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In the class of scalar type spectral operators in a complex Banach space, a characteriza-
tion of the generators of analytic C0-semigroups in terms of the analytic vectors of the
operators is found.

1. Introduction

Let A be a linear operator in a Banach space X with norm ‖ · ‖,

C∞(A)
def=

∞⋂
n=0

D
(
An
)
, (1.1)

and 0≤ β <∞.
The sets of vectors

�{β}(A)
def= { f ∈ C∞(A) | ∃α > 0, ∃c > 0 :

∥∥An f
∥∥≤ cαn[n!]β, n= 0,1, . . .

}
,

�(β)(A)
def= { f ∈ C∞(A) | ∀α > 0 ∃c > 0 :

∥∥An f
∥∥≤ cαn[n!]β, n= 0,1, . . .

} (1.2)

are called the βth-order Gevrey classes of the operator A of Roumie’s and Beurling’s types,
respectively.

In particular, �{1}(A) and �(1)(A) are, correspondingly, the celebrated classes of ana-
lytic and entire vectors [6, 17].

Obviously,

�(1)(A)⊆�{1}(A). (1.3)

In [7, 8] and later in [19, 20], it was established that, for a selfadjoint nonpositive operator
A in a complex Hilbert space H ,

�(1)(A)=
⋃
t>0

R
(
etA
)
, �{1}(A)=

⋂
t>0

R
(
etA
)
, (1.4)
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where R(·) is the range of an operator, the exponentials understood in the sense of the
operational calculus (o.c.) for normal operators

etA :=
∫

C

etλdEA(λ), t > 0, (1.5)

EA(·) is the operator’s resolution of the identity (see, e.g., [3, 18]).
In [9], it was proved that the second equality in (1.4) holds in a more general case,

namely, when A generates an analytic C0-semigroup {etA | t ≥ 0} in a complex Banach
space X .

Later, in [12], it was demonstrated that, in the class of normal operators in a com-
plex Hilbert space, each of the equalities (1.4) characterizes the generators of the analytic
semigroups.

The purpose of the present paper is to stretch out the results of [12] to the case of
scalar type spectral operators in a complex Banach space.

It is absolutely fair of the reader to anticipate that abandoning the comforts of a Hilbert
space would inevitably require introducing new approaches and techniques.

2. Preliminaries

Henceforth, unless specified otherwise, A is a scalar type spectral operator in a complex
Banach space X with norm ‖ · ‖ and EA(·) is its spectral measure (s.m.) (the resolution of
the identity), the operator’s spectrum σ(A) being the support for the latter [1, 4].

Note that, in a Hilbert space, the scalar type spectral operators are those similar to the
normal ones [21].

For such operators, there has been developed an o.c. for complex-valued Borel measur-
able functions on C [1, 4], F(·) being such a function, a new scalar type spectral operator,

F(A)=
∫

C

F(λ)dEA(λ), (2.1)

is defined as follows:

F(A) f := lim
n→∞Fn(A) f , f ∈D

(
F(A)

)
,

D
(
F(A)

)
:=
{
f ∈ X | lim

n→∞Fn(A) f exists
}

,
(2.2)

D(·) is the domain of an operator, where

Fn(·) := F(·)χ{λ∈C||F(λ)|≤n}(·), n= 1,2, . . . , (2.3)

χα(·) is the characteristic function of a set α, and

Fn(A) :=
∫

C

Fn(λ)dEA(λ), n= 1,2, . . . , (2.4)
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being the integrals of bounded Borel measurable functions on C, are bounded scalar type
spectral operators on X defined in the same manner as for normal operators (see, e.g.,
[3, 18]).

The properties of the s.m., EA(·), and the o.c. underlying the entire subsequent ar-
gument are exhaustively delineated in [1, 4]. We just observe here that, due to its strong
countable additivity, the s.m. EA(·) is bounded, that is, there is an M > 0 such that, for
any Borel set δ,

∥∥EA(δ)
∥∥≤M, (2.5)

see [2].
Observe that, in (2.5), the notation ‖ · ‖ was used to designate the norm in the space

of bounded linear operators on X . We will adhere to this rather common economy of
symbols in what follows, adopting the same notation for the norm in the dual space X∗

as well.
With F(·) being an arbitrary complex-valued Borel measurable function on C, for any

f ∈D(F(A)), g∗ ∈ X∗ and arbitrary Borel sets δ ⊆ σ , we have (see [2])

∫
σ

∣∣F(λ)
∣∣dv( f ,g∗,λ

)

≤ 4sup
δ⊆σ

∣∣∣∣
∫
δ
F(λ)d

〈
EA(λ) f ,g∗

〉∣∣∣∣
= 4sup

δ⊆σ

∣∣∣∣
∫
σ
χδ(λ)F(λ)d

〈
EA(λ) f ,g∗

〉∣∣∣∣ (by the properties of the o.c.)

= 4sup
δ⊆σ

∣∣∣∣
〈∫

σ
χδ(λ)F(λ)dEA(λ) f ,g∗

�∣∣∣∣ (by the properties of the o.c.)

= 4sup
δ⊆σ

∣∣〈EA(δ)EA(σ)F(A) f ,g∗
〉∣∣

≤ 4sup
δ⊆σ

∥∥EA(δ)EA(σ)F(A) f
∥∥ ∥∥g∗∥∥

≤ 4sup
δ⊆σ

∥∥EA(δ)
∥∥ ∥∥EA(σ)F(A) f

∥∥ ∥∥g∗∥∥ (
by (2.5)

)
≤ 4M

∥∥EA(σ)F(A) f
∥∥ ∥∥g∗∥∥.

(2.6)

For the reader’s convenience, we reformulate here Proposition 3.1 of [14], heavily relied
upon in what follows, which allows to characterize the domains of the Borel measurable
functions of a scalar type spectral operator in terms of positive measures (see [14] for a
complete proof).

Proposition 2.1 [14]. Let A be a scalar type spectral operator in a complex Banach space
X and let F(·) be a complex-valued Borel measurable function on C. Then, f ∈D(F(A)) if
and only if the following hold:

(i) for any g∗ ∈ X∗,

∫
C

∣∣F(λ)
∣∣dv( f ,g∗,λ

)
<∞, (2.7)
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(ii)

sup
{g∗∈X∗|‖g∗‖=1}

∫
{λ∈C||F(λ)|>n}

∣∣F(λ)
∣∣dv( f ,g∗,λ

)−→ 0 as n−→∞. (2.8)

As was shown in [13], a scalar type spectral operator A in a complex Banach space X
generates an analytic C0-semigroup, if and only if, for some real ω and 0 < θ ≤ π/2,

σ(A)⊆
{
λ∈C | ∣∣arg(λ−ω)

∣∣≥ π

2
+ θ
}

, (2.9)

where arg· is the principal value of the argument from the interval (−π,π] (see [15] for
generalizations), in which case the semigroup consists of the exponentials

etA =
∫

C

etλdEA(λ), t ≥ 0. (2.10)

It is also to be noted that, according to [16], for a scalar type spectral operator A in a
complex Banach space X ,

�{1}(A)⊇
⋃
t>0

D
(
et|A|

)
, �(1)(A)⊇

⋂
t>0

D
(
et|A|

)
, (2.11)

the inclusions turning into equalities provided the space X is reflexive.

3. The principal statement

Theorem 3.1. Let A be a scalar type spectral operator in a complex Banach space X . Then,
each of equalities (1.4), the operator exponentials etA, t > 0, defined in the sense of the o.c.
for scalar type spectral operators, is necessary and sufficient for A to be the generator of an
analytic C0-semigroup.

Proof
Necessity. We consider the general of A being a generator of an analytic C0-semigroup
{etA | t ≥ 0} in a complex Banach space X , without the assumption of A being a scalar
type spectral operator.

First, note that the inclusions

�{1}(A)⊇
⋃
t>0

R
(
etA
)
, �(1)(A)⊇

⋂
t>0

R
(
etA
)
, (3.1)
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immediately follow from the estimate

∥∥AnetA
∥∥≤ eωt

Mn

tn
n!, n= 1,2, . . . , t > 0 (3.2)

with some positive ω and M, known for analytic C0-semigroups (see, e.g., [11]).
We show now that the inverse inclusions hold even in a more general case, when A

generates a C0-semigroup {etA | t ≥ 0} not necessarily analytic.
Let f be an analytic (entire) vector of the operator A, then, for some (any) δ > 0, the

power series

∞∑
n=0

(−A)n f
n!

λn (3.3)

converges whenever |λ| < δ.
Formally designating the series by eλ(−A) f and differentiating it termwise, with the

closedness of A in view, we obtain

eλ(−A) f ∈D(A),
d

dλ
eλ(−A) f =−Aeλ(−A) f , |λ| < δ. (3.4)

Considering that for any g ∈D(A),

d

dt
etAg =AetAg = etAAg, t ≥ 0, (3.5)

(see [5, 10]), we have, for all 0≤ t < δ,

d

dt
etAet(−A) f = d

ds
eAset(−A) f |s=t + eAt

d

dt
et(−A) f

= AetAet(−A) f + eAt
(−Aet(−A) f

)
= AeAte−At f −AeAte−At f = 0.

(3.6)

This implies that, for all 0≤ t < δ,

etAet(−A) f = eAses(−A) f |s=0 = f . (3.7)

Therefore,

�{1}(A)⊆
⋃
t>0

R
(
eAt
)(

�(1)(A)⊆
⋂
t>0

R
(
eAt
))

. (3.8)

Sufficiency. We prove this part by contrapositive.
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As was noted in Section 2, for a scalar type spectral operator A, its being the generator
of an analytic C0-semigroup is equivalent to inclusion (2.9) with some real ω and 0 < θ ≤
π/2.

Hence, as is easily seen, the negation of the fact that A generates an analytic C0-
semigroup implies that for any b > 0, the set

σ(A) \ {λ∈C | Reλ≤−b|Imλ|} (3.9)

is unbounded.
In particular, for any natural n, the set

σ(A) \
{
λ∈ C | Reλ≤− 1

n2
|Imλ|

}
(3.10)

is unbounded.
Hence, we can choose a sequence of points of the complex plane {λn}∞n=1 in the fol-

lowing way:

λn ∈ σ(A), n= 1,2, . . . ;

Reλn >− 1
n2
|Imλ|, n= 1,2, . . . ;

λ0 := 0,
∣∣λn∣∣ > max

[
n,
∣∣λn−1

∣∣], n= 1,2, . . . .

(3.11)

The latter, in particular, implies that the points λn are distinct:

λi �= λj , i �= j. (3.12)

Since the set {
λ∈C | Reλ >− 1

n2
|Imλ|

}
(3.13)

is open in C for any n= 1,2, . . . , there exists such an εn > 0 that this set contains together
with the point λn the open disk centered at λn:

∆n =
{
λ∈C | ∣∣λ− λn

∣∣ < εn
}

, (3.14)

that is, for any λ∈ ∆n,

Reλ >− 1
n2
|Imλ|,

|λ| > max
[
n,
∣∣λn−1

∣∣]. (3.15)

Moreover, since the points λn are distinct, we can regard that the radii of the disks, εn, are
chosen to be small enough so that

0 < εn <
1
n

, n= 1,2, . . . ;

∆i∩∆ j =∅, i �= j (the disks are pairwise disjoint).
(3.16)
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Note that, by the properties of the s.m., the latter implies that the subspaces EA(∆n)X ,
n= 1,2, . . . , are nontrivial, since ∆n∩ σ(A) �= ∅ and ∆n is open and

EA
(
∆i
)
EA
(
∆ j
)= 0, i �= j. (3.17)

Thus, choosing a unit vector en in each subspace EA(∆n)X , we obtain a vector sequence
such that

EA
(
∆i
)
ej = δi jei (3.18)

(δi j is the Kronecker delta symbol).
The latter, in particular, implies that the vectors {e1,e2, . . .} are linearly independent

and that

dn := dist
(
en, span

({
ek | k ∈N, k �= n

}))
> 0, n= 1,2, . . . . (3.19)

Furthermore,

dn �−→ 0 n−→∞. (3.20)

Indeed, assuming the opposite, dn → 0 as n→∞, would imply that, for any n = 1,2, . . . ,
there is an fn ∈ span({ek | k ∈ N, k �= n}) such that ‖en − fn‖ < dn + 1/n, whence en =
EA(∆n)(en− fn)→ 0, which is a contradiction.

Therefore, there is a positive ε such that

dn ≥ ε, n= 1,2, . . . . (3.21)

As follows from the Hahn-Banach theorem, for each n = 1,2, . . . , there is an e∗n ∈ X∗

such that

∥∥e∗n ∥∥= 1,
〈
ei,e∗j

〉= δi jdi. (3.22)

Let

g∗ :=
∞∑
n=1

1
n2

e∗n . (3.23)

On one hand, for any n= 1,2, . . . ,

v
(
en,g∗,∆n

)≥ ∣∣〈EA(∆n
)
en,g∗

〉∣∣ (
by (3.18)

)
= ∣∣〈en,g∗

〉∣∣= dn
n2

(
by (3.21)

)
≥ ε

n2
.

(3.24)
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On the other hand, for any n= 1,2, . . . ,

v
(
en,g∗,∆n

)
(δ being an arbitrary Borel subset of ∆n, [2])

≤ 4sup
δ

∣∣〈EA(δ)en,g∗
〉∣∣≤ 4sup

δ

∥∥EA(δ)
∥∥ ∥∥en∥∥ ∥∥g∗∥∥ (

by (2.5)
)

≤ 4M
∥∥g∗∥∥.

(3.25)

Concerning the sequence of the real parts, {Reλn}∞n=1, there are two possibilities: it is
either bounded below, or not. We consider each of them separately.

First, assume that the sequence {Reλn}∞n=1 is bounded below, that is, there is such an
ω > 0 that

Reλn ≥ ω, n= 1,2, . . . . (3.26)

Observe that this fact immediately implies that the operators e−tA, t > 0, are bounded
and, thus, defined on the entire X [1, 4].

Therefore, R(etA)=D(e−tA)= X , t > 0.
Let

f :=
∞∑
n=1

1
n2

en. (3.27)

As can be easily deduced from (3.17),

EA
(
∆n
)
f = 1

n2
en, n= 1,2, . . . ,

EA

(⋃∞
n=1

∆n

)
f = f .

(3.28)

For an arbitrary t > 0, we have∫
C

et|λ|dv
(
f ,g∗,λ

)
by (3.28);

=
∫

C

et|λ|dv

(
EA

( ∞⋃
n=1

∆n

)
f ,g∗,λ

)
(by the properties of the o.c.)

=
∫
⋃∞

n=1 ∆n

et|λ|dv
(
EA
(
∆n
)
f ,g∗,λ

)

=
∞∑
n=1

∫
∆n

et|λ|dv
(
EA
(
∆n
)
f ,g∗,λ

) (
by (3.28)

)

=
∞∑
n=1

1
n2

∫
∆n

et|λ|dv
(
en,g∗,λ

)
for λ∈ ∆n,

(
by (3.15), |λ| ≥ n

)

≥
∞∑
n=1

1
n2

etnv
(
f ,g∗,∆n

) (
by (3.24)

)

≥
∞∑
n=1

εetn

n4
=∞.

(3.29)
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This, by [14, Proposition 3.1], implies that

f �∈
⋃
t>0

D
(
et|A|

)
. (3.30)

Then, by (2.11), moreover,

f �∈�{1}(A). (3.31)

Therefore, equalities (1.4) do not hold.
Now, suppose that the sequence {Reλn}∞n=1 is unbounded below, that is, there is a sub-

sequence {Reλn(k)}∞k=1 (k ≤ n(k)) such that

Reλn(k) −→−∞ as k −→∞. (3.32)

Without the loss of generality, we can regard that

Reλn(k) ≤−k, k = 1,2, . . . . (3.33)

Let

f :=
∞∑
k=1

ekReλn(k)en(k). (3.34)

Similarly to (3.17), we have

EA
(
∆n(k)

)
f = ekReλn(k)en(k), n= 1,2, . . . ,

EA

( ∞⋃
n=1

∆n(k)

)
f = f .

(3.35)

For any t > 0 and an arbitrary g∗ ∈ X∗,

∫
C

e−tReλdv
(
f ,g∗,λ

)

=
∫
⋃∞

k=1 ∆n(k)

e−tReλdv
(
f ,g∗,λ

)
(by the properties of the o.c.)

=
∞∑
k=1

∫
∆n(k)

et|λ|dv
(
EA
(
∆n(k)

)
f ,g∗,λ

) (
by (3.35)

)

=
∞∑
k=1

ekReλn(k)

∫
∆n(k)

e−tReλdv
(
en(k),g∗,λ

) (
by (3.16)

)

≤
∞∑
k=1

ekReλn(k)et(−Reλn(k)+1)v
(
en(k),g∗,∆n(k)

) (
by (3.25)

)

≤ 4M
∥∥g∗∥∥et ∞∑

k=1

e(k−t)Reλn(k) <∞.

(3.36)
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Indeed, for λ∈ ∆n(k), by (3.16), −Reλ=−Reλn(k) + (Reλn(k)−Reλ)≤−Reλn(k) + |λn(k)

− λ| ≤ −Reλn(k) + εn(k)≤−Reλn(k) + 1 and for all natural k’s large enough so that k− t≥1,
due to (3.33),

e(k−t)Reλn(k) ≤ e−k. (3.37)

Similarly, for any t > 0,

sup
{g∗∈X∗|‖g∗‖=1}

∫
{λ∈C|e−tReλ>n}

e−tReλdv
(
f ,g∗,λ

)

= sup
{g∗∈X∗|‖g∗‖=1}

et
∞∑
k=1

ekReλn(k)

∫
{λ∈∆n(k)|e−tReλ>n}

e−tReλdv
(
en(k),g∗,λ

)

≤ et
∞∑
k=1

e(k−t)Reλn(k) sup
{g∗∈X∗|‖g∗‖=1}

v
(
f ,g∗,

{
λ∈ ∆n(k) | e−tReλ > n

}) (
by (2.6)

)

≤ et
∞∑
k=1

e(k−t)Reλn(k) sup
{g∗∈X∗|‖g∗‖=1}

4M
∥∥EA({λ∈ ∆n(k) | etReλ > n

})
f
∥∥ ∥∥g∗∥∥

≤ 4Met
∞∑
k=1

e(k−t)Reλn(k)
∥∥EA({λ∈C | e−tReλ > n

})
f
∥∥

(by the strong continuity of the s.m.−→ 0 as n−→∞).
(3.38)

According to [14, Proposition 3.1], (3.36) and (3.38) imply that

f ∈
⋂
t>0

D
(
e−tA

)=⋂
t>0

R
(
etA
)
. (3.39)

However, for an arbitrary t > 0, we have

∫
C

et|λ|dv
(
f ,g∗,λ

)

=
∞∑
k=1

ekReλn(k)

∫
∆n(k)

et|λ|dv
(
en(k),g∗,λ

) (
by the properties of the o.c. and (3.35)

)

≥
∞∑
k=1

ekReλn(k)e−tn(k)2(Reλn(k)+1)dv
(
en(k),g∗,∆n(k)

) (
by (3.15) and (3.16)

)

=
∞∑
k=1

e−tn(k)2
e(tn(k)2−k)(−Reλn(k))dv

(
en(k),g∗,∆n(k)

) (
by (3.24)

)

≥
∞∑
k=1

e−tn(k)2
e(tn(k)2−k)(−Reλn(k)) ε

n(k)2
=∞.

(3.40)
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Indeed, for λ ∈ ∆n(k), by (3.15) and (3.16), |λ|≥ |Imλ|≥−n(k)2 Reλ≥−n(k)2(Reλn(k)

+ |Reλ− Reλn(k)|) ≥ −n(k)2(Reλn(k) + 1), and for all natural k’s large enough so that
tn(k)2− k > 0, due to (3.33), we have

e−tn(k)2
e(tn(k)2−k)(−Reλn(k)) ε

n(k)2
≥ ε

etn(k)3−tn(k)2−kn(k)

n(k)2
−→∞, as k −→∞. (3.41)

Whence, by [14, Proposition 3.1], we infer that f �∈⋃t>0D
(
et|A|

)
. Then, by (2.11), more-

over f �∈�{1}(A). Therefore, equalities (1.4) do not hold in this case either.
With all the possibilities concerning {Reλn}∞n=1 having been analyzed, we conclude

that the sufficiency part has been proved by contrapositive. �
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