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1. Introduction

The prescribed mean curvature equation with Dirichlet condition for a nonparametric
surface X : © — R, X(u,v) = (u,v, f(u,v)) is the quasilinear partial differential
equation

(14 £2) a4 (U4 £2) foo =2 fou fo fow = 20, v, £V 2 in @,
f=g inoQ,

(1.1)

where Q is a bounded domain in R?, 4 : @ x R — R is continuous and g € H' ().
We call f € H'(Q) a weak solution of (1.1) if f € g+ HOI(Q) and for every
9 € Cy(R)

/ (1+1V£12) "V V@ +2hu, v, f)p)dudy =0. (1.2)
Q

It is known that for the parametric Plateau’s problem, weak solutions can be obtained
as critical points of a functional (see [2, 6, 7, 8, 10, 11]).

The nonparametric case has been studied for H = H(x,y) (and generally H =
H(xy,...,x,) for hypersurfaces in R”+]) by Gilbarg, Trudinger, Simon, and Serrin,
among other authors. It has been proved [5] that there exists a solution for any smooth
boundary data if the mean curvature H' of 92 satisfies

H’(xl,...,x,,) > "

n_1|H(x1,...,xn)| (1.3)

for any (x1,...,x,) € 32, and H € C'(Q,R) satisfying the inequality
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forany ¢ € Cg (2, R) and some € > 0. They also proved a non-existence result (see [5,
Corollary 14.13]):if H'(x1,...,x,) < (n/(n—1))|H (x1, ..., x,)| for some (x1, ..., x,)
and the sign of H is constant, then for any € > 0 there exists g € C>°(R) such that
llglloc < € and that Dirichlet’s problem is not solvable.

We remark that the solutions obtained in [5] are classical. In this paper, we find weak
solutions of the problem by variational methods.

We prove that for prescribed / there exists an associated functional to 4, and under
some conditions on & and g we find that this functional has a global minimum in a
convex subset of H'!(£2), which provides a weak solution of (1.1). We denote by H! ()
the usual Sobolev space, [1].

2. The associated variational problem

Given a function f € C?(2), the generated nonparametric surface associated to this
function is the graph of f in R3, parametrized as X (u, v) = (u, v, f(u, v)).
The mean curvature of this surface is

_ lEfvv_ZFfuv+Gfuu
h(u,v, f) - B (1+fuz+fv2)g/2

where E, F, and G are the coefficients of the first fundamental form [4, 9].
For prescribed %, weak solutions of (1.1) can be obtained as critical points of a
functional.

(2.1)

PROPOSITION 2.1. Let J; : H'(Q2) — R be the functional defined by
Jh(f)z/ (1+1V 1)+ H(u, v, £))dudv, 2.2)
Q
where H(u,v,z) = foz 2h(u,v,t)dt. Then (1.1) is the Euler Lagrange equation of (2.2).

Remark2.2. If feT =g+ HO1 (2) is a critical point of Jp, then f is a weak solution
of (1.1).

Proof. For ¢ € Cé (2), integrating by parts we obtain

1E vv_2F uv G uu
th(f)(w)zzf (— / f +3/{ —h(u,v,f)><pdudv. (2.3)
@\2 (14 f7+17) o

3. Behavior of the functional J;,

In this section, we study the behavior of the functional Jj, restricted to 7. For simplicity
we write J, (f) = A(f)+ B(f), with

A(f):/ (1+1V 1) Pdudv, B(f):/ Hu,v, f)dudv. 3.1)
Q Q

We will assume that /4 is bounded.
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LEMMA 3.1. The functional A : T — R is continuous and convex.

Proof. Continuity can be proved by a simple computation. Let a,b > 0 such that
a+b = 1. By Cauchy inequality, it follows that

JU[V(af +00) P < a/1+19 £ 2451419 fol2 3.2)

and convexity holds. O

Remark 3.2. As A is continuous and convex, then it is weakly lower semicontinuous
inT.

LEmMA 3.3. The functional B is weakly lower semicontinuous in T.

Proof. Since h is bounded, we have
|H(u,v,2)| <clz|+d. (3.3)

From the compact immersion H(} () — LY(Q) and the continuity of Nemytskii

operator associated to H in L' (), we conclude that B is weakly lower semicontinuous
in T (see [3, 12]). O

4. Weak solutions as critical points of J;

Let us assume that g € W12 and consider for each k > 0, the following subset of T':
Mi={feT: IV(f -8l <k}. (4.1)

M is nonempty, closed, convex, bounded, then it is weakly compact.

Remark 4.1. As g € WI>, taking p > 2 we obtain, for any f € My:

If=gllp =clV(f =p- (4.2)

Then, by Sobolev imbedding, || f — gllooc < c1ll f —gll1,p < ck for some constant c.

We deduce that f € W1 and f(2) C K for some fixed compact K C R. Thus, the
assumption ||h||o < 00 is not needed.

Let p be the slope of Jj, in My defined by
p(fo. My) = sup{dJu(fo)(fo—f): f €My} (4.3)
(see [7, 11]), then the following result holds.
LEMMA 4.2. If fo € My, verifies
Jn(fo) =inf {Jn(f): f € My}, (4.4)

then p(fo, M) = 0.
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Proof.

In(fot+e(f = f0))— In( /o)
&

_ lin% In((1—e) fo+ef) — Jh(fo)'
£— &

dJn(fo)(f— fo) = 1imo
e 4.5)

When Oie < 1 we have that (1 —¢) fo+&f € My, and then dih(fo)(fo—f) <0
for all f € My. As dJn(fo)(fo— fo) =0, we conclude that p(fy, My) =0. O

Remark 4.3. Let J, be weakly semicontinuous and let My bea weakly compact subset
of T, then J; achieves a minimum fp in M. By Lemma 4.2, p(fo, M) =0.

Asin [7], if fo has zero slope, we call it a p-critical point. The following result gives
sufficient conditions to assure that if fj is a p-critical point, then it is a critical point
of Jj.

THEOREM 4.4. Let fy € My, such that p( fo,ﬁk) = 0, and assume that one of the
following conditions holds:

@ dJn(fo)(fo—g) =0
(i) [V(fo—&lloo < k.

Then d Jy( fo) = 0.

Proof. As p(fo. M) =0, we have that d J, (fo)(fo— f) <0, and then d J;, (fo)(fo— &)
<dJp(fo)(f —g) forany f € M.

We will prove that dJ,(fo)(¢) = 0 for any ¢ € Cé. Let @ = k@/2||V@| 0o, then
+¢ +g € My, and then dJ; (o) (fo—g) < £dJn(fo)(@).

Suppose that d J; (fo)(@) # 0, then d J, (fo)(fo—g) <O.

If (i) holds, we immediately get a coltradiction. On the other hand, if (ii) holds, there
exists » > 1 such that g+r(fo—g) € My. Then dJ,(fo)(fo—g) <rdJn(fo)(fo—g),
a contradiction. O

Examples

Let us assume that fQ((V(f—g)Vg)/\/ 14|V f>)dudv > 0 for any f € M. Then
condition (i) of Theorem 4.4 is fulfilled for example if

@) |h(u,v,2)| < c(z—gu,v))y for every (u,v) € Q, z € R3, for some constant ¢
small enough.

(b) th(u, v, £)(f —g)dudv > 0 for every f € M. As a particular case, we may
take h(u, v, z) = c(z—g(u,v)) for any ¢ > 0.

(¢) h(u,v,z) = —c(z—g(u, v)) for some ¢ > 0 small enough.
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Indeed, in all the examples the inequality dJ;,(f)(f —g) > 0 holds for any f € My,
since

th(f)(f—g):/

Q

VIV(f—g)
JIFIVIP

IV(f -9 V(f—28)Vg
= | 2=t fon(f—g) dudv+ | =L dud
fQ(vlJrIVflz o g)) e o V1+|VfI? e

z/ —'V(f_g)|2+2h(f—g) dudv.
e \VI+|Vf?

+2h(u,v, f)(f—g)) dudv

(4.6)

Then the result follows immediately in example (b). In examples (a) and (c), being
IV(f —&)lloo <k we can choose k such that \/1+ ||V f]|2, < k. Then

IV(f—g)I? / <|V<f—g>|2 2>
— +2h(u,v, - dudv > _— 2 — dud
/Q< Y g)) wav [ (B8 207 —02) dudo
1
> z||V<f—g>||%—2cc%||wf—g>||%
1
= (z —2cc%> IV(f =23
4.7)

where ¢ is the Poincaré’s constant associated to €2.
Thus, the result holds for ¢ < 1/ ZkC%.

Remark 4.5. As in the preceding examples, it can be proved that if dJ, (f)(f —g) >0
for any f € M;y, then g is a weak solution of (1.1). Indeed, if dJ,(g) # 0, from
Theorem 4.4 it follows that p(g,Mk) > 0. As Jj, achieves a minimum in every My,
we may take k > k, — 0, and f;, such that p( fn,ﬁkn) =0. As Mkn C M, condition
(i) in Theorem 4.4 holds, and then d J;, (f,) = 0. It is immediate that f,, — g in wlhoeo,
and then it follows easily that d J,(g) = 0.

Furthermore, for constant g we can see that if dJ;, (f)(f —g) > 0 for any f € My,
then g is a global minimum of Jj, in My: let us define ¢(t) = Jy,(tf + (1 —1)g), then
@'(t) =dIptf + (1 =) (f—8). As 0 <dJy(tf + (1 =DQtf +(1—1)g—g) =
tdJp(tf +(1—1)g)(f —g) it follows that J; (f) — Ju(g) = ¢(1) —(0) = ¢’(c) > 0.

5. Multiple solutions

In this section, we study the multiplicity of weak solutions of (1.1). Consider

2
s gk}, (5.1)
2

0x;0x;

Nkz {fEMkQHZZ
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Nk is a nonempty, closed, bounded, and convex subset of 7', therefore Nk is weakly
compact.

Then we obtain the following theorem, which is a variant of the mountain pass
lemma.

THEOREM 5.1. Let fo € Ny be a local minimum of Jy, and assume that J,(f1) < Jn(fo)
for some f| € Ny. Let
c=inf sup Jh(y(t)), 5.2)
v€ll 1€[0,1]
where T' = {y € C([0, 1], Ny) : ¥ (0) = fo, y(1) = f1}. Then there exists f € Ny such
that J,,(f) = c and p(f, Ny) =0.

We remark that f is not a local minimum of Jj,. This kind of f is called an unstable
critical point.

The proof of Theorem 5.1 follows from Theorem 3 in [7] and Lemmas 5.2, 5.3, and
5.4 below.

LEMMA 5.2. The functional Jy is C'(Ny).

Proof. Let f, fo € Ni. Then
|dJn () (@) —dIn(fo) (@)

2 Vfo (5.3)
< ll@ll g - + | Na(fo) = Nu(H) ], |
o\ VIHIveE Vi+Ivik|, (£ I
where N, is the Nemytskii operator associated to 4. Let

VIFIVARYf = J1+IV PV fo

‘\/1+|Vf|2 \/1+|Vfo|2 ‘ 2 (5.4
SKIlfo—fIIHol

and Ny, : L? > [? continuous, the result holds. [l

LEMMA 5.3. The slope p is H'-continuous.

Proof. Let f, € Ny such that fn = foin Hol. For € > 0 we take g, € ‘N such that
p(fu, Ni)—€/2 <dJIp(fu)(fn—&n)- Then

p(fas N1) = (f0. Ni) = dn(£:) (fu—80) +35 —d (o) (fo— )
= N (fa) iy (= fo) (5.5)

() =d 1 fo) | gy [ (Fo—80) gy 5 <

for n > no. Operatirg in the same way with p( fo, Nk) —p( fn,ﬁk), we conclude that
o (fu, Ni) = p(fo, Ni). O
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LEMMA 5.4 (Palais Smale condition). Let (f,)pen C Ny such thatlim,_ o0 p(fn, Nix) =
0. Then (fy)nen has a convergent subsequence in H(} ().

Proof. As f, € Ni, we may suppose that f, — f weakly. Let ¥, = f, — f. We will
see that W,, — 0. Indeed,

th(fn)(\If,,)zf (\/%W W+ 20 (1, v, f)W )dudv

|V\Iln|2dudv+/ Vfdudv (5.6)

v,
_/sz,/1+|an|2 VI+HIV £ 2

—|—/ 2h(u, v, fn)\lln dudv.
Q
Then for some constant ¢

|V |3 < o(fu, Ni) fdudv—/ 2h(u,v, fr)Wpdudv. (5.7)
Q

b

By Rellich-Kondrachov theorem ¥, — 0 in L?(2), and then

/2h(u,v,fn)wndudv < 2[|Alloo |22 W, 2 — 0, (5.8)
Q

——~ __Vfdudv
a V14|V f, |2

Af / n—1/2 (5.9)
— | ———V, dudv— | V,V(1+|V [yl V fdudv
/Q\/l—HVf,,lz Q ( )
< IAFI2I%n 24+ 1Y fulloo IV flloo | D fu | 5| Wnll2 —> 0. O

Example 5.5. Now we will show with an example that problem (1.1) may have at least
three p-critical points in Nk.

Let g = go be a constant, and A (u, v, z) = —c(z — go) for some constant ¢ > 0. Then,
go is a minimum of J; in Mkl for k1 small enough, and a local minimum in My for any
k>kp.

Moreover, taking 2 = Bg, f(u,v) = go+ R? — (u? +v?), it follows that

In(f) = Jn(go) =27 (o(R3)—§R6>, (5.10)

and taking k = 2,/ R it holds that f € Ny. Hence, if R is big enough, it follows that
go is not a global minimum in N. Furthermore, we see that the proof of Lemma 4.2
may be repeated in Ny, and then the minimum of J;, in Ny is a p-critical point. From
Theorem 5.1 there is a third p-critical point which is not a local minimum of Jj.
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6. Regularity

As we proved, problem (1.1) admits (for an appropriate k > 0) a weak solution in a
subset M(k) = {f € T /IV(f —8)lloo <.

Consider p > 2, and fy € W2P(Q) — C!(Q) a weak solution of (1.1). Then
Ly, fo=2h@,v, fo)(1+V f$)*? in Q where forany f € C}(Q) Ly: WP — L” is
the strictly elliptic operator given by

Lf¢=(1+fuz)¢uu+(1+fuz)¢vv_2fufv¢uv' (6.1)
In order to prove the regularity of fy, we study equation (6.2)

Lyyd =2h(u,v, fo)(1+VfH¥? inQ, ¢ =gindQ. (6.2)

PROPOSITION 6.1. Let us assume that 92 € C*<, g € C%% and h € C“_for some
0 <a <1-=2/p. Then, if € W>P is a strong solution of (6.2), ¢ € C>*(Q).

Proof. By Sobolev imbedding ¢ € C Le(Q). Then L ReeC «(Q) and the coefficients
of the operator L z, belong to C*. By Theorem 6.14 in [5], the equation Lw = L f ¢
in Q, w = g in 3R is uniquely solvable in C>* (), and the result follows from the
uniqueness in Theorem 9.15 in [5]. O

Remark 6.2. As a simple consequence, we obtain that fy € C>% (), by the uniqueness
in WP given by [5, Theorem 9.15].

COROLLARY 6.3. Let us assume that 9 € Ck+2.2 g€ CH2o and h e k@ for some
0<a<1-2/p. Then fy e Ck22(Q).

Proof. Tt is immediate from Proposition 2.1 and Theorem 6.19 in [5]. O
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