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We use a special space of integrable functions for studying the Cauchy problem for linear
functional-differential equations with nonintegrable singularities. We use the ideas de-
veloped by Azbelev and his students (1995). We show that by choosing the function ψ
generating the space, one can guarantee resolubility and certain behavior of the solution
near the point of singularity.

1. Linear Volterra operators in ∆ψ spaces

We consider the following n-dimensional functional-differential equation:

�x
def= ẋ+ (K + S)ẋ+Ax(0)= f , (1.1)

where

(Ky)(t)=
∫ t

0
K(t,s)y(s)ds, (1.2)

(Sy)(t)=

B(t)y

[
g(t)

]
if g(t)∈ [0,1],

0 if g(t) /∈ [0,1].
(1.3)

The case where K and S are continuous on Lp[0,1] operators is well studied (see, e.g., [1]
and the references therein). Here we suppose that the functions K(t,s) and B(t) may be
nonintegrable at t = 0. More precisely, we will formulate conditions on operators K and
S in Sections 2 and 3. Under such conditions, those operators are not bounded on L[0,1]
and one has to choose other functional spaces for studying (1.1). We propose a space of
integrable functions on [0,1] and show that it may be useful in such a case.

We call ∆
p
ψ space the space of all measurable functions y : [0,1]→Rn, for which

‖y‖∆p
ψ
= sup

0<h≤1

1
ψ(h)

(∫ h
0

∣∣y(s)
∣∣pds

)1/p

<∞. (1.4)
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568 On linear singular FDE

We assume everywhere below that ψ is a nondecreasing, absolutely continuous func-
tion, ψ(0)= 0.

Theorem 1.1. The space ∆
p
ψ is a Banach space.

Let X[a,b], Y[a,b] be spaces of functions defined on [a,b].
We will callV : X[0,1]→ Y[0,1] the Volterra operator [3] if for every ξ ∈ [0,1] and for

any x1,x2 ∈ X[0,1] such that x1(t)= x2(t) on [0,ξ], (Vx1)(t)= (Vx2)(t) for t ∈ [0,1].
It is possible to say that each Volterra operator V : X[0,1]→ Y[0,1] generates a set

of operators Vξ : X[0,ξ]→ Y[0,ξ], where ξ ∈ (0,1]. By yξ , we denote the restriction of
function y defined on [0,1] onto segment [0,ξ].

Theorem 1.2. Let V : L→ L be a linear bounded operator. Then V is a linear bounded
operator in ∆

p
ψ and ‖V‖∆p

ψ
≤ ‖V‖Lp .

Proof. Let y ∈ ∆
p
ψ . Then

∥∥V y∥∥∆p
ψ
= sup

0<h≤1

1
ψ(h)

∥∥(Vξ yξ
)∥∥

L[0,ξ]p

≤ sup
0<h≤1

1
ψ(h)

∥∥Vξ

∥∥
L[0,ξ]

∥∥yξ∥∥L[0,ξ] ≤ ‖V‖L‖y‖Lp .
(1.5)

�

Theorem 1.3. Let V : ∆
p
ψ1 → ∆

p
ψ1 be linear bounded operator and let

sup
t∈[0,1]

ψ2(t)
ψ1(t)

<∞. (1.6)

Then V is linear and bounded in ∆
p
ψ2 and

‖V‖∆p
ψ2
≤ ‖V‖∆p

ψ1
sup
ξ∈[0,1]

sup
τ∈[0,ξ]

ψ1(ξ)ψ2(τ)
ψ2(ξ)ψ1(τ)

. (1.7)

Proof. Let y ∈ ∆ψ2. Then

‖V y‖∆p
ψ2
≤ sup

ξ∈[0,1]

∥∥V yξ∥∥L[0,ξ]ψ1(ξ)

ψ2(ξ)ψ1(ξ)
≤ sup

ξ∈[0,1]

∥∥V yξ∥∥∆p
ψ1 [0,ξ]ψ1(ξ)

ψ2(ξ)

≤ ‖V‖Mψ1
p sup

∥∥yψ∥∥∆p
ψ1
ψ1(ξ)

ψ2(ξ)

≤ ‖V‖Mψ1
p sup
ξ∈[0,1]

sup
τ∈[0,ψ]

∥∥yτ∥∥L[0,τ]ψ1(ξ)ψ2(τ)

ψ1(τ)ψ2(ξ)ψ2(τ)

≤ ‖y‖∆p
ψ2
‖V‖∆p

ψ1
sup
ξ∈[0,1]

sup
τ∈[0,ξ]

ψ1(ξ)ψ2(τ)
ψ2(ξ)ψ1(τ)

.

(1.8)

�

Corollary 1.4. If V1 : ∆
p
ψ1 → ∆

p
ψ1 and V2 : ∆

p
ψ2 → ∆

p
ψ2 are linear continuous Volterra oper-

ators, then V = V1 +V2 is continuous on space ∆
p
ψ generated by ψ(t) =min(ψ1(t),ψ2(t))

and ‖V‖∆p
ψ
≤ ‖V1‖∆p

ψ1
+‖V2‖∆p

ψ2
.
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2. Operator K

In this section, we consider the integral operator (1.2). We will show that under certain
conditions on matrix K(t,s), a function ψ may be indicated such that K is bounded on
∆ψ and its norm is limited by a given number.

We say that matrix K(t,s) satisfies the � condition if for some p and p1 such that
1≤ p ≤ p1 <∞ and for any ε ∈ (0,1],

∥∥Kε(t,·)∥∥L[0,t] ∈ Lp′[ε,1]. (2.1)

Here Kε(t,s) is a restriction of K(t,s) onto [ε,1]× [0, t], 1/p+ 1/p′ = 1.
The � condition admits a nonintegrable singularity at point t = 0.

Lemma 2.1. Let nonnegative function ω : [0,1]→R be nonincreasing and having a nonin-
tegrable singularity at t = 0.

Then ψ(t)= exp[
∫ t

1 ω(s)ds] is absolutely continuous on [0,1], does not decrease, and is a
solution of the equation

∫ t
1 ω(s)x(s)ds= x(t).

Denote

ψ(t)= exp
[

1
C

∫ t
1

vraisup
s∈[0,τ]

∥∥K(τ,s)
∥∥dτ]. (2.2)

Theorem 2.2. Let matrix K(t,s) satisfy the � condition with p = 1 and let C be some
positive constant. Then operator K is bounded in ∆ψ with function ψ defined by the equality
(2.2) and ‖K‖∆ψ ≤ C.

Proof. Let x ∈ ∆ψ and y = Kx. From the � condition it follows that for almost all t ∈
[0,1], K(·,s)∈ L∞. Let ω(t)= vraisups∈[0,τ]‖K(τ,s)‖dτ. Then

(∫ t
0

∥∥y(s)
∥∥ds)≤ [

∫ t
0

(∫ τ
0

∥∥K(τ,s)
∥∥∥∥x(s)

∥∥ds)dτ]

≤
∫ t

0

(
vraisup
s∈[0,τ]

∥∥K(τ,s)
∥∥)(∫ τ

0

∥∥x(s)
∥∥ds)dτ

≤ ‖x‖∆ψ
∫ t

0
ω(τ)ψ(τ)dτ.

(2.3)

According to Lemma 2.1, ψ(t) = exp[(1/C)
∫ t

1 ω(s)ds] is a solution of the equation∫ t
1 ω(s)ψ(s)ds = Cψ(t), does not decrease, is absolutely continuous, and ψ(0) = 0. That

implies

(∫ t
0

∥∥y(s)
∥∥ds)≤ C‖x‖∆ψψ(t). (2.4)

�
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Remark 2.3. IfK(·,s) has bounded variation on s, it is possible to indicate a “wider” space
∆ψ for which conditions of Theorem 2.2 are satisfied by defining function ψ as

ψ(t)= exp

[
1
C

∫ t
1

(∥∥K(τ,τ)
∥∥dτ +

∫ τ
0
ds var

s∈[0,τ]

∥∥K(τ,s)
∥∥)dτ

]
. (2.5)

Theorem 2.4. Let matrix K(t,s) satisfy the � condition with 1 < p <∞ and let C be some
positive constant. Then operator K is bounded in space ∆

p
ψ generated by

ψ(t)= exp

[
1
pC

∫ t
1

(∫ τ
0

∥∥K(τ,s)
∥∥p′ds)p1/p′

dτ

]
(2.6)

and ‖K‖∆p
ψ
≤ C.

Theorem 2.4 can be proved in a way similar to proof of Theorem 2.2.

Lemma 2.5. Let K : ∆
p
ψ → ∆

p
ψ (1 < p <∞) be a bounded operator and let its matrix K(t,s)

satisfy the � condition. Then K : ∆
p
ψ → Lp is a compact operator.

Proof. For every t ∈ [0,1], (Ky)(t) is a linear bounded functional on Lp. Let {yi} be a
sequence weakly converging to y0 in Lp. If {yi} ⊂ ∆

p
ψ and ‖yi‖∆p

ψ
≤ 1, then ‖y0‖∆p

ψ
≤ 1.

Indeed, if for some t1 ∈ [0,1], ((1/ψ(t1))
∫ t1

0 ‖y(s)‖pds)1/p > 1, then the sequence lyi =∫ 1
0 l(s)yi(s)ds does not converge to ly0, where

l(s)=

1, if s≤ t1,

0, if s > t1.
(2.7)

Hence, for almost all t ∈ [0,1], {(Kyi)(t)} converges and the set Ky is compact in
measure. Thus, for the operator K : ∆

p
ψ → Lp to be compact, it is necessary and sufficient

that the norms of Ky are equicontinuous for ‖y‖∆p
ψ
≤M. Let δ ∈ (0,1). As K : ∆

p
ψ → ∆

p
ψ

is a bounded operator,

(
1

ψ(δ)

∫ δ
0

∥∥(Ky)(s)
∥∥pds

)1/p

≤ ∆0. (2.8)

This implies that for any ε > 0, there exists δ1 > 0 such that if δ < δ1, then

(
∫ δ

0 ‖(Ky)(s)‖pds)1/p ≤ ε/2.
Then, from the � condition, there exists δ2 such that if mese ≤ δ2 for some e ⊂ [δ,1],

then (
∫
e ‖(Ky)(s)‖pds)1/p ≤ ε/2.

Finally, for e1 ⊂ [δ,1] such that mese1 ≤min{δ1,δ2},
(∫

e1

∥∥(Ky)(s)
∥∥pds)1/p

≤
(∫ δ

0

∥∥(Ky)(s)
∥∥pds)1/p

+
(∫ 1

δ

∥∥(Ky)(s)
∥∥pds)1/p

≤ ε. (2.9)

�

Lemma 2.6. Let {yi} → y0 in Lp (1 < p <∞) and let the sequence {(1/u)yi} be bounded in
∆
p
ψ for some continuous increasing function u, u(0)= 0. Then {yi} → y0 in ∆

p
ψ .
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Proof. We have

(∫ t
0

∥∥yi(s)∥∥pds
)1/p

≤ u(t)

(∫ t
0

∥∥∥∥ yi(s)u(s)

∥∥∥∥
p

ds

)1/p

≤Mu(t)ψ(t). (2.10)

Thus, yi ∈ ∆
p
ψ . Beginning with some N for any t ∈ [0,1] and for any given ε > 0,

(∫ t
0

∥∥yi(s)− y0(s)
∥∥pds)1/p

≤ ε. (2.11)

Hence,

(∫ t
0

∥∥y0(s)
∥∥pds)1/p

≤
(∫ t

0

∥∥yi(s)− y0(s)
∥∥pds)1/p

+
(∫ t

0

∥∥yi(s)∥∥pds
)1/p

≤ ε+Mu(t)ψ(t)≤Mu(t)ψ(t),(∫ t
0

∥∥yi(s)− y0(s)
∥∥pds)1/p

≤ 2Mu(t)ψ(t),

(2.12)

beginning with some Nδ for any δ > 0, ‖y0 − yi‖∆p
ψ
< δ. Indeed, Lemma 2.5 guarantees

the existence of τ ∈ (0,1] such that for all t ∈ [0,τ],

(∫ t
0

∥∥yi(s)− y0(s)
∥∥pds)1/p

≤ δψ(t). (2.13)

Let t ∈ [τ,1]. Then for ε = δψ(τ), (2.11) yields (2.13) for all t ∈ [0,1]. �

Let u : [0,1]→R be a continuous increasing function, u(0)= 0. Denote

ψ(t)= exp

[∫ t
1

1
u(τ)

(∫ τ
0

∥∥K(τ,s)
∥∥p′ds)p/p

′

dτ

]
. (2.14)

Lemmas 2.5 and 2.6 imply the following theorem.

Theorem 2.7. Let matrix K(t,s) satisfy the � condition with 1 < p <∞. And let ψ be
defined by (2.14). Then K : ∆

p
ψ → ∆

p
ψ is a compact operator and its spectral radius is equal to

zero.

3. Operator S

Denote

(
Sg y

)
(t)=


y
[
g(t)

]
if g(t)∈ [0,1],

0 if g(t) /∈ [0,1],

(Sy)(t)= B(t)
(
Sg
)
(t).

(3.1)

In [2], it is shown that Sg is bounded in Lp if r = (sup(mesg−1(E)/mesE))1/p <∞ and
‖Sg‖Lp = r, where sup is taken on all measurable sets from [0,1].
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Let Ωm be a set of points from [0,1] for which g(t)≥mt, β(t) is a nonincreasing ma-
jorant of function ‖B(t)‖, and

ϕ(t)= lim
mese→0

mesg−1(e)
mese

, (3.2)

where e is a closed interval containing t.
We say that operator Sg satisfies the � condition if vraisupt∈[ε,1]ϕ(t) <∞ for any

ε ∈ (0,1]vraisup
t∈[ε,1]

∥∥B(t)
∥∥ <∞, (3.3)

and there exists m∈ [0,1) such that

µm = vraisup
t∈g(Ωm)

(
β(t)pϕ(t)

)
<∞. (3.4)

Lemma 3.1. There exists nonincreasing function u : (0,1]→ R such that β(t)pϕ(t) ≤ u(t)
and the function

ψ(t)=

t

u(t) if t ∈ (0,1],

0 if t = 0,
(3.5)

is absolutely continuous on [0,1].

Proof. Let {ti} be a decreasing sequence, t1 = 1, ti→ 0. Denote

ni = vraisup
t∈(ti+1,ti)

(
β(t)pϕ(t)

)
, u(t)= ni+1−ni

ti+1− ti (t− ti) +ni, (3.6)

where t ∈ (ti+1, ti). Then β(t)pϕ(t) ≤ u(t), u increases and is absolutely continuous on
[0,1]. �

Let

νm =mu(1)
[
u(1)− 1

lnm

]
. (3.7)

Theorem 3.2. Let operator Sg satisfy the � condition and let function u satisfy conditions

of Lemma 3.1. Then Sg is bonded in ∆
p
ψ with ψ(t)= tu(t) and

∥∥Sg∥∥∆p
ψ
≤ (νm +µm

)1/p
. (3.8)

Proof. Let y ∈ ∆
p
ψ , ‖y‖∆p

ψ
= 1, and δ ∈ (0,1). Denote measures λ and µ on [δ,1] by λ(e)=∫

e β(s)pds and µ(e)= ∫g−1(e)β(s)pds. Then by the Radon-Nikodym [2] theorem, we have

∥∥∥∥
∫ t
δ

∣∣(Sg y)(t)∣∣pds
∥∥∥∥≤

∫
g−1([0,t])∩[δ,1]

∥∥y[g(s)
]∥∥pdλ(s)

=
∫
g−1([0,t])∩[δ,1]

∥∥y(s)
∥∥p dµ
dλ

(s)dλ(s).
(3.9)
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Then as g(t)≤ t,

dµ

dλ
(s)= lim

mese→0

∫
g−1(e)β(s)pds∫
e β(s)pds

≤ lim
mese→0

vraisupg−1(e)β(s)pds

vraisupe β(s)p
ϕ(s)= ϕ(s) (3.10)

or ∥∥∥∥
∫ t
δ

∣∣(Sg y)(t)∣∣pds
∥∥∥∥≤

∫
g−1([0,t]\Ωm)∩[δ,1]

β(s)p
∥∥y(s)

∥∥pϕ(s)ds

+
∫
g−1(Ωm)∩[δ,1]

β(s)p
∥∥y(s)

∥∥pϕ(s)ds

≤
∫ mt

0
β(s)p

∥∥y(s)
∥∥pϕ(s)ds+

∫ t
0

∥∥y(s)
∥∥pµmds

≤
∫ mt

0

∥∥y(s)
∥∥pu(s)ds+µmψ(t)p.

(3.11)

We denote function uk : (0,1]→ R by uk(t) = u(ti), where ti = (2k − i)/2k, i = 0,1,2, . . . ,
2k − 1. From uk → u, it follows that

∫ mt
0

∥∥y(s)
∥∥pu(s)ds= lim

k→0

∫ mt
0

∥∥y(s)
∥∥puk(s)ds. (3.12)

We write function uk in the form

uk(t)=




u
(
t0
)
, if t ∈ (t1, t0

]
,

u
(
t0
)

+
[
u
(
t1
)−u(t0)], if t ∈ (t2, t1

]
,

...
...

u
(
tk−2

)
+
[
u
(
tk−1

)−u(tk−2
)]

, if t ∈ (tk, tk−1
]
.

(3.13)

The condition t < ti implies that
∫mt

0 ‖y(s)‖pds≤ ψp(mt)= (mt)u(mt) ≤mpu(ti)ψp(t) and

∫ mt
0

∥∥y(s)
∥∥pu(s)ds≤

2k∑
i=1

mpu(ti)
[
u
(
ti
)−u(ti−1

)]
ψp(t) +u(1)mpu(1)ψp(t)

≤ ψp(t)
[∫∞

u(1)
msds+mu(1)u(1)

]

≤ ψp(t)mu(1)
[
u(1)− 1

lnm

]
,

(3.14)

simultaneously for all k. Finally,

∥∥∥∥
∫ t

0

∣∣(Sg y)(s)∣∣pds
∥∥∥∥= lim

δ→0

∥∥∥∥
∫ t
δ

∣∣(Sg y)(s)∣∣pds
∥∥∥∥

≤ ψp(t)mu(1)
[
u(1)− 1

lnm

]
+ψp(t)µm

≤ ψp(t)
(
νm +µm

)
(3.15)

which proves the theorem. �
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Remark 3.3. From (3.7) and (3.8), it follows that if limm→1 < 1, then there exists function
ψ such that the norm of operator Sg : ∆

p
ψ → ∆

p
ψ is less than 1.

In some particular cases, it is possible to give less strict conditions on function ψ gen-
erating the space ∆

p
ψ . Direct calculations prove the following theorem.

Theorem 3.4. Let B(t)≤ C1/tα and g(t)= C2tβ with β > 1. Then ‖Sg‖∆p
ψ
≤ C1/C2, where

ψ(t)= tγ, γ ≥ (αp+ β− 1)/p(β− 1). If γ > (αp+ β− 1)/p(β− 1), then the spectral radius
of Sg is equal to zero.

4. The Cauchy problem

We consider the Cauchy problem for (1.1):

(�x)(t)= f (t), x(0)= α. (4.1)

The theorems of this section are immediate corollaries of Theorems 2.2, 2.4, 2.7, 3.2,
and 3.4.

Theorem 4.1. Let matrix K(t,s) satisfy the � condition and let operator Sg satisfy the �
condition. Let also vraisupt∈[0,1]u(t)=∞, (µm)1/p ≤ q < 1, and let the function ψ1 be given

by (2.14). Then if C < 1− q, the Cauchy problem (4.1) has a unique solution in ∆
p
ψ with

ψ(t)=min{ψ1(t), tu(t)} for f and α such that ( f −αA)∈ ∆
p
ψ .

Let ω be a solution of the equation

mω
(
ω− 1

lnm

)
≤ Cp

1 − q, γ = sup
t∈[0,1]

{
u(t),ω

}
, (4.2)

where 0≤ q ≤ Cp
1 < 1, and u satisfies conditions of Lemma 3.1.

Theorem 4.2. Let matrix K(t,s) and operator Sg satisfy the � and � conditions, respec-
tively. Let vraisupt∈[0,1]u(t) <∞ and (µm)1/p ≤ q < 1. Then if q < C1, (C1 +C2) < 1, then

the Cauchy problem (4.1) has a unique solution in ∆
p
ψ with ψ(t)=min{ψ1(t), tγ} for f and

α such that ( f −αA)∈ ∆
p
ψ .

Theorem 4.3. Let matrix K(t,s) satisfy the � condition, B(t)≤ C1/tα, g(t)= C2tβ (β > 1),
and γ > (αp+ β− 1)/p(β− 1). Let also C < 1 and ψ(t)=min{ψ1(t), tγ}. Then the Cauchy
problem (4.1) has a unique solution for f and α such that ( f −αA)∈ ∆

p
ψ .

Example 4.4. The Cauchy problem

ẋ(t) + p(t)
x
[
h(t)

]
tk

+ q(t)ẋ
(
t2
)= f (t), t ∈ [0,1],

x(ξ)= 0, if h(ξ)≤ 0,
(4.3)

where h(t) ≤ t, k > 1, and p and q are bounded functions, has a solution if
∫ t

0 | f (s)|ds≤
M exp(−t1−k). If (t−h(t))≥ τ > 0, then it has a solution if

∫ t
0 | f (s)|ds≤Mtγ for γ > 1.
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