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Abstract. This paper is concerned with the existence and stability of so-
lutions of a class of semilinear nonautonomous evolution equations. A pro-
cedure is discussed which associates to each nonautonomous equation the
so-called evolution semigroup of (possibly nonlinear) operators. Sufficient
conditions for the existence and stability of solutions and the existence of
periodic oscillations are given in terms of the accretiveness of the correspond-
ing infinitesimal generator. Furthermore, through the existence of integral
manifolds for abstract evolutionary processes we obtain a reduction prin-
ciple for stability questions of mild solutions. The results are applied to a
class of partial functional differential equations.

1. Introduction

In the last three decades the theory of semigroups of nonlinear operators
has been developed extensively and the achieved results have found many
applications in the theory of partial differential equations (see the survey
[11] by M.G. Crandall). Recently, increasing interest has been observed in
applications of the methods of dynamical systems to infinite dimensional dy-
namics (see, e.g., [9], [7], [8], [15], [18], [26], [28] and the references therein).
The main idea in this context is to associate a semigroup of nonlinear op-
erators to an evolution equation and then to study the asymptotic behavior
of the solutions of this equations in the vicinity of a given stationary solu-
tion. Whereas most of those papers deal only with autonomous, i.e. time
independent evolution equations, the explicit time dependence of evolution
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equations often arises quite naturally, not only in physics and mechanics,
but also in mathematics when one linearizes an autonomous equation along
a nonstationary solution. For particular classes of time-dependent evolution
equations arising from the linearization along a compact invariant subset it
has been shown (see e.g. [43]) that one can define a skew-product semiflow
which allows to apply the methods of classical dynamical systems to the
underlying nonautonomous equations.
To the best of our knowledge, the papers [32, 33] contain the first attempt

to associate a strongly continuous evolution semigroup to a nonlinear time-
dependent equation in order to study the asymptotic behavior of solutions.
Since the present paper is closely related to those articles we briefly recall
some basic results proved in [32, 33]. The right hand sides of the equations
considered are defined everywhere and they are supposed to be Lipschitz
continuous. To each equation of this kind one associates an evolution semi-
group with properties which allow to apply the Crandall-Liggett theorem
on the generation of nonlinear semigroups. In a recent paper [2] we consid-
ered equations with almost periodic coefficients in this semigroup framework.
The main obstacles for the application of those results to infinite dimensional
systems are apparently due to the assumption that the right hand sides of
the equations considered are Lipschitz continuous and that they are defined
everywhere.
In this paper we are concerned with evolution equations of the form

dx

dt
= A(t)x+ f(t, x)(1)

where A(t) is a (possibly unbounded) linear operator acting in a real or
complex Banach space X and f(·, ·) : R ×X → X is a (possibly nonlinear)
continuous function. We furthermore assume that the linear part dx/dt =
A(t)x of equation (1) is well posed in a sense to be explained. To this
kind of equation we manage to associate an evolution semigroup which is
strongly continuous and whose generator can be computed explicitly in terms
of the generator of the evolution semigroup associated with the linear part
of (1) and the nonlinear term f(t, x). Finally, we discuss how to apply this
semigroup approach to the study of the asymptotic behavior of mild solutions
of equation (1).
For the case of a time independent linear part of equation (1) the existence

problem for solutions has been investigated by many authors (see e.g. [21],
[24], [27], [35], [36], [37], [38], [48] and the references therein). In the present
paper we show that the problems arising from the explicit t-dependence of
A(t) can be overcome by using our evolution semigroup approach. Further-
more, in the study of the asymptotic behavior of mild solutions of equation
(1) this approach allows to make use of many results available for dynamical
systems.
A more detailed outline of our construction is as follows. First we asso-

ciate to equation (1) with Lipschitz continuous f(t, x) a strongly continuous
evolution semigroup whose generator is of the form A + F , where A is the
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generator of the linear evolution semigroup associated with the linear part
of equation (1) and F is an operator acting on a function space induced by
f(·, ·). Without any additional assumption on the linear part we do not know
any relation between the associated evolution semigroup and the semigroup
(if there exists any at all) generated by A+F in the Crandall-Liggett sense.
Nevertheless, using an appropriate adaptation of a fundamental result due
to G.F. Webb [48] for time independent equations we manage to prove that
mild solutions of equation (1) exist and that the semigroup generated by
A + F in Webb’s sense coincides with the evolution semigroup associated
with equation (1). In order to accomplish this we first solve the correspond-
ing equation with right hand side A+F in a suitable function space by using
Webb’s generation theorem (see [48]), and then we consider equation (1). In
doing so we can prove the existence and uniqueness of mild solutions and
the coincidence of the semigroup generated by A + F in Webb’sense with
the evolution semigroup associated with equation (1). This result is a sub-
stantial generalization of a major result on nonlinear equations obtained in
[33]. It turns out that for equation (1) with τ -periodic coefficients the evolu-
tion operator Sτ from the evolution semigroup acts like a Poincaré mapping.
This analogy provides a sufficient condition for the existence of τ -periodic
mild solutions of equation (1) in terms of the accretiveness of A and F . In
order to study the instability of mild solutions of (1) we prove in Section 3 a
theorem on the existence of integral manifolds for evolutionary processes by
using the Hadamard graph transform. Since this result is derived in a very
general setting (without use of any concrete equations) it is applicable to
various kinds of equations. An application to partial functional differential
equations is presented in Section 4.

2. Evolution semigroups: existence and stability of solutions

In this section we consider the evolution semigroups associated with evo-
lutionary processes defined by semilinear equations. One of the main topics
to be discussed here is the description of the infinitesimal generators and
their use in getting sufficient conditions for the existence and stability of
solutions of equation (1).

We first introduce some definitions and notations which will be used
throughout this paper. Without further mention, X will always be a given
real or complex Banach space. By Lp(X) , 1 ≤ p < ∞ we denote the space
of all (equivalence classes of) X-valued measurable functions v on R such
that

∫
R

‖v(t)‖pdt < ∞ with norm ‖ · ‖p. The integral is always to be un-
derstood in the Bochner sense (see e.g. [50]). By Cu(R,X) we mean the
space of all bounded, uniformly continuous functions from R to X equipped
with the supremum norm, while C0(X) denotes the subspace of functions
w ∈ Cu(R,X) with the property lim|t|→∞ ‖w(t)‖ = 0. Various notions of
stability and instability will be used in a standard sense (see e.g. [13]).
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Definition 1. A family {X(t, s) | t, s ∈ R , t ≥ s} of (possibly nonlinear)
operators acting on X is called an evolutionary process if it satisfies the
following conditions:

(i) X(s, s)x = x for all s ∈ R , x ∈ X;
(ii) X(t, s)X(s, r) = X(t, r) for all t ≥ s ≥ r.
Such an evolutionary process is called continuous if it satisfies the condi-

tions

(iii) ‖X(t, s)x−X(t, s) y‖ ≤ Keω(t−s)‖x− y‖ for all t ≥ s and x, y ∈ X ,
where K is any positive and ω any real constant,

(iv) X(t, s)x is continuous jointly with respect to t, s and x .

To every evolutionary process {X(t, s) | t ≥ s} we associate the so-called
evolution semigroup {T h | h ≥ 0} defined by the relation

(T hv)(t) = X(t, t− h)v(t− h) for all t ∈ R,(2)

where v belongs to a suitable space of functions (such as the ones mentioned
above).

Proposition 1. Assume that {X(t, s) | t ≥ s} is a continuous evolutionary
process such that X(t, s) 0 = 0 for all t ≥ s. Then for any of the function
spaces Lp(X), 1 ≤ p < ∞, and C0(X) the associated evolution semigroup
{T h | h ≥ 0} is strongly continuous.

Proof. We give a proof for the case Lp(X) only because the proof for C0(X)
is essentially the same. We first notice that for every v ∈ Lp(X) the function
taking t into X(t, t− h)v(t− h) is measurable. Furthermore, we get
( ∫

R

‖(T hv)(t)‖p dt)1/p =
( ∫

R

‖X(t, t− h)v(t− h)‖p dt)1/p
≤ ( ∫

R

‖Keωhv(t− h)‖p dt)1/p ≤ Keωh‖v‖p < ∞ .

In order to prove that the semigroup {T h | h ≥ 0} is strongly continuous we
first show that the relation

lim
h→0+

(T hv − v) = 0(3)

is true for every continuous v with compact support. Indeed, by assumption
there exists a positive constant N such that v(t) = 0 for all |t| ≥ N − 1.
Thus (3) is equivalent to

lim
h→0+

∫ N

−N
‖X(t, t− h)v(t− h)− v(t)‖p dt = 0 .

Since {X(t, s) | t ≥ s} and v are continuous, the function ‖X(t, t−h)v(t−h)‖
attains its maximum as (t, h) varies in [−N,N ] × [0, 1]. Thus, the claimed
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relation (3) is a consequence of the following estimate which uses the Fatou-
Lebesgue Lemma:

0 =
∫ N

−N
lim sup
h→0+

‖X(t, t− h)v(t− h)− v(t)‖p dt ≥

≥ lim sup
h→0+

∫ N

−N
‖X(t, t− h)v(t− h)− v(t)‖p dt ≥ 0 .

In order to conclude the proof of the proposition we now consider an arbitrary
v ∈ Lp(X) and choose for every positive ε a continuous function w with
compact support and the property ‖w − v‖p < ε. Then we get

lim sup
h→0+

(∫
R

‖X(t, t− h)v(t− h)− v(t)‖p dt
)1/p

≤ lim sup
h→0+

[(∫
R

‖X(t, t− h)v(t− h)−X(t, t− h)w(t− h)‖p dt
)1/p

+
(∫

R

‖X(t, t− h)w(t− h)− w(t)‖p dt
)1/p

+
(∫

R

‖w(t)− v(t)‖p dt
)1/p]

≤ Kε+ lim sup
h→0+

(∫
R

‖X(t, t− h)w(t− h)− w(t)‖p dt
)1/p

+ ε = (1 +K)ε.

Since ε is arbitrary, this estimate proves (3) for every v ∈ Lp(X) and therefore
completes the proof of Proposition 1.

Remark. For the linear case the above proposition has been proved in [40].

It is known (see e.g. [12]) that nonlinear semigroups need not have in-
finitesimal generators even if they are strongly continuous. So in order to
get generators of the evolution semigroups associated with continuous evolu-
tionary processes we will consider processes generated by equation (1) under
some additional conditions.

Definition 2. The linear equation

dx

dt
= A(t)x(4)

is said to be well-posed if there exists a continuous linear evolutionary process
{U(t, s) | t ≥ s} such that for every s ∈ R and x ∈ D(A(s)) the function
x(t) = U(t, s)x is the uniquely determined solution of equation (4) satisfying
x(s) = x.

Definition 3. Suppose the linear equation (4) is well-posed. Then every
solution x(t) (defined on some interval [s , s + δ) , δ > 0) of the integral
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equation

x(t) = U(t, s)x+
∫ t

s
U(t, ξ)f(ξ, x(ξ)) dξ , t ≥ s(5)

is called a mild solution of the semilinear equation (1) starting from x at
t = s. Furthermore, equation (1) is said to generate an evolutionary process
{X(t, s) | t ≥ s} if for every x ∈ X the function X(t, s)x , t ≥ s is the unique
solution of equation (5).

Proposition 2. Suppose the following conditions are satisfied:

(i) The linear equation (4) is well-posed .
(ii) The nonlinear function f(t, x) is continuous jointly with respect to t

and x and Lipschitz continuous with respect to x uniformly in t ∈ R

and f(t, 0) = 0 for all t ∈ R .

Then the semilinear equation (1) generates a continuous evolutionary pro-
cess whose associated evolution semigroup on Lp(X) or C0(X) is strongly
continuous and has an infinitesimal generator of the form A+F , where A is
the infinitesimal generator of the linear evolution semigroup associated with
the evolutionary process generated by the linear equation (4) in Lp(X) or
C0(X), respectively, and F is the operator taking v from Lp(X) or C0(X),
respectively, into the function t → f(t, v(t)) .

Proof. Using standard arguments (see e.g. [45]) one can prove that equa-
tion (1) generates an evolutionary process. Furthermore, this evolutionary
process is continuous. In fact, from [45] it follows that X(t, s)x is continuous
jointly with respect to t, s, x. Now we prove that X(t, s)x also satisfies the
Lipschitz condition (iii) in Definition 1. By definition of the evolutionary
process {X(t, s) | t ≥ s} we get

‖X(t, s)x−X(t, s) y‖
≤ ‖U(t, s)x− U(t, s) y‖

+
∫ t

s
‖U(t, ξ)‖ · ‖f(ξ,X(ξ, s)x)− f(ξ,X(ξ, s)y)‖ dξ

≤Keω(t−s)‖x− y‖+
∫ t

s
Keω(t−ξ)L ‖X(ξ, s)x−X(ξ, s)y‖ dξ,

where L is a Lipschitz constant of f(t, x) with respect to x, and K,ω stem
from the well-posedness of the linear equation (4). Just for convenience we
obviously may choose ω to be positive. Applying Gronwall’s Lemma we get

(6) ‖X(t, s)x−X(t, s) y‖ ≤ Ke(ω+KL)(t−s)‖x− y‖, t ≥ s, x, y ∈ X.

Therefore the evolutionary process {X(t, s) | t ≥ s} is continuous according
to Definition 1. Taking into account that X(t, s) 0 = 0 for all t ≥ s we can
apply Proposition 1 to see that the associated evolution semigroup {T h |h ≥
0} is strongly continuous. Now we are going to compute the infinitesimal
generator of this semigroup. To this purpose we first prove that for every
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w ∈ Lp(X) which is continuous and has compact support we get the relation

lim
h→0+

∫
R

∥∥f(t, w(t))− h−1
∫ t

t−h
U(t, ξ)f

(
ξ,X(ξ, t− h)w(t− h)) dξ∥∥p dt = 0 .

(7)

Indeed, by definition f(·, w(·)) is uniformly continuous. Consequently we get

lim
h→0+

sup
t

∫ t

t−h
‖f(ξ, w(ξ))− f(t, w(t))‖ dξ = 0 .(8)

Furthermore we have
(9)(∫

R

∥∥∥∥f(t, w(t))− h−1
∫ t

t−h
U(t, ξ)f (ξ,X(ξ, t− h)w(t− h)) dξ

∥∥∥∥
p

dt

)1/p

≤
(∫

R

∥∥∥∥f(t, w(t))− h−1
∫ t

t−h
U(t, ξ)f(ξ, w(ξ)) dξ

∥∥∥∥
p

dt

)1/p

+
(∫

R

∥∥∥∥h−1
∫ t

t−h
U(t, ξ) [f(ξ, w(ξ))− f (ξ,X(ξ, t− h)w(t− h))] dξ

∥∥∥∥
p

dt

)1/p
.

Since w has compact support, from the assumptions we observe that f(·, w(·))
has compact support as well. Consequently we get

lim
h→0+

( ∫
R

∥∥f(t, w(t))− h−1
∫ t

t−h
U(t, ξ)f(ξ, w(ξ)) dξ

∥∥p dt)1/p = 0 .

On the other hand, we have

(10)

(∫
R

∥∥∥∥h−1
∫ t

t−h
U(t, ξ)f(ξ, w(ξ))− f (ξ,X(ξ, t− h)w(t− h)) dξ

∥∥∥∥
p

dt

)1/p

≤
(∫

R

∥∥∥∥h−1
∫ t

t−h
KeωhL ‖w(ξ)−X(ξ, t− h)w(t− h)‖ dξ

∥∥∥∥
p

dt

)1/p
.

Note that the function g(t, ξ, h) := ‖w(ξ)−X(ξ, t−h)w(t−h)‖ is continuous
with respect to (t, ξ, h) ∈ {(t, ξ, h) |h ∈ [0 , 1] , −N ≤ t− h ≤ ξ ≤ N}, where
supp (w) ⊂ [−N ,N ]. Consequently, the function

q(t, h) :=
∥∥∥∥h−1

∫ t

t−h
KeωhL ‖w(ξ)−X(ξ, t− h)w(t− h)‖ dξ

∥∥∥∥
p

is bounded in (t, h) ∈ [−N − 1 , N + 1] × [0, 1]. Now applying the Fatou-
Lebesgue Dominant Convergence Lemma we get

lim sup
h→0+

(∫
R

∥∥∥∥h−1
∫ t

t−h
KeωhL ‖w(ξ)−X(ξ, t− h)w(t− h)‖ dξ

∥∥∥∥
p

dt

)1/p
= 0.

(11)

All of this implies that the claimed relation (7) has been verified under the
assumption that w is continuous and has compact support.
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In order to show that (7) is true for all functions from Lp(X), we now
choose an arbitrary element v from this space as well as an arbitrary con-
tinuous function w with compact support. Then, using (6) and (7) we get

lim sup
h→0+

(∫
R

∥∥∥∥f(t, v(t))
−h−1

∫ t

t−h
U(t, ξ)f (ξ,X(ξ, t− h)v(t− h)) dξ

∥∥∥∥
p

dt

)1/p

≤ lim sup
h→0+

(∫
R

‖f(t, v(t))− f(t, w(t))‖p dt
)1/p

+ lim sup
h→0+

(∫
R

∥∥∥∥f(t, w(t))
− h−1

∫ t

t−h
U(t, ξ)f(ξ,X(ξ, t− h)w(t− h)) dξ∥∥∥∥

p

dt

)1/p

+ lim sup
h→0+

(∫
R

∥∥∥∥h−1
∫ t

t−h
U(t, ξ) [f (ξ,X(ξ, t− h)w(t− h))

− f(t,X(ξ, t− h)v(t− h))] dξ
∥∥∥∥
p

dt

)1/p

≤ lim sup
h→0+

L

(∫
R

‖v(t)− w(t)‖p dt
)1/p

+ lim sup
h→0+

(∫
R

∥∥∥∥h−1
∫ t

t−h
KeωhL ‖X(ξ, t− h)w(t− h)

− X(ξ, t− h)v(t− h)‖dξ
∥∥∥∥
p

dt

)1/p
.

Using the estimate (6) we continue this estimate to get

(12)

≤ L‖v − w‖p
+ lim sup

h→0+

(∫
R

∥∥∥∥h−1Keωh

∫ t

t−h
LKe(ω+KL)h∥∥w(t− h)− v(t− h)‖dξ

∥∥∥∥
p

dt

)1/p
= L‖v − w‖p
+ lim sup

h→0+

(
LK2e(2ω+KL)h

∫
R

∥∥w(t− h)− v(t− h)∥∥pdt)1/p
≤ L‖v − w‖p + LK2‖v − w‖p
= (L+ LK2)‖w − v‖p.
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Since w in (12) is an arbitrary continuous function with compact support,
(12) implies for any v ∈ Lp(X) the claimed relation
(13)

lim
h→0+

(∫
R

∥∥∥∥f(t, v(t))− h−1
∫ t

t−h
U(t, ξ)f

(
ξ,X(ξ, t− h)v(t− h)) dξ∥∥∥∥

p

dt

)1/p

= 0.

By the definitions of T h and X(t, s) we obtain

(14)

(
T hv − v
h

)
(t) =

X(t, t− h)v(t− h)− v(t)
h

=
U(t, t− h)v(t− h)− v(t)

h

+ h−1
∫ t

t−h
U(t, ξ)f (ξ,X(ξ, t− h)v(t− h)) dξ

=
U(t, t− h)v(t− h)− v(t)

h
+ f(t, v(t))

−
[
f(t, v(t)− h−1

∫ t

t−h
U(t, ξ)f (ξ,X(ξ, t− h)v(t− h)) dξ

]
.

It is clear from (13) and (14) that v belongs to the domain of the infinitesimal
generator of {T h |h ≥ 0} if and only if v belongs to the domain of the
generator A of the linear evolution semigroup associated with {U(t, s) | t ≥
s}.
Since the proof for the C0(X) case requires no essential changes, the proof

of Proposition 2 is complete.

Corollary 1. Suppose the assumptions of Proposition 2 are satisfied. Then
the infinitesimal generator A+ F of the evolution semigroup {T h |h ≥ 0} is
closed and densely defined in Lp(X) , 1 ≤ p <∞ or in C0(R,X), respectively.

Proof. Since f(t, x) is Lipschitz continuous with respect to x uniformly
in t and f(t, 0) ≡ 0, the operator F is continuous in the function spaces
Lp(X) , 1 ≤ p < ∞ and C0(R,X). Thus, the assertions of the corollary
follow from Proposition 2.

Now we suppose that all assumptions of Proposition 2 are satisfied and
that A + F generates a nonlinear semigroup in some sense (e.g. in the
Crandall-Liggett sense [12]). Then the question arises of how to relate this
semigroup to the associated evolution semigroup. In the general Banach
space setting we need some additional conditions to see that they indeed co-
incide. In order to deal with those conditions we recall some notions which
turn out to be useful later on. We first define

[z , w] = lim
λ→0+

(‖z + λw‖ − ‖z‖)/λ
and quote some important properties of this bracket [· , ·] from [11, p. 308].
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Proposition 3. For x, y, z ∈ X and α, β ∈ R we get the following proper-
ties:
i) [· , ·] : X×X → R is upper-semicontinuous,
ii) [αx , βy] = |β|[x , y] if αβ > 0 ,
iii) [x , αx+ y] = α‖x‖+ [x , y] ,
iv)

∣∣[x , y]∣∣ ≤ ‖y‖ and [0 , y] = ‖y‖ ,
v) −[x ,−y] ≤ [x , y] ,
vi) [x , y + z] ≤ [x , y] + [x , z] ,
vii)

∣∣[x , y]− [x , z]
∣∣ ≤ ‖y − z‖ .

Definition 4. (see [11]) If A is an operator in X and ω a real number, then
A+ωI is called accretive if one (or all) of the following equivalent conditions
hold:
i) (1− λω)‖x− y‖ ≤ ‖x− y + λ(x′ − y′)‖ for all x′ ∈ Ax , y′ ∈ Ay and
λ ≥ 0 .

ii) [x− y , x′ − y′] ≥ −ω ‖x− y‖ for all x′ ∈ Ax , y′ ∈ Ay .
iii) If λ > 0 and λω < 1, then (I+λA)−1 is single-valued and has (1−λω)−1

as a Lipschitz constant.

Definition 5. A continuous function f(t, x) is said to satisfy condition
H(Cu) or H(C0), respectively, if the mapping taking v from Cu(R,X) or
C0(X), respectively, into the function f(·, v(·)) is continuous.

Corollary 2. Under the assumptions of Proposition 2 the following is true:
i) Suppose that −(A+ F ) is accretive and R(I − λ(A+ F )) equals Lp(X)

or C0(X), where A+F acts in Lp(X) or in C0(X), respectively, for all
sufficiently small positive λ. Then the zero solution of equation (1) is
globally uniformly stable.

ii) Suppose that there exists a positive number α such that αI − (A + F )
is accretive and R(I − λ(αI − (A + F )) equals Lp(X) or C0(X) for all
sufficiently small positive λ. Then the zero solution of equation (1) is
globally exponentially stable.

Proof. Under the given assumptions the operator A+ F generates a semi-
group of nonlinear operators on Lp(X) or C0(X), respectively, in the Crandall-
Liggett sense [12]. In virtue of Corollary 1 we can apply [6, Corollary 4.3]
to see that this semigroup coincides with the evolution semigroup associated
with equation (1). Thus the assertion follows.

Remark. In Proposition 2 the perturbation f(t, x) is assumed to be Lip-
schitz continuous (with Lipschitz constant L) with respect to x uniformly
in t and f(t, 0) ≡ 0. If ωI − A is accretive, then (L + ω)I − (A + F ) is
m-accretive (see [48]).

Below we will weaken the conditions imposed on f but then we have to
restrict our considerations to a smaller class of well-posed equations of the
form (4) which generate linear processes {U(t, s) | t ≥ s} such that A is
accretive.
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It turns out that suggested by the above results and by using the operator
A + F we can prove a version of Proposition 2 for a larger class of pertur-
bations f as well as the existence of mild solutions of equation (1). As we
are concerned with the existence problem for solutions of equations of the
form (1) we suppose that equation (1) satisfies the Uniqueness Condition for
mild solutions, i.e. we suppose that for every fixed s and x, if there exist
two mild solutions u1(t) and u2(t) defined on some interval [s, s+ δ) , δ > 0,
then those two solutions coincide on this interval. In the appendix of this
paper we describe sufficient conditions for this kind of uniqueness.

Theorem 1. Let the following conditions be satisfied:

i) The linear equation (4) is well-posed.
ii) Let A denote the infinitesimal generator of the linear evolution semi-

group associated with equation (4). Then αI −A is m-accretive.
iii) f(t, x) satisfies condition H(C0) and βI − F is accretive.
iv) Equation (1) satisfies the Uniqueness Condition on mild solutions.

Then equation (1) generates a continuous evolutionary process whose associ-
ated evolution semigroup is strongly continuous in C0(R,X) and has A+ F
as its infinitesimal generator with domain D(A + F ) = D(A) ⊂ C0(R,X).
Furthermore, this evolution semigroup satisfies the estimate

‖Shv − Shw‖ ≤ e(α+β)h‖v − w‖ for all v, w ∈ C0(R,X) , h ≥ 0 .

Proof. Under the assumptions of the theorem the autonomous equation

du

dt
= (A+ F )u , t ≥ 0(15)

generates a strongly continuous semigroup {St | t ≥ 0} in Webb’s sense (see
[48]), i.e. Stu is the unique continuous solution of the integral equation

Stu = T (t)u+
∫ t

0
T (t− ξ)FSξu dξ ,(16)

where T (t) is generated by the linear operator A . Furthermore,

‖Stu− Stv‖ ≤ e(α+β)t‖u− v‖ for all t ≥ 0 , u, v ∈ C0(R,X) .

In view of (16) we have

(
St−sv

)
(t) =

(
T (t− s)v)(t) + ∫ t−s

0

(
T (t− s− ξ)FSξu

)
(t) dξ

= U(t, s)v(s) +
∫ t−s

0
U(t, ξ + s)(FSξv)(s+ ξ) dξ(17)

= U(t, s)v(s) +
∫ t

s
U(t, η)f

(
η, (Sη−sv)(η)

)
dη .

Thus, in view of (17) we observe that for every s ∈ R and x ∈ X equation
(5) has at least one continuous solution X(t, s)x = (St−sv)(t), where v is
any element of C0(R,X) such that v(s) = x. Now we are going to show that
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X(t, s)x depends continuously on (t, s, x). Indeed, suppose that x, x′ ∈ X
and

v(t) =
{
(1− |t|)x for |t| ≤ 1,

0 for |t| > 1, v′(t) =
{
(1− |t|)x′ for |t| ≤ 1,

0 for |t| > 1.
Then, since (St−sv)(t) = X(t, s)v(s) , we get

‖X(t′, s′)v′(s)−X(t, s)x‖ = ‖(St′−s′
v′)(t′)− (St−sv)(t)‖

≤ ‖(St′−s′
v′)(t′)− (St−sv)(t′)‖+ ‖(St−sv)(t′)− (St−sv)(t)‖ .

If t, s, v are fixed, then limt′→t ‖(St−sv)(t′)− (St−sv)(t)‖ = 0. On the other
hand,

‖(St′−s′
v′)(t′)− (St−sv)(t′)‖ ≤ sup

ξ
‖(St′−s′

v′)(ξ)− (St−sv)(ξ)‖

= ‖St′−s′
v′ − St−sv‖ ≤ ‖St′−s′

v′ − St′−s′
v‖+ ‖St′−s′

v − St−sv‖ .
In view of the strong continuity of St and the property

‖St′−s′
v′ − St′−s′

v‖ ≤ e(α+β)(t′−s′)‖v′ − v‖
we have

lim
(t′,s′,v′)→(t,s,v)

‖(St′−s′
v′)(t′)− (St−sv)(t)‖ = 0 .(18)

This shows that X(t, s)x depends continuously on (t, s, x). Finally, it is clear
that

‖X(t, s)x−X(t, s) y‖ ≤ e(α+β)(t−s)‖x− y‖ for all t ≥ s , x, y ∈ X .

Thus we have proved that {Sh |h ≥ 0} is the evolution semigroup associated
with the evolutionary process {X(t, s) | t ≥ s}. This completes the proof of
the theorem.

Now we apply Theorem 1 to investigate the stability of the mild solutions
of equation (1).

Corollary 3. Let all assumptions of Theorem 1 be satisfied with α+β < 0.
Then there exists a unique mild solution x : R → C0(R,X) of equation (1)
which is exponentially stable (among mild solutions).

Proof. In virtue of Theorem 1 we have

‖Stu− Stv‖ ≤ e(α+β)t‖u− v‖ for all t ≥ 0 , u, v ∈ C0(R,X) .

Consequently, from the assumptions of the corollary it may be shown that
the operators St, t ≥ 0 have a unique common fixed point v0 ∈ C0(R,X)
which obviously represents a mild solution of equation (1). The stability of
this solution follows immediately from the above estimate.

Remark. It may be noted that if the evolution semigroup {T h |h ≥ 0}
associated with the linear equation (4) is strongly continuous in Cu(R,X)
and if F acts on Cu(R,X), then Theorem 1 is still valid for Cu(R,X).

Theorem 2. Let the following conditions be satisfied:
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i) The linear equation (4) is well posed. Furthermore, the evolution semi-
group associated with the linear process generated by equation (4) is
strongly continuous in Cu(R,X) .

ii) Let A denote the infinitesimal generator of the above linear evolution
semigroup. Then αI −A is m-accretive.

iii) f satisfies condition H(Cu) and βI − F is accretive.
iv) Equation (1) satisfies the Uniqueness Condition on mild solutions.
Then equation (1) generates a continuous evolutionary process whose associ-
ated evolution semigroup is strongly continuous in Cu(R,X) and has A+ F
as its infinitesimal generator with domain D(A + F ) = D(A) ⊂ Cu(R,X).
Furthermore,

‖Shv − Shw‖ ≤ e(α+β)h‖v − w‖ for all v, w ∈ Cu(R,X) , h ≥ 0 .

Proof. The theorem can be proved in the same manner as the previous one.
So we omit the details.

In particular, if A(t) = 0 for all t, then we get all assertions of Lemmas 1
and 2 of [33]. In this case A = −d/dt with D(A) = C1

u(R,X). Furthermore,
Theorem 2 allows to improve substantially the results for nonlinear equations
in [33].
Now we are going to discuss another application of the evolution semi-

groups {Sh |h ≥ 0} acting on Cu(R,X) to investigate the existence of peri-
odic solutions of equation (1).

Definition 6. An evolutionary process {Z(t, s) | t ≥ s} is said to be τ -
periodic if

Z(t+ τ, s+ τ) = Z(t, s) for all t ≥ s .
Theorem 3. Suppose the following conditions are satisfied:
i) The linear equation (4) is well-posed and it generates a τ -periodic evo-

lutionary process {U(t, s) | t ≥ s} .
ii) f(t, x) is τ -periodic with respect to t for every fixed x .
iii) Equation (1) generates an evolutionary process .
iv) x0(·) is a unique fixed point of Sτ in a subset Ω of the space of all

bounded functions Cb(R,X) on R which is invariant with respect to the
semigroup {Sh |h ≥ 0} and the translation Sτ : x(·) → x(·+ τ) .

Then x0(t) is a τ -periodic mild solution of equation (1).

Proof. We first prove that in Cb(R,X) one has SτSτ = SτSτ . In fact, by
definition

X(t+ τ, s+ τ)x = U(t+ τ, s+ τ)x+
∫ t+τ

s+τ
U(t+ τ, ξ)f(ξ,X(ξ, s+ τ)x)dξ

= U(t, s)x+
∫ t

s
U(t, ξ)f(ξ,X(ξ + τ, s+ τ)x)dξ.

Thus from the uniqueness we get

X(t, s)x = X(t+ τ, s+ τ)x for all t ≥ s , x ∈ X .
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This proves that SτSτ = SτS
τ . Now since Sτ commutes with all other

operators of the evolution semigroup x0 has to be a common fixed point of
Sh and Sτ . This implies that x0 is a mild solution of equation (1) which is
τ -periodic. The proof of the theorem is complete.

Theorem 4. Let all assumptions of Theorem 2 be satisfied with α+ β < 0.
Furthermore, let the following conditions be fulfilled:
i) The linear equation (4) generates a τ -periodic process and the evolution

semigroup {T h |h ≥ 0} associated with (4) is strongly continuous in
Cu(R,X) .

ii) f(t, x) is τ -periodic with respect to t for every x .
Then equation (1) has a unique τ -periodic mild solution which is globally
exponentially stable.

Proof. This theorem is an immediate consequence of Theorems 2 and 3.

Another application of Theorem 3 is related to the concept of exponential
dichotomy whose definition due to Henry [18] we recall next.

Definition 7. A linear evolutionary process {U(t, s) | t, s ∈ R , t ≥ s} is
said to have an exponential dichotomy if there exist positive constants N,α
and projections P (t) , t ∈ R, bounded uniformly in t, i.e.

sup
t∈R

‖P (t)‖ < ∞ ,

such that the following three conditions hold:
i) U(t, s)P (s) = P (t)U(t, s) for all t ≥ s .
ii) For t ≥ s the restriction U(t, s)|Ker P (s) is an isomorphism from KerP (s)

onto KerP (t) and we define U(s, t) as the inverse mapping from KerP (t)
onto KerP (s) .

iii) The inequalities

‖U(t, s)P (s)x‖ ≤ Ne−α(t−s)‖P (s)x‖ for all t ≥ s , x ∈ X ,

‖U(t, s)Q(t)x‖ ≤ Ne−α(s−t)‖Q(s)x‖ for all s ≥ t , x ∈ X ,

hold true where X(t, s) for s ≥ t is defined in ii) and Q(s) := I −P (s) .
By abuse of terminology we say that a semigroup {T (t) | t ≥ 0} has an
exponential dichotomy (or that it is hyperbolic) if the process {U(t, s) | t ≥ s}
defined by

U(t, s) = T (t− s) for all t, s ∈ R , t ≥ s
has an exponential dichotomy.

Proposition 4. Suppose that the following conditions are satisfied:
i) A(t) is constant (with value a) for t ≥ 0 and the semigroup {T (t) | t ≥ 0}

has an exponential dichotomy,
ii) f(t, x) is τ -periodic with respect to t, continuous with respect to (t, x)

and Lipschitz continuous with respect to x with Lipschitz constant δ .



SEMILINEAR NONAUTONOMOUS EVOLUTION EQUATIONS 365

Then for sufficiently small δ the equation

dx

dt
= a+ f(t, x)(19)

has a unique τ -periodic mild solution.

Proof. First notice that equation (19) generates an evolutionary process.
Furthermore, observe that

‖X(t, s)x−X(t, s)y‖ ≤ Keω(t−s)‖x− y‖

+
∫ t

s
Keω(t−ξ)δ‖X(ξ, s)x−X(ξ, s)y‖ dξ.

Hence, using Gronwall’s inequality we have

‖X(t, s)x−X(t, s)y‖ ≤ Ke(ω+δK)(t−s)‖x− y‖ .
Consequently, the evolution semigroup {Sh |h ≥ 0} associated with equation
(19) acts on the space Cb(R,X) of bounded functions on R . Now observe
that ∥∥(X(t, s)x− U(t, s)x)− (

X(t, s)y − U(t, s)y)∥∥ ≤
≤ δ

∫ t

s
Keω(t−ξ)‖X(ξ, s)x−X(ξ, s)y‖ dξ ≤

≤ δ

∫ t

s
Keω(t−ξ)Ke(ω+KL)(ξ−s) dξ ‖x− y‖ ,

where U(t, s) = T (t− s) for all t ≥ s. Thus, if δ is sufficiently small we can
apply the Inverse Function Theorem for Lipschitz mappings (see e.g. [27],
[34]) to conclude that Sτ has a unique fixed point. Now we are in a position
to apply Theorem 3 to see that equation (19) has a unique τ -periodic mild
solution.

Remark. The results derived in this section can be generalized to hold for
equations which are defined in closed subsets of the extended phase space.
The corresponding proofs are based on the above approach applied to the
results available for the autonomous case (see e.g. [24], [27]).

3. Evolution semigroups: unstable integral manifolds and
instability of solutions

In this section we discuss the application of evolution semigroups to study
the instability of solutions. To this end we prove the existence of unstable
manifolds for semilinear equations whose linear parts have an exponential
dichotomy. Since we deal with evolutionary processes rather than with con-
crete equations our results can be applied to a large class of evolution equa-
tions such as partial functional differential equations.
In this section we consider the (possibly nonlinear) perturbation {X(t, s) |

t ≥ s} of a given linear evolutionary process {U(t, s) | t ≥ s}. By abuse of
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terminology we say that a function x : R → X is a solution of a given process
{X(t, s) | t ≥ s} if

X(t, s)x(s) = x(t) for all t ≥ s .
We then put

φ(t, s)x = X(t, s)x− U(t, s)x for all t ≥ s , x ∈ X .(20)

For convenience, in this section we always assume that all the evolutionary
processes {Z(t, s) | t ≥ s} under consideration have the property

Z(t, s)0 = 0 for all t ≥ s .(21)

We say that the process {Z(t, s) | t ≥ s} has bounded growth if

‖Z(t, s)x‖ ≤ Meω(t−s)‖x‖ for all t ≥ s , x ∈ X(22)

for some positive constants ω andM . Below we suppose that all evolutionary
processes in consideration have bounded growth.

Definition 8. A set M ⊂ R × X is said to be an integral manifold of the
evolutionary process {X(t, s) | t ≥ s} if for every t ∈ R the phase space X
splits into a direct sum X = X1

t ⊕X2
t such that

inf
t∈R

Sn(X1
t , X

2
t )

def= inf
t∈R

inf
xi∈Xi

t ,‖xi‖=1,i=1,2
‖x1 + x2‖ > 0(23)

and if there exists a family of Lipschitz continuous mappings gt : X1
t →

X2
t , t ∈ R, with Lipschitz constants independent of t such that

M = {(t, x, gt(x)) ∈ R × (X1
t ⊕X2

t ) | t ∈ R , x ∈ X1
t }

and
X(t, s)(gr(gs)) = gr(gt) for all t ≥ s ,

where gr(gs) denotes the graph {(x, y) ∈ X1
s ⊕ X2

s | y = gs(x)} of the
mapping gs. An integral manifoldM is said to be proper if the set {(t, 0, 0) ∈
R × (X1

t ⊕X2
t ) | t ∈ R} is contained in M .

We are going to show that every nonlinear process {Z(t, s) | t ≥ s} which
is close enough to a linear process having an exponential dichotomy has an
unstable integral manifold. The method of proof we use is the so-called
graph transform (see e.g. [20], [34]).

Suppose that the linear process {U(t, s) | t ≥ s} has an exponential di-
chotomy with positive constants K,α and projections P (t) , t ∈ R. Since
P(t) is bounded uniformly in t, i.e. supt∈R ‖P (t)‖ <∞, from the well-known
fact [13] that

1
‖P (t)‖ ≤ Sn

(
ImP (t),KerP (t)

) ≤ 2
‖P (t)‖ ,

it follows that

inf
t∈R

Sn
(
ImP (t),KerP (t)

)
= γ > 0 .(24)
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From now on we use the notation X1
t = ImP (t) , X2

t = KerP (t). Further-
more, for every fixed r > 0 we denote by B1

t (r) , B
2
t (r) and B(r) the open

balls of radius r in the Banach spaces X1
t , X

2
t and X, respectively. We have

‖x‖ ≤ ‖P (t)x‖+ ‖Q(t)x‖ ≤ (2 sup
t

‖P (t)‖+ 1)‖x‖ ,

where Q(t) = I − P (t). Thus we get for all t ∈ R and x ∈ X

(25)
1
2
‖x‖ ≤ max

{‖P (t)x‖, ‖Q(t)x‖} ≤ (
1 + sup

t
‖P (t)‖)‖x‖.

Below we shall assume that

(26) ‖φ(t, s)x− φ(t, s)y‖ ≤ ε eµ(t−s)‖x− y‖ for all t ≥ s , x, y ∈ X,

for some positive constants ε and µ. Putting

Oδ = {gt : X2
t → X1

t | gt(0) = 0 , Lip(gt) ≤ δ , t ∈ R}
we define in Oδ a distance

d(g, h) =
∞∑
k=1

1
2k

sup
t∈R,‖x‖≤k

‖gt(x)− ht(x)‖ .

It is easily checked that (Oδ, d) is a complete metric space.

Proposition 5. Assume that the linear process {U(t, s) | t ≥ s} has an ex-
ponential dichotomy with constants K,α and projections P (t) , t ∈ R and
suppose h0 is a given positive number. Then there exists a positive constant
δ0 (depending only on {U(t, s) | t ≥ s} and h0) such that for any 0 < δ < δ0
the mapping Q(t)U(t, s)(gs(x), x) is a homeomorphism with respect to x from
X2

s onto X2
t for all 0 ≤ t− s ≤ h0.

Similarly, for δ < δ0/2 and ε < δ0e
−µh0/2 the mapping Q(t)X(t, s)

◦(gs(x), x) is a homeomorphism with respect to x from X2
s onto X2

t .

Proof. Consider the inclusion i : x −→ (gs(x), x) and the mapping
Q(t)U(t, s)i . Evidently, Q(t)U(t, s)i is a linear homeomorphism from X2

s

onto X2
t . Let us define Γgs as Γgsx = (gs(x), x). Applying the Inverse

Function Theorem for Lipschitz continuous mappings (see e.g. [27], [34])
and putting

ψ(t, s)x = Q(t)U(t, s)x−Q(t)U(t, s)Γgsx ,
we see that Lip(ψ) ≤ δ, and if

δ ≤ 1
K

≤ ∥∥(Q(t)Y (t, s)i)−1∥∥−1
,

then Q(t)U(t, s)Γgs is a homeomorphism. Thus

δ0 =
1
K
.

Similarly, if δ < δ0/2 and ε < δ0e
−µh0/2, then Q(t)U(t, s)Γgs is a homeo-

morphism.
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Proposition 6. Under the assumptions and notations of the previous propo-
sition, if

(27) δ ‖Q(s)(x− y)‖ ≥ ‖P (s)(x− y)‖,
then

(28) δ′
∥∥Q(t)(X(t, s)x−X(t, s)y)∥∥ ≥ ∥∥P (t)(X(t, s)x−X(t, s)y)∥∥,

where

δ′ =
δKe−α(t−s) + 2ε eµ(t−s)

(1/K)eα(t−s) − 2ε eµ(t−s) .(29)

Proof. Putting f = X(t, s) , S = U(t, s) and φ = φ(t, s) for simplicity we
get

‖Q(t)f(x)−Q(t)f(y)‖ ≥ ‖(Q(t)Sx−Q(t)Sx) + (φ(x)− φ(y))‖ .
Since Q(t)U(t, s) = Q(t)U(t, s)Q(s) we have

‖Q(t)f(x)−Q(t)f(y)‖ ≥ (1/K)eα(t−s)‖Q(s)(x− y)‖ − ε eµ(t−s)‖x− y‖ .
Taking into account (25) and (27), for sufficiently small δ (δ < δ0) we get

‖Q(t)f(x)−Q(t)f(y)‖ ≥ [
(1/K)eα(t−s) − 2ε eµ(t−s)]‖Q(s)(x− y)‖ .

(30)

On the other hand, we have∥∥P (t)f(x)− P (t)f(y)∥∥ =
∥∥(P (t)Sx− P (t)Sy)+ (φ(x)− φ(y))‖

≤ Ke−α(t−s)‖P (s)(x− y)‖+ ε eµ(t−s)‖x− y‖ .
According to (25) and (27) we have

‖P (t)f(x)− P (t)f(y)‖ ≤ [
δKe−α(t−s) + 2ε eµ(t−s)‖Q(s)(x− y)‖ .

(31)

Thus, from (30) and (31) it follows that

‖P (t)f(x)− P (t)f(y)‖ ≤ δ′ ‖Q(t)f(x)−Q(t)f(y)‖ .
This completes the proof of the proposition.

From Propositions 5 and 6 we see that for a given positive h0 if δ < δ0/2
and ε < (δ0e−µh0)/2, then Sh is well defined as a mapping from Oδ to Oδ′

for 0 < h < h0 .
Now we choose k ∈ N such that

Ke−αk = q <
1
2

and then h0 = 2k. Thus, for δ < δ0/2 = 1/(2K) and

0 < ε < min
{e−2µk

2K
,
δ(q−1 − q)
2(1 + δ)

e−2µk
}

(32)

Sk maps Oδ into itself by the formula

gr
(
(Skg)t

)
= X(t, t− k)(gr(gt−k)

)
for all g ∈ Oδ .
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Proposition 7. Under the above assumptions on {U(t, s) | t ≥ s} and
{X(t, s) | t ≥ s}, for sufficiently small ε, Sk is a contraction mapping in Oδ.

Proof. It is sufficient to show that for some 0 < q′ < 1 the estimate

(33)

∥∥∥P (t)X(t, t− k)x− (Skg)t
(
Q(t)X(t, t− k)x)∥∥∥

≤ q′ ‖P (t− k)x− gt−kQ(t− k)x)‖

is true for every g ∈ Oδ and x ∈ X. In fact, suppose that h ∈ Oδ, substituting
x by (ht−k(Q(t− k)x), Q(t− k)x) into (33) we get

(34)

∥∥∥(Skh)t (Q(t)X(t, t− k)x)− (Skg)t (Q(t)X(t, t− k)x)
∥∥∥

≤ q′ ‖ht−k(Q(t− k)x)− gt−k(Q(t− k)x)‖

for all x ∈ X and t ∈ R. Put y = Q(t − k)x. Then [Q(t)X(t, t − k)Q(t −
k)]−1({‖z‖ ≤ r}) is contained in {‖y‖ ≤ r}. Thus, for every n ∈ N

sup
t∈R , ‖y‖≤n

‖(Skh)t(y)− (Skg)t(y)‖ ≤ q′ sup
t∈R , ‖y‖≤n

‖ht(y)− gt(y)‖ .

Hence, for sufficiently small ε (such that q′ < 1), Sk is a contraction mapping.
Now we prove that (33) holds. For simplicity of notation put f = X(t, t−

k) , S = U(t, t− k) and φ = X(t, t− k)− U(t, t− k). We then have

(35)

‖Q(t)f(x)−Q(t)f(gt−k(Q(t− k)x) +Q(t− k)x)‖
≤ ‖Q(t)φ(x)−Q(t)φ(gt−k(Q(t− k)x) +Q(t− k)x)‖
+ ‖Q(t)S(x)−Q(t)S(gt−k(Q(t− k)x) +Q(t− k)x)‖

≤ sup
t

‖Q(t)‖εeµk‖P (t− k)x− gt−k(Q(t− k)x)‖.

On the other hand, we have

(36)

‖P (t)f(x)− P (t)f(gt−k(Q(t− k)x) +Q(t− k)x)‖
≤ ‖P (t)(φ(x)− φ(gt−k(Q(t− k)x) +Q(t− k)x))‖
+ ‖P (t)(S(x)− S(gt−k(Q(t− k)x) +Q(t− k)x))‖

≤ sup
t

‖P (t)‖εeµk‖P (t− k)x− gt−k(Q(t− k)x)‖

+Ke−αk‖P (t− k)x− gt−k(Q(t− k)x)‖
= (q + sup

t
‖P (t)‖εeµk)‖P (t− k)x− gt−k(Q(t− k)x)‖.
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Note that (Skg)t(Q(t)Z(t, t − k)x) = P (t)f(gt−k(Q(t − k)x) + Q(t − k)x).
Now, combining (35) and (36), we get

(37)

‖P (t)X(t, t− k)x− (Skg)t(Q(t)X(t, t− k)x)‖
≤ ‖P (t)f(x)

− (Skg)t(Q(t)X(t, t− k)(gt−k(Q(t− k)x) +Q(t− k)x))‖
+ ‖(Skg)t(Q(t)X(t, t− k)(gt−k(Q(t− k)x) +Q(t− k)x))
− (Skg)t(Q(t)X(t, t− k)x)‖

≤ ‖P (t)f(x)− P (t)f(gt−k(Q(t− k)x) +Q(t− k)x)‖
+ ‖P (t)f(gt−k(Q(t− k)x)
+Q(t− k)x)− (Skg)t(Q(t)Z(t, t− k)x‖

≤ (q + sup
t

‖P (t)‖εeµk + δ)‖P (t− k)x− gt−k(Q(t− k)x)‖.

Thus q′ = q + δ + supt ‖P (t)‖εeµk is less than 1 if ε and δ are sufficiently
small. This proves the assertion of the proposition.

Supposing that g′ is the fixed point of Sk in Oδ, we next prove that g′ is
the fixed point of Sh for all h ≥ 0 in some sense.

Theorem 5. Under the assumptions of Propositions 6 and 7 there exists a
so-called unstable integral manifold (which is proper and Lipschitz continu-
ous) for the nonlinear evolutionary process {X(t, s) | t ≥ s} .
Proof. We only need to prove that M = {gr(g′

t) | t ∈ R} is left invariant
by the process {X(t, s) | t ≥ s}, i.e. that

gr(g′
t) = X(t, s)(gr(g′

s)) for all t ≥ s .
To this end we consider the action of Sh , 0 ≤ h ≤ 2k on Oδ for sufficiently
small δ and ε, by the formula

gr(gt) = X(t, t− h)(gr(gt−h)),(38)

where g = {gt | t ∈ R} ∈ Oδ. According to Proposition 6 we can choose δ
and ε sufficiently small so that

sup
0≤ t−s≤ 2k

δ′ <
δ0
4
= δ1

where δ′ is defined by (29), δ0 = Ke−2αk. Thus Sh is a mapping from Oδ

to Oδ′ . Suppose that ε and δ are chosen such that (32) holds. Then for any
ξ ∈ [0, k) we consider the mappings Sk+ξ : Oδ → Oδ1 and S

h : Oθ → Oθ, δ ≤
θ ≤ δ1. We then get

Sk+ξ = Sξ · Sk(: Oδ → Oδ1) = Sk · Sξ(Oδ → Oδ1) .

From Proposition 7 we have

Sξ · Skg′ = Sξg′ and Sξ · Skg′ = Sk · Sξg′ = Sξg′ .
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From the uniqueness of the fixed point of Sk it follows that Sξg′ = g′ where
g′ is the fixed point of Sk acting on Oδ. This proves the theorem.

Remark. It is apparent that Lip(g′
t) → 0 as ε → 0, where g′

t , t ∈ R is
determined in the proof of Theorem 5.
Combining the proofs of Propositions 6 and 7 with Theorem 5 we can

deduce the following local version of Theorem 5:

Theorem 6. Assume that {U(t, s) | t ≥ s} is as in Theorem 5 and that
{X(t, s) | t ≥ s} is defined in the open ball {x ∈ X | ‖x‖ < 2r}. Furthermore,
suppose that (26) holds for all x and y in this ball. Then for sufficiently
small ε there exists a ”local” unstable integral manifold which is represented
by g = {gt : B2

t (rt) → B1
t (rt)} , Lip(gt) < δ = δ(ε) , inft rt > 0 such that

gr(gt) = X(t, s)(gr(gs)) ∩B(rs) for all t ≥ s
where B(r) denotes the ball {x ∈ X | max{‖P (t)x‖ , ‖Q(t)x‖} < r} .
Proof. We can define a function ρ : X → [0, 1] with the property

ρ(x) =
{
1 for ‖x‖ ≤ r
0 for ‖x‖ ≥ 1.5r

with Lipschitz constant L. We then define

X ′(t, s)x = ρ(x)X(t, s)x for all x ∈ X .

Now, in order to complete the proof it suffices to apply Theorem 5 to
{X ′(t, s) | t ≥ s}.
Next we are going to apply the above results to investigate the asymptotic

behaviour of the process {X(t, s) | t ≥ s} around the ”zero solution”.
Proposition 8. Under the assumptions of Theorem 5 we get the limiting
relation

lim
t→∞ d(Z(t, s)x ,Mt) = 0(39)

where Mt = gr(gt) and d(y ,Mt) = infz∈Mt ‖y − z‖.
Proof. From (33) it follows that

(40) d
(
X(t, t− k)x ,Mt

) ≤ q′ d(x ,Mt−k) for all t ∈ R , x ∈ X.

Thus we have
lim
n→∞ d

(
Z(s+ nk, s)x ,Ms+k) = 0 .

From the bounded growth of {X(t, s) | t ≥ s} we get the claimed relation
(39).

Below we shall consider the case where the linear process {U(t, s) | t ≥ s}
satisfies a condition more general than that of an exponential dichotomy.

Definition 9. A linear process {U(t, s) | t ≥ s} with bounded growth is
said to satisfy condition H if there exist positive constants K,α, β with
α > β and nontrivial projections P (t) , t ∈ R which are bounded uniformly
in t such that the following three conditions are met:
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i) P (t)U(t, s) = U(t, s)P (s) for all t ≥ s ,
ii) The restriction U(t, s)|Ker P (s) is an isomorphism from KerP (s) onto

KerP (t) (whose inverse is denoted by U(s, t) for s ≤ t) .
iii) With Q(s) = I − P (s) we have

‖U(t, s)P (s)x‖ ≤ Ke−α(t−s)‖P (s)x‖ for all t ≥ s , x ∈ X ,

‖U(t, s)Q(s)x‖ ≥ K−1e−β(t−s)‖Q(s)x‖ for all t ≥ s , x ∈ X .

Examples. It is apparent that every linear process with an exponential
dichotomy satisfies condition H. More generally, one can show that a linear
process {U(t, s) | t ≥ s} having bounded growth satisfies condition H if and
only if (see e.g. [25]) there exists an r ∈ (0 , 1) such that the circle with
radius r belongs to the resolvent set ρ(T (1)) and that σ(T (1)) ∩ {z ∈ C |
|z| < r} �= ∅, where {T (t) | t ≥ 0} is the evolution semigroup associated with
{U(t, s) | t ≥ s} in Lp.

It is easy to see that if {U(t, s) | t ≥ s} satisfies condition H, then
{U∗(t, s) | t ≥ s} defined as

U∗(t, s)x = eγ(t−s)U(t, s)x for all x ∈ X(41)

where γ = (α − β)/2 has an exponential dichotomy with constants K, (α −
β)/2 and the same projection P (t) , t ∈ R as {U(t, s) | t ≥ s}. Consider the
”change of variables” for the nonlinear process {X(t, s) | t ≥ s} as follows:
instead of {X(t, s) | t ≥ s} we consider the process {X∗(t, s) | t ≥ s} defined
as

X∗(t, s)x = eγtX(t, s)(e−γsx) for all t ≥ s , x ∈ X .(42)

Observe that the process {X∗(t, s) | t ≥ s} is nonlinear as well. Furthermore,
if the process

φ(t, s)x = X(t, s)x− U(t, s)x
satisfies (26), then denoting

φ∗(t, s) = X∗(t, s)x− U∗(t, s)x

we have

(43)

‖φ∗(t, s)x− φ∗(t, s)y‖
≤ eγt ‖φ(t, s)(eγsx)− φ∗(t, s)(eγsy)‖
≤ eγtε eµ(t−s)eγs‖x− y‖
= ε e(γ+µ)(t−s)‖x− y‖.

Now we are in a position to apply Theorem 5 to the processes {U∗(t, s) | t ≥
s} and {X∗(t, s) | t ≥ s}. It follows that for sufficiently small ε there exists
a g ∈ Oδ (where δ = δ(ε) and limε→0 δ(ε) = 0) such that M = {Mt =
gr(gt) | t ∈ R} is an integral manifold of {Z∗(t, s) | t ≥ s}. Let us define
g∗
t (x) = e−γtgt(eγtx). Obviously, we then get gr(g∗

t ) = e−γtgr(gt). Since
g = {gt | t ∈ R} satisfies

gr(gt) = X∗(t, s)(gr(gs)) for all t ≥ s
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we get

eγtgr(g∗
t ) = eγtZ(t, s)(e−γseγsgr(g∗

s)) .

This shows that the set N = {Nt | t ∈ R}, where Nt = gr(g∗) , t ∈ R is an
integral manifold of the process {X(t, s) | t ≥ s}.

Now we are going to apply the above result to investigate the instability
of solutions.

Theorem 7. (Reduction Principle for Stability of Evolutionary Processes.)
Assume that the linear process {U(t, s) | t ≥ s} satisfies condition H. In
addition assume that for the nonlinear process {X(t, s) | t ≥ s} the condition

Lip
(
X(t, s)x− U(t, s)x) ≤ ε eµ(t−s) for all t ≥ s

holds for some positive µ and ε.
Then for sufficiently small ε > 0 there exists an integral manifold M =

{Mt | t ∈ R} of {X(t, s) | t ≥ s} such that the zero solution of {X(t, s) | t ≥
s} is stable if and only if for every ε∗ > 0 and s ∈ R there exists a δ =
δ(ε∗, s) > 0 such that ‖X(t, s)x‖ < ε∗ for all t ≥ s if x ∈Ms and ‖x‖ ≤ δ.

Similarly, the asymptotic, uniform and exponential stability of the zero
solution of {X(t, s) | t ≥ s} are equivalent to the respective stability type of
{X(t, s)|Ms | t ≥ s}.

Proof. From (33) we can easily prove the assertions of the theorem. Thus
the proof is similar to that of Proposition 8.

Remark. In the case where for every pair (t, s) the operator U(t, s) is
compact we observe that codim ImP (t) < ∞. Thus the integral manifold
M in Theorem 6 is of finite dimension, i.e. dimD(gt) <∞ for all t ∈ R.

Theorem 8. (Linearized Instability Theorem) Under the assumptions of
Theorem 5, if the projections P (t) , t ∈ R are non-trivial, i.e. P (t) �= I
and P (t) �= 0 for all t, then for sufficiently small ε the zero solution of
{X(t, s) | t ≥ s} is unstable.

Proof . It is sufficient to prove that X(s + kn, s)x tends to ∞ as kn → ∞
for every x �= 0 in Ms, where M = {Mt | t ∈ R} is the integral manifold
provided by Theorem 5. For sufficiently small ε we have

Mt = gr(gt) , lim
ε→0

δ(ε) = 0 ,
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where Lip(gt) ≤ δ = δ(ε). Thus we can assume that δ < 1/2. We have

(44)

‖X(t,s)x‖
= ‖P (t)X(t, s)x+Q(t)X(t, s)x‖
= ‖gt(Q(t)X(t, s)x) +Q(t)X(t, s)x‖
≥ (1− δ)‖Q(t)X(t, s)x‖
≥ 1
2
‖Q(t)X(t, s)(gs(Q(s)x) +Q(s)x)‖

=
1− δ
2

‖Q(t)X(t, s)Q(s)x‖

≥ 1
4
‖Q(t)X(t, s)Q(s)x‖

≥ 1
4
(‖Q(t)U(t, s)Q(s)x‖ − 1

4
sup
t

‖Q(t)‖Lip(φ(t, s))‖Q(s)x‖)
≥ 1
4
[ 1
K
eα(t−s) − sup

t
‖Q(t)‖ ε eµ(t−s)]‖Q(s)x‖.

Hence, if we fix t − s = k0, where k0 is chosen such that (1/K)eα(t−s) > 8,
then for sufficiently small ε we have

‖Q(k0 + s)X(k0 + s, s)Q(s)x‖ ≥ p‖Q(s)x‖,(45)

where p > 1. Since x ∈ gr(gs) we can apply (44) repeatedly to get
‖Q(nk0 + s)X(nk0 + s, s)Q(s)x‖ ≥ pn‖Q(s)x‖ .(46)

Since x �= 0, x ∈ gr(gs) we have ‖Q(s)x‖ �= 0. Now from (43) we observe
that

lim
n→∞ ‖X(nk0 + s, s)x‖ = ∞ .

This completes the proof of the theorem.

4. An application to partial functional differential equations

Since the coefficient-operators A(t) in the equations considered above are
not assumed to be bounded the results of the previous sections have applica-
tions in the theory of partial differential equations. For a standard procedure
of such an application we refer to [3], [37], [38]. On the other hand, taking
into account that in Section 3 we deal with evolutionary processes rather
than with concrete evolution equations, we will consider an application of
the results of Section 3 to study the asymptotic behavior of solutions of a
class of partial functional differential equations (for a standard procedure see
[47]). In a forthcoming paper we shall deal with the evolution semigroups
associated with this kind of equations in the context of the theory of strongly
continuous semigroups of operators.
In the sequel we will use the following terminology. By C = C([−r, 0],X),

r > 0, we denote the Banach space of continuous X-valued functions on
[−r, 0] equipped with the supremum norm. If u is a continuous function
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from [a− r , b] to X and t ∈ [a, b], then ut denotes the element of C given by
ut(θ) = u(t+ θ) for −r ≤ θ ≤ 0.
For the reader’s convenience the following result is quoted from [47]:

Proposition 9. Suppose F : [a, b]× C → X is continuous and satisfies

‖F (t, φ)− F (t, ψ)‖X ≤ L ‖ψ − φ‖C for all t ∈ [a , b] , φ, ψ ∈ C ,
where L is a positive constant. Furthermore let {T (t) | t ≥ 0} be a strongly
continuous semigroup of linear operators acting on X. Then for every φ ∈ C
there exists a unique continuous function u : [a− r , b] → X which solves the
initial value problem

(47)


u(t) = T (t− a)φ(0) +

∫ t

a
T (t− s)F (s, us) ds for all t ∈ [a , b],

uα = φ .

Proposition 10. Let the assumptions of Proposition 9 be satisfied for all
t ∈ [a , b] and suppose L is independent of a and b. Then equation (47)
provides a (nonlinear) evolutionary process {X(t, s) | t ≥ s} on C. If in
addition F (t, 0) = 0 and ‖T (t)‖ ≤ eµt for all t ∈ R as well as L < 1, then
for {X(t, s) | t ≥ s} the following holds:

‖∆φ−∆ψ‖C ≤ ε eω
′(t−s)‖φ− ψ‖C for all t ≥ s , φ, ψ ∈ C ,

where

ε = Le2|µ|r , ω′ = 1 + |µ|+ e|µ|r ,
∆φ = X(t, s)φ− U(t, s)φ ,

(U(t, s)φ)(θ) = T (t+ θ − s)φ(0) for all t ≥ s , −r ≤ θ ≤ 0 .

Proof. Suppose that u(t) is the solution of equation (47). Then we put
X(t, a)φ = ut. Now we show that {X(t, s) | t ≥ s} is an evolutionary
process. To this end, it is sufficient to prove that

X(t, s) ·X(s, τ) = X(t, τ) for all t ≥ s ≥ τ .
In virtue of Proposition 9, if u(t) denotes the solution of the equation
 u(t) = T (t− s)[X(s, τ)φ](0) +

∫ t

s
T (t− ξ)F (ξ, uξ) dξ for all t ≥ s ,

us = X(s, τ)φ ,

then we have

u∗(t) = T (t− s)[T (s− τ)φ(0) +
∫ s

τ
T (s− ξ)F (ξ,X(ξ, τ)φ) dξ]

+
∫ t

s
T (t− ξ)F (ξ, uξ) dξ

= T (t− τ)φ(0) +
∫ t

τ
T (t− ξ)F (ξ, u∗

ξ) dξ ,

where
u∗(ξ) =

{
u(ξ) for ξ ≥ s

X(ξ, τ)φ for τ ≤ ξ ≤ s .
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From the uniqueness of solutions it follows that u∗(ξ) is the solution of the
equation 

 u∗(t) = T (t− τ)φ(0) +
∫ t

τ
T (t− ξ)F (ξ, u∗(ξ) dξ ,

u∗
τ = φ .

Thus, by definition we have

X(t, τ)φ = X(t, s)[X(s, τ)φ] for all φ ∈ C .
This shows that {X(t, s) | t ≥ s} is indeed a (nonlinear) evolutionary process.
By assumptions there exists a positive constant µ such that

‖T (t)‖ ≤ eµt for all t ≥ 0 .

Hence, since F (t, 0) ≡ 0, for all t ≥ s and φ ∈ C we have (see [47])

‖X(t, s)φ‖ ≤
{

e(µ+L)(t−s)‖φ‖ for µ ≥ 0 ,
e−µre(µ+Le−µr)(t−s)‖φ‖ for µ < 0 .

By definition we have

(48)
‖∆φ−∆ψ‖

≤ sup
−r ≤ θ≤ 0

∫ t+θ

s
L ‖T (t+ θ − ξ)‖‖X(ξ, s)φ−X(ξ, s)ψ‖ dξ.

On the other hand, we get

‖X(t, s)φ−X(t, s)ψ‖C ≤ e|µ|reµ(t−s)‖φ− ψ‖C +
+
∫ t

s
e|µ|re|µ|(t−ξ)L ‖X(ξ, s)φ−X(ξ, s)ψ‖C dξ .

Putting
g(t) = e−|µ|t‖X(t, s)φ−X(t, s)ψ‖C for all t ≥ s

we have

g(t) ≤ M +N
∫ t

s
g(ξ) dξ for all t ≥ s,

where M = e|µ|(r−s)‖φ− ψ‖C and N = Le|µ|r. Now by applying Gronwall’s
inequality (or precisely, a generalized version of it) we get the estimate

‖X(t, s)φ−X(t, s)ψ‖C ≤ Keω(t−s)‖φ− ψ‖C ,(49)

where K = e|µ|r and ω = |µ| + Le|µ|r. Now substituting (48) into (47) we
get

‖∆φ−∆ψ‖C ≤ sup
−r ≤ θ≤ 0

∫ t+θ

s
e|µ|(t+r−ξ)LKeω(ξ−s)‖φ− ψ‖C dξ

≤ e|µ|r(1− e−Le|µ|r(t−s))e(|µ|+Le|µ|r)(t−s) .

Using the elementary estimates

|1− ex| ≤ |x|e|x| and t− s ≤ et−s
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as well as L < 1 we get

‖∆φ−∆ψ‖C ≤ ε eω
′(t−s)‖φ− ψ‖C for all t ≥ s , φ, ψ ∈ C ,

where ε = Le2|µ|r and ω′ = 1 + |µ| + e|µ|r . The proof of the proposition is
complete.

We are now in a position to apply the results achieved in Section 3 to
study the instability of solutions of the evolution equation with delay (47).

Proposition 11. Let all assumptions of Proposition 10 be fulfilled. In addi-
tion let {T (t) | t ≥ 0} have an exponential dichotomy with nontrivial projec-
tions. Then for sufficiently small L there exists an unstable integral manifold
for equation (47), and consequently, the zero solution of equation (47) is un-
stable.

Proof. First note that the exponential dichotomy of {T (t) | t ≥ 0} provides
an exponential dichotomy for the linear process {U(t, s) | t ≥ s} defined in
Proposition 10. Now in view of this proposition it is sufficient to apply the
results of the previous section to get the claimed assertion.

5. Appendix. uniqueness of mild solutions

For the reader’s convenience in this appendix we present a sufficient con-
dition for the uniqueness of mild solutions of equation (1). Since this result
is primarily a minor adaptation of a result proved in [21] we only sketch the
details. We first describe some assumptions on the function f(t, x) in the
right hand side of equation (1).

Definition 10. A function g : R × R :→ R is said to satisfy Condition G if
it satisfies the following conditions:
(1) g(t, w) is continuous in w for each fixed t and Lebesgue measurable in

t for each fixed w and for each r > 0 there exists a locally integrable
function Lr(t) defined on R such that |g(t, w)| ≤ Lr(t) for all t ∈ R and
w ∈ [−r, r];

(2) g(t, 0) = 0 and w(t) = 0 is the maximal solution of the initial-value
problem {

w′(t) = g(t, w(t)) , for a < t < b ,
w(a) = 0 ,

where a and b are arbitrary real numbers such that a < b.

Proposition 12. Let the following conditions be fulfilled:
i) Equation (4) is well posed.
ii) g(t, w) defined as a function on R × R such that[
x− y ,−(f(t, x)− f(t, y))] ≥ g(t, |x− y|) for all (t, x), (t, y) ∈ D(f)
satisfies condition G.

Then for every fixed (t, x) equation (1) has at most one solution.
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Proof. A minor modification of the proof of [21, Proposition 4.1].
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