) + L(y) = L(x+ y)|

~tim2o(5) +2(5) -¢(57)|
= lim 2" g(;—n)m(zy—n)%(_};n_y)“
< 5[ (5)+1(3) 2 (52))
-G - -2 )
3 (52) ) o2

. anel X y —x-y —x —y x+y
= im?2 [¢(2727 ontl >+¢<2_"’?’2"+1>]

+lim2”’1[¢<x;y,0, _x_y)+¢(_x_y,o,x+y>] -0

nooo on+l on on+l
(3.18)
from the condition of ¢. So, we have L(x+ y) = L(x) + L(y).
The remaining proof is similar to that of Theorem 2.2. O
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