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1. Introduction

The prescribed mean curvature equation with Dirichlet condition for a nonparametric
surface X : � → R

3, X(u,v) = (u,v,f (u,v)) is the quasilinear partial differential
equation(

1+f 2
v

)
fuu+(1+f 2

u

)
fvv−2fufvfuv = 2h(u,v,f )

(
1+|∇f |2)3/2 in �,

f = g in ∂�,
(1.1)

where � is a bounded domain in R
2, h :�×R → R is continuous and g ∈H 1(�).

We call f ∈ H 1(�) a weak solution of (1.1) if f ∈ g +H 1
0 (�) and for every

ϕ ∈ C1
0(�) ∫

�

((
1+|∇f |2)−1/2∇f∇ϕ+2h(u,v,f )ϕ

)
dudv = 0. (1.2)

It is known that for the parametric Plateau’s problem, weak solutions can be obtained
as critical points of a functional (see [2, 6, 7, 8, 10, 11]).

The nonparametric case has been studied for H = H(x,y) (and generally H =
H(x1, . . . ,xn) for hypersurfaces in R

n+1) by Gilbarg, Trudinger, Simon, and Serrin,
among other authors. It has been proved [5] that there exists a solution for any smooth
boundary data if the mean curvature H ′ of ∂� satisfies

H ′(x1, . . . ,xn
)≥ n

n−1

∣∣H (x1, . . . ,xn
)∣∣ (1.3)

for any (x1, . . . ,xn) ∈ ∂�, and H ∈ C1(�,R) satisfying the inequality∣∣∣∣∫
�

Hϕ

∣∣∣∣≤ 1−ε
n

∫
�

|Dϕ| (1.4)
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for any ϕ ∈ C1
0(�,R) and some ε > 0. They also proved a non-existence result (see [5,

Corollary 14.13]): ifH ′(x1, . . . ,xn) < (n/(n−1))|H(x1, . . . ,xn)| for some (x1, . . . ,xn)

and the sign of H is constant, then for any ε > 0 there exists g ∈ C∞(�) such that
‖g‖∞ ≤ ε and that Dirichlet’s problem is not solvable.

We remark that the solutions obtained in [5] are classical. In this paper, we find weak
solutions of the problem by variational methods.

We prove that for prescribed h there exists an associated functional to h, and under
some conditions on h and g we find that this functional has a global minimum in a
convex subset ofH 1(�), which provides a weak solution of (1.1). We denote byH 1(�)

the usual Sobolev space, [1].

2. The associated variational problem

Given a function f ∈ C2(�), the generated nonparametric surface associated to this
function is the graph of f in R

3, parametrized as X(u,v)= (u,v,f (u,v)).
The mean curvature of this surface is

h(u,v,f )= 1

2

Efvv−2Ffuv+Gfuu(
1+f 2

u +f 2
v

)3/2 , (2.1)

where E,F , and G are the coefficients of the first fundamental form [4, 9].
For prescribed h, weak solutions of (1.1) can be obtained as critical points of a

functional.

Proposition 2.1. Let Jh :H 1(�)→ R be the functional defined by

Jh(f )=
∫
�

((
1+|∇f |2)1/2 +H(u,v,f ))dudv, (2.2)

whereH(u,v,z)= ∫ z
0 2h(u,v, t)dt . Then (1.1) is the Euler Lagrange equation of (2.2).

Remark 2.2. If f ∈ T = g+H 1
0 (�) is a critical point of Jh, then f is a weak solution

of (1.1).

Proof. For ϕ ∈ C1
0(�), integrating by parts we obtain

dJh(f )(ϕ)= 2
∫
�

(
1

2

Efvv−2Ffuv+Gfuu(
1+f 2

u +f 2
v

)3/2 −h(u,v,f )
)
ϕ dudv. (2.3)

�

3. Behavior of the functional Jh

In this section, we study the behavior of the functional Jh restricted to T . For simplicity
we write Jh(f )= A(f )+B(f ), with

A(f )=
∫
�

(
1+|∇f |2)1/2dudv, B(f )=

∫
�

H(u,v,f )dudv. (3.1)

We will assume that h is bounded.
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Lemma 3.1. The functional A : T → R is continuous and convex.

Proof. Continuity can be proved by a simple computation. Let a,b ≥ 0 such that
a+b = 1. By Cauchy inequality, it follows that√

1+ ∣∣∇(af +bf0
)∣∣2 ≤ a

√
1+|∇f |2 +b

√
1+|∇f0|2 (3.2)

and convexity holds. �

Remark 3.2. As A is continuous and convex, then it is weakly lower semicontinuous
in T .

Lemma 3.3. The functional B is weakly lower semicontinuous in T .

Proof. Since h is bounded, we have

|H(u,v,z)| ≤ c|z|+d. (3.3)

From the compact immersion H 1
0 (�) ↪→ L1(�) and the continuity of Nemytskii

operator associated toH in L1(�), we conclude that B is weakly lower semicontinuous
in T (see [3, 12]). �

4. Weak solutions as critical points of Jh

Let us assume that g ∈W 1,∞, and consider for each k > 0, the following subset of T :

Mk = {
f ∈ T : ‖∇(f −g)‖∞ ≤ k}. (4.1)

Mk is nonempty, closed, convex, bounded, then it is weakly compact.

Remark 4.1. As g ∈W 1,∞, taking p > 2 we obtain, for any f ∈Mk:

‖f −g‖p ≤ c‖∇(f −g)‖p. (4.2)

Then, by Sobolev imbedding, ‖f − g‖∞ ≤ c1‖f − g‖1,p ≤ c̄k for some constant c̄.
We deduce that f ∈W 1,∞ and f (�) ⊂ K for some fixed compact K ⊂ R. Thus, the
assumption ‖h‖∞ <∞ is not needed.

Let ρ be the slope of Jh in Mk defined by

ρ
(
f0,Mk

)= sup
{
dJh

(
f0
)(
f0 −f ); f ∈Mk

}
(4.3)

(see [7, 11]), then the following result holds.

Lemma 4.2. If f0 ∈Mk verifies

Jh
(
f0
)= inf

{
Jh(f ) : f ∈Mk

}
, (4.4)

then ρ(f0,Mk)= 0.
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Proof.

dJh
(
f0
)(
f −f0

)= lim
ε→0

Jh
(
f0 +ε(f −f0

))−Jh(f0
)

ε

= lim
ε→0

Jh
(
(1−ε)f0 +εf )−Jh(f0

)
ε

.

(4.5)

When 0 < ε < 1 we have that (1−ε)f0 +εf ∈Mk , and then dJh(f0)(f0 −f ) ≤ 0
for all f ∈Mk . As dJh(f0)(f0 −f0)= 0, we conclude that ρ(f0,Mk)= 0. �

Remark 4.3. Let Jh be weakly semicontinuous and letMk be a weakly compact subset
of T , then Jh achieves a minimum f0 in Mk . By Lemma 4.2, ρ(f0,Mk)= 0.

As in [7], if f0 has zero slope, we call it a ρ-critical point. The following result gives
sufficient conditions to assure that if f0 is a ρ-critical point, then it is a critical point
of Jh.

Theorem 4.4. Let f0 ∈ Mk such that ρ(f0,Mk) = 0, and assume that one of the
following conditions holds:

(i) dJh(f0)(f0 −g)≥ 0
(ii) ‖∇(f0 −g)‖∞ < k.

Then dJh(f0)= 0.

Proof. As ρ(f0,Mk)= 0, we have that dJh(f0)(f0−f )≤ 0, and then dJh(f0)(f0−g)
≤ dJh(f0)(f −g) for any f ∈Mk .

We will prove that dJh(f0)(ϕ) = 0 for any ϕ ∈ C1
0 . Let ϕ̃ = kϕ/2‖∇ϕ‖∞, then

±ϕ̃+g ∈Mk , and then dJh(f0)(f0 −g)≤ ±dJh(f0)(ϕ̃ ).
Suppose that dJh(f0)(ϕ̃) �= 0, then dJh(f0)(f0 −g) < 0.
If (i) holds, we immediately get a contradiction. On the other hand, if (ii) holds, there

exists r > 1 such that g+r(f0 −g) ∈Mk . Then dJh(f0)(f0 −g) ≤ rdJh(f0)(f0 −g),
a contradiction. �

Examples

Let us assume that
∫
�
((∇(f −g)∇g)/√1+|∇f |2)dudv ≥ 0 for any f ∈ Mk . Then

condition (i) of Theorem 4.4 is fulfilled for example if
(a) |h(u,v,z)| ≤ c(z−g(u,v))+ for every (u,v) ∈ �, z ∈ R

3, for some constant c
small enough.

(b)
∫
�
h(u,v,f )(f −g)dudv ≥ 0 for every f ∈Mk . As a particular case, we may

take h(u,v,z)= c(z−g(u,v)) for any c ≥ 0.
(c) h(u,v,z)= −c(z−g(u,v)) for some c > 0 small enough.
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Indeed, in all the examples the inequality dJh(f )(f −g)≥ 0 holds for any f ∈Mk ,
since

dJh(f )(f −g)=
∫
�

(
∇f∇(f −g)√

1+|∇f |2 +2h(u,v,f )(f −g)
)
dudv

=
∫
�

(
|∇(f −g)|2√

1+|∇f |2 +2h(f −g)
)
dudv+

∫
�

∇(f −g)∇g√
1+|∇f |2 dudv

≥
∫
�

(
|∇(f −g)|2√

1+|∇f |2 +2h(f −g)
)
dudv.

(4.6)

Then the result follows immediately in example (b). In examples (a) and (c), being
‖∇(f −g)‖∞ ≤ k we can choose k̃ such that

√
1+‖∇f ‖2∞ ≤ k̃. Then

∫
�

(
|∇(f −g)|2√

1+|∇f |2 +2h(u,v,f )(f −g)
)
dudv ≥

∫
�

(|∇(f −g)|2
k̃

−2c(f −g)2
)
dudv

≥ 1

k̃
‖∇(f −g)‖2

2 −2cc2
1‖∇(f −g)‖2

2

=
(

1

k̃
−2cc2

1

)
‖∇(f −g)‖2

2,

(4.7)

where c1 is the Poincaré’s constant associated to �.
Thus, the result holds for c ≤ 1/2k̃c2

1.

Remark 4.5. As in the preceding examples, it can be proved that if dJh(f )(f −g)≥ 0
for any f ∈ Mk , then g is a weak solution of (1.1). Indeed, if dJh(g) �= 0, from
Theorem 4.4 it follows that ρ(g,Mk) > 0. As Jh achieves a minimum in every Mk ,
we may take k ≥ kn → 0, and fn such that ρ(fn,Mkn) = 0. As Mkn ⊂Mk , condition
(i) in Theorem 4.4 holds, and then dJh(fn)= 0. It is immediate that fn → g in W 1,∞,
and then it follows easily that dJh(g)= 0.

Furthermore, for constant g we can see that if dJh(f )(f −g) ≥ 0 for any f ∈Mk ,
then g is a global minimum of Jh in Mk: let us define ϕ(t) = Jh(tf + (1− t)g), then
ϕ′(t) = dJh(tf + (1 − t)g)(f − g). As 0 ≤ dJh(tf + (1 − t)g)(tf + (1 − t)g− g) =
tdJh(tf +(1− t)g)(f −g) it follows that Jh(f )−Jh(g)= ϕ(1)−ϕ(0)= ϕ′(c)≥ 0.

5. Multiple solutions

In this section, we study the multiplicity of weak solutions of (1.1). Consider

Nk =
{
f ∈Mk∩H 2 :

∥∥∥∥ ∂2f

∂xi∂xj

∥∥∥∥
2
≤ k

}
, (5.1)



66 Existence and regularity of weak solutions to the prescribed …

Nk is a nonempty, closed, bounded, and convex subset of T , therefore Nk is weakly
compact.

Then we obtain the following theorem, which is a variant of the mountain pass
lemma.

Theorem 5.1. Let f0 ∈Nk be a local minimum of Jh and assume that Jh(f1) < Jh(f0)

for some f1 ∈Nk . Let
c = inf

γ∈3
sup
t∈[0,1]

Jh
(
γ (t)

)
, (5.2)

where 3 = {γ ∈ C([0,1],Nk) : γ (0)= f0, γ (1)= f1}. Then there exists f ∈Nk such
that Jh(f )= c and ρ(f,Nk)= 0.

We remark that f is not a local minimum of Jh. This kind of f is called an unstable
critical point.

The proof of Theorem 5.1 follows from Theorem 3 in [7] and Lemmas 5.2, 5.3, and
5.4 below.

Lemma 5.2. The functional Jh is C1(Nk).

Proof. Let f,f0 ∈Nk . Then∣∣dJh(f )(ϕ)−dJh(f0
)
(ϕ)
∣∣

≤ ‖ϕ‖H 1
0

(∥∥∥∥∥ ∇f√
1+|∇f |2 − ∇f0√

1+|∇f0|2

∥∥∥∥∥
2

+ ∥∥Nh(f0
)−Nh(f )∥∥2

)
,

(5.3)

where Nh is the Nemytskii operator associated to h. Let∥∥∥∥∥ ∇f√
1+|∇f |2 − ∇f0√

1+|∇f0|2

∥∥∥∥∥
2

≤
∥∥∥∥√1+|∇f0|2∇f −

√
1+|∇f |2∇f0

∥∥∥∥
2

≤ κ ‖f0 −f ‖H 1
0

(5.4)

and Nh : L2 → L2 continuous, the result holds. �

Lemma 5.3. The slope ρ is H 1-continuous.

Proof. Let fn ∈ Nk such that fn → f0 in H 1
0 . For ε > 0 we take gn ∈ Nk such that

ρ(fn,Nk)−ε/2< dJh(fn)(fn−gn). Then

ρ
(
fn,Nk

)−ρ(f0,Nk
)≤ dJh

(
fn
)(
fn−gn

)+ ε

2
−dJh

(
f0
)(
f0 −gn

)
≤ ∥∥dJh(fn)∥∥(H 1

0 )
∗
∥∥(fn−f0

)∥∥
H 1

0

+∥∥dJh(fn)−dJh(f0
)∥∥
(H 1

0 )
∗
∥∥(f0 −gn

)∥∥
H 1

0
+ ε

2
< ε

(5.5)

for n ≥ n0. Operating in the same way with ρ(f0,Nk)−ρ(fn,Nk), we conclude that
ρ(fn,Nk)→ ρ(f0,Nk). �
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Lemma5.4 (Palais Smale condition). Let (fn)n∈N ⊂Nk such that limn→∞ρ(fn,Nk)=
0. Then (fn)n∈N has a convergent subsequence in H 1

0 (�).

Proof. As fn ∈ Nk , we may suppose that fn → f weakly. Let 5n = fn−f . We will
see that 5n → 0. Indeed,

dJh
(
fn
)(
5n
)=

∫
�

(
∇fn√

1+|∇fn|2
∇5n+2h

(
u,v,fn

)
5n

)
dudv

=
∫
�

1√
1+|∇fn|2

|∇5n|2 dudv+
∫
�

∇5n√
1+|∇fn|2

∇f dudv

+
∫
�

2h
(
u,v,fn

)
5ndudv.

(5.6)

Then for some constant c

c
∥∥∇5n∥∥2

2 ≤ ρ(fn,Nk)−∫
�

∇5n√
1+|∇fn|2

∇f dudv−
∫
�

2h
(
u,v,fn

)
5ndudv. (5.7)

By Rellich-Kondrachov theorem 5n → 0 in L2(�), and then∣∣∣∣∫
�

2h
(
u,v,fn

)
5ndudv

∣∣∣∣≤ 2‖h‖∞|�|1/2‖5n‖2 −→ 0, (5.8)

∣∣∣∣∣
∫
�

∇5n√
1+|∇fn|2

∇f dudv
∣∣∣∣∣

=
∣∣∣∣∣−
∫
�

6f√
1+|∇fn|2

5ndudv−
∫
�

5n∇
(
1+|∇fn|2

)−1/2∇f dudv
∣∣∣∣∣

≤ ‖6f ‖2‖5n‖2 +‖∇fn‖∞‖∇f ‖∞
∥∥D2fn

∥∥
2‖5n‖2 −→ 0.

(5.9)

�

Example 5.5. Now we will show with an example that problem (1.1) may have at least
three ρ-critical points in Nk .

Let g = g0 be a constant, and h(u,v,z)= −c(z−g0) for some constant c > 0. Then,
g0 is a minimum of Jh inMk1 for k1 small enough, and a local minimum inMk for any
k ≥ k1.

Moreover, taking �= BR , f (u,v)= g0 +R2 −(u2 +v2), it follows that

Jh(f )−Jh
(
g0
)= 2π

(
o
(
R3)− c

6
R6
)
, (5.10)

and taking k = 2
√
πR it holds that f ∈ Nk . Hence, if R is big enough, it follows that

g0 is not a global minimum in Nk . Furthermore, we see that the proof of Lemma 4.2
may be repeated in Nk , and then the minimum of Jh in Nk is a ρ-critical point. From
Theorem 5.1 there is a third ρ-critical point which is not a local minimum of Jh.
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6. Regularity

As we proved, problem (1.1) admits (for an appropriate k > 0) a weak solution in a
subset M(k)= {f ∈ T /‖∇(f −g)‖∞ ≤ k}.

Consider p > 2, and f0 ∈ W 2,p(�) ↪→ C1(�) a weak solution of (1.1). Then
Lf0f0 = 2h(u,v,f0)(1+∇f 2

0 )
3/2 in � where for any f ∈ C1(�) Lf :W 2,p → Lp is

the strictly elliptic operator given by

Lf φ = (
1+f 2

v

)
φuu+(1+f 2

u

)
φvv−2fufvφuv. (6.1)

In order to prove the regularity of f0, we study equation (6.2)

Lf0φ = 2h(u,v,f0)(1+∇f 2
0 )

3/2 in �, φ = g in ∂�. (6.2)

Proposition 6.1. Let us assume that ∂� ∈ C2,α , g ∈ C2,α , and h ∈ Cα for some
0< α ≤ 1−2/p. Then, if φ ∈W 2,p is a strong solution of (6.2), φ ∈ C2,α(�).

Proof. By Sobolev imbedding φ ∈ C1,α(�). Then Lf0φ ∈ Cα(�) and the coefficients
of the operator Lf0 belong to Cα . By Theorem 6.14 in [5], the equation Lw = Lf0φ

in �, w = g in ∂� is uniquely solvable in C2,α(�), and the result follows from the
uniqueness in Theorem 9.15 in [5]. �

Remark 6.2. As a simple consequence, we obtain that f0 ∈ C2,α(�), by the uniqueness
in W 2,p given by [5, Theorem 9.15].

Corollary 6.3. Let us assume that ∂� ∈ Ck+2,α , g ∈ Ck+2,α , and h ∈ Ck,α for some
0< α ≤ 1−2/p. Then f0 ∈ Ck+2,α(�).

Proof. It is immediate from Proposition 2.1 and Theorem 6.19 in [5]. �
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