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Asymptotic behavior of solutions of some parabolic equation associated with the p-
Laplacian as p→ +∞ is studied for the periodic problem as well as the initial-boundary
value problem by pointing out the variational structure of the p-Laplacian, that is,
∂ϕp(u) = −∆pu, where ϕp : L2(Ω)→ [0,+∞]. To this end, the notion of Mosco conver-
gence is employed and it is proved that ϕp converges to the indicator function over some
closed convex set on L2(Ω) in the sense of Mosco as p→ +∞; moreover, an abstract the-
ory relative to Mosco convergence and evolution equations governed by time-dependent
subdifferentials is developed until the periodic problem falls within its scope. Further ap-
plication of this approach to the limiting problem of porous-medium-type equations,
such as ut = ∆|u|m−2u as m→ +∞, is also given.

1. Introduction

The so-called p-Laplacian ∆p given below could be regarded as a nonlinear differential
operator generalizing the usual linear Laplacian:

∆pu(x) :=∇·
(∣∣∇u(x)

∣∣p−2∇u(x)
)

, 1 < p < +∞. (1.1)

This paper is motivated by the following naive question: what is the limit of ∆p as p→
+∞? This limiting problem was studied by several authors and their results were applied
in various fields; for example, growing sandpile model [2], macroscopic models for type-
II superconductors [1, 4, 13], and so on. In order to figure out the substantial features of
this problem, we here recall the variational structure of p-Laplacian:

−∆pu= dIp(u), Ip(u) := 1
p

∫
Ω

∣∣∇u(x)
∣∣pdx ∀u∈W1,p

0 (Ω), (1.2)

where dIp(u) denotes the Fréchet derivative of the functional Ip at u, and we intend to
investigate the limit of the functional Ip instead of ∆p as p→ +∞.
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However, it is easily expected that the limit of Ip may not belong to the class of Fréchet
differentiable functionals. On the other hand, from the viewpoint of studies on evolution
equations, it is convenient for applications to extend Ip on L2(Ω) as follows:

ϕp(u) :=


Ip(u) if u∈W1,p

0 (Ω),

+∞ if u∈ L2(Ω) \W1,p
0 (Ω).

(1.3)

Then it is well known that ϕp is no longer Fréchet differentiable on L2(Ω), but lower semi-
continuous and convex on L2(Ω); moreover, its subdifferential ∂L2(Ω)ϕp(u) coincides with
−∆pu in the distribution sense.

Several authors also studied the asymptotic behavior of solutions for the following
initial-boundary value problem as p→ +∞:

∂u

∂t
(x, t)−∆pu(x, t)= 0, (x, t)∈Ω× (0,T),

u(x, t)= 0, (x, t)∈ ∂Ω× (0,T),

u(x,0)= u0(x), x ∈Ω.

(1.4)

Here it is well known that (1.4) can be reduced to the following abstract Cauchy problem:

du

dt
(t) + ∂L2(Ω)ϕp

(
u(t)

)= 0 in L2(Ω), 0 < t < T ,

u(0)= u0.
(1.5)

According to the previous studies, for example, [2, 4], every solution up of (1.5) con-
verges to u as p→ +∞ and the limit u gives a solution of the following Cauchy problem:

du

dt
(t) + ∂L2(Ω)ϕ∞

(
u(t)

)� 0 in L2(Ω), 0 < t < T ,

u(0)= u0,
(1.6)

where ϕ∞ is defined on L2(Ω) by

ϕ∞(u) :=



0 if u∈H1
0 (Ω), |∇u|L∞(Ω) ≤ 1,

+∞ otherwise.
(1.7)

Hence one can easily expect that ϕp converges to ϕ∞ as p→ +∞ in a certain sense; how-
ever, it is not so obvious in what sense it is realized. In this paper, we prove that ϕp con-
verges to ϕ∞ on L2(Ω) in the sense of Mosco as p→ +∞; moreover, we discuss the asymp-
totic behavior of solutions for (1.4) as p→ +∞ in a more general setting. These results
will be shown in Section 3.1 whereas the definition of Mosco convergence will be given
in Section 2. Moreover, our method can also be applied to the porous medium equation

∂u

∂t
(x, t)−∆|u|m−2u(x, t)= 0, (x, t)∈Ω× (0,T). (1.8)

In Section 3.2, we deal with the asymptotic behavior of solutions for (1.8) as m→ +∞.
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To formulate our results in an abstract form, we work in a more generalized setting,
that is, we consider the following abstract evolution equations in a real Hilbert space H
governed by time-dependent subdifferential operators ∂Hϕtn:

dun
dt

(t) + ∂Hϕtn
(
un(t)

)� fn(t) in H , 0 < t < T , n∈N, (1.9)

where fn ∈ L2(0,T ;H), fn→ f strongly in L2(0,T ;H), and ϕtn is a time-dependent proper
lower semicontinuous convex functional from H into (−∞,+∞] such that ϕtn→ ϕt on H
in the sense of Mosco as n→ +∞. For the case where ϕt does not depend on t, that is,
ϕt = ϕ, we can find related results in [3]. For the general case, we refer to Kenmochi [10].

However, all of the previous studies were done on the Cauchy problem for (1.9). As
for the periodic problem for (1.9), there seems to be no attempt yet. The main objective
here is to investigate the periodic problem as well as the Cauchy problem. The Cauchy
problem has a unique solution, and the uniqueness of solution plays an essential role
in deriving the convergence of un as n→ +∞ in [3, 10]. On the other hand, in general,
periodic solution is not unique. Hence the same procedure as in [3, 10] breaks down.

To cope with this difficulty, we introduce a remedy based on a compactness argument
under a compactness assumption on the level set of {ϕtn}n∈N. This result will be illustrated
in the next section.

2. Evolution equations and Mosco convergence

This section deals with the following evolution equation (E(ϕt, f )) in a Hilbert space H .
(E(ϕt, f ))

du

dt
(t) + ∂Hϕt

(
u(t)

)� f (t) in H , 0 < t < T , (2.1)

where f ∈ L1(0,T ;H) and ∂Hϕt is the subdifferential of a proper lower semicontinuous
convex functional ϕt :H → (−∞,+∞] for every t ∈ [0,T].

Throughout this paper, we denote by Ψ(X) the set of all proper lower semicontinuous
convex functionals φ from a Hilbert space X into (−∞,+∞], where “proper” means that
φ �≡ +∞. Moreover, the subdifferential ∂Xφ of φ∈Ψ(X) is defined as follows:

∂Xφ(u) := {ξ ∈ X ; φ(v)−φ(u)≥ (ξ,v−u)X ∀v ∈D(φ)
}

, (2.2)

where (·,·)X denotes the inner product ofX andD(φ) is the effective domain of φ given by

D(φ) := {u∈ X ; φ(u) < +∞}. (2.3)

Moreover, the domain D(∂Xφ) of ∂Xφ is defined by

D
(
∂Xφ

)
:= {u∈D(φ); ∂Xφ(u) �= ∅}. (2.4)
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Now solutions of (E(ϕt, f )) are defined as follows.

Definition 2.1. A function u∈ C([0,T];H) is said to be a strong solution of (E(ϕt, f )) if
the following are both satisfied:

(i) u is an H-valued absolutely continuous function on [0,T];
(ii) u(t)∈D(∂Hϕt) for a.e. t ∈ (0,T) and there exists a section g(t)∈∂Hϕt(u(t)) such

that

du

dt
(t) + g(t)= f (t) in H for a.e. t ∈ (0,T). (2.5)

Moreover, a function u ∈ C([0,T];H) is said to be a weak solution of (E(ϕt, f )) if there
exist sequences ( fn)⊂ L1(0,T ;H) and (un)⊂ C([0,T];H) such that un is a strong solution
of (E(ϕt, fn)), fn→ f strongly in L1(0,T ;H), and un→ u strongly in C([0,T];H).

We next introduce a notion of the convergence of functionals.

Definition 2.2. Let X be a Hilbert space. Let (ϕn) be a sequence in Ψ(X) and let ϕ∈Ψ(X).
Then ϕn → ϕ on X in the sense of Mosco as n→ +∞ if the following conditions are all
satisfied.

(1) For all u∈D(ϕ), there exists a sequence (un) in X such that un → u strongly in X
and ϕn(un)→ ϕ(u).

(2) Let (un) be a sequence inX such that un→uweakly inX . Then liminfn→+∞ϕn(un)≥
ϕ(u).

Remark 2.3. The second condition in Definition 2.2 is equivalent to the following.

(2)′ Let (uk) be a sequence in X such that uk → u weakly in X as k→ +∞ and let (nk)
be a subsequence of (n). Then liminfk→+∞ϕnk (uk)≥ ϕ(u).

Indeed, it is easily seen that (2) is derived immediately from (2)′. Hence it suffices to
show that (2) implies (2)′. Suppose that (2) holds but (2)′ does not, that is, there exist a
sequence (uk) and a subsequence (nk) of (n) such that

uk −→ u weakly in X , liminf
k→+∞

ϕnk
(
uk
)
< ϕ(u). (2.6)

Now define the sequence (ũn) as follows: ũn = uk if n∈ [nk,nk+1) for each k ∈N. It then
follows that ũn→ u weakly in X as n→ +∞. Moreover, (2.6) yields

ϕ(u) > liminf
k→+∞

ϕnk
(
uk
)= lim

K→+∞
inf
k≥K

ϕnk
(
uk
)

≥ lim
K→+∞

inf
n≥nK

ϕn
(
ũn
)= liminf

n→+∞ ϕn
(
ũn
)
,

(2.7)

which contradicts (2). Hence (2) implies (2)′.
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In the following two subsections, we discuss the existence and uniqueness of solutions
un for (E(ϕtn, fn)) and the convergence of un as n→ +∞ for the periodic problem as well as
the Cauchy problem. To this end, we fix notations. From now on, we write {ϕt}t∈[0,T] ∈
Ψ(α,β) for some functions α,β : [0,+∞)× [0,T]→R if the following hold true:

(i) ϕt ∈Ψ(H) for all t ∈ [0,T];
(ii) there exists δ > 0; for all t0 ∈ [0,T] and all u0 ∈D(ϕt0 ), there exists a function u

from Iδ(t0) := [t0− δ, t0 + δ]∩ [0,T] into H ; for all t ∈ Iδ(t0) and all r ≥ |u0|H ,

∣∣u(t)−u0
∣∣
H ≤

∣∣α(r, t)−α(r, t0)∣∣{∣∣ϕt0(u0
)∣∣+ 1

}1/2
,

ϕt
(
u(t)

)≤ ϕt0(u0
)

+
∣∣β(r, t)−β(r, t0)∣∣{∣∣ϕt0(u0

)∣∣+ 1
}
.

(2.8)

Moreover, we say {ϕt}t∈[0,T] ∈ B(α,β,C0,{Mr}r≥0) for some functions α,β : [0,+∞)×
[0,T]→R and constants C0, {Mr}r≥0 if the following are all satisfied.

(i) {ϕt}t∈[0,T] ∈Ψ(α,β).
(ii) ϕt(u)≥−C0(|u|H + 1) for all u∈H and all t ∈ [0,T].

(iii) There exists a function h : [0,T]→H such that

sup
t∈[0,T]

{∣∣h(t)
∣∣
H +

∣∣ϕt(h(t)
)∣∣}+

(∫ T
0

∣∣∣∣dhdt (t)
∣∣∣∣

2

H
dt

)1/2

≤ C0. (2.9)

(iv) For every r ∈ [0,+∞), it follows that

∫ T
0

∣∣α̇(r, t)
∣∣2
dt+

∫ T
0

∣∣β̇(r, t)
∣∣dt ≤Mr , (2.10)

where α̇ and β̇ denote ∂α/∂t and ∂β/∂t, respectively.

Now let {ϕt}t∈[0,T] ∈Ψ(α,β) be such that α(r,·)∈W1,2(0,T) and β(r,·)∈W1,1(0,T)
for all r ∈ [0,+∞) and introduce the following functional ΦS defined on �S := L2(0,S;H)
for any S∈ (0,T]:

ΦS(u) :=


∫ S

0
ϕt
(
u(t)

)
dt if the function t �−→ ϕt

(
u(t)

)∈ L1(0,S),

+∞ otherwise.
(2.11)

Then we see that ΦS ∈Ψ(�S). Moreover, [9, Proposition 1.1] implies that for any u, f ∈
�S,

f ∈ ∂�SΦ
S(u)⇐⇒ f (t)∈ ∂Hϕt

(
u(t)

)
for a.e. t ∈ (0,S). (2.12)

The following proposition plays an important role in investigating the convergence of
strong solutions un for (E(ϕtn, fn)) as n→ +∞. For its proof, we refer to [10, Proposition
2.7.1].
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Proposition 2.4 [10]. For every n ∈ N, let {ϕtn}t∈[0,T] ∈ B(αn,βn,C0,{Mr}r≥0) and
{ϕt}t∈[0,T] ∈ Ψ(α,β) be such that αn(r,·),α(r,·) ∈ W1,2(0,T) and βn(r,·),β(r,·) ∈
W1,1(0,T) for every r ∈ [0,+∞). Suppose that ϕtn→ ϕt on H in the sense of Mosco for every
t ∈ [0,T] as n→ +∞. Then for any S∈ (0,T], it follows that

(1) for each u ∈ D(ΦS), there exists a sequence (un) in �S such that un → u strongly in
�S and ΦS

n(un)→ΦS(u), where ΦS
n is defined by (2.11) with ϕt replaced by ϕtn;

(2) let (uk) be a sequence in �S such that (uk) is bounded in L∞(0,S;H) and uk(t)→ u(t)
weakly in H for a.e. t ∈ (0,S) as k→ +∞ and let (nk) be a subsequence of (n). Then
liminfk→+∞ΦS

nk (uk)≥ΦS(u).

Throughout the present paper, we denote by C or Ci (i = 1,2, . . .) nonnegative con-
stants which do not depend on the elements of the corresponding space or set.

2.1. Cauchy problem. In this subsection, we consider the following Cauchy problem
(CP(ϕt, f ,u0)) in a Hilbert space H .

(CP(ϕt, f ,u0))

du

dt
(t) + ∂Hϕt

(
u(t)

)� f (t) in H , 0 < t < T ,

u(0)= u0,
(2.13)

where ϕt ∈Ψ(H) for all t ∈ [0,T], f ∈ L1(0,T ;H), and u0 ∈H .
We first give a definition of solutions for (CP(ϕt, f ,u0)) as follows.

Definition 2.5. A function u ∈ C([0,T];H) is said to be a strong (resp., weak) solution
of (CP(ϕt, f ,u0)) if u is a strong (resp., weak) solution of (E(ϕt, f )) such that u(t)→ u0

strongly in H as t→ +0.

As for the existence of solutions for (CP(ϕt, f ,u0)), we here employ the following.

Theorem 2.6 [10]. Let {ϕt}t∈[0,T] ∈ Ψ(α,β) be such that α(r,·) ∈W1,2(0,T) and β(r,·)
∈ W1,1(0,T) for every r ∈ [0,+∞). Then for all f ∈ L1(0,T ;H) and u0 ∈ D(ϕ0)

H
,

(CP(ϕt, f ,u0)) has a unique weak solution u such that the function t �→ ϕt(u(t)) is inte-
grable on (0,T). In particular, if f ∈ L2(0,T ;H), then the weak solution u satisfies

√
t
du

dt
∈ L2(0,T ;H), sup

t∈[0,T]
tϕt
(
u(t)

)
< +∞. (2.14)

Moreover, if f ∈ L2(0,T ;H) and u0 ∈ D(ϕ0), then the unique weak solution u becomes a
strong solution of (CP(ϕt, f ,u0)) such that

du

dt
∈ L2(0,T ;H), sup

t∈[0,T]
ϕt
(
u(t)

)
< +∞. (2.15)

On account of Proposition 2.4, Kenmochi also proved the following result on the con-
vergence of solutions un for (CP(ϕtn, fn,u0,n)) as n→ +∞. Its proof can be found in [10,
Theorem 2.7.1].
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Theorem 2.7 [10]. Under the same assumptions as in Proposition 2.4, let ( fn) and (u0,n) be

sequences in L2(0,T ;H) and D(ϕ0
n)
H

, respectively, such that fn → f strongly in L2(0,T ;H)

and u0,n→u0∈D(ϕ0)
H

strongly inH . Then the unique weak solution un of (CP(ϕtn, fn,u0,n))
converges to u in the following sense:

un −→ u strongly in C
(
[0,T];H

)
(2.16)

and the limit u becomes the unique weak solution of (CP(ϕt, f ,u0)). Moreover,

∫ T
0
ϕtn
(
un(t)

)
dt −→

∫ T
0
ϕt
(
u(t)

)
dt. (2.17)

In particular, if ϕ0
n(u0,n) is bounded for all n∈N, then the limit u becomes a strong solution

of (CP(ϕt, f ,u0)).

2.2. Periodic problem. In this subsection, we consider the following periodic problem
(PP(ϕt, f )):

(PP(ϕt, f ))

du

dt
(t) + ∂Hϕt

(
u(t)

)� f (t) in H , 0 < t < T ,

u(0)= u(T).
(2.18)

We are concerned with strong solutions of (PP(ϕt, f )) in the following sense.

Definition 2.8. A function u∈ C([0,T];H) is said to be a strong solution of (PP(ϕt, f )) if
u is a strong solution of (E(ϕt, f )) such that u(0)= u(T).

To state our results, define

Ψπ
(
α,β,C0

)
:=

{ϕt}t∈[0,T] ∈Ψ(α,β);

|u|2H ≤ C0
(
ϕt(u) + 1

)∀u∈D(ϕt), ∀t ∈ [0,T],

D
(
ϕT
)⊂D(ϕ0)




(2.19)

for any positive constant C0. Moreover, we write {ϕt}t∈[0,T] ∈ Bπ(α,β,C0,{Mr}r≥0) if the
following hold true.

(i) {ϕt}t∈[0,T] ∈Ψπ(α,β,C0).
(ii) There exists a function h : [0,T]→H such that (2.9) holds and h(0)= h(T).

(iii) For every r ∈ [0,+∞), (2.10) holds.
(iv) ϕ0(u)≤ ϕT(u) for all u∈D(ϕT).

Then it is easily seen that Bπ(α,β,C0,{Mr}r≥0)⊂ B(α,β,C0,{Mr}r≥0).
The existence of strong solutions for (PP(ϕt, f )) is assured by the following.
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Theorem 2.9 [10]. Let {ϕt}t∈[0,T] ∈ Ψπ(α,β,C0) be such that α(r,·) ∈ W1,2(0,T),
β(r,·) ∈W1,1(0,T) for all r ∈ [0,+∞). Then for all f ∈ L2(0,T ;H), (PP(ϕt, f )) has at
least one strong solution u satisfying

du

dt
∈ L2(0,T ;H), sup

t∈[0,T]
ϕt
(
u(t)

)
< +∞. (2.20)

In particular, if ϕt is strictly convex on H for a.e. t ∈ (0,T), then every strong solution of
(PP(ϕt, f )) is unique.

We next focus on the convergence of strong solutions un for (PP(ϕtn, fn)) when ϕtn →
ϕt on H in the sense of Mosco and fn → f weakly in L2(0,T ;H). However, any stud-
ies similar to Theorem 2.7 have not been done on the periodic problem (PP(ϕtn, fn))
yet, which would be caused by a difficulty peculiar to the periodic problem. More pre-

cisely, by virtue of Theorems 2.6 and 2.7, for any f ∈ L2(0,T ;H) and u0 ∈D(ϕ0)
H

, every
unique weak solution of (CP(ϕt, f ,u0)) becomes the limit of unique weak solutions un for
(CP(ϕtn, f ,u0)) as n→ +∞. However, in general, periodic solutions could not be unique.
Hence there could exist a strong solution u of (PP(ϕt, f )) such that any strong solutions
un of (PP(ϕtn, f )) never converge to u as n→ +∞. In fact, we can give such a counter
example (see Remark 3.10).

Thus because of the essential difference described above, the strong convergence of
solutions un for (PP(ϕtn, fn)) in C([0,T];H) cannot be verified by the same manner as
in the case of the Cauchy problem (see the proof of [10, Theorem 2.7.1]); so in order to
cope with this difficulty, we introduce the following level set compactness assumption on
{ϕtn}n∈N.

(A1) For every λ > 0 and t ∈ [0,T], any sequence (un) in H satisfying supn∈N
{ϕtn(un) +

|un|H} ≤ λ is precompact in H .

Then our result can be stated as follows.

Theorem 2.10. For every n ∈ N, let {ϕtn}t∈[0,T] ∈ Bπ(αn,βn,C0,{Mr}r≥0) and let
{ϕt}t∈[0,T] ∈ Ψ(α,β) be such that αn(r,·),α(r,·) ∈ W1,2(0,T) and βn(r,·),β(r,·) ∈
W1,1(0,T) for every r ∈ [0,+∞). Suppose that ϕtn → ϕt on H in the sense of Mosco as
n→ +∞ and that (A1) holds. Moreover, let ( fn) be a sequence in L2(0,T ;H) such that fn→ f
weakly in L2(0,T ;H) and let (un) be a sequence of strong solutions for (PP(ϕtn, fn)). Then
there exists a subsequence (nk) of (n) such that unk converges to u in the following sense:

unk −→ u strongly in C
(
[0,T];H

)
, weakly in W1,2(0,T ;H), (2.21)

and the limit u becomes a strong solution of (PP(ϕt, f )). Moreover,

∫ T
0
ϕtn
(
un(t)

)
dt −→

∫ T
0
ϕt
(
u(t)

)
dt. (2.22)

Remark 2.11. (1) In Theorem 2.10, the limit u possibly depends on the choice of the
subsequence (nk).
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(2) By virtue of the assumptions on {ϕtn}t∈[0,T] and {ϕt}t∈[0,T] in Theorem 2.10, we can
verify that {ϕt}t∈[0,T] ∈Ψπ(α,β,C0). Indeed, let u∈D(ϕT). Then we can take a sequence
(un) in H such that un → u strongly in H and ϕTn (un)→ ϕT(u). Moreover, from the fact
that ϕ0

n ≤ ϕTn , it follows that

ϕ0
n

(
un
)≤ ϕTn (un)−→ ϕT(u). (2.23)

Furthermore, since liminfn→+∞ϕ0
n(un) ≥ ϕ0(u), we have ϕ0(u) ≤ ϕT(u), which implies

D(ϕT)⊂D(ϕ0). Similarly we can also deduce that |u|2H ≤ C0(ϕt(u) + 1) for all u∈D(ϕt)
and t ∈ [0,T].

Proof of Theorem 2.10. Since {ϕtn}t∈[0,T] ∈ Bπ(αn,βn,C0,{Mr}r≥0) for all n ∈ N, we can
take a sequence (hn) such that

hn(0)= hn(T), (2.24)

sup
t∈[0,T]

{∣∣hn(t)
∣∣
H +

∣∣ϕtn(hn(t)
)∣∣}+

(∫ T
0

∣∣∣∣dhndt (t)
∣∣∣∣

2

H
dt

)1/2

≤ C0. (2.25)

Moreover, since {ϕtn}t∈[0,T] ∈Ψπ(αn,βn,C0) for all n∈N, we see that

|u|2H ≤ C0
(
ϕtn(u) + 1

) ∀u∈D(ϕtn), ∀t ∈ [0,T], ∀n∈N. (2.26)

Now let un be a strong solution of (PP(ϕtn, fn)) for each n ∈ N. Then multiplying the
inclusion in (PP(ϕtn, fn)) by un(t)−hn(t), we have

1
2
d

dt

∣∣un(t)−hn(t)
∣∣2
H +ϕtn

(
un(t)

)

≤ ϕtn
(
hn(t)

)
+
(
fn(t)− dhn

dt
(t),un(t)−hn(t)

)
H

≤ C0 +

(∣∣ fn(t)
∣∣
H +

∣∣∣∣dhndt (t)
∣∣∣∣
H

)∣∣un(t)−hn(t)
∣∣
H.

(2.27)

Now by (2.26) it follows that

1
2
d

dt

∣∣un(t)−hn(t)
∣∣2
H +α

∣∣un(t)−hn(t)
∣∣2
H

≤ C(∣∣hn(t)
∣∣2
H + 1

)
+

(∣∣ fn(t)
∣∣
H +

∣∣∣∣dhndt (t)
∣∣∣∣
H

)∣∣un(t)−hn(t)
∣∣
H

(2.28)

for some α > 0. Hence by [11, Lemma 4.2], we get, by (2.25),

sup
t∈[0,T]

∣∣un(t)−hn(t)
∣∣
H ≤ C, (2.29)

which implies

sup
t∈[0,T]

∣∣un(t)
∣∣
H ≤ C1. (2.30)
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Furthermore, integrating (2.27) over (0,T), we have

∫ T
0
ϕtn
(
un(t)

)
dt ≤ C2. (2.31)

Hence by (2.31) there exists tn ∈ (0,T) such that ϕtnn (un(tn))≤ C2/T .
Next multiplying the inclusion in (PP(ϕtn, fn)) by dun(t)/dt, we have

∣∣∣∣dundt (t)
∣∣∣∣

2

H
+
(
gn(t),

dun
dt

(t)
)
H

=
(
fn(t),

dun
dt

(t)
)
H
≤ ∣∣ fn(t)

∣∣2
H +

1
4

∣∣∣∣dundt (t)
∣∣∣∣

2

H
,

(2.32)

where gn(t) := fn(t)− dun(t)/dt ∈ ∂Hϕtn(un(t)). Hence put r0 = C1. Then by [12, Lemma
2.4], it follows from (2.30) that

∣∣∣∣∣
(
gn(t),

dun
dt

(t)
)
H
− d

dt
ϕtn
(
un(t)

)∣∣∣∣∣
≤ ∣∣α̇n(r0, t

)∣∣∣∣gn(t)
∣∣
H

{∣∣ϕtn(un(t)
)∣∣+ 1

}1/2
+
∣∣β̇n(r0, t

)∣∣{∣∣ϕtn(un(t)
)∣∣+ 1

} (2.33)

for a.e. t ∈ (0,T). Thus

3
4

∣∣∣∣dundt (t)
∣∣∣∣

2

H
+
d

dt
ϕtn
(
un(t)

)

≤ ∣∣ fn(t)
∣∣2
H +

∣∣α̇n(r0, t
)∣∣∣∣∣∣ fn(t)− dun

dt
(t)
∣∣∣∣
H

{∣∣ϕtn(un(t)
)∣∣+ 1

}1/2

+
∣∣β̇n(r0, t

)∣∣{∣∣ϕtn(un(t)
)∣∣+ 1

}
≤ 5

4

∣∣ fn(t)
∣∣2
H +

1
4

∣∣∣∣dundt (t)
∣∣∣∣

2

H

+
{

2
∣∣α̇n(r0, t

)∣∣2
+
∣∣β̇n(r0, t

)∣∣}{∣∣ϕtn(un(t)
)∣∣+ 1

}
.

(2.34)

Integrating (2.34) over (tn, t) and noting that (2.26) implies |ϕtn(u)| ≤ ϕtn(u) + 2 for all
u∈D(ϕtn), we observe

1
2

∫ t
tn

∣∣∣∣dundτ (τ)
∣∣∣∣

2

H
dτ +ϕtn

(
un(t)

)

≤ ϕtnn
(
un
(
tn
))

+
5
4

∫ T
0

∣∣ fn(τ)
∣∣2
Hdτ

+
∫ t
tn

{
2
∣∣α̇n(r0,τ

)∣∣2
+
∣∣β̇n(r0,τ

)∣∣}{ϕτn(un(τ)
)

+ 3
}
dτ

(2.35)
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for all t ∈ [tn,T]. Thus from the fact that

∫ T
0

∣∣α̇n(r0,τ
)∣∣2

dτ +
∫ T

0

∣∣β̇n(r0,τ
)∣∣dτ ≤Mr0 ,

∫ T
0

∣∣ fn(τ)
∣∣2
Hdτ ≤ C, ϕtnn

(
un
(
tn
))≤ C2

T
,

(2.36)

by Gronwall’s inequality, it follows that

sup
t∈[tn,T]

ϕtn
(
un(t)

)≤ C3. (2.37)

Hence since un(0)= un(T) and ϕ0
n(u)≤ ϕTn (u) for all u∈D(ϕTn ) and n∈N, we find that

ϕ0
n(un(0))≤ ϕTn (un(T))≤ C3. Moreover, integrating (2.34) over (0, t), we also get

1
2

∫ t
0

∣∣∣∣dundτ (τ)
∣∣∣∣

2

H
dτ +ϕtn

(
un(t)

)

≤ ϕ0
n

(
un(0)

)
+

5
4

∫ T
0

∣∣ fn(τ)
∣∣2
Hdτ

+
∫ t

0

{
2
∣∣α̇n(r0,τ

)∣∣2
+
∣∣β̇n(r0,τ

)∣∣}{ϕτn(un(τ)
)

+ 3
}
dτ

(2.38)

for all t ∈ [0,T]. Thus Gronwall’s inequality implies

sup
t∈[0,T]

ϕtn
(
un(t)

)≤ C. (2.39)

Moreover, it follows from (2.26), (2.38), and (2.39) that

∫ T
0

∣∣∣∣dundt (t)
∣∣∣∣

2

H
dt ≤ C. (2.40)

Hence by (PP(ϕtn, fn)), (2.40) implies

∫ T
0

∣∣gn(t)
∣∣2
Hdt ≤ C. (2.41)

By virtue of the above a priori estimates, we can take a subsequence (nk) of (n) such
that the following convergences hold true:

unk −→ u weakly in W1,2(0,T ;H), (2.42)

gnk −→ g weakly in L2(0,T ;H). (2.43)

Moreover, by (A1), it follows from (2.30) and (2.39) that

(
un(t)

)
is precompact in H ∀t ∈ [0,T]. (2.44)
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Furthermore, by (2.40), we can deduce that un is equicontinuous in C([0,T];H) for all
n∈N. Thus Ascoli’s theorem implies

unk −→ u strongly in C
(
[0,T];H

)
(2.45)

for a suitable subsequence (nk) of (n). Hence since un(0)= un(T) for all n∈ N, we have
u(0)= u(T).

In the rest of this proof, we write n simply for nk. Now define ΦT and ΦT
n as in (2.11)

with obvious replacements and let v ∈ D(ΦT) be fixed. Then by Proposition 2.4 we can
take a sequence (vn) in �T := L2(0,T ;H) such that

vn −→ v strongly in �T , ΦT
n

(
vn
)−→ΦT(v). (2.46)

Now since gn ∈ ∂�TΦ
T
n (un), we have

∫ T
0

(
fn(t)− dun

dt
(t),un(t)− vn(t)

)
H
dt

=
∫ T

0

(
gn(t),un(t)− vn(t)

)
Hdt

≥ΦT
n

(
un
)−ΦT

n

(
vn
)
.

(2.47)

Moreover, by Proposition 2.4, it follows from (2.45) that

liminf
n→+∞ ΦT

n

(
un
)≥ΦT(u). (2.48)

Thus passing to the limit n→ +∞ in (2.47), by (2.42) and (2.45), we find

∫ T
0

(
f (t)− du

dt
(t),u(t)− v(t)

)
H
dt ≥ΦT(u)−ΦT(v), (2.49)

which together with the arbitrariness of v ∈ D(ΦT) implies u ∈ D(∂�TΦ
T) and g = f −

du/dt ∈ ∂�TΦ
T(u). Hence by [9, Proposition 1.1], we deduce that g(t)∈ ∂Hϕt(u(t)) for

a.e. t ∈ (0,T). Therefore u is a strong solution of (PP(ϕt, f )).
Finally we prove (2.22). Since u∈D(ΦT), by Proposition 2.4, we can take a sequence

(wn) in �T such that wn → u strongly in �T and ΦT
n (wn) → ΦT(u). Hence we get, by

(2.40) and (2.45),

ΦT
n

(
un
)−ΦT

n

(
wn
)

≤
∫ T

0

(
fn(t)− dun

dt
(t),un(t)−wn(t)

)
H
dt

≤ C
{∫ T

0

∣∣un(t)−u(t)
∣∣2
Hdt+

∫ T
0

∣∣wn(t)−u(t)
∣∣2
Hdt

}1/2

−→ 0,

(2.50)
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which implies

limsup
n→+∞

ΦT
n

(
un
)≤ΦT(u). (2.51)

Therefore combining (2.48) and (2.51), we can derive (2.22). �

3. Applications to parabolic equations

The first application is concerned with quasilinear parabolic equations associated with
the p-Laplacian such as

∂up
∂t

(x, t)−∆pup(x, t)= f (x, t), (x, t)∈Ω× (0,T), (3.1)

where Ω denotes a domain in RN with smooth boundary ∂Ω. The asymptotic behavior of
solutions up to the initial-boundary value problem for (3.1) as p→ +∞ has already been
studied by several authors (see, e.g., [2, 4]). We here generalize (3.1) as follows:

∂up
∂t

(x, t)−∆
γ
pup(x, t)= fp(x, t), (x, t)∈Ω× (0,T), ((P)p)

where fp → f strongly in L2(0,T ;L2(Ω)) as p→ +∞ and ∆
γ
p is defined by

∆
γ
pu(x) :=∇·



(

1
γ(x, t)

)p∣∣∇u(x)
∣∣p−2∇u(x)


 (3.2)

for some function γ : Ω× (0,T)→ R. This generalization is motivated by some macro-
scopic model for type-II superconductors (see [1]).

In Section 3.1, we discuss the existence and uniqueness of solutions up for ((P)p) and
the asymptotic behavior of up as p→ +∞ for the periodic problem as well as the initial-
boundary value problem. Solutions of ((P)p) are defined as follows.

Definition 3.1. A function u∈ C([0,T];L2(Ω)) is said to be a strong solution of ((P)p) if
the following are both satisfied:

(i) u(·, t) is an L2(Ω)-valued absolutely continuous function on [0,T];

(ii) u(·, t)∈W1,p
0 (Ω) for a.e. t ∈ (0,T) and

∫
Ω

∂u

∂t
(x, t)φ(x)dx+

∫
Ω

(
1

γ(x, t)

)p

|∇u|p−2∇u(x, t) ·∇φ(x)dx

=
∫
Ω
fp(x, t)φ(x)dx

(3.3)

for all φ ∈W1,p
0 (Ω) and a.e. t ∈ (0,T).

Moreover, a function u∈ C([0,T];L2(Ω)) is said to be a weak solution of ((P)p) if there
exist sequences ( fp,n) ⊂ L1(0,T ;L2(Ω)) and (un) ⊂ C([0,T];L2(Ω)) such that un is a
strong solution of ((P)p), fp,n → fp strongly in L1(0,T ;L2(Ω)), and un → u strongly in
C([0,T];L2(Ω)) as n→ +∞.
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The second application is for the porous medium equation

∂um
∂t

(x, t)−∆
∣∣um∣∣m−2

um(x, t)= 0, (x, t)∈Ω× (0,T). (3.4)

Bénilan and Crandall [6] studied the asymptotic behavior of solutions un to the initial-
boundary value problem for

∂un
∂t

(x, t)−∆ϕn
(
un(x, t)

)= 0, (x, t)∈R
N × (0,T), (3.5)

where ϕn is a maximal monotone function from R into itself, when ϕn → ϕ in a proper
sense as n→ +∞. Moreover, their results cover (3.4) for the case where Ω=RN .

In Section 3.2, we deal with the following.
((PM)m)

∂um
∂t

(x, t)−∆βm
(
x, t,um(x, t)

)= fm(x, t), (x, t)∈Ω× (0,T), (3.6)

where

βm(x, t,r) := |r|
m−2r

γ(x, t)m
∀(x, t)∈Ω× (0,T), ∀r ∈R. (3.7)

We then define solutions for ((PM)m) in the following sense.

Definition 3.2. A function u ∈ C([0,T];H−1(Ω)) is said to be a strong solution of
((PM)m) if the following are both satisfied:

(i) u(·, t) is an H−1(Ω)-valued absolutely continuous function on [0,T];
(ii) u(·, t)∈ Lm(Ω), βm(·, t,u(·, t))∈H1

0 (Ω), and

〈
∂u

∂t
(·, t),φ

�
H1

0 (Ω)
+
∫
Ω
∇βm

(
x, t,u(x, t)

) ·∇φ(x)dx = 〈 fm(·, t),φ
〉
H1

0 (Ω) (3.8)

for all φ ∈H1
0 (Ω) and a.e. t ∈ (0,T).

Moreover, a function u ∈ C([0,T];H−1(Ω)) is said to be a weak solution of ((PM)m) if
there exist sequences ( fm,n) ⊂ L1(0,T ;H−1(Ω)) and (un) ⊂ C([0,T];H−1(Ω)) such that
un is a strong solution of ((PM)m), fm,n → fm strongly in L1(0,T ;H−1(Ω)), and un → u
strongly in C([0,T];H−1(Ω)) as n→ +∞.

We also investigate the existence and uniqueness of solutions um for ((PM)m) and the
asymptotic behavior of um as m→ +∞ for the periodic problem as well as the initial-
boundary value problem.
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3.1. Asymptotic behavior of solutions for parabolic equations
associated with p-Laplacian as p→ +∞

Problem 3.3. Find a unique solution up of the initial-boundary value problem for ((P)p)
with the boundary condition up(x, t) = 0, (x, t) ∈ ∂Ω× (0,T), and the initial condition
up(x,0) = u0,p(x), x ∈Ω, which is denoted by (IBVP1)p, and investigate the asymptotic
behavior of up as p→ +∞.

To this end, we introduce the following hypotheses:

(H1) Ω is a bounded domain in RN ,

γ(x, t)= π(x)φ(t), π ∈ L∞(Ω), φ∈W1,2(0,T),

γ(x, t)≥ δ0 > 0 for a.e. x ∈Ω and all t ∈ [0,T].
(3.9)

Moreover, set H := L2(Ω) and define ϕtp :H → [0,+∞] as follows:

ϕtp(u) :=




1
p

∫
Ω

(∣∣∇u(x)
∣∣

γ(x, t)

)p

dx if u∈W1,p
0 (Ω),

∇u
γ(·, t) ∈

(
Lp(Ω)

)N
,

+∞ otherwise.

(3.10)

Then (H1) implies

ϕtp ∈Ψ(H), D
(
ϕtp
)=W1,p

0 (Ω) ∀t ∈ [0,T]. (3.11)

Moreover, ∂Hϕtp(u) coincides with−∆γpuwith the homogeneous Dirichlet boundary con-
dition u|∂Ω = 0 in the distribution sense. Hence by Definition 3.1, (IBVP1)p is equivalent
to (CP(ϕtp, fp,u0,p)).

As for the existence of a unique solution to (CP(ϕtp, f ,u0)), our result is stated as fol-
lows.

Theorem 3.4. Suppose that (H1) is satisfied and let p ∈ (1,+∞). Then for all f ∈ L1(0,T ;
L2(Ω)) and u0 ∈ L2(Ω), (CP(ϕtp, f ,u0)) has a unique weak solution up. In particular, if

f ∈ L2(0,T ;L2(Ω)) and u0 ∈W
1,p
0 (Ω), the weak solution up becomes a strong solution of

(CP(ϕtp, f ,u0)).

Proof of Theorem 3.4. We first claim that {ϕtp}t∈[0,T] ∈ Ψ(α1,0) for some function α1 :

[0,+∞)× [0,T]→R. Indeed, let t0 ∈ [0,T] and u0 ∈D(ϕt0p ) be fixed and define the func-
tion u : [0,T]→H as follows:

u(t) := φ(t)
φ
(
t0
)u0 ∈D

(
ϕtp
) ∀t ∈ [0,T]. (3.12)

Since (H1) says γ(x, t)= π(x)φ(t), it follows that

∇u(t)= φ(t)
φ
(
t0
)∇u0 = γ(x, t)

γ
(
x, t0

)∇u0 ∀t ∈ [0,T], (3.13)
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which implies

ϕtp
(
u(t)

)= 1
p

∫
Ω

(∣∣∇u(x, t)
∣∣

γ(x, t)

)p

dx = 1
p

∫
Ω

(∣∣∇u0(x)
∣∣

γ
(
x, t0

)
)p

dx = ϕt0p
(
u0
)
. (3.14)

Moreover, we see

∣∣u(t)−u0
∣∣
H =

∣∣∣∣∣ φ(t)
φ
(
t0
) − 1

∣∣∣∣∣
∣∣u0

∣∣
H

≤ 1
δ0
|π|L∞(Ω)

∣∣φ(t)−φ(t0)∣∣∣∣u0
∣∣
H

≤ ∣∣α1(r, t)−α1
(
r, t0

)∣∣ ∀r ≥ ∣∣u0
∣∣
H ,

(3.15)

where α1 is given by

α1(r, t)= r

δ0
|π|L∞(Ω)φ(t)∈W1,2(0,T). (3.16)

Therefore we conclude that {ϕtp}t∈[0,T] ∈ Ψ(α1,0) for every p ∈ (1,+∞). Then applying
Theorem 2.6 to (CP(ϕtp, f ,u0)), we can derive the desired result. �

Now we are going to describe our result on the asymptotic behavior of up as p→ +∞.

Theorem 3.5. Suppose that (H1) is satisfied and define

Kt := {u∈H1
0 (Ω);

∣∣∇u(x)
∣∣≤ γ(x, t) for a.e. x ∈Ω

}
. (3.17)

Let (pn) be a sequence in (1,+∞) such that pn → +∞ as n→ +∞. Moreover, let fn, f ∈
L2(0,T ;L2(Ω)), u0,n ∈ L2(Ω), and u0 ∈ K0 be such that

fn −→ f strongly in L2(0,T ;L2(Ω)
)
, (3.18)

u0,n −→ u0 strongly in L2(Ω). (3.19)

Then the unique weak solution un of (CP(ϕtpn , fn,u0,n)) converges to u as n→ +∞ in the
following sense:

un −→ u strongly in C
(
[0,T];L2(Ω)

)
. (3.20)

Moreover, the limit u is a unique weak solution of (CP(ϕt∞, f ,u0)), where ϕt∞ is defined by

ϕt∞(u) :=



0 if u∈ Kt,

+∞ if u∈ L2(Ω) \Kt.
(3.21)

In particular, if (1/pn)
∫
Ω |∇u0,n(x)|pndx is bounded as n→ +∞, then the limit u becomes a

strong solution of (CP(ϕt∞, f ,u0)).
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Proof of Theorem 3.5. On account of Theorem 2.7, it suffices to show that

{
ϕtpn

}
t∈[0,T] ∈ B

(
α1,0,C0,

{
Mr
}
r≥0

)
for some constants C0,

{
Mr
}
r≥0, (3.22){

ϕt∞
}
t∈[0,T] ∈Ψ

(
α1,0

)
, (3.23)

ϕtpn −→ ϕt∞ on H in the sense of Mosco as pn −→ +∞. (3.24)

We first prove (3.22). We have already seen that {ϕtp}t∈[0,T] ∈ Ψ(α1,0) for all p ∈
(1,+∞). Moreover, it is obvious that ϕtp ≥ 0 and that h≡ 0 satisfies

dh

dt
(t)= 0, ϕtp

(
h(t)

)= 0 ∀t ∈ [0,T], ∀p ∈ (1,+∞). (3.25)

Hence we can take C0 = 0. Furthermore, we see

∫ T
0

∣∣α̇1(r, t)
∣∣2
dt =

(
r

δ0
|π|L∞(Ω)

)2∫ T
0

∣∣φ̇(t)
∣∣2
dt =:Mr , (3.26)

where we note that Mr is independent of p. Therefore (3.22) holds.
In much the same way as in the proof of Theorem 3.4, we can derive (3.23). Indeed,

u(t) appearing in (3.12) satisfies

∣∣∇u(x, t)
∣∣=

∣∣∣∣∣ γ(x, t)
γ
(
x, t0

)∇u0(x)

∣∣∣∣∣≤ γ(x, t) for a.e. x ∈Ω and all t ∈ [0,T] (3.27)

for each u0 ∈ Kt0 and t0 ∈ [0,T]. Hence we deduce that ϕt∞(u(t)) = ϕt0∞(u0) = 0 for all
t ∈ [0,T], which together with (3.15) implies {ϕt∞}t∈[0,T] ∈Ψ(α1,0).

Finally (3.24) is derived from the following lemma.

Lemma 3.6. For each t ∈ [0,T], it follows that

ϕtpn −→ ϕt∞ on H in the sense of Mosco as pn −→ +∞. (3.28)

Proof of Lemma 3.6. Let t ∈ [0,T] be fixed. We first claim that

∀u∈D(ϕt∞), ∃(un)⊂H ;

un −→ u strongly in H , ϕtpn
(
un
)−→ ϕt∞(u).

(3.29)

Indeed, let u∈D(ϕt∞)= Kt and put un := u for all n∈N. Then since Kt ⊂W
1,pn
0 (Ω) for

all n∈N, it follows immediately that

0≤ ϕtpn
(
un
)= 1

pn

∫
Ω

(∣∣∇u(x)
∣∣

γ(x, t)

)pn

dx

≤ 1
pn
|Ω| −→ 0= ϕt∞(u) as pn −→ +∞.

(3.30)

Hence we deduce that (3.29) holds true.
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We next show that

∀(un)⊂H satisfying un −→ u weakly in H ,

liminf
n→+∞ ϕtpn

(
un
)≥ ϕt∞(u).

(3.31)

For the case where u∈D(ϕt∞)= Kt, it is obvious that liminfn→+∞ϕtpn(un)≥ 0= ϕt∞(u).
For the case where u �∈ Kt, we give a proof by contradiction. Suppose that

∃(un)⊂H ; un −→ u weakly in H , liminf
n→+∞ ϕtpn

(
un
)
< ϕt∞(u)= +∞. (3.32)

Then we can take a subsequence (n′) of (n) such that

ϕtpn′
(
un′
)≤ C ∀n′, (3.33)

which implies



∫
Ω

(∣∣∇un′(x)
∣∣

γ(x, t)

)pn′

dx




1/pn′

≤ {pn′ϕtpn′ (un′)}1/pn′ ≤ (pn′C)1/pn′ −→ 1 as n′ −→ +∞.
(3.34)

For simplicity of notation, we write p and up for pn′ and un′ , respectively. Hence by (H1)
we have

(∫
Ω

∣∣∇up(x)
∣∣pdx)1/p

≤ C, (3.35)

which yields

(∫
Ω

∣∣∇up(x)
∣∣qdx)1/q

≤
(∫

Ω

∣∣∇up(x)
∣∣pdx)1/p

|Ω|(p−q)/(pq)

≤ C(|Ω|+ 1
)1/q ∀q ∈ [1, p].

(3.36)

Thus for each q ∈ (1,+∞), we can take a subsequence (pq) of (p) such that

∇upq −→∇u weakly in
(
Lq(Ω)

)N
. (3.37)

Here we also observe that u∈H1
0 (Ω). In the rest of this proof, we drop q in pq. Moreover,

by (H1), we can also derive

∇up
γ(·, t) −→

∇u
γ(·, t) weakly in

(
Lq(Ω)

)N
. (3.38)
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Hence it follows from (3.34) and (3.38) that



∫
Ω

(∣∣∇u(x)
∣∣

γ(x, t)

)q
dx




1/q

≤ liminf
p→+∞



∫
Ω

(∣∣∇up(x)
∣∣

γ(x, t)

)q
dx




1/q

≤ liminf
p→+∞



∫
Ω

(∣∣∇up(x)
∣∣

γ(x, t)

)p

dx




1/p

|Ω|(p−q)/(pq)

≤ lim
p→+∞(pC)1/p|Ω|(p−q)/(pq)

= |Ω|1/q.

(3.39)

Therefore passing to the limit q→ +∞, we deduce that

∣∣∣∣∣ ∇u
γ(·, t)

∣∣∣∣∣
L∞(Ω)

≤ 1, (3.40)

which contradicts the fact that u �∈ Kt. Hence (3.31) holds true. �

Then by (3.22), (3.23), and (3.24), Theorem 2.7 assures the desired conclusion. �

Problem 3.7. Find a solution of the periodic problem for ((P)p) with the boundary con-
dition u(x, t) = 0, (x, t) ∈ ∂Ω× (0,T), and the periodic condition u(x,0) = u(x,T), x ∈
Ω, which is denoted by (PP1)p. Moreover, investigate the asymptotic behavior of up as
p→ +∞.

Just as in Problem 3.3, (PP1)p can be also reduced to (PP(ϕtp, fp)). Then as for the
existence of a solution to (PP(ϕtp, f )), we have the following.

Theorem 3.8. Suppose that (H1) is satisfied and let p ∈ [2,+∞). Then for all f ∈ L2(0,T ;
L2(Ω)), (PP(ϕtp, f )) has a unique strong solution up.

Proof of Theorem 3.8. We claim that {ϕtp}t∈[0,T] ∈ Ψπ(α1,0,C0) for some positive con-
stant C0. Since H1

0 (Ω) is continuously embedded in H , we see that

|u|2H ≤ C|∇u|2H

≤ C|γ|2L∞(Q)

∫
Ω

(∣∣∇u(x)
∣∣

γ(x, t)

)2

dx

≤ C|γ|2L∞(Q)


 2
p

∫
Ω

(∣∣∇u(x)
∣∣

γ(x, t)

)p

dx+
p− 2
p
|Ω|




≤ 2C|γ|2L∞(Q)

{
ϕtp(u) + |Ω|} ∀u∈D(ϕtp), ∀p ≥ 2,

(3.41)

where Q :=Ω× [0,T]. Hence since we have already known that D(ϕtp)=W1,p
0 (Ω) for all

t ∈ [0,T] and {ϕtp}t∈[0,T] ∈Ψ(α1,0) for every p ∈ (1,+∞), we deduce that {ϕtp}t∈[0,T] ∈
Ψπ(α1,0,C0) for some positive constant C0 independent of p. Therefore Theorem 2.9 as-
sures the existence of a strong solution up for (PP(ϕtp, f )). Moreover, since ϕtp is strictly
convex on H , the periodic solution up is unique. �
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As for the asymptotic behavior of up as p→ +∞, we have the following.

Theorem 3.9. Suppose that (H1) is satisfied and that γ(x,0) ≥ γ(x,T) for a.e. x ∈Ω. Let
(pn) be a sequence in [2,+∞) such that pn→ +∞ as n→ +∞ and let fn, f ∈ L2(0,T ;L2(Ω))
be such that

fn −→ f weakly in L2(0,T ;L2(Ω)
)
. (3.42)

Then a subsequence (nk) of (n) can be taken such that the unique strong solution unk of
(PP(ϕtpnk , fnk )) converges to u as k→ +∞ in the following sense:

unk −→ u strongly in C
(
[0,T];L2(Ω)

)
, weakly in W1,2(0,T ;L2(Ω)

)
. (3.43)

Moreover, the limit u is a strong solution of (PP(ϕt∞, f )).

Proof of Theorem 3.9. We first claim that {ϕtpn}t∈[0,T] ∈ Bπ(α1,0,C0,{Mr}r≥0) for some
constants {Mr}r≥0 independent of n. Indeed, we have already seen that {ϕtp}t∈[0,T] ∈
Ψπ(α1,0,C0), where C0 is a positive constant independent of p. Moreover, since γ(x,0)≥
γ(x,T) for a.e. x ∈Ω, it is obvious that

ϕ0
p(u)≤ ϕTp (u) ∀u∈D(ϕTp), ∀p ∈ (1,+∞). (3.44)

The rest of the proof for this claim can be derived as in the proof of Theorem 3.5.
We next prove that {ϕtpn}n∈N satisfies (A1). Let λ > 0 and t ∈ [0,T] be fixed and let (un)

be a sequence in H such that

ϕtpn
(
un
)

+
∣∣un∣∣H ≤ λ ∀n∈N. (3.45)

For every pn ≥ 2, we get

(∫
Ω

∣∣∇un(x)
∣∣2
dx
)1/2

≤ ∣∣γ(·, t)∣∣L∞(Ω)



∫
Ω

(∣∣∇un(x)
∣∣

γ(x, t)

)pn

dx




1/pn

|Ω|(pn−2)/(2pn)

≤ ∣∣γ(·, t)∣∣L∞(Ω)

(
pnλ

)1/pn|Ω|(pn−2)/(2pn) ≤ C,
(3.46)

where C is a constant independent of n. Hence since H1
0 (Ω) is compactly embedded in

H , we deduce that (un) becomes precompact in H , which implies (A1) with ϕtn replaced
by ϕtpn .

Moreover, Lemma 3.6 says

ϕtpn −→ ϕt∞ on H in the sense of Mosco. (3.47)
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Hence by Theorem 2.10 we can take a subsequence (nk) of (n) such that the unique strong
solution unk of (PP(ϕtpnk , fnk )) satisfies

unk −→ u strongly in C
(
[0,T];H

)
, weakly in W1,2(0,T ;H); (3.48)

moreover, u becomes a strong solution of (PP(ϕt∞, f )). �

Remark 3.10. As mentioned in Theorem 3.8, (PP(ϕtp, f )) has a unique strong solution.
On the other hand, (PP(ϕt∞, f )) may have multiple strong solutions. Indeed, let t0 ∈ [0,T]
be a minimizer of φ, that is, 0 < φ(t0)≤ φ(t) for all t ∈ [0,T]. Then we have Kt0 ⊂ Kt for
all t ∈ [0,T]. Hence for every u0 ∈ Kt0 , ∂Hϕt∞(u0) � 0 for all t ∈ [0,T] and u ≡ u0 be-
comes a strong solution for (PP(ϕt∞,0)). Therefore sinceKt0 has infinitely many elements,
(PP(ϕt∞,0)) admits infinitely many strong solutions.

Furthermore, since up ≡ 0 is a unique strong solution of (PP(ϕtp,0)) for all p ∈ (1,+∞),
up never converges to any strong solution u of (PP(ϕt∞,0)) except u≡ 0 as p→ +∞.

3.2. Asymptotic behavior of solutions for porous medium equation as m→ +∞
Problem 3.11. Find a unique solution um of the initial-boundary value problem for
((PM)m) with the boundary condition u(x, t) = 0, (x, t) ∈ ∂Ω× (0,T), and the initial
condition u(x,0) = u0(x), x ∈Ω, which is denoted by (IBVP2)m, and investigate the as-
ymptotic behavior of um as m→ +∞.

We will make the following assumptions:

(H2) Ω is a bounded domain in RN ,

γ(x, t)∈W1,2(0,T ;L∞(Ω)
)
,

γ(x, t)≥ δ0 > 0 for a.e. x ∈Ω and all t ∈ [0,T].
(3.49)

Set H :=H−1(Ω) and define ψtm :H → [0,+∞] as follows:

ψtm(u) :=




1
m

∫
Ω

(∣∣u(x)
∣∣

γ(x, t)

)m
dx if

u

γ(·, t) ∈ L
m(Ω),

+∞ otherwise.

(3.50)

Moreover, we denote ψtm with γ ≡ 1 simply by ψm. Then by (H2), we see that

D
(
ψtm
)= Lm(Ω) ∀t ∈ [0,T]. (3.51)

Now define

(u,v)H :=
〈
u,
(−∆D

)−1
v
〉
H1

0 (Ω)
∀u,v ∈H , (3.52)

where ∆D denotes the Laplacian with the homogeneous Dirichlet boundary condition
and 〈·,·〉H1

0 (Ω) denotes the natural duality pairing between H1
0 (Ω) and H .
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We now observe that H1
0 (Ω)⊂ Lm′

(Ω) for every m∈ [2N/(N + 2),+∞). Hence let t ∈
[0,T] be fixed and let [u, f ]∈ ∂Hψtm. We then get, for all v ∈ Lm(Ω),

ψm

(
u

γ(·, t)

)
−ψm(v)= ψtm(u)−ψtm

(
γ(·, t)v)

≤ ( f ,u− γ(·, t)v)H
=
〈
u− γ(·, t)v,

(−∆D
)−1

f
〉
H1

0 (Ω)

=
∫
Ω
γ(x, t)

(−∆D
)−1

f (x)

(
u(x)
γ(x, t)

− v(x)

)
dx.

(3.53)

Therefore since ψm is Fréchet differentiable on Lm(Ω) and its derivative at u/γ(·, t) coin-
cides with |u/γ(·, t)|m−2u/γ(·, t), we can verify

f = ∂Hψtm(u)⇐⇒ (−∆D
)−1

f (x)= βm
(
x, t,u(x)

)
for a.e. x ∈Ω (3.54)

for every m∈ [2N/(N + 2),+∞), where we use the maximality of ∂Hψtm. Hence (IBVP2)m
is reduced to (CP(ψtm, fm,u0,m)).

The existence of solutions is assured by Theorem 2.6.

Theorem 3.12. Suppose that (H2) is satisfied and let m∈ [2,+∞). Then for all f ∈ L1(0,
T ;H−1(Ω)) and u0 ∈H−1(Ω), (CP(ψtm, f ,u0)) has a unique weak solution um. In particu-
lar, if f ∈ L2(0,T ;H−1(Ω)) and u0 ∈ Lm(Ω), the unique weak solution um becomes a strong
solution of (CP(ψtm, f ,u0)).

Proof of Theorem 3.12. By Theorem 2.6, it suffices to verify that {ψtm}t∈[0,T] ∈Ψ(α2,0) for
some function α2 : [0,+∞)× [0,T]→R. Let t0 ∈ [0,T] and let u0 ∈D(ψt0m) be fixed. De-
fine

u(t) := γ(·, t)
γ
(·, t0)u0 ∈ Lm(Ω) ∀t ∈ [0,T]. (3.55)

Then we find that

∣∣u(x, t)
∣∣= γ(x, t)

∣∣u0(x)
∣∣

γ
(
x, t0

) for a.e. x ∈Ω, (3.56)

which implies ψtm(u(t))= ψt0m(u0) for all t ∈ [0,T]. Furthermore, for any φ ∈H1
0 (Ω), we

see that

〈
u(t)−u0,φ

〉
H1

0 (Ω) =
∫
Ω

{
γ(x, t)− γ(x, t0

)} u0(x)
γ
(
x, t0

)φ(x)dx

≤ ∣∣γ(·, t)− γ(·, t0)∣∣L∞(Ω)

∣∣∣∣∣ u0

γ
(·, t0)

∣∣∣∣∣
Lm(Ω)

|φ|Lm′ (Ω).
(3.57)

Here since m≥ 2, it follows that

|φ|Lm′ (Ω) ≤ |φ|L2(Ω)|Ω|(2−m′)/2 ≤ C|φ|H1
0 (Ω)

(|Ω|+ 1
)
, (3.58)
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where C is independent of m. Thus

∣∣u(t)−u0
∣∣
H ≤ C

(|Ω|+ 1
)∣∣γ(·, t)− γ(·, t0)∣∣L∞(Ω)

{
mψt0m

(
u0
)}1/m

≤ Ce1/e(|Ω|+ 1
)∣∣γ(·, t)− γ(·, t0)∣∣L∞(Ω)

{
ψt0m
(
u0
)

+ 1
}1/2

.
(3.59)

Hence it follows that

{
ψtm
}
t∈[0,T] ∈Ψ

(
α2,0

)
, (3.60)

where α2 is given by

α2(r, t)= Ce1/e(|Ω|+ 1
)∫ t

0

∣∣∣∣∂γ∂τ (·,τ)
∣∣∣∣
L∞(Ω)

dτ ∈W1,2(0,T). (3.61)

�

As for the asymptotic behavior of um as m→ +∞, our result is stated as follows.

Theorem 3.13. Suppose that (H2) is satisfied and define

κt := {u∈ L2(Ω);
∣∣u(x)

∣∣≤ γ(x, t) for a.e. x ∈Ω
}
. (3.62)

Let (mn) be a sequence in [2,+∞) such that mn → +∞ as n→ +∞. Moreover, let fn, f ∈
L2(0,T ;H−1(Ω)), u0,n ∈H−1(Ω), and u0 ∈ κ0 be such that

fn −→ f strongly in L2(0,T ;H−1(Ω)
)
, (3.63)

u0,n −→ u0 strongly in H−1(Ω). (3.64)

Then the unique weak solution un of (CP(ψtmn
, fn,u0,n)) converges to u as n→ +∞ in the

following sense:

un −→ u strongly in C
(
[0,T];H−1(Ω)

)
. (3.65)

Moreover, the limit u is a unique weak solution of (CP(ψt∞, f ,u0)), where

ψt∞(u) :=



0 if u∈ κt,
+∞ if u∈H−1(Ω) \ κt.

(3.66)

In particular, if (1/mn)
∫
Ω |u0,n(x)|mndx is bounded as n→ +∞, then the limit u becomes a

strong solution of (CP(ψt∞, f ,u0)).

As in Lemma 3.6, we have the following.

Lemma 3.14. For each t ∈ [0,T], it follows that

ψtmn
−→ ψt∞ on H in the sense of Mosco as mn −→ +∞. (3.67)
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Proof of Lemma 3.14. Let t ∈ [0,T] be fixed. Then as in the proof of Lemma 3.6, we can
easily derive that

∀u∈D(ψt∞), ∃(un)⊂H ;

un −→ u strongly in H , ψtmn

(
un
)−→ ψt∞(u).

(3.68)

Our next claim is

∀(un)⊂H satisfying un −→ u weakly in H ,

liminf
n→+∞ ψtmn

(
un
)≥ ψt∞(u).

(3.69)

For the case where u ∈ D(ψt∞) = κt, (3.69) follows immediately; for the case where
u �∈ κt, to obtain a contradiction, suppose that

∃(un)⊂H ; un −→ u weakly in H , liminf
n→+∞ ψtmn

(
un
)
< ψt∞(u)= +∞. (3.70)

Then we can extract a subsequence (n′) of (n) such that

ψtmn′
(
un′
)≤ C ∀n′. (3.71)

We write m and um simply for mn′ and un′ , respectively. Thus we have



∫
Ω

(∣∣um(x)
∣∣

γ(x, t)

)m
dx




1/m

≤ {mψtm(um)}1/m ≤ (mC)1/m −→ 1 (3.72)

as m→ +∞. Then in much the same way as in the proof of Lemma 3.6, we obtain

∣∣∣∣∣ u

γ(·, t)

∣∣∣∣∣
L∞(Ω)

≤ 1, (3.73)

which contradicts the fact that u �∈ κt. Therefore (3.69) follows. �

Proof of Theorem 3.13. Just as in the proof of Theorem 3.5, we can derive {ψtm}t∈[0,T] ∈
B(α2,0,C0,{Mr}r≥0) for some constants C0 > 0, {Mr}r≥0 independent of n. Moreover,
recall (3.57). Then for all t0 ∈ [0,T] and u0 ∈ κt0 , we have

〈
u(t)−u0,φ

〉
H1

0 (Ω) ≤
∣∣γ(·, t)− γ(·, t0)∣∣L∞(Ω)|Ω|1/m|φ|Lm′ (Ω), (3.74)

which together with (3.58) implies

∣∣u(t)−u0
∣∣
H ≤ C

(|Ω|+ 1
)2∣∣γ(·, t)− γ(·, t0)∣∣L∞(Ω). (3.75)

Furthermore, we can easily check ψt∞(u(t)) = ψt0∞(u0) = 0. Hence {ψt∞}t∈[0,T] ∈ Ψ(α̃2,0)
with α̃2(·) := (|Ω|+ 1)α2(·). Therefore by Theorem 2.7 and Lemma 3.14, we complete
the proof. �
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Remark 3.15. In [6], the authors rewrite (3.5) in the form

dun
dt

(t) +Anun(t)= 0 in L1(Ω), (3.76)

whereAn is anm-accretive operator in L1(Ω), and employ an abstract theory of evolution
equations governed by m-accretive operators in a general Banach space developed in [5,
7, 8]. Particularly the strong convergence of (un) in C([0,T];L1(Ω)) is derived from the
convergence of the resolvent of An, which means

(
I +An

)−1
u−→ (I +A)−1u strongly in L1(Ω)∀u∈ L1(Ω) (3.77)

as n→ +∞ for some m-accretive operator A. We here note that the following conditions
are equivalent to each other:

(i) ψm→ ψ∞ on H :=H−1(Ω) in the sense of Mosco as m→ +∞;
(ii) (I + ∂Hψm)−1u→ (I + ∂Hψ∞)−1u strongly in H for all u∈H .

Hence our approach could also be regarded as an H−1(Ω)-framework version of [6].

Problem 3.16. Find a solution of the periodic problem for ((PM)m) with the boundary
condition u(x, t) = 0, (x, t) ∈ ∂Ω× (0,T), and the periodic condition u(x,0) = u(x,T),
x ∈Ω, which is denoted by (PP2)m. Moreover, investigate the asymptotic behavior of um
as m→ +∞.

Just as in Problem 3.11, (PP2)m is equivalent to (PP(ψtm, fm)). Concerning the exis-
tence of strong solutions, we have the following.

Theorem 3.17. Suppose that (H2) is satisfied and letm∈ [2,+∞). Then for all f ∈ L2(0,T ;
H−1(Ω)), (PP(ψtm, f )) has the unique strong solution um.

Proof of Theorem 3.17. We observe

|u|2L2(Ω) ≤ |γ|2L∞(Q)


 2
m

∫
Ω

(∣∣u(x)
∣∣

γ(x, t)

)m
dx+

m− 2
m

|Ω|



= 2|γ|2L∞(Q)

{
ψtm(u) + |Ω|} ∀u∈ Lm(Ω), ∀m≥ 2,

(3.78)

where Q :=Ω× [0,T]. Hence since L2(Ω) is continuously embedded in H , we can take a
positive number C0 independent of m such that

|u|2H ≤ C0
(
ψtm(u) + 1

) ∀u∈D(ψtm), ∀t ∈ [0,T]. (3.79)

Therefore on account of (3.51) and (3.60), we have

{
ψtm
}
t∈[0,T] ∈Ψπ

(
α2,0,C0

)
. (3.80)

Thus Theorem 2.9 ensures the existence of a strong solution um of (PP(ψtm, f )). More-
over, since ψtm is strictly convex on H , every periodic solution is unique. �

As for the convergence of um as m→ +∞, our result is the following.
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Theorem 3.18. Suppose that (H2) is satisfied and that γ(x,0) ≥ γ(x,T) for a.e. x ∈ Ω.
Let (mn) be a sequence in [2,+∞) such that mn → +∞ as n→ +∞. Moreover, let fn, f ∈
L2(0,T ;H−1(Ω)) be such that

fn −→ f weakly in L2(0,T ;H−1(Ω)
)
. (3.81)

Then a subsequence (nk) of (n) can be taken such that the unique strong solution unk of
(PP(ψtmnk

, fnk )) converges to u as k→ +∞ in the following sense:

unk −→ u strongly in C
(
[0,T];H−1(Ω)

)
, weakly in W1,2(0,T ;H−1(Ω)

)
. (3.82)

Moreover, the limit u is a strong solution of (PP(ψt∞, f )).

Proof of Theorem 3.18. We claim that any sequence (un) in H satisfying

sup
n∈N

{
ψtmn

(
un
)

+
∣∣un∣∣H}≤ λ (3.83)

is precompact in H for every λ > 0 and t ∈ [0,T]. For every mn ≥ 2, we get

(∫
Ω

∣∣un(x)
∣∣2
dx
)1/2

≤
(∫

Ω

∣∣un(x)
∣∣mndx

)1/mn

|Ω|(mn−2)/(2mn)

≤ ∣∣γ(·, t)∣∣L∞(Ω)

(
mnλ

)1/mn|Ω|(mn−2)/(2mn) ≤ C,

(3.84)

where C denotes a constant independent of n. Then since L2(Ω) is compactly embed-
ded in H , it follows immediately that (un) becomes precompact in H . Moreover, since
γ(x,0) ≥ γ(x,T) for a.e. x ∈Ω, we can easily see that ψTm(u) ≥ ψ0

m(u) for all u ∈ D(ψTm)
and n∈N. Then the rest of proof can be derived just as in the proof of Theorem 3.9. �

Acknowledgments

This is part of the author’s Ph.D. thesis. The author would like to express his sincere
thanks to his supervisor Professor Mitsuharu Ôtani for his constant help. Furthermore,
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