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This paper deals with the initial-boundary value problem for the system of motion equa-
tions of an incompressible viscoelastic medium with Jeffreys constitutive law in an ar-
bitrary domain of two-dimensional or three-dimensional space. The existence of weak
solutions of this problem is obtained.

1. Introduction

It is known [5, 7] that the motion of an incompressible medium with constant density
ρ = const is determined by the system of differential equations in the form of Cauchy

ρ

(
∂u

∂t
+

n∑
i=1

ui
∂u

∂xi

)
+ grad p =Divσ + ρ f , (t,x)∈ (0,T)×Ω,

divu= 0, (t,x)∈ (0,T)×Ω.

(1.1)

Here u is the velocity vector, p is the pressure function, f is the body force, and σ is the
deviator of the stress tensor (all of them depend on a point x of an arbitrary domain Ω in
the space Rn, n= 2,3, and on a moment of time t). The gradient grad and the divergence
div are taken with respect to the variable x. The divergence Divσ of a tensor σ is the vector
with the coordinates (Divσ) j =

∑n
i=1(∂σi j /∂xi).

Without loss of generality, we can consider the density ρ to be equal to 1.
The type of a medium is determined by the choice of the constitutive law between σ

and the strain velocity tensor �(u), �(u) = (�i j(u)), �i j(u) = (1/2)(∂ui/∂xj + ∂uj/∂xi).
For instance, one class of mediums is connected with the Stokes conjecture that the de-
viator of the stress tensor in every point is completely determined by the strain velocity
tensor in the same point at the same moment of time. It is the conception of linear- and
nonlinear-viscous fluid [7].

However, this conception is not satisfactory for all incompressible media. In particular,
it is not suitable for mediums “with memory”: concrete, various polymers, the earth’s
crust, and so forth. To take into account the effects of memory one may introduce time
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derivatives into the constitutive law. When this method was used the models of Maxwell,
Jeffreys, Oldroyd, and a lot of other models [4, 8, 9] appeared.

In the present work we study the solvability in the weak sense of the initial-boundary
value problem in the Jeffreys model [9] of motion of a viscoelastic medium in an ar-
bitrary domain Ω ⊂ Rn (n = 2,3), which may also be unbounded. The corresponding
constitutive law is

σ + λ1
d
dt
σ = 2η

(
� + λ2

d
dt

�
)
. (1.2)

Here η is the viscosity of the medium, λ1 is the relaxation time, and λ2 is the retardation
time, 0 < λ2 < λ1.

The main result of this paper is the existence theorem of weak solutions for the initial-
boundary value problem for system (1.1)-(1.2) in an arbitrary domain Ω⊂Rn (n= 2,3).

We note that in a number of papers (see, e.g., [1, 2, 6]) the initial-boundary value
problem was studied provided that the full derivative d/dt was replaced by the partial
derivative ∂/∂t, what essentially narrows the class of mediums satisfying the model [8].
In [11] the Jeffreys relation (1.2) was considered without such linearizations, but at the
expression of the stress tensor through the strain velocity tensor the regularization of the
velocity field with the help of averaging on the spatial variable was used. The feature of
this work is that here there is no such regularization.

The plan of the paper is as follows. In Section 2, the statement of the problem, de-
scribing the motion of the viscoelastic fluid, is presented and the basic notations are
introduced. Then we introduce the concept of a weak solution of this problem and for-
mulate the main existence theorem. In Section 3, the existence of solutions of an auxiliary
problem, depending on several parameters, is proved with the help of a priori estimates
and the Leray-Schauder degree theory. In Section 4, the passage to the limit as one of
these parameters tends to zero is carried out. With the help of the obtained result, in
Section 5, we prove the existence of a weak solution of the initial-boundary value prob-
lem for the Jeffreys model and estimate this solution.

2. Statement of the problem and the main result

2.1. Statement of the problem. Let Ω be an arbitrary domain in the space Rn, n= 2,3,
which may also be unbounded.

Consider the following initial-boundary value problem, which describes the motion
of an incompressible viscoelastic medium, corresponding to the Jeffreys model:

∂u

∂t
+

n∑
i=1

ui
∂u

∂xi
+ grad p =Divσ + f , (2.1)

σ + λ1

(
∂σ

∂t
+

n∑
i=1

ui
∂σ

∂xi

)
= 2η

(
� + λ2

(
∂�
∂t

+
n∑
i=1

ui
∂�
∂xi

))
, (2.2)

divu= 0, (2.3)

u|∂Ω = 0, (2.4)

u|t=0 = a, σ|t=0 = σ0. (2.5)
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2.2. Basic notations. We will use the following notations. Most of them are standard.
Denote by Rn×n the space of matrices of order n×n with the following scalar product:

for A= (Aij), B = (Bij),

(A,B)Rn×n =
n∑

i, j=1

AijBi j , (2.6)

and denote by R
n×n
S its subspace of symmetric matrices.

Denote by Rn×n×n the space of ordered collections of n matrices of order n× n with
the following scalar product: for A= (A1, . . . ,An), B = (B1, . . . ,Bn),

(A,B)Rn×n×n =
n∑
i=1

(
Ai,Bi

)
Rn×n . (2.7)

The symbol ∇u will stand for the Jacobi matrix of a vector function u : Ω→ Rn. The
symbol ∇τ will denote the ordered collection of the Jacobi matrices of the columns of a
matrix function τ : Ω→Rn×n.

Below, E stands for one of the spaces Rn, Rn×n, R
n×n
S , Rn×n×n.

We will use the standard notations Lp(Ω,E), Wm
p (Ω,E), Hm(Ω,E) = Wm

2 (Ω,E),
Hm

0 (Ω,E) = ◦
Wm

2 (Ω,E) for Lebesgue and Sobolev spaces of functions with values in E.
Sometimes we will write simply Lp instead of Lp(Ω,E), and so forth, if it is clear from the
context which space E is used.

The scalar products in L2(Ω,E) and H1(Ω,E) may be given by the following bilinear
forms:

(u,v)=
∫
Ω

(
u(x),v(x)

)
Edx,

(u,v)1 = (u,v) +
n∑
i=1

(
∂u

∂xi
,
∂v

∂xi

)
.

(2.8)

The norms in these spaces will be denoted by ‖ · ‖ and ‖ · ‖1, respectively. The Euclid
norm in E will be denoted by | · |. By the symbol C∞0 (Ω,E) we will denote the space of
smooth functions with compact support in Ω and with values in E.

For brevity, we will denote by C∞0 the space C∞0 (Ω,Rn×n
S ). Denote by � the set {u ∈

C∞0 (Ω,Rn), divu = 0}. Let the symbols H and V denote the closures of � in L2(Ω,Rn)
and W1

2 (Ω,Rn), respectively. Following [10], we will identify the space H and its conju-
gate space H∗. Therefore we have the embedding

V ⊂H ≡H∗ ⊂V∗. (2.9)

The value of a functional v from V∗ or H−m (m = 1,2) on an element ϕ from V or
Hm

0 , respectively, will be denoted as 〈v,ϕ〉.
The symbols C([0,T];X), Cw([0,T];X), L2(0,T ;X), . . . , will denote the Banach spaces

of continuous, weakly continuous, quadratically integrable, and so forth functions on the
segment [0,T] with values in some Banach space X .
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The symbol Ki(·, . . . ,·), i= 0,1,2, . . . will stand for positive constants, depending con-
tinuously on arguments, which will be enumerated. Other constants will be denoted by
the symbol C.

2.3. Weak formulation of the problem. Let f belong to the space L2(0,T ;V∗).

Definition 2.1. A pair of functions (u,σ),

u∈ L2(0,T ;V)
⋂
Cw
(
[0,T];H

)
,

du

dt
∈ L1

(
0,T ;V∗),

σ ∈ L2
(
0,T ;L2

(
Ω,RN×N

S

))⋂
Cw
(
[0,T];H−1(Ω,RN×N

S

))
,

(2.10)

is a weak solution of problem (2.1)–(2.5) if it satisfies condition (2.5) and the equalities

d

dt
(u,ϕ) + (σ ,∇ϕ)−

n∑
i=1

(
uiu,

∂ϕ

∂xi

)
= 〈 f ,ϕ〉,

(σ ,Φ) + λ1
d

dt
(σ ,Φ)− λ1

n∑
i=1

(
uiσ ,

∂Φ

∂xi

)

=−2η(u,DivΦ)− 2ηλ2

(
d

dt
(u,DivΦ) +

n∑
i=1

(
ui�(u),

∂Φ

∂xi

))
(2.11)

are true for all ϕ∈� and Φ∈ C∞0 in the sense of distributions on (0,T).

Remark 2.2. Equalities (2.11) appear from the following reasoning. Let (u,σ , p) be a clas-
sical solution of problem (2.1)–(2.5). Taking the L2-scalar product of equalities (2.1) and
(2.2) with ϕ ∈ � and Φ ∈ C∞0 , respectively, and integrating the obtained equalities by
parts, we obtain identities (2.11).

2.4. The main result. The main result of this paper is the following.

Theorem 2.3. Given f ∈ L2(0,T ;V∗), a∈H , σ0 ∈W−1
2 (Ω,Rn×n

S ), σ0− 2η(λ2/λ1)�(a)∈
L2(Ω,Rn×n

S ), there exists a weak solution of problem (2.1)–(2.5) in class (2.10).

3. Auxiliary problem

Before proving Theorem 2.3, we study an auxiliary problem. We begin with an equivalent
transformation of system (2.11). Denote µ1 = η(λ2/λ1), µ2 = (η− µ1)/λ1, and τ = σ −
2µ1�(u). Then we can rewrite (2.11) as follows:

d

dt
(τ,Φ) +

1
λ1

(τ,Φ)−
n∑
i=1

(
uiτ,

∂Φ

∂xi

)
+ 2µ2(u,DivΦ)= 0, (3.1)

d

dt
(u,ϕ)−

n∑
i=1

(
uiu,

∂ϕ

∂xi

)
+µ1(∇u,∇ϕ) + (τ,∇ϕ)= 〈 f ,ϕ〉 (3.2)

for all ϕ∈� and Φ∈ C∞0 .
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Consider the following auxiliary problem:

d

dt
(τ,Φ)+

1
λ1

(τ,Φ)−ξ
n∑
i=1

(
uiτ

1+δ
(|τ|2/2µ2 +|u|2) ,

∂Φ

∂xi

)
+2µ2ξ(u,DivΦ)+

ε

λ1
(∇τ,∇Φ)= 0,

(3.3)

d

dt
(u,ϕ)− ξ

n∑
i=0

(
uiu

1 + δ
(|τ|2/2µ2 + |u|2) ,

∂ϕ

∂xi

)
+µ1(∇u,∇ϕ) + ξ(τ,∇ϕ)= 〈 f ,ϕ〉 (3.4)

for all ϕ∈V , Φ∈H1
0 a.e. in (0,T);

u|t=0 = a, τ|t=0 = τ0. (3.5)

The numbers δ > 0, 0≤ ξ ≤ 1, 0 < ε ≤ 1 are parameters.
We introduce the following spaces:

W =
{
u∈ L2(0,T ;V),

du

dt
∈ L2

(
0,T ;V∗)},

WM =
{
τ ∈ L2

(
0,T ;H1

0

(
Ω,Rn×n

S

))
,
dτ

dt
∈ L2

(
0,T ;H−1(Ω,Rn×n

S

))} (3.6)

with natural intersection norms.
It follows from [10, Chapter III, Theorem 1.2] that W and WM are embedded into

C([0,T];H) and C([0,T];L2), respectively. If Ω is bounded, (see [10, Chapter III, The-
orem 2.1] and [10, Chapter II, Theorem 1.1]), the embeddings W into L2(0,T ;H) and
WM into L2(0,T ;L2) are compact.

Lemma 3.1. Let a ∈ H , τ0 ∈ L2, f ∈ L2(0,T ;V∗), and let a pair (u ∈W ,τ ∈WM) be a
solution of problem (3.3)–(3.5). Then the following estimate holds:

max
t∈[0,T]

(‖u‖(t) +‖τ‖(t)
)

+
∫ T

0
‖u‖2

1(t)dt+ ε
∫ T

0
‖τ‖2

1(t)dt

≤ K0
(‖a‖,

∥∥τ0
∥∥,‖ f ‖L2(0,T ;V∗)

)
,

(3.7)

where K0 does not depend on Ω, ε, δ, ξ.

Proof. First we show that the following identities hold a.e. in (0,T):

(τ,∇u) + (u,Divτ)= 0, (3.8)
n∑
i=1

(
uiu

1 + δ
(|τ|2/2µ2 + |u|2) ,

∂u

∂xi

)
+

1
2µ2

(
uiτ

1 + δ
(|τ|2/2µ2 + |u|2) ,

∂τ

∂xi

)
= 0. (3.9)
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In fact, from Green’s formula we have

n∑
i, j=1

[(
τi j ,

∂ui
∂xj

)
+
(
ui,

∂τi j
∂xj

)]
= 0 (3.10)

and it is the same as (3.8). We transform the left part of (3.9) as follows:

1
2

( n∑
i=1

ui
1 + δ

(|τ|2/2µ2 + |u|2) ,
∂|u|2
∂xi

+
1

2µ2

∂|τ|2
∂xi

)

= 1
2δ

n∑
i=1

(
ui,

∂

∂xi
ln

(
1 + δ

(
|τ|2
2µ2

+ |u|2
)))

.

(3.11)

Since u(t)∈ V for a.a. t, from the formula of integration by parts it follows that the last
expression is equal to zero.

It appears from [10, Chapter III, Lemma 1.1] that

〈
du

dt
,ϕ
�
= d

dt
(u,ϕ),

〈
dτ

dt
,Φ
�
= d

dt
(τ,Φ). (3.12)

Therefore

d

dt
(u,ϕ)

∣∣∣∣∣
ϕ=u(t)

=
〈
du(t)
dt

,u(t)

〉
= 1

2
d

dt

(
u(t),u(t)

)
. (3.13)

Analogously

d

dt
(τ,Φ)

∣∣∣∣∣
Φ=τ(t)

= 1
2
d

dt
(τ,τ). (3.14)

PuttingΦ= τ(t)/2µ2 in (3.3) and ϕ= u(t) in (3.4) for a.a. t ∈ [0,T], adding the results,
and taking into account (3.8) and (3.9), we obtain

1
2
d

dt
(u,u) +

1
4µ2

d

dt
(τ,τ) +µ1(∇u,∇u) +

1
2λ1µ2

(τ,τ) +
ε

2λ1µ2
(∇τ,∇τ)= 〈 f ,u〉.

(3.15)

Integrate this equality from 0 to t:

1
2
‖u‖2(t) +

1
4µ2

‖τ‖2(t) +
∫ t

0

1− ε
2λ1µ2

‖τ‖2ds+
∫ t

0

ε

2λ1µ2
‖τ‖2

1ds+
∫ t

0
µ1
(‖u‖2

1−‖u‖2)ds
≤ 1

2
‖a‖2 +

1
4µ2

∥∥τ0
∥∥2

+
∫ t

0
‖ f ‖V∗‖u‖1ds.

(3.16)
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Take the maxima on the segment [0,T] of the left and the right parts:

max
t∈[0,T]

(
1
2
‖u‖2(t) +

1
4µ2

‖τ‖2(t)
)

+
∫ T

0

1− ε
2λ1µ2

‖τ‖2dt+
∫ T

0

ε

2λ1µ2
‖τ‖2

1dt

+
∫ T

0
µ1
(‖u‖2

1−‖u‖2)dt ≤ 1
2
‖a‖2 +

1
4µ2

∥∥τ0
∥∥2

+
∫ T

0
‖ f ‖V∗‖u‖1dt.

(3.17)

Note that the following inequality is valid:

max
t∈[0,T]

1
4
‖u‖2(t) +

∫ T
0
µ1
(‖u‖2

1dt−‖u‖2)≥ γ
∫ T

0
‖u‖2

1dt, (3.18)

where γ =min(1/4T ,µ1).
For its proof it is enough to add the inequalities

max
t∈[0,T]

1
4
‖u‖2(t)≥ 1

4T

∫ T
0
‖u‖2dt ≥ γ

∫ T
0
‖u‖2dt,

∫ T
0
µ1
(‖u‖2

1−‖u‖2)dt ≥ γ
∫ T

0

(‖u‖2
1−‖u‖2)dt.

(3.19)

Now, from (3.17) and (3.18) we have

γ
∫ T

0
‖u‖2

1dt ≤
1
2
‖a‖2 +

1
4µ2

∥∥τ0
∥∥2

+‖ f ‖L2(0,T ;V∗)

(∫ T
0
‖u‖2

1dt
)1/2

. (3.20)

This yields (
∫ T

0 ‖u‖2
1dt)

1/2 ≤ y2, where y2 is the greater root of the quadratic equation

γy2 = 1
2
‖a‖2 +

1
4µ2

∥∥τ0
∥∥2

+‖ f ‖L2(0,T ;V∗)y. (3.21)

Then, from (3.17) and (3.18), it follows that

max
t∈[0,T]

(
1
4
‖u‖2(t) +

1
4µ2

‖τ‖2(t)

)
+ γ

∫ T
0
‖u‖2

1dt+
ε

2λ1µ2

∫ T
0
‖τ‖2

1dt

≤ 1
2
‖a‖2 +

1
4µ2

∥∥τ0
∥∥2

+‖ f ‖L2(0,T ;V∗)y2,

(3.22)

which yields the statement of the lemma. �

Theorem 3.2. Let Ω be bounded and let a, τ0, f satisfy the conditions of Lemma 3.1. Then
problem (3.3)–(3.5) possesses a solution u∈W , τ ∈WM .
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Proof. Introduce auxiliary operators by the following formulas (in these formulas ϕ and
Φ are arbitrary elements of V and H1

0 (Ω,Rn×n
S ), resp.):

N1 :WM −→ L2
(
0,T ;V∗), 〈

N1(τ),ϕ
〉= (τ,∇ϕ),

N2 :W −→ L2
(
0,T ;H−1), 〈

N2(u),Φ
〉= 2µ2(u,DivΦ),

Kδ :W ×WM −→ L2
(
0,T ;V∗),

〈
Kδ(u,τ),ϕ

〉=− n∑
i=1

(
uiu

1 + δ
(|u|2 + |τ|2/2µ2

) ,
∂ϕ

∂xi

)
,

K̃δ :W ×WM −→ L2
(
0,T ;H−1),

〈
K̃δ(u,τ),Φ

〉=− n∑
i=1

(
uiτ

1 + δ
(|u|2 + |τ|2/2µ2

) ,
∂Φ

∂xi

)
,

A :W −→ L2
(
0,T ;V∗),〈

A(u),ϕ
〉= µ1(∇u,∇ϕ),

Aε :WM −→ L2
(
0,T ;H−1),

〈
Aε(τ),Φ

〉= ε(∇τ,∇Φ) +
1
λ1

(τ,Φ),

Ã :W ×WM −→ L2
(
0,T ;V∗)×L2

(
0,T ;H−1)×H ×L2,

Ã(u,τ)=
(
du

dt
+A(u),

dτ

dt
+Aε(τ),u|t=0,τ|t=0

)
,

Q :W ×WM −→ L2
(
0,T ;V∗)×L2

(
0,T ;H−1)×H ×L2,

Q(u,τ)= (Kδ(u,τ) +N1(τ), K̃δ(u,τ) +N2(u),0,0
)
.

(3.23)

Then problem (3.3)–(3.5) is equivalent to the operator equation

Ã(u,τ) + ξQ(u,τ)= ( f ,0,a,τ0
)
. (3.24)

The operator Ã is invertible by [3, Chapter VI, Theorem 1.1]. Moreover, since the
embeddings W into L2(0,T ;H) and WM into L2(0,T ;L2) are compact, the operators N1,
N2 are compact. The operators Kδ and K̃δ are compact, which may be shown as in [2,
Theorem 2.2]. Hence, the operator Q is also compact.

Rewrite (3.24) as

(u,τ)− ξÃ−1Q(u,τ)= Ã−1( f ,0,a,τ0
)
. (3.25)

By Lemma 3.1 equation (3.25) has no solutions on the boundary of a sufficiently large
ball B in W ×WM , independent on ξ, δ, ε. Without loss of generality, a0 = Ã−1( f ,0,a,τ0)
belongs to this ball. Then degLS(I − ξÃ−1Q,B,a0), the Leray-Schauder degree of the map
I − ξÃ−1Q on the ball B with respect to the point a0, is defined, where I is the identity
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operator. By the homotopic invariance property of the degree we have

degLS

(
I − ξÃ−1Q,B,a0

)= degLS

(
I ,B,a0

)= 1. (3.26)

Hence, (3.25) (and therefore, problem (3.3)–(3.5)) has a solution in B for every ξ. �

We need the following estimates on the time derivatives of the solutions of problem
(3.3)–(3.5).

Lemma 3.3. In the conditions of the previous theorem the following estimates of the solutions
are valid: ∥∥∥∥dudt

∥∥∥∥
L1(0,T ;V∗)

≤ K1
(‖a‖,

∥∥τ0
∥∥,‖ f ‖L2(0,T ;V∗)

)
, (3.27)

∥∥∥∥dτdt
∥∥∥∥
L1(0,T ;H−1)

≤ K2
(‖a‖,

∥∥τ0
∥∥,‖ f ‖L2(0,T ;V∗),ε

)
, (3.28)

where K1, K2 do not depend on Ω, δ, ξ, and K1 also does not depend on ε.

Proof. From (3.4) we have

∫ T
0

∣∣∣∣ ddt (u,ϕ)
∣∣∣∣dt ≤

∫ T
0

∣∣∣∣∣ξ
n∑
i=1

(
uiu

1 + δ
(|τ|2/2µ2 + |u|2) ,

∂ϕ

∂xi

)∣∣∣∣∣
+
∣∣µ1(∇u,∇ϕ)

∣∣+
∣∣ξ(τ,∇ϕ)

∣∣+
∣∣〈 f ,ϕ〉∣∣dt.

(3.29)

Applying Hölder’s inequality and estimate (3.7), and taking into account the embed-
ding V ⊂ L4 (provided N = 2,3) and the inequality ξ/(1 + δ(|τ|2/2µ2 + |u|2))≤ 1, we see
that the right part does not exceed

‖ϕ‖V
∫ T

0

(∥∥u(t)
∥∥2
L4

+µ1
∥∥u(t)

∥∥
1 +
∥∥τ(t)

∥∥+
∥∥ f (t)

∥∥
V∗
)
dt

≤ C‖ϕ‖V
(
1 +‖u‖2

L2(0,T ;V) +‖τ‖L∞(0,T ;L2) +‖ f ‖L2(0,T ;V∗)
)

≤ K1
(‖a‖,

∥∥τ0
∥∥,‖ f ‖L2(0,T ;V∗)

)‖ϕ‖V .
(3.30)

These estimates and (3.12) yield (3.27).
Analogously, from (3.3), one obtains (3.28). �

4. Passage to the limit

Consider one more auxiliary system

d

dt
(τ,Φ) +

1
λ1

(τ,Φ)−
n∑
i=1

(
uiτ,

∂Φ

∂xi

)
+ 2µ2(u,DivΦ) +

ε

λ1
(∇τ,∇Φ)= 0,

d

dt
(u,ϕ)−

n∑
i=1

(
uiu,

∂ϕ

∂xi

)
+µ1(∇u,∇ϕ) + (τ,∇ϕ)= 〈 f ,ϕ〉,

(4.1)

for all ϕ∈V , Φ∈H1
0 a.e. in (0,T), 0 < ε ≤ 1.
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Theorem 4.1. Let Ω, a, τ0, f satisfy the conditions of Theorem 3.2. Then problem (4.1),
(3.5) possesses a solution in the class

u∈ L2(0,T ;V), τ ∈ L2
(
0,T ;H1

0

)
,

du

dt
∈ L1

(
0,T ;V∗), dτ

dt
∈ L1

(
0,T ;H−1), (4.2)

which satisfies estimates (3.27), (3.28), and

vrai max
t∈[0,T]

(‖u‖(t) +‖τ‖(t)
)

+
∫ T

0
‖u‖2

1(t)dt+ ε
∫ T

0
‖τ‖2

1(t)dt

≤ K0
(‖a‖,

∥∥τ0
∥∥,‖ f ‖L2(0,T ;V∗)

)
.

(4.3)

Proof. Consider problems (3.3)–(3.5) with ξ = 1 and δ = 1/m, m = 1,2, . . . . By Theo-
rem 3.2 there exist solutions (um,τm) of these problems. Taking into account estimate
(3.7), without loss of generality, we may assume that

um −→ u∗ weakly in L2(0,T ;V),

um −→ u∗ ∗-weakly in L∞(0,T ;H),

τm −→ τ∗ weakly in L2
(
0,T ;H1

0

)
,

τm −→ τ∗ ∗-weakly in L∞
(
0,T ;L2

)
,

(4.4)

as m→∞.
By Lemma 3.3 the sequence {dum/dt} is bounded in L1(0,T ;V∗), and the sequence

{dτm/dt} is bounded in L1(0,T ;H−1). Then, by the compactness theorem (see [10, Chap-
ter III, Theorem 2.3]),

um −→ u∗ strongly in L2(0,T ;H),

τm −→ τ∗ strongly in L2
(
0,T ;L2

)
,

(4.5)

and we may assume that

um(t)(x)−→ u∗(t)(x) a.e. in (0,T)×Ω,

τm(t)(x)−→ τ∗(t)(x) a.e. in (0,T)×Ω.
(4.6)

It is obvious that estimate (4.3) is valid for (u∗,τ∗).
Substitute (um,τm) in equalities (3.3) and (3.4) with δ = 1/m, ξ = 1. Taking the scalar

product of these equalities in L2(0,T) with a smooth scalar function ψ(t), ψ(T)= 0, and
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integrating by parts the first terms, we obtain

−
∫ T

0

(
τm,Φψ′(t)

)
dt+

∫ T
0

(
1
λ1

(
τm,ψΦ

)− n∑
i=1

( (
um
)
iτm

1 + (1/m)
(∣∣τm∣∣2

/2µ2 +
∣∣um∣∣2) ,ψ

∂Φ

∂xi

)

+ 2µ2
(
um,ψDivΦ

)
+
ε

λ1

(∇τm,ψ∇Φ))dt = (τ0,Φ
)
ψ(0),

−
∫ T

0

(
um,ϕψ′(t)

)
dt

+
∫ T

0

(
µ1
(∇um,ψ∇ϕ)− n∑

i=1

( (
um
)
ium

1 + (1/m)
(∣∣τm∣∣2

/2µ2 +
∣∣um∣∣2) ,ψ

∂Φ

∂xi

)
+
(
τm,ψ∇ϕ)

)
dt

=
∫ T

0
〈 f ,ϕψ〉dt+ (a,ϕ)ψ(0).

(4.7)

As in [2, page 42], we may see that

∫ T
0

n∑
i=1

( (
um
)
iτm

1 + (1/m)
(∣∣τm∣∣2

/2µ2 +
∣∣um∣∣2) ,ψ

∂Φ

∂xi

)
dt −→

∫ T
i=1

n∑
i=1

((
u∗
)
iτ∗,ψ

∂Φ

∂xi

)
dt,

∫ T
0

n∑
i=1

( (
um
)
ium

1 + (1/m)
(∣∣τm∣∣2

/2µ2 +
∣∣um∣∣2) ,ψ

∂ϕ

∂xi

)
dt −→

∫ T
0

n∑
i=1

((
u∗
)
iu∗,ψ

∂ϕ

∂xi

)
dt.

(4.8)

Passing to the limit in (4.7) as m→∞, we have

−
∫ T

0

(
τ∗,Φψ′(t)

)
dt+

∫ T
0

(
1
λ1

(
τ∗,ψΦ

)− n∑
i=1

((
u∗
)
iτ∗,ψ

∂Φ

∂xi

)

+ 2µ2
(
u∗,ψDivΦ

)
+
ε

λ1

(∇τ∗,ψ∇Φ)
)
dt = (τ0,Φ

)
ψ(0),

−
∫ T

0

(
u∗,Φψ′(t)

)
dt+

∫ T
0

(
µ1
(∇u∗,ψ∇Φ)− n∑

i=1

((
u∗
)
iu∗,ψ

∂Φ

∂xi

)

+
(
τ∗,ψ∇ϕ)

)
dt =

∫ T
0
〈 f ,ϕψ〉dt+ (a,ϕ)ψ(0).

(4.9)

Since it has been carried out, in particular, for every ψ ∈ C∞0 (0,T), the function (u∗,τ∗)
satisfies (4.1) in the sense of distributions on (0,T).

Substitute (u∗,τ∗) into equalities (4.1). Since all terms in the obtained equalities are
integrable on (0,T), these equalities are valid a.e. on (0,T). Taking the scalar product of
these equalities in L2(0,T) with a smooth scalar function ψ(t), ψ(T) = 0, ψ(0) �= 0, and
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comparing the result with (4.9), we see that
(
u∗|t=0,ϕ

)
ψ(0)= (a,ϕ)ψ(0),(

τ∗|t=0,Φ
)
ψ(0)= (τ0,Φ

)
ψ(0).

(4.10)

Since Φ and ϕ are arbitrary, u∗ and τ∗ satisfy (3.5). Repeating the proof of Lemma 3.3
with δ = 0, ξ = 1, we see that the solutions of problem (4.1), (3.5) satisfy estimates (3.27),
(3.28). Thus, (u∗,τ∗) is the desirable solution. �

5. Existence of a weak solution for the Jeffreys model and its estimation

First we will prove a statement from which Theorem 2.3 immediately follows.

Theorem 5.1. Given f ∈ L2(0,T ;V∗), a∈H , τ0 ∈ L2, there exists a pair of functions (u,τ),

u∈ L2(0,T ;V)
⋂
L∞(0,T ;H)

⋂
Cw
(
[0,T],H

)
,

du

dt
∈ L1

(
0,T ;V∗),

τ ∈ L∞
(
0,T ;L2

)⋂
Cw
(
[0,T],L2

)
,

dτ

dt
∈ L2

(
0,T ;H−2),

(5.1)

satisfying (3.1), (3.2) a.e. in (0,T), the initial condition (3.5), and the estimate

‖u‖L2(0,T ;V) +‖u‖L∞(0,T ;H) +
∥∥∥∥dudt

∥∥∥∥
L1(0,T ;V∗)

+‖τ‖L∞(0,T ;L2) +
∥∥∥∥dτdt

∥∥∥∥
L2(0,T ;H−2)

≤ K3
(‖a‖,

∥∥τ0
∥∥,‖ f ‖L2(0,T ;V∗)

)
,

(5.2)

where K3 does not depend on Ω.

Proof. Denote by Ωm the intersection of Ω with the ball Bm of radius m with the center
in the origin in the space Rn, m = 1,2, . . . . From the definition of the space H it follows
that there exists a sequence am ∈ C∞0 (Ω), divam = 0, suppam ⊂Ωm, which converges to a
in L2(Ω). Without loss of generality, ‖am‖ ≤ ‖a‖. Consider, for every m on Ωm, problem
(4.1) with ε = 1/m and the following initial condition:

u|t=0 = am, τ|t=0 = τ0|Ωm . (5.3)

By Theorem 4.1 there exists a solution (um,τm) of this problem. Denote by ũm and τ̃m
the functions which coincide with um and τm, respectively, in Ωm and are identically zero
in Ω\Ωm.

As in the proof of Theorem 4.1, without loss of generality, we may assume that

ũm −→ u∗ weakly in L2(0,T ;V),

ũm −→ u∗ ∗-weakly in L∞(0,T ;H),

τ̃m −→ τ∗ ∗-weakly in L∞
(
0,T ;L2

)
,

ũm|Ωk −→ u∗|Ωk strongly in L2
(
0,T ;L2

(
Ωk
))

,

(5.4)

for every k (there is no strong convergence of τ̃m now, because estimate (3.28) depends
on ε). Obviously, (u∗,τ∗) satisfies estimate (4.3).
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Take arbitrary ϕ∈�, Φ∈ C∞0 . Fix k large enough such that the supports of ϕ and Φ
are contained in Ωk.

Substitute (um,τm) in equalities (4.1) with m≥ k, ε = 1/m. Take the scalar product of
these equalities in L2(0,T) with a smooth scalar function ψ(t), ψ(T) = 0, and integrate
by parts the first terms. Because of the choice of k, we can replace um and τm in these
equalities by ũm and τ̃m. We have

−
∫ T

0

(
τ̃m,Φϕ′(t)

)
dt+

∫ T
0

(
1
λ1

(
τ̃m,ψΦ

)− n∑
i=1

((
ũm
)
iτ̃m,ψ

∂Φ

∂xi

)

+ 2µ2
(
ũm,ψDivΦ

)
+

1
λ1n

(∇τ̃m,ψ∇Φ)
)
dt = (τ0,Φ

)
ψ(0),

−
∫ T

0

(
ũm,ϕψ′(t)

)
dt+

∫ T
0

(
µ1
(∇ũm,ψ∇ϕ)− n∑

i=1

((
ũm
)
iũm,ψ

∂ϕ

∂xi

)
+
(
τ̃m,ψ∇ϕ)

)
dt

=
∫ T

0
〈 f ,ϕψ〉dt+

(
am,ϕ

)
ψ(0).

(5.5)

Observe that

∣∣∣∣∣ 1
m

∫ T
0

(∇τ̃m,ψ∇Φ)
∣∣∣∣∣=

∣∣∣∣∣ 1
m

∫ T
0

(
τ̃m,ψ∆Φ

)∣∣∣∣∣
≤ 1
m

∥∥τm∥∥L∞(0,T ;L2)

∫ T
0
‖ψ∆Φ‖ −→

m→∞ 0,

(5.6)

where ∆ is the Laplacian.
Now, we show that

∫ T
0

n∑
i=1

((
ũm
)
iτ̃m,ψ

∂Φ

∂xi

)
dt −→

∫ T
0

n∑
i=1

((
ũ∗
)
iτ̃∗,ψ

∂Φ

∂xi

)
dt, (5.7)

∫ T
0

n∑
i=1

((
ũm
)
iũm,ψ

∂ϕ

∂xi

)
dt −→

∫ T
0

n∑
i=1

((
ũ∗
)
iũ∗,ψ

∂ϕ

∂xi

)
dt. (5.8)

Really, using Hölder’s inequality, we see that

∣∣∣∣∣
∫ T

0

n∑
i=1

((
ũm
)
iτ̃m−

(
ũ∗
)
iτ̃∗,ψ

∂Φ

∂xi

)
dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

0

n∑
i=1

(((
ũm
)
i−
(
ũ∗
)
i

)
τ̃m,ψ

∂Φ

∂xi

)
dt

∣∣∣∣∣+

∣∣∣∣∣
∫ T

0

n∑
i=1

((
ũ∗
)
i

(
τ̃m− τ̃∗

)
,ψ
∂Φ

∂xi

)
dt

∣∣∣∣∣
≤ ∥∥(um−u∗)|Ωk

∥∥
L2(0,T ;L2)

∥∥τm∥∥L2(0,T ;L2)

∥∥∥∥ψ ∂Φ∂x1

∥∥∥∥
L∞(0,T ;L∞)

+

〈
τ̃m− τ̃∗,

n∑
i=1

(
ũ∗
)
iψ
∂Φ

∂x1

〉
.

(5.9)
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The last brackets denote the action of the functional τ̃m− τ̃∗ from L1(0,T ;L2)∗ = L∞(0,T ;
L2) on the element

∑n
i=0(ũ∗)iψ(∂Φ/∂xi). Both terms tend to zero, and (5.7) is proved.

Similarly one shows (5.8).
Now, let m tend to infinity in (5.5). We obtain

−
∫ T

0

(
τ∗,Φψ′(t)

)
dt+

∫ T
0

(
1
λ1

(
τ∗,ψΦ

)− n∑
i=1

((
u∗
)
iτ∗,ψ

∂Φ

∂xi

)
+ 2µ2

(
u∗,ψDivΦ

))
dt

= (τ0,Φ
)
ψ(0),

−
∫ T

0

(
u∗,ϕψ′(t)

)
dt+

∫ T
0

(
µ1
(∇u∗,ψ∇ϕ)− n∑

i=1

((
u∗
)
iu∗,ψ

∂ϕ

∂xi

)
+
(
τ∗,ψ∇ϕ)

)
dt

=
∫ T

0
〈 f ,ϕψ〉dt+ (a,ϕ)ψ(0).

(5.10)

As in the proof of Theorem 4.1, it follows from here that (u∗,τ∗) is a solution of (3.1),
(3.2), (3.5) and u∗ satisfies estimate (3.27). To prove (5.2), it remains to estimate the fifth
term in its left part.

Substitute (u∗,τ∗) in (3.1). Using Hölder’s inequality, the embedding V ⊂ L4, and
(4.3), we have

∥∥∥∥ ddt
(
τ∗,Φ

)∥∥∥∥
L2(0,T)

≤
∥∥∥∥ 1
λ1

(
τ∗,Φ

)∥∥∥∥
L2(0,T)

+

∥∥∥∥∥
n∑
i=1

((
u∗
)
iτ∗,

∂Φ

∂xi

)∥∥∥∥∥
L2(0,T)

+
∥∥2µ2

(
u∗,DivΦ

)∥∥
L2(0,T)

≤ 1
λ1

∥∥τ∗∥∥L2(0,T ;L2)‖Φ‖L2 +
∥∥u∗∥∥L2(0,T ;L4)

∥∥τ∗∥∥L∞(0,T ;L2)

∥∥∥∥∂Φ∂xi
∥∥∥∥
L4

+ 2µ2
∥∥u∗∥∥L2(0,T ;L2)‖DivΦ‖L2

≤ C‖Φ‖H2
0

(∥∥τ∗∥∥L∞(0,T ;L2) +
∥∥u∗∥∥L2(0,T ;V)

∥∥τ∗∥∥L∞(0,T ;L2) +
∥∥u∗∥∥L2(0,T ;V)

)
≤ K4

(‖a‖,
∥∥τ0

∥∥,‖ f ‖L2(0,T ;V∗)
)‖Φ‖H2

0
.

(5.11)

Taking into account (3.12), we obtain the desirable estimate.
By [10, Chapter III, Lemma 1.1] a.e. in (0,T) u∗ is equal to a continuous function

on [0,T] with values in V∗. Without loss of generality we may assume that u∗ itself
is continuous on [0,T] with values in this space. And since it belongs to L∞(0,T ;H),
it is weakly continuous on [0,T] with values in H (see [10, Chapter III, Lemma 1.4]).
Similarly τ ∈ Cw([0,T];L2). The proof of the theorem is complete. �

Remark 5.2. By the same scheme it is easy to show that in Theorems 3.2 and 4.1 the
condition of boundedness of Ω is not necessary.
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Proof of Theorem 2.3. Take τ0 = σ0 − 2µ1�(a). By the condition of the theorem τ0 ∈ L2.
By Theorem 5.1 there exists a solution (u,τ) of problem (3.1), (3.2), (3.5) in class (5.1).

It is easy to see that �(u)∈ L2(0,T ;L2)
⋂
Cw([0,T];H−1).

Take σ = τ + 2µ1�(u). Then the pair (u,σ) belongs to class (2.10) and satisfies (2.5),
(2.11), that is, it is a weak solution of problem (2.1)–(2.5). �
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[3] H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordif-
ferentialgleichungen, Akademie-Verlag, Berlin, 1974.
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