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We use a special space of integrable functions for studying the Cauchy problem for linear
functional-differential equations with nonintegrable singularities. We use the ideas de-
veloped by Azbelev and his students (1995). We show that by choosing the function y
generating the space, one can guarantee resolubility and certain behavior of the solution
near the point of singularity.

1. Linear Volterra operators in A, spaces
We consider the following n-dimensional functional-differential equation:

def .

Ix=x+(K+8)x+Ax(0) = f, (1.1)
where
t
(Ky) (1) = LK(t,s)y(s)ds, (1.2)
_ | Btylg®] ifg(t) € [0,1],
(S)(5) = {0 if g(t) ¢ [0,1]. (13)

The case where K and S are continuous on L, [0, 1] operators is well studied (see, e.g., [1]
and the references therein). Here we suppose that the functions K(¢,s) and B(¢) may be
nonintegrable at t = 0. More precisely, we will formulate conditions on operators K and
S in Sections 2 and 3. Under such conditions, those operators are not bounded on L[0,1]
and one has to choose other functional spaces for studying (1.1). We propose a space of
integrable functions on [0, 1] and show that it may be useful in such a case.

We call Aﬁ space the space of all measurable functions y : [0,1] — R”, for which

1/p
1 h
lyllaz =Os%pIW<L Iy(s)l‘”ds> < o0, (1.4)
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568  On linear singular FDE

We assume everywhere below that ¥ is a nondecreasing, absolutely continuous func-
tion, ¥(0) =0

TueOREM 1.1. The space Al is a Banach space.

Let X[a,b], Y[a,b] be spaces of functions defined on [a, b].

We will call V' : X[0,1] — Y[0,1] the Volterra operator [3] if for every £ € [0,1] and for
any x1,x; € X[0,1] such that x;(t) = x,(¢) on [0,&], (Vx1)(t) = (Vxp)(¢) for t € [0,1].

It is possible to say that each Volterra operator V : X[0,1] — Y[0,1] generates a set
of operators Vi : X[0,&] — Y[0,&], where & € (0,1]. By y:, we denote the restriction of
function y defined on [0, 1] onto segment [0,£].

THEOREM 1.2. Let V : L — L be a linear bounded operator. Then V is a linear bounded
operator in Aﬁ and ”V”Aﬁ < | V.

Proof. Let y € Al). Then

1
IV yllar = sup WII(Vm) 20,10

1 (1.5)
< su < |IVIiLliyl
o I<’ W(h)H E||L[05]||)’E||L[o£] Liylize. o
THEOREM 1.3. Let V : Af,’,l — Aﬁl be linear bounded operator and let
va(t)
su < o0, (1.6)
<io ¥ ()
Then V is linear and bounded in Aiz and
1)y (r)
Vil <IVIy sup sup L5920 (L7)
o A se[opme[ops] 2y (1)
Proof. Let y € Ay,. Then
\%4 \4 » (&)
IVylly = sup I }’£||L[o,5]‘!/1(5) < sup I yf“Aw][O,E]l//l
g0y V2(Eva(&) £€(0,1] va2(§)
yyllaz y1(8)
< ”V”MWIPSUPM
v2(&)
el ©pa) )
Yellpjo,nV1(8)¥a(T
< IVllmyr?
M R S @@y
v1(§)ya(r)
<liyllaz IVIllar, sup  sup —==r=—.
st xd Ee[opl]re[opf] vy (1) 0

COROLLARY 1.4. If Vi : Ah — Al and V,: A}, —~ sz are linear continuous Volterra oper-
ators, then V- =V, + V; is continuous on space A generated by y(t) = min (y;(£),y» (1))
and [|Vllye < [IVillgp +11Vallae -
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2. Operator K

In this section, we consider the integral operator (1.2). We will show that under certain
conditions on matrix K(t,s), a function y may be indicated such that K is bounded on
Ay and its norm is limited by a given number.

We say that matrix K(t,s) satisfies the N condition if for some p and p; such that
1 < p < p; <o andforanye e (0,1],

||Ke(t, )| 0. € Ly [&511. (2.1)
[0,¢]

Here K,(t,s) is a restriction of K(t,s) onto [¢,1] X [0,t], 1/p+1/p" = 1.
The N condition admits a nonintegrable singularity at point t = 0.

LEMMA 2.1. Let nonnegative function w : [0,1] — R be nonincreasing and having a nonin-
tegrable singularity at t = 0.

Then y(t) = exp[ff w(s)ds] is absolutely continuous on [0, 1], does not decrease, and is a
solution of the equation flt w(s)x(s)ds = x(t).

Denote

y(t) = exp [é L vraisup ||K(T,S)||d‘[]. (2.2)

se(0,7]

THEOREM 2.2. Let matrix K(t,s) satisfy the N condition with p = 1 and let C be some
positive constant. Then operator K is bounded in Ay with function y defined by the equality
(2.2) and |K||a, < C.

Proof. Let x € Ay and y = Kx. From the N condition it follows that for almost all ¢t €
[0,1], K(-,s) € L. Let w(t) = VIaisupc o IK(7,s)lldt. Then

(ﬂl!y(s)nds) < [jo (] Ikl lds)dr |

< L (VraisupHK(T,s)H) ( f ' ||x(s)||ds> dr (2.3)

5€[0,7] 0

t
< lxlla, j0w<f)w(f>df.

According to Lemma 2.1, y(t) = exp[(1/C) ffw(s)ds] is a solution of the equation
ff w(s)y(s)ds = Cy(t), does not decrease, is absolutely continuous, and y(0) = 0. That
implies

t
(] tas) < clxts, v (2.4)
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Remark 2.3. 1f K(-,s) has bounded variation on s, it is possible to indicate a “wider” space
A, for which conditions of Theorem 2.2 are satisfied by defining function y as

(t) = exp [é Lt (HK(T,T)HdT " LT d. var ||1<(T,s)||) dr]. (2.5)

THEOREM 2.4. Let matrix K(t,s) satisfy the N condition with 1 < p < co and let C be some
positive constant. Then operator K is bounded in space Al generated by

y(t) = exp[ J (J K (z,9)||” ds) 1/prdr] (2.6)

and ||K|ly = C.
Theorem 2.4 can be proved in a way similar to proof of Theorem 2.2.

LEmMMA 2.5. Let K : Aﬁ - Ai (1< p < o) be a bounded operator and let its matrix K(t,s)
satisfy the N condition. Then K : Al — L, is a compact operator.

Proof. For every t € [0,1], (Ky)(t) is a linear bounded functional on L,. Let {y;} be a
sequence weakly converging to yo in L,. If {y;} € A} and yillar < 1, then lIyollyp < 1.
Indeed if for some t; € [0,1], ((1/y(t1)) Jo" Il y(s)[Pds)/P > 1, then the sequence ly; =

[y 1(s) yi(s)ds does not converge to Ly, where
1, ifs<t,
I(s) = 2.7
(s) {0, ifs>t. 27)

Hence, for almost all ¢t € [0,1], {(Ky;)(t)} converges and the set Ky is compact in
measure. Thus, for the operator K : Ai — L, to be compact, it is necessary and sufficient
that the norms of K y are equicontinuous for ||y||A1W> <M.Let e (0,1). AsK: Aﬁ - Aﬂ
is a bounded operator,

L Up
(o5 [ lacnsiras) < o 23)

This implies that for any & > 0, there exists § >0 such that if § < §;, then
(o 1K y)(s)[1Pds) VP < e/2.

Then, from the N condition, there exists &, such that if mese < 8, for some e C [6,1],
then ([, [(Ky)(s)lIPds)"P < &/2.

Finally, for e; C [J,1] such that mese; < min{d;,6,},

(L ||(Ky)(5)||pds> v < (JjH(Ky)(S)des) 1/p+ (Ll ||(Ky)(s)||Pds) v <e  (29)
1 O

LEMMA 2.6. Let {y;} — yoinL, (1< p < ) and let the sequence {(1/u)y;} be bounded in
Af;, for some continuous increasing function u, u(0) = 0. Then {y;} — yo in Aﬁ.
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Proof. We have

(Fpore)” <o

Thus, y; € A‘;. Beginning with some N for any ¢ € [0, 1] and for any given ¢ > 0,

yi(s)
u(s)

» A\ VP
ds) < Mu(H)y(t). (2.10)

t 1/p
(L [1yi(s) —yo(5)||pds> <e (2.11)
Hence,
t 1/p ¢ 1/p ¢ 1/p
(] 1roids) = (] )= yoolPds) (| )l as)
<e+Mu(t)y(t) < Mu(t)y(t), (2.12)

t 1/p
(L 1i9) = 3u()IPds) < 2Mu(0y (o),

beginning with some N;s for any § >0, |[yo — yill AL < 0. Indeed, Lemma 2.5 guarantees
the existence of 7 € (0, 1] such that for all t € [0, 7],

t 1/p
(L |1yi(s) —yo(S)IlpdS> < 8y(1). (2.13)

Let t € [7,1]. Then for ¢ = Sy (1), (2.11) yields (2.13) for all t € [0, 1]. O

Let u:[0,1] — R be a continuous increasing function, #(0) = 0. Denote

_ L AL
w(t)—exp[L u(T)<JO||K(T,S)|| ds) dr]. (2.14)

Lemmas 2.5 and 2.6 imply the following theorem.
THEOREM 2.7. Let matrix K(t,s) satisfy the N condition with 1 < p < co. And let y be
defined by (2.14). Then K : A}, — Al is a compact operator and its spectral radius is equal to
zero.
3. Operator S
Denote
[g®)] ifg(t) €[0,1],
(S =47 8
0 ifg(¢) ¢ [0,1], (3.1)
(S)(t) = B()(S,) (1)

In [2], it is shown that Sy is bounded in L, if r = (sup(mesg~'(E)/mesE))"? < oo and
|Sgllz, = r, where sup is taken on all measurable sets from [0,1].
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Let Q,, be a set of points from [0, 1] for which g(¢) = mt, B(t) is a nonincreasing ma-
jorant of function [|B(¢)]l, and

mesg ! (e)

o(t) = lim (3.2)

mese—0 mese

where e is a closed interval containing ¢.
We say that operator Sg satisfies the Jl condition if vraisup, .., ¢(¢) < o for any

e € (0,1]vraisup||B(t)]| < oo, (3.3)

tee 1]

and there exists m € [0,1) such that

pm = vraisup (B(£)P (1)) < . (3.4)
teg(Qm)

LemMa 3.1. There exists nonincreasing function u: (0,1] — R such that ()P o(t) < u(t)
and the function

B t“® ifte(0,1],
w(t)—{o ift=0, (3.5)

is absolutely continuous on [0, 1].

Proof. Let {t;} be a decreasing sequence, t; = 1, t; — 0. Denote

n; = vraisup (B(H)F (1)), u(t) = Ml—(t—t,)+n,, (3.6)

te(tiv1oti) Liv1 — &

where t € (ti+1,1). Then B(¢)P@(t) < u(t), u increases and is absolutely continuous on
[0,1]. O

Let

Y = (D) [u(l) - L] (3.7)

Inm

THEOREM 3.2. Let operator Sq satisfy the J condition and let function u satisfy conditions
of Lemma 3.1. Then S, is bonded in A{f, with y(t) = t*© and

||Sg||Aﬁ < (Vm +,“m)1/p- (3.8)

Proof. Lety € AP, HyIIAp =1,and § € (0,1). Denote measures A and g on [, 1] by A(e) =
leB(s)Pds and u(e) = [,-1(,) B(s)Pds. Then by the Radon-Nikodym [2] theorem, we have

H j;|<sgy><t>|f’ds <[ oy PEOIAE

(3.9)
= s p s)dA(s
L—l([o,t])n[al ¢ )” ($)dA(s).
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Thenas g(t) <t,

du . Jei@B(s)Pds  vraisupg.(, B(s)Pds
a (S) = lim

mese—0 f ﬁ s)Pds = melslglo vraisup, (s)? o(s) = o(s) (3.10)

or

8|(5gy)(t)|pds < B(s)?1y(s)| [P p(s)ds

Jg-l([o,t]\Q )N[d,1]

p p
+Jg—1(ﬂm)n[8,l]ﬁ(5) el g(ods (3.11)

< [ BOP YOI pds+ [ 11y s
0 0
mt

< L Iy ()17 u(s)ds+ sy (£)P.

We denote function ug : (0,1] — R by uk(t) = u(t;), where t; = 2k —i)/2k i=0,1,2,...,
2k — 1. From uy — u, it follows that

Jm Iy(s)]|Pu(s)ds = lime Iy (5)]| i (s)ds. (3.12)
0 k=0Jo

We write function u in the form

u(to), ift € (t,to],

u(to) +[u(ty) —u(to) ], ift e (t,t],
u(t) = ) . (3.13)

u(ti-2) +[u(ter) —u(te2)], ifte (ttia].

The condition f < ¢; implies that fom lly(s)IPds < wP(mt) = (mt)*") < mPt)yP(t) and
2k

J ly)[[Puls)ds < > mPD[u(t;) — u(tiog) Jy? (£) + u(1)mP“DyP (1)

i=1

= Wp(t)[L(l)m‘ds+m“(”u(1)] (3.14)

nm

< wp(t)m”(l)[u(l) - li]

simultaneously for all k. Finally,

t
(Sey)(s)| Pds

t
(Sey)(s) | Pds|| =

< 1//P(t)mu(1) [u(l) - ﬁ] +yP (O (3.15)

< YP(t) (Vi + thm)

which proves the theorem. O
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Remark 3.3. From (3.7) and (3.8), it follows that if lim,,_; < 1, then there exists function
v such that the norm of operator S, : Al — Al s less than 1.

In some particular cases, it is possible to give less strict conditions on function y gen-
erating the space Aﬁ. Direct calculations prove the following theorem.

TaEOREM 3.4. Let B(t) < C/t* and g(t) = CotP with B> 1. Then IISgIIM < C1/C,, where
y(t) =1, y=(ap+p—-1/p(B—-1). Ify > (ap+p—1)/p(B—1), then the spectral radius

of S, is equal to zero.
4. The Cauchy problem
We consider the Cauchy problem for (1.1):

(Ex)(t) = f(1), x(0) = a. (4.1)

The theorems of this section are immediate corollaries of Theorems 2.2, 2.4, 2.7, 3.2,
and 3.4.

Tueorem 4.1. Let matrix K(t,s) satisfy the N condition and let operator S, satisfy the JM
condition. Let also vraisup, (o, u(t) = o, (um)"P < q <1, and let the function y, be given
by (2.14). Then if C < 1 — g, the Cauchy problem (4.1) has a unique solution in Aﬁ with
y(t) = minf{y; (¢),t*?} for f and a such that (f — aA) € A{f,.

Let w be a solution of the equation

1 ) p
m®lw——1]<C| —q, = sup {u(t),w}, (4.2)
( - 1 =4 te[og]{ }

where 0 < g < Cf < 1, and u satisfies conditions of Lemma 3.1.

THEOREM 4.2. Let matrix K(t,s) and operator S, satisfy the N and L conditions, respec-
tively. Let Vraisup, o u(t) < oo and (um)V? < q< 1. Then if g < Cy, (C1 + C3) < 1, then
the Cauchy problem (4.1) has a unique solution in Ai with y(t) = min{y, (t),t"} for f and
a such that (f —aA) € Aﬁ.

TuroREM 4.3. Let matrix K(t,s) satisfy the N condition, B(t) < C/t% g(t) = Cotf (B> 1),
andy > (ap+—1)/p(f—1). Let also C < 1 and y(t) = min{y, (t),t}. Then the Cauchy
problem (4.1) has a unique solution for f and « such that (f — aA) € Aff,.

Example 4.4. The Cauchy problem

w0+ 0™ gse) = 10, e o)

x(§) =0, ifh(§) <0,

(4.3)

where h(t) < t, k > 1, and p and q are bounded functions, has a solution if [; | f(s)|ds <
Mexp(—t'7%). If (t — h(t)) = 7 > 0, then it has a solution if f(f | f(s)lds < Mt? for y > 1.
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