SPECTRAL PROPERTIES OF
OPERATORS THAT CHARACTERIZE ("

B. L. CHALMERS AND B. SHEKHTMAN

ABSTRACT. It is well known that the identity is an operator with the
following property: if the operator, initially defined on an m-dimensional
Banach space V, can be extended to any Banach space with norm 1, then
V' is isometric to ef;f). We show that the set of all such operators consists
precisely of those with spectrum lying in the unit circle. This result answers
a question raised in [5] for complex spaces.

1. INTRODUCTION

Let V be an n-dimensional Banach space and let 7" be an operator map-
ping V into V. If X is another Banach space with X DV we let

e(T,X):=mf{|T|: T:X =V, T|y =T}
and
e(T) :=sup{e(T,X): X DV}

In particular, if ' = Iy is the identity on the space V, then e(T, X) =
AV, X) and e(T) = A\(V), where A\(V, X)) and A(V) are the relative (to X)
and absolute projection constants of the space V', respectively.

It is a classical result due to Nachbin [7] (cf [10]; see also [3]) that

(1.1) e(Iy) = 1 iff Visisometric to (V.

In this note we prove that the set of all such operators consists precisely
of those with spectrum lying in the circle. Of course we cannot define an
operator T' other than (a scalar multiple of) the identity operator with-
out specifying the space V. Hence this result has to be stated somewhat
differently.
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We will formulate the result in terms of the action constants introduced
in [2] and [4]. Let V be a fixed Banach space of dimension n, and let A be
an n X n matrix. Let A(V) be the set of all linear operators from V into
V such that, for every T' € A(V), there exists a basis in V' with respect to
which the matrix of the operator T" is equal to A. (In this case we say that
T corresponds to the matrix A and write T' ~ A.) In this context we refer
to A as an action. An action constant of A on V is defined to be

AA(V) = inf{e(T)/||T| : T € A(V)}.

With the help of this language we state the result in [5]:

Theorem ([5]). Let A be an n x n matriz and the field be real. Then the
implication

Aa(V)=1) = (V ~ )
holds iff A=1.

An unconditional action constant of A on V is defined to be
A4(V) :=inf{e(T): T € A(V)}.

Further, let o(A) (the spectrum of A) = the set of all eigenvalues of A and
let p(A) (the spectral radius of A) = max{|A|: A € 6(A)}. If T'~ A, then
o(T) =0(A) and p(T') = p(A). Also denote by F either the complex field C
or the real field R and let T denote the unit circle (in the respective field),
i.e., T={e" : 6 €[0,2m)}N F. In [5] we made the following conjecture:

Conjecture. Let A be an nxn matrixz and let F = C. Then the implication
AA(V)=1) = (V> e))

holds iff o(A) CT.
In this paper we prove the validity of this conjecture. In addition we
prove that necessity part of the conjecture also holds in the real case.
2. MAIN RESULTS

In the following, if A is an n X n matrix, then {A : W — W} :=
{T ~A:W — W}. The following theorem may be known. We give a
proof of it because we could not find it in any of the usual references. It sets
the stage for what follows and indicates the distinction between the real and
complex case.

Theorem 1. For any n X n matriz A with entries from the field F we have

(2.1) p(A) =inf{||A: H — H| : H isisometricto Eg")}
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(2.2) =inf{||]A:V — V| : V an n — dimensional Banach space}.

Moreover, the infimum in (2.1) and (2.2) is attained if and only if every
eigenvalue N € o(A) such that |N'| = p(A) is a zero of the minimal polyno-
mial of A of multiplicity 1.

Proof in the Complex Case. First observe that, if A is an eigenvalue of A,
then there exists a vector v €C"™ such that Av = Av. Hence

[Av]ly = [All[ollv
and hence
inf{||[A:V — V| : Visn— dimensional} > max{|\| : A € 0(4)}.
Now, for every € > 0, we wish to construct a Hilbert space H such that
|A: H = H| < p(A) +-e.

Equivalently, for every € > 0, we wish to construct a matrix B similar to A
such that
1B: 657 = 657 < p(4) +c.

Let {A1,...,A,} be the spectrum of A, where some of the A\; may be the
same. Then, for an arbitrary n > 0, there exists 1y, ...,m, € [0, 7] such that
A is similar to

- )\1 771 -
A2 M2
B, =
An—1 TMn-1
L Ap
Comparing this matrix to
- Al -
A2
By = ,
Anfl
L An

we have that there exists a constant C' > 0 such that

I(Bo — By) : €57 — 65| < Cn.
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Picking n < €/C, we have
1By : €57 — 65| < [|Bo: €5 — 657 + €

=max{|\;|: j=1,..,n} +e

Finally, we prove the “moreover” part of the theorem: If A is nilpotent, then
the statement is obvious, since for any Banach space V'

|A: V= V| >0.

Hence, without loss of generality we may assume that p(4) = 1. By way
of contradiction, let \g € o(A) such that [A\g| = 1 and A¢ is a zero of the
minimal polynomial of A of multiplicity strictly greater than 1. Then, using
the Jordan form for A, we observe that there exist non-zero vectors vy, vy €
C" so that

Avy = Agvy + v9; Avg = Agus.

If|[A: V= V| =1, then |A*: V — V|| <1, Vk € N. On the other hand

losll = A% ou]| > [|AGvr + kAGT 02| 2> Klfvz| — [lvr]| = o0 as k — cc. =

Proof in the Real Case. The proof that, for every ¢ > 0,
e+ p(A) >inf{||A:V = V| : Visisometricto E(Qn)}
is practically the same as in the complex case if the Jordan form

A1 M T
A2 M2

An—1 Th—1
L An

is substituted for by the “real-block Jordan form”

rpiAr oml
palo  mal

,On—lAn—l nn—ll
i pnl\y,
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sin 0 cos 0
—cosf; sinb;
To prove that

where A; = [ ] and [ is the 2 x 2 identity matrix.

(2.3) JA:V = V] 2 p(A)

we need a different trick, since A may have no real eigenvectors. Clearly
(2.3) holds if A is nilpotent. Hence we can assume that p(A) = 1. If A has
eigenvalues 1 or ~1 then the proof is done as in the previous case. If not
then V can be written as a direct sum

V=Viaol

where V5 is a 2-dimensional Banach space and

cosa  Sina
:| =: A1

A‘VZ - [—sina cos
for some «. It suffices to prove that
A1 : Vo — Vol > 1.

Indeed, applying A; to the unit ball B(V4), we observe that the (Euclidean)
area of (A1 B(V3)) is the same as the area of B(V3). Hence [0(A;B(V2))] N
[0B(V2)] # 0 and thus 32 € S(V3) : ||Ar1z|| =z =1.=

Remark. It is clear from the proof of the theorem that (in the complex
case) (2.1) can be replaced by

inf{||A:V — V| : V isisometric to EZ()")}

for every p € [1,00]. In the real case it is not so. Indeed

cosf sinf

Proposition 1. Let F = R and A = [_ sind  cosf

} . Then

inf{||A:V — V| : Vis isometric to (D} = |cos | + |sin ] > 1,

for 0 # krn/2, although p(A) = 1.

Proof. inf{||A:V — V| : V is isometric to eé?} = infg ||[ST'AS||, where

. . b .
the norm is the maximum of the absolute row sums and S = (Z is an

d
arbitrary invertible 2x2 matrix. Further let Ag = S™'AS, A = ad—bc, E =
(ab+cd)/A, P=(b*+d*)/A, Q= (a*+c?*)/A, § =cotf, o =sinb, and
note that 1+ E? = PQ. Now, without loss, assume 0 < 6 < 7/2. Then

A
w = max{|6 + E| +|P|, |6 — E| + |Q|}.
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Case 1. § > |E| > 0:

A
IAsl _ 5 max{E + |P|, —E + |Q|}.

For E fixed, determine, by use of |Q| = (1+ E?)/|P|, that the two arguments
of the max are equal to v1+2E? when |P| = v/1+2FE? — E. On the
other hand, if |P| > V14 2E? — E then obviously E + |P| > V14 2E?,
whereas if |P| < v1+2E% — E then —E + |Q| = —FE + (1 + E?)/|P| >
—E+(1+E%)/(V1+2E2—E) = (1+42E?—EV1+2E?)/(V/1+2E%2—E) =
V1+2E2. We conclude that, for E fixed, inf max{FE + |P|, —E + |Q|} =
Vv 1+ 2FE?2. Thus, the inf (over all S) is achieved when E = 0, and thus when
|P| =|Q| =1, i.e., when ab+ cd = 0 and b* + d? = a® + ¢ = |ad — be|, and
in particular when d = a and b = ¢ = 0.

Case 2. |[E| > 46> 0:

Assume first that £ > 0. Then

l14sll
o

= FE +max{d + |P|, =0 +|Q|}.

Analogously as in Case 1, determine that the two arguments of the max are
equal to 1+ E? 4+ 62 when |P| = V14 E? 462 — . Thus, the inf (over
all S) is achieved when E = §.

Assume finally that £ < 0. Then

A

and the argument is completely symmetric and the conclusion is the same
as in the case E > 0..

Note, however, that § ++/1 + 262 > § +1 and thus the inf over all S from
both cases is achieved in Case 1. L.e., we find that the infimum is achieved
for S = I and thus

inf || Ag|| = 0(140) =sinf + cosf. =

Theorem 2. Let V be an n-dimensional Banach space and T be an op-
erator on V' such that o(T) C T and e(T) = 1. Then V is isometric to
zé{?. Moreover, in this case, all the eigenvalues of T are simple roots of the
minimal polynomial of T'.

Proof. Complex case: Since e(T') =1 we have |7 : V — V|| =1 and by the
“moreover” part of Theorem 1, T is diagonalizable; i.e., 3 a basis in V with
respect to which T' can be represented as a diagonal matrix

62771'01

eQTricrn
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By Dirichlet’s theorem (cf [9, p. 216]) we can find numbers N, mq,...,m,, €
N so that

m; 1
oy — 5| <
and this can be done for a sequence of N — oo. Then for the operators
e2mi Tt
Ty = . V=V,
e?ﬂ'i%

there is a constant c¢; independent of N such that

C1
||TN _TH < N1+1/n7

and, since the extension constant is a continuous function, there exists a
function ¢(V) such that
e(Tn) <e(T)+ ¢(N)=14+¢(N); ¢(N) = 0as N — .

Now let 7" extend T to X minimally. Then 7V ~1! T extends I, |y with norm
< HT]@]_lHHTH, where of course ||T| = e(T). But T¥~1 & T is an extension
of TY , whence
c

e(T) < e(TV) TR < L+ o)1+ 1)

Finally, since T =1: V — V, we have
€1 —

AMV) < (14 ¢(N)(A + ﬁ)N ' S 1las N — .

Hence A(V) =1 and V ~ o,
Real case: The “real” case is again done in exactly the same way where

the matrices )
627710'1

e27rian

are replaced by matrices of the form
Ay

cos(2moj)  sin(2mo;)

. where A; = —sin(27wo;) cos(2mo;)

Ay
or Aj is a real number. But, furthermore, from Proposition 1 we see that in
fact all the o; must be 0 or 1/2 and that in fact therefore all the matrices
representing 17" must be diagonal matrices with entries £1. Hence T is an
involution and the above argument works with N = 2. =
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Corollary 1. Ifo(A) C T and \%(V) =1, then V ~ o

Proof. For every € > 0, let T, ~ Aand 1 < ¢(T,) < 1+e¢. Then in particular
ITe|l < 14 €. Hence by compactness 3 €, ..., €, ..., € — 0, such that
T., = T, e(T.,) — e(T) = 1. Since eigenvalues are continuous functions of
the operator, we have o(T") = 0(A) C T, and by the previous theorem we

conclude that V ~ eﬁ;ﬁ’. =

We will now prove a converse to Theorem 2 in the case when the field F
= C.

Theorem 3. Let F = C and let A be an n x n matriz such that p(A) =1
and every eigenvalue of A of modulus one is a zero of the minimal polynomial
of A of multiplicity 1. If o(A) is not a subset of the unit circle, then there
exists a Banach space V and an operator T : V — V such that V is not

isometric to zéﬁ), T~Aande(T)=1.

Proof. Let A1,.., A\ € 0(A)NT and Agt1,...,Anp € 0(A)-T. If n —k =1
then the proof is identical to ([5], Theorem 1, Case 1). If n — k > 1 then
(for every € > 0) we can find a Banach space U with dimU = n — k such
that

1< d(UL00) <14

where “d” denotes the Banach-Mazur distance (cf [10]). For every n > 0
there exists 7g41,...,n—1 so that 0 < 7; < n and A is similar to the matrix

A0
0 A// Y
where
_Al -
A2
A =
Ak—1
L Y
and
[ Ak+1 Mht1 ]
Ab+2  Mk+2
Al/: '
An—l NMn—-1
L A

Let v = max{|Agt1], - |[An|} < 1. Then ||[A” : U = U| < (y+n) and
hence
e(A") < (v+n)(1+e).
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Since v < 1 we can pick 7, € so small that e(A”) < 1. Let V = ¢ U where

A0
0 A"] V=V,

e(A) = max{e(A’), e(A”)} = 1. V is not isometric to (5 however, since U
is not isometric to Eogfk) and yet the natural projection from zé’é) oU —-U
is of norm one. =

the direct sum is taken in the ¢..,-sense. Then A = [

The following generalization of Theorem 3 gives a converse to the corol-
lary to Theorem 2 if F = C.

Theorem 4. Let F = C and A be an n x n matriz with p(A) =1 and not
all of whose eigenvalues lie on the unit circle. Then 3V such that V s not

isometric to (% and yet A4 (V) =1

Proof. In order to prove this theorem we need to find a Banach space V' (%
&()2)) such that, for every > 0, there is a matrix T, similar to A with the
property that

e(T.) < 140.

The space V is the same as in the proof of Theorem 3. Likewise the proof
is identical. This time for arbitrary n > 0 we write

A/
=" ]
where
A1 T T
A2 M2
Ay = - B B <8
Ak—1 Mk—1
L Ak

and Aj is defined as in Theorem 3. [|A} || <1+ 7 and hence e(A;) <1+ 4
and e(4,) < max{e(A4;), e(A})} <1+45. =

Note. After this paper was accepted for publication, M. I. Ostrovski ([8]),
using methods similar to those in this paper, proved the following:

Theorem. Let A be an n x n matrix and the field be real. Then the impli-
cation
AA(V) =1) = (V =1))

holds iff A has the same spectrum as one of the n!2"™ isometries of lfj.j‘) (n!
permutations of the n standard basis elements each with arbitrary sign).



246

1.

10.

B. L. CHALMERS AND B. SHEKHTMAN

REFERENCES

B. L. Chalmers and F. T. Metcalf, A simple formula showing L' is a mazimal over-
space for two-dimensional real spaces, Ann. Polon. Math. 56 (1992), 303-309.

B. L. Chalmers and K. C. Pan, Finite-dimensional action constants (to appear).

B. L. Chalmers and B. Shekhtman, On the role of £ in approrimation theory, in
Approzimation, Probability and Related Fields, (G. Anastassiou and S. T. Rachev,
eds.), (1994), Plenum.

B. L. Chalmers and B. Shekhtman, Action constants, in Approximation, Probability
and Related Fields, (G. Anastassiou and S. T. Rachev, eds.), (1994), Plenum.

B. L. Chalmers and B. Shekhtman, Actions that characterize zfjg), Linear Algebra
Appl. 270 (1998), 155-169.

J. Lindenstrauss, On the extension of operators with a finite-dimensional range, 11li-
nois J. Math. 8 (1964), 488-499.

L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans.
Amer. Math. Soc. 68 (1950), 28—46.

M. I. Ostrovski, Private communication.

W. M. Schmidt, Approzimation to algebraic numbers, Enseign. Math. 17 (1971),
188-248.

N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-dimensional Operator
Ideals, John Wiley and Sons, New York, 1989.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
RIVERSIDE, CALIFORNIA 92521, USA

E-mail address: blc@math.ucr.edu

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTH FLORIDA
TAaMPA, FLORIDA 33620-5700, USA

E-mail address: boris@tarski.math.usf.edu



