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We survey recent results on the structure of the range of the derivative of a smooth map-
ping f between two Banach spaces X and Y . We recall some necessary conditions and
some sufficient conditions on a subsetA of �(X ,Y) for the existence of a Fréchet differen-
tiable mapping f from X into Y so that f ′(X)= A. Whenever f is only assumed Gâteaux
differentiable, new phenomena appear: for instance, there exists a mapping f from �1(N)
intoR2, which is bounded, Lipschitz-continuous, and so that for all x, y ∈ �1(N), if x �= y,
then ‖ f ′(x)− f ′(y)‖ > 1.

1. Introduction

The purpose of this work is to survey recent results obtained on the structure of the
set of derivatives of a smooth function. Let X ,Y be separable Banach spaces such that
dim(X)≥ 1 and let f : X → Y be a mapping differentiable (in a sense to be specified later)
at every point of X . We are interested in the structure of the range of the derivative of f ,
that is, in the set f ′(X) = { f ′(x); x ∈ X} ⊂�(X ,Y). Several notions of differentiability
can be considered. We say that f is Gâteaux differentiable at x ∈ X provided that there
exists T ∈�(X ,Y) such that for each h∈ X ,

lim
t→0

f (x+ th)− f (x)
t

= T(h), (1.1)

T is called the Gâteaux derivative of f at x and is denoted T = f ′(x). We say that f is
Fréchet differentiable at x ∈ X provided that there exists T ∈�(X ,Y) such that for each
h∈ X ,

lim
‖h‖→0

f (x+h)− f (x)−T(h)
‖h‖ = 0, (1.2)

T is called the Fréchet derivative of f at x and is denoted T = f ′(x). We are interested in
the following questions.

(i) What are the topological properties of the set f ′(X)?
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(ii) For which sets A ⊂�(X ,Y) does there exist a smooth mapping f : X → Y such
that A = f ′(X)? Smoothness of f may have several meanings: �1 mapping, everywhere
Fréchet differentiable mapping, everywhere Gâteaux differentiable mapping, and every-
where Fréchet differentiable mapping with Lipschitz continuous derivative. How does the
notion of smoothness affect the answer to the above question?

(iii) What is the interplay between the geometry of the Banach spaces X and Y and
the structure of the set f ′(X)? In particular, what additional properties of sets of the form
f ′(X) can be derived when Y =R?

(iv) What additional properties can be obtained when f has a nonempty bounded
support (we then say that f is a bump function)?

We will see in Section 2 necessary conditions on a set A ⊂ X∗ so that there exists a
smooth function f from X into R such that A = f ′(X). These necessary conditions de-
pend on the kind of smoothness considered, and on the fact that X is finite or infinite
dimensional. We will give sufficient conditions so that there exists a �1 function f from
X into R such that A= f ′(X).

We present two results on the connectedness of f ′(X) in Section 3 for real-valued
functions. Easy counterexamples show that there is no hope of extending these results to
mappings from a Banach space X to a Banach space Y of dimension greater than 1.

We will present in Sections 4 and 5 phenomena which can occur when f is Gâteaux
differentiable, but not when f is Fréchet differentiable, and which are detailed in [7]. In
particular, for each infinite-dimensional separable Banach space X , we will construct in
Section 4 a Gâteaux differentiable function f on X , with bounded support, and such that
for all x �= 0, ‖ f ′(x)− f ′(0)‖ ≥ 1. However, given a Lipschitz and Gâteaux differentiable
function f from an arbitrary Banach space X into R, one can find, for every ε > 0, two
points x, y ∈ X such that ‖ f ′(x)− f ′(y)‖ is less than ε. And if moreover f has bounded
nonempty support, then f ′(X) contains a norm neighborhood of 0 in X∗. In Section 5,
we will consider the following question. Let X , Y be two Banach spaces. Is it possible
to construct a Lipschitz continuous mapping f : X → Y , Gâteaux differentiable at each
point, and such that, for all x, y ∈ X , x �= y, we have ‖ f ′(x)− f ′(y)‖ ≥ 1? Clearly, this is
not possible whenever �(X ,Y) is separable. We will prove that this is not possible either
whenever Y =R, but such a construction will be carried out whenever (X ,Y)= (�1,R2)
and whenever (X ,Y)= (�p,�q) with 1≤ p ≤ q < +∞.

2. Sets which are the ranges of a derivative

We are interested here in the study of the set

�= { f ′(X); f is a �1-bump on X
}
. (2.1)

Observe that if X is separable with nonseparable dual, then there is no �1-smooth bump
on X . So we will study � only for spaces with separable duals.

Elements of � can be very small: it follows from [12] that if f is a function on c0 with
locally uniformly continuous derivative, then f ′(c0) is included in a countable union of
norm compact subsets of �1. In particular, the norm-interior of f ′(c0) is empty in �1.
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In [3], Azagra and Jiménez-Sevilla constructed an example of a �1-smooth function on
�2 so that the norm interior of f ′(�2) is empty in �2.

Elements of � can be very large: it was noticed in [1] that whenever X is an infinite-
dimensional Banach space with separable dual, there exists a �1-smooth real-valued func-
tion on X with bounded support and such that f ′(X) = X∗. On the other hand, it was
observed in [4] that if X and Y are separable Banach spaces and if X is infinite dimen-
sional, one can always find a Gâteaux differentiable function f : X → Y such that f ′(X)
coincides with �(X ,Y).

We recall that sufficient conditions on a subset A of a dual Banach space X∗ so that it
is the range of the derivative of a real-valued function on X which is Fréchet differentiable
at each point have been obtained in [2, 5, 6, 10]. We recall here the results of [2].

In order to study � in finite-dimensional Banach spaces, we first introduce some def-
initions. Let A⊂ X∗ be arcwise connected, and let x, y ∈ A. We define a distance in A by
the following formula:

dA(x, y)= inf
{

diam
(
γ
(
[0,1]

))
;γ : [0,1]−→ A continuous, γ(0)= x, γ(1)= y

}
,

(2.2)

and a measure of precompactness of A for the distance dA is defined by the following
indices:

rn(A)= sup
(y1,y2,...,yn)∈An

{
inf
{
dA
(
yi, yj

)
;1≤ i < j ≤ n

}}
. (2.3)

It is easy to see that whenever X is finite dimensional, an element of � is compact, arc-
wise connected, and 0 lies in its interior. Azagra, Fabian, and Jiménez-Sevilla proved the
following theorem.

Theorem 2.1. Let X be a finite-dimensional Banach space, and let U ⊂ X∗ be open,
bounded, and connected such that 0∈U . Then,

lim
n
rn(U)= 0=⇒U ∈�=⇒ lim

n
rn(U)= 0. (2.4)

The structure of � for infinite-dimensional Banach spaces has been investigated by [2],
and then improved in [9]. Recall that a metric space A is said to be analytic if there exists a
mapping ϕ :NN→ A which is continuous and onto. Whenever X is infinite dimensional,
an element of � is analytic, arcwise connected, and 0 lies in the interior of its norm
closure.

Theorem 2.2. Let X be an infinite-dimensional Banach space with separable dual, and let
U ⊂ X∗ be open and connected such that 0∈U . Let A be an analytic subset of X∗ such that
U ⊂A⊂U . Consider the following assertions:

(1) for all x ∈ A, there exists γ : [0,1]→ A continuous, such that γ(0)= 0, γ(1)= x, and
γ([0,1[)⊂U ,

(2) A∈�,
(3) for all x ∈A, there exists γ : [0,1]→ A continuous, such that γ(0)= 0 and γ(1)= x.

Then (1)⇒(2)⇒(3).
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The structure of the range of f ′ whenever f ′ is Lipschitz continuous has been investi-
gated in [11]. We denote

�1 =
{
f ′(X); f is a �1,1-bump on X

}
. (2.5)

Note that the existence of a �1,1-smooth bump on X is a strong condition on X . It implies
that X is superreflexive. This condition is satisfied for instance in Lp spaces for 2 ≤ p <
+∞.

The conditionA∈�1 is very restrictive in finite dimensions, as shown by the following
necessary condition obtained by Gaspari. We first introduce some definitions. Let A⊂ X∗

be arcwise connected, and let x, y ∈ A. We define a distance in A by the following formula:

δA(x, y)= inf
{

length
(
γ
(
[0,1]

))
;γ : [0,1]−→ A continuous, γ(0)= x, γ(1)= y

}
,
(2.6)

and a measure of precompactness of A for the distance δA is defined by the following
indices:

�n(A)= sup
(y1,y2,...,yn)∈An

{
inf
{
δA
(
yi, yj

)
;1≤ i < j ≤ n

}}
. (2.7)

Proposition 2.3. Assume that dim(X) = d < +∞ and that A ∈ �1, then the sequence
(n1/d�n(A)) is bounded.

We now give a sufficient condition on a set A so that A∈�1. We say that a subset A of
X∗ is star shaped if for every y∗ ∈ A, [0, y∗]⊂ A. We say that A is uniformly star shaped
if there exists γ > 0 such that for every y∗ ∈A, conv(γBX∗ ∪{y∗})⊂ A. Gaspari observed
in [11] that there exists a compact star shaped subset of Rd such that 0 is in the interior
of K and K /∈�1, and there exists a bounded open star shaped subset A of the separable
infinite-dimensional Hilbert space so that A /∈ �1. However, he obtained the following
theorem.

Theorem 2.4. Assume that X is an infinite-dimensional Banach space so that there exists a
�1,1-smooth bump function on X . If U ⊂ X∗ is open, bounded, and uniformly star shaped,
then U ∈�1.

3. Is the range of f ′ connected?

Whenever f : X →R is everywhere Fréchet differentiable, this question was answered by
J. Malý in 1996.

Theorem 3.1. If X is a Banach space and f : X →R is Fréchet differentiable at every point,
then the set f ′(X) is connected in (X∗,‖ · ‖).

There exists a mapping f from R2 into R2, Fréchet differentiable at each point, and
so that the cardinal of {det( f ′(x)); x ∈ R2} is 2. Therefore f ′(R2) is not connected.
Consequently, there is no analog of Malý’s theorem for vector-valued mappings. Such
an example was communicated to us by J. Saint-Raymond: take f (x, y)= (x2√y cos1/x3,
x2√y sin1/x3) whenever (x, y) �=(0,0) and f (0,0)=(0,0). In this case, we have {det( f ′(x));
x ∈R2} = {0,3/2}.



Robert Deville 503

Whenever f is assumed to be Gâteaux differentiable, the following result was obtained
by R. Deville and P. Hajek.

Proposition 3.2. Let X be an infinite-dimensional Banach space, and let f be a real-valued
locally Lipschitz and Gâteaux differentiable function on X . Then either f is affine or f ′(X)
has no w∗-isolated points.

This result was improved by Mátrai who recently obtained it in [13].

Proposition 3.3. Let X be a separable Banach space, and let f be a real-valued locally
Lipschitz and Gâteaux differentiable function on X . Then f ′(X) is connected in (X∗,w∗).

4. Isolated points in the range of the derivative of a function

From now on, we say that a real-valued function on an infinite-dimensional Banach space
X is a bump function if it has bounded nonempty support. We will denote by B(r) the set
of all x∗ ∈ X∗ such that ‖x∗‖ < r. If X is a Banach space, x ∈ X , and r > 0, we denote by
BX(x,r) (resp., BX(x,r)) the open ball (resp., closed ball) in X of center x and radius r.

Proposition 4.1. If f is a continuous and Gâteaux differentiable bump function on X , then
the norm closure of f ′(X) contains a ball B(r) for some r > 0.

Proof. The ranges of the derivative of f and of the function a f ((·− x0)/a) are the same.
So, there is no loss of generality if we assume that f (0) �= 0 and the support of f is con-
tained in the unit ball. Furthermore, if the conclusion of the proposition holds for f ,
it also holds for − f . So we can assume that f (0) < 0. Let g ∈ X∗ be such that ‖g‖ <
− f (0), fix ε arbitrary such that 0 < ε < − f (0)− ‖g‖, and define ϕ(x) = f (x)− g(x) if
x ≤ 1 and ϕ(x) = +∞ otherwise. According to the Ekeland variational principle, there
exists x0 such that ϕ(x) ≥ ϕ(x0)− ε‖x− x0‖. We have ‖x0‖ < 1, otherwise ‖x0‖ = 1 and
ϕ(0) = f (0) ≥ ϕ(x0)− ε‖x0‖ ≥ ‖g‖− ε, a contradiction with the choice of ε. Therefore
‖ϕ′(x0)‖ = ‖ f ′(x0)− g‖ ≤ ε. This shows that the norm closure of f ′(X) contains the ball
B(− f (0)). �

In view of the above proposition, a natural conjecture would be that the norm closure
of f ′(X) is norm connected, or at least that f ′(X) does not contain an isolated point.
This is not so as shown by the following construction.

Theorem 4.2. Let X be an infinite-dimensional separable Banach space. Then, there exists
a bump function f on X such that f is Gâteaux differentiable at every point, f ′ is norm-to-
weak∗ continuous, and ‖ f ′(0)− f ′(x)‖ ≥ 1 whenever x �= 0. If X∗ is separable, it can be
assumed that f is �1 on X \ {0}.
Remark 4.3. According to the above discussion, 0 is not an isolated point of f ′(X), so
necessarily f ′(0) �= 0.

Proof. The theorem is proved using the following two lemmas.

Lemma 4.4. Let X be a Banach space, let U be an open connected subset of X∗ such that
0 ∈ U and x∗ ∈ U . Assume that there exists on X a Lipschitz continuous bump function
which is Gâteaux differentiable (resp., Fréchet differentiable) at every point. Then there exists
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a Lipschitz continuous bump function β on X with support contained in the unit ball, which
is Gâteaux differentiable (resp., Fréchet differentiable) at every point, such that β′(X) ⊂ U
and β′(x)= x∗ for all x in a neighborhood of 0.

Lemma 4.5. Let X ,Y be two Banach spaces, a∈ X , let V be an open neighborhood of a, and
let f : V → Y be continuous on V and Gâteaux differentiable at every point of V \ {a}. If
f ′(x) has a limit � in �(X ,Y) endowed with the strong operator topology as x tends to a,
then f is Gâteaux differentiable at a and f ′(a)= �.

Sketch of proof of Theorem 4.2. Let a∗∈X∗ such that 1 < ‖a∗‖ < 2. It is possible to con-
struct (Wn)n≥0, a decreasing sequence of norm open, norm connected, and weak∗ open
subsets so that

(1) if y∗n ∈Wn and if (y∗n ) is bounded, then (y∗n ) converges to a∗ for the weak∗

topology,
(2) for every n and every x ∈Wn, ‖x− a∗‖ > 1.

Let (x∗n ) ⊂ X∗ be a sequence such that x∗1 = 0 and for every n, x∗n ∈Wn. Since X is
separable (resp., X∗ is separable), there exists on X a Lipschitz continuous bump function
which is Gâteaux differentiable (resp., Fréchet differentiable) at each point. According to
Lemma 4.4, there exists a Lipschitz continuous bump bn which is Gâteaux differentiable
(resp., Fréchet differentiable) at every point, such that b′n(X)⊂Wn− x∗n , with support in
the unit ball and such that b′n(x) = x∗n+1− x∗n for all x satisfying ‖x‖ < δn. Denote c1 = 1
and for n≥ 2, cn =

∏n−1
i=1 δn. Define

b(x)=
+∞∑
n=1

cnbn

(
x

cn

)
, (4.1)

b is Gâteaux differentiable at each point of X \ {0}, and its support is contained in the unit

ball. By construction, b′(X \ {0})⊂ X∗ \B(a∗,1), and b′(x)
w∗−−→ a∗ as x→ 0. Lemma 4.5

then shows that b is Gâteaux differentiable at 0 and that b′(0)= a∗. �

5. Can all the derivatives be far away from each other?

The aim of this section is to investigate the following question: if X , Y are Banach spaces,
is it possible to construct a mapping f : X → Y , everywhere differentiable, so that for
every x, y ∈ X , if x �= y, then ‖ f ′(x)− f ′(y)‖ ≥ 1? We first notice that, under mild regu-
larity assumptions, the answer to the above question is negative for real-valued functions.

Proposition 5.1. Let X be a Banach space and let f : X →R be a Lipschitz continuous (or
merely locally uniformly continuous), everywhere Gâteaux differentiable function. Then, for
every x ∈ X and every ε > 0, there exist y,z ∈ BX(x,ε) such that ‖ f ′(y)− f ′(z)‖ ≤ ε.

Idea of proof. Take any h∈ X such that ‖h‖ is small enough, and consider the lower semi-
continuous function defined by ϕ(y)= f (y + h)− f (y). The Ekeland variational princi-
ple then tells us the existence of y ∈ X , not far from x such that ‖ϕ′(y)‖ ≤ ε. Therefore,
if we denote z = y +h, then ‖ f ′(y)− f ′(z)‖ ≤ ε, and y and z are not far from x.

The answer to the above question will also be negative if f is everywhere Fréchet dif-
ferentiable.
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Proposition 5.2. Let X ,Y be separable Banach spaces and let f : X → Y be an everywhere
Fréchet differentiable locally uniformly continuous mapping. Then, for every x ∈ X and ev-
ery ε > 0, there exist y,z ∈ BX(x,ε), y �= z, such that ‖ f ′(y)− f ′(z)‖ ≤ ε.

The answer to the above question will also be negative if �(X ,Y) is separable.

Proposition 5.3. Let X , Y be Banach spaces and let f : X → Y be an everywhere Gâteaux
differentiable function. If �(X ,Y) is separable, then, for every x ∈ X and every ε > 0, there
exist y,z ∈ BX(x,ε) such that ‖ f ′(y)− f ′(z)‖ ≤ ε.

In view of the above propositions, one could believe that whenever X , Y are Ba-
nach spaces (or vector-normed spaces) and f : X → Y is a mapping which is Gâteaux
differentiable at each point of X , then for every ε > 0, there exist y,z ∈ X such that
‖ f ′(y)− f ′(z)‖ ≤ ε. Our next result proves that this is not so.

Theorem 5.4. There exists a Lipschitz mapping F : �1 →R2, Gâteaux differentiable at each
point of �1, such that ‖F′(x)− F′(y)‖�(�1,R2) ≥ 1 whenever x, y ∈ �1, x �= y. Moreover, for
each h∈ �1, x→ F′(x)h is continuous from �1 into R2.

We will construct F and G with the properties of Theorem 5.4 using series. We were
inspired by a construction from [8]. We need an auxiliary construction.

Lemma 5.5. Given ∆= (a′,a,b,b′)∈ R4 such that a′ < a < b < b′ and ε > 0, there exists a
�∞-function ϕ= ϕ∆,ε :R2 →R2 such that

(i) |ϕ(x, y)| ≤ ε for all (x, y)∈R2,
(ii) ϕ(x, y)= 0 whenever x /∈ [a′,b′],

(iii) ‖(∂ϕ/∂x)(x, y)‖ ≤ ε for all (x, y)∈R2,
(iv) ‖(∂ϕ/∂y)(x, y)‖ = 1 whenever x ∈ [a,b],
(v) ‖(∂ϕ/∂y)(x, y)‖ ≤ 1 for all (x, y)∈R2,

(vi) if ϕ(x, y)= (ϕ1(x, y),ϕ2(x, y)), then (∂ϕ1/∂y)(x,0)= 1 whenever x ∈ [a,b].

Proof of Lemma 5.5. Let β : R→ R be a �∞-smooth function such that 0 ≤ β(x) ≤ 1 for
all x, β(x) = 0 whenever x /∈ [a′,b′], and β(x) = 1 whenever x ∈ [a,b]. If n ≥ 1 is large
enough, then the function defined by ϕ(x, y) = (β(x)/n)(sin(ny),cos(ny)) satisfies the
desired properties. �

We will also use the following criterion of Gâteaux differentiability of the sum of a
series.

Gâteaux differentiability criterion. Let X and Y be Banach spaces and, for all n, let fn :
X → Y be Gâteaux differentiable mappings. Assume that (

∑
fn) converges pointwise on

X , and that

∀h,

(∑ ∂ fn
∂h

(x)

)
converges uniformly with respect to x. (5.1)

Then the mapping f =∑n≥1 fn is Gâteaux differentiable at every point of X , and for
all x ∈ X , f ′(x) =∑n≥1 f

′
n (x) (where the convergence of the series is in �(X ,Y) for the

strong operator topology).
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The proof of this criterion is elementary and omitted here.

Sketch of proof of Theorem 5.4. Fix an enumeration ∆k = (a′k,ak,bk,b′k), k ∈ N , of all
quadruples of dyadic numbers such that a′k < ak < bk < b′k. Fix mn

k = 2k·3n, ε > 0, and
let εnk be positive real numbers such that

∑∞
n=1

∑∞
k=1 ε

n
k = ε. Define fn,k : �1 →R2 such that

if x = (xi)∈ �1, then

fn,k(x)= ϕ∆k ,εnk

(
xn,xmn

k

)
. (5.2)

fn,k is a �∞ mapping on �1. Define F : �1 →R2 by

F(x)=
∑
n∈N

∑
k∈N

fn,k(x). (5.3)

It is easy to see that F is well defined. One can also check that for all h,

∑
n≥1

sup
x∈X

∥∥∥∥∂ fn∂h
(x)
∥∥∥∥≤ (1 + ε)‖h‖. (5.4)

So, for all h, (
∑

(∂ fn/∂h)(x)) converges uniformly with respect to x. According to the
Gâteaux differentiability criterion, the mapping F is Gâteaux differentiable on �1, and
F is (1 + ε)-Lipschitz-continuous on �1. Finally, the mappings fn,k have been selected in
such a way that if x �= y ∈ �1, then ‖F′(x)−F′(y)‖�(�1,R2) ≥ 1− 2ε. �

Remark 5.6. Note that for p > 1, the dual of �p is separable. Therefore, by Proposition 5.3,
it is not possible to replace �1 by �p (p > 1) in Theorem 5.4. However, there exists a
Lipschitz function H : �2 → �2, Gâteaux differentiable at each point of �2, such that for
every x, y ∈ �2, if x �= y, then

∥∥H′(x)−H′(y)
∥∥

�(�2) ≥ 1. (5.5)

This will follow from the following more general result.

Theorem 5.7. Let Xp = �p if 1≤ p < +∞ and X∞ = c0. Fix 1≤ p, q ≤ +∞. The following
assertions are equivalent.

(1) There exists a Lipschitz continuous mapping H : Xp → Xq, Gâteaux differentiable at
each point of Xp, such that for every x, y ∈ Xp, x �= y, then ‖H′(x)−H′(y)‖�(Xp ,Xq) ≥ 1.

(2) p ≤ q.
(3) �(Xp,Xq) is not separable.

Proof of Theorem 5.7. According to Proposition 5.3 above, (1) implies (3). If p > q, then
by Pitt’s theorem, all operators from Xp to Xq are compact, hence �(Xp,Xq) is separable.
Therefore (3) implies (2). So it remains to prove that (2) implies (1). Assume that p ≤ q
and let (en) be the usual basis of Xp. Let Tk ∈ �(R2,Xq) defined by Tk(x, y) = xe2k +
ye2k+1. Let ∆k, εnk , mn

k , and ϕ∆k ,εnk be defined as in the proof of Theorem 5.4. Let fn,k :
Xp → Xq be such that if x = (xi) ∈ Xp, then fn,k(x) = Tmn

k
◦ ϕ∆k ,εnk (xn,xmn

k
): the function

H : Xp → Xq we are looking for is defined by

H(x)=
∑
n∈N

∑
k∈N

fn,k(x). (5.6)
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As in the proof of Theorem 5.4, H is well defined, Gâteaux differentiable at each point of
Xp, and Lipschitz continuous, and there exists a > 0 such that for every x, y ∈ Xp, if x �= y,
then ‖H′(x)−H′(y)‖�(�p ,�q) ≥ a. �
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[9] M. Fabian, O. F. K. Kalenda, and J. Kolář, Filling analytic sets by the derivatives of C1-smooth
bumps, Proc. Amer. Math. Soc. 133 (2005), no. 1, 295–303.

[10] T. Gaspari, On the range of the derivative of a real-valued function with bounded support, Studia
Math. 153 (2002), no. 1, 81–99.
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