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Global Stability of Non-monotone Noncritical Traveling Waves for a Discrete

Diffusion Equation with a Convolution Type Nonlinearity

Tao Su and Guo-Bao Zhang*

Abstract. This paper is concerned with the global stability of non-monotone traveling

waves for a discrete diffusion equation with a monostable convolution type nonlinear-

ity. It has been proved by Yang and Zhang (Sci. China Math. 61 (2018), 1789–1806)

that all noncritical traveling waves (waves with speeds c > c∗, c∗ is minimal speed)

are time-exponentially stable, when the initial perturbations around the waves are

small. In this paper, we further prove that all traveling waves with large speed are

globally stable, when the initial perturbations around the waves in a weighted Sobolev

space can be arbitrarily large. The approaches adopted are the nonlinear Halanay’s

inequality, the technical weighted energy method and Fourier’s transform.

1. Introduction

In this paper, we study the following spatially discrete diffusion equation with convolution

type nonlinearity [8, 28]:

(1.1)
∂u(t, x)

∂t
= D2[u](t, x)− u(t, x) +

∑
i∈Z

K(i)g(u(t− τ, x− i)), t > 0, x ∈ R

with the initial data

(1.2) u(s, x) = u0(s, x), s ∈ [−τ, 0], x ∈ R,

where τ > 0 and

D2[u](t, x) = d[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)].

Equation (1.1) models the matured population dynamics of a single species with nonzero

maturation delay. Here, u(t, x) represents the mature population at the time t and

the location x, d > 0 is the coefficient of spacial diffusion, τ is the maturation delay,
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∑
i∈ZK(i)g(u(t − τ, x − i)) involves an infinite summation accounting for the non-local

interaction, K is the non-negative weighted function satisfying

K(i) = K(−i) ≥ 0,
∑
i∈Z

K(i) = 1 and
∑
i∈Z

K(i)e−λi <∞

for any λ > 0, and g(·) is the birth rate function satisfying

(G1) g(0) = 0, g(u+) = u+ for some positive constant u+, g(u) > u for u ∈ (0, u+), and

g′(0) > 1 and g′(u+) < 1;

(G2) g(u) > 0 has only one positive local maximum at the point u∗ ∈ (0, u+), and g(u) is

increasing on [0, u∗] and decreasing on [u∗,+∞);

(G3) g ∈ C2[0,∞) and |g′(u)| ≤ g′(0) for u ∈ [0,∞).

By (G1), we see that the equation (1.1) admits two constant equilibria u = u− = 0

and u = u+, where 0 is unstable and u+ is stable. (G2) shows that g(u) is not monotone

for u ∈ [0, u+]. Throughout this paper, we assume that

(1.3) lim
x→±∞

u0(s, x) = u± uniformly in s ∈ [−τ, 0].

A traveling wave of (1.1) is a special solution of the form u(t, x) = φ(x+ct) connecting

two equilibria u− to u+, where c > 0 is the wave speed. The wave profile equation of (1.1)

is

(1.4) cφ′(ξ)−D2[φ](ξ) + φ(ξ) =
∑
i∈Z

K(i)g(φ(ξ− cτ − i)), φ(−∞) = 0, φ(+∞) = u+,

where ξ = x+ ct, ′ = d/dξ, D2[φ](ξ) = d[φ(ξ + 1)− 2φ(ξ) + φ(ξ − 1)]. Moreover, if φ(ξ) is

monotone in ξ ∈ R, then it is called a traveling wavefront.

Equation (1.1) is a continuum version of the following lattice differential equation

(1.5)
∂un(t)

∂t
= d[un+1(t)− 2un(t) + un−1(t)]− un(t) +

∑
i∈Z

K(i)g(un−i(t− τ)).

Note that equations (1.1) and (1.5) possess the same wave profile equation (1.4). To

the best of our knowledge, the existence of traveling waves and other properties, such

as monotonicity and uniqueness of traveling waves of (1.5) were well studied. We refer

the readers to [15, 16] for bistable case, [1, 7, 14, 25] for monotone monostable case, and

[5, 6, 27, 30] for nonmonotone monostable case. However, little has been done for the

stability of traveling waves of (1.1) and (1.5), when the function g is not monotone. More

recently, Yang and Zhang [28] proved that all noncritical traveling waves of (1.1) (waves

with speeds c > c∗, c∗ is minimal speed) are time-exponentially stable, when the initial
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perturbations around the waves are small. The method adopted in [28] is the technical

weighted energy method [4, 11, 13, 19, 20, 26, 32]. We would like to mention that, Tian et

al. [24] and Yang et al. [29], respectively, applied this method to prove the local stability

of traveling waves of (1.1) when K(0) = 1 and K(i) = 0 for all i 6= 0. An interesting but

also challenging question is whether these traveling waves of (1.1) with speed c ≥ c∗ are

globally stable.

The global stability of traveling waves for various monostable evolution equations

has been extensively investigated, see e.g., [2,3,9,15,17,18,23,31], and references therein.

There are main two methods: the squeezing technique [3,15] for a class of discrete reaction-

diffusion equations; and the weighted energy method together with the comparison prin-

ciple developed by Mei and coauthors [17, 18] for the Nicholson’s blowflies equations, see

also [9] for discrete reaction-diffusion equations with nonlocal delay effects, [23] for a dis-

crete reaction-diffusion competition system. We should point out that the comparison

principle is needed in above two methods. However, when the birth rate function g(u)

in (1.1) is non-monotone, the comparison principle does not hold, and hence, the above

two methods are not valid. In this paper, we shall apply the nonlinear Halanay’s in-

equality, the anti-weighted technique, Fourier’s transform and the boundedness estimate

of traveling waves to establish the global stability of traveling waves. These methods were

inspired by Mei et al. [4, 11, 22]. More precisely, the time-exponential decay of U(t, ξ) at

ξ = +∞ of transformed equation can be obtained by using nonlinear Halanay’s inequality

(see Proposition 3.3). To obtain the decay estimate of U(t, ξ) for ξ ∈ (−∞, x0] is a key

step of this paper, where x0 > 0 is large enough. We first take the anti-weighted technique

to obtain a new equation (3.7). By some observation, the absolute value of the traveling

waves of equation (3.7) can be bounded by the positive solution of a linear delayed discrete

diffusion equation with constant coefficients, and Fourier’s transform can be applied to

get the decay estimate for the solution of this linear delayed equation. Then we obtain

the decay estimate of U(t, ξ) for ξ ∈ (−∞, x0]. Combining above two decay estimates, we

prove the global stability for the traveling waves with large speed.

The rest of this paper is organized as follows. In Section 2, we introduce some prelim-

inaries and state our stability result. Section 3 is devoted to proving our main result on

the global stability of traveling waves with large speed.

2. Preliminaries and the stability theorem

In this section, we first give the equivalent integral form of the initial value problem of

(1.1), then recall the existence of traveling waves of (1.1), and finally state the main result

on the stability of traveling waves.
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First, we consider the initial value problem (1.1) with (1.2), i.e.,

(2.1)
∂u(t,x)
∂t = D2[u](t, x)− u(t, x) +

∑
i∈ZK(i)g(u(t− τ, x− i)), (t, x) ∈ R+ × R,

u(s, x) = u0(s, x), s ∈ [−τ, 0], x ∈ R.

According to [10], with aid of the modified Bessel functions, the solution to the initial

value problem∂u
∂t (t, x) = d[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)], (t, x) ∈ R+ × R,

u(0, x) = u0(x), x ∈ R

can be expressed by

u(t, x) = (S(t)u0)(x) = e−2dt
∞∑

m=−∞
Im(2dt)u0(x−m),

where u0(·) ∈ L∞(R), Im, m ≥ 0 are defined as

Im(t) =
∞∑
k=0

(t/2)m+2k

k!(m+ k)!
,

and Im(t) = I−m(t) for m < 0. Moreover,

(2.2) I′m(t) =
1

2
[Im+1(t) + Im−1(t)], ∀ t ≥ 0, m ∈ Z,

and Im(0) = 0 for m 6= 0 while I0(0) = 1, and Im(t) ≥ 0 for any integer m and t ≥ 0. It

is easy to see that

(2.3) e−t
∞∑

m=−∞
Im(t) = e−t

[
I0(t) + 2I1(t) + 2I3(t) + · · ·

]
= 1.

Clearly, (2.1) is equivalent to

u(t, x)

= e−(2d+1)t
∞∑

m=−∞
Im(2dt)u0(0, x−m)

+
∞∑

m=−∞

∫ t

0
e−(2d+1)(t−s)Im(2d(t− s))

(∑
i∈Z

K(i)g(u(s− τ, x−m− i))

)
ds.

(2.4)

In fact, by (G2), one has g(u) ≤ g(u∗) for u ∈ [0,+∞). Then by [10, Lemma 2.1], we can
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differentiate the series on t variable in (2.4). Then we obtain

∂u(t, x)

∂t

= −(2d+ 1)e−(2d+1)t
∞∑

m=−∞
Im(2dt)u0(0, x−m)

+ e−(2d+1)t
∞∑

m=−∞
2dI′m(2dt)u0(0, x−m)

+

∞∑
m=−∞

Im(0)
∑
i∈Z

K(i)g(u(t− τ, x−m− i))

− (2d+ 1)

∞∑
m=−∞

∫ t

0
e−(2d+1)(t−s)Im(2d(t− s))

(∑
i∈Z

K(i)g(u(s− τ, x−m− i))

)
ds

+

∞∑
m=−∞

∫ t

0
e−(2d+1)(t−s)2dI′m(2d(t− s))

(∑
i∈Z

K(i)g(u(s− τ, x−m− i))

)
ds

= d[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)]− u(t, x) +
∑
i∈Z

K(i)g(u(t− τ, x− i)),

where we have used the recurrence relation (2.2).

The characteristic function for (1.4) with respect to the trivial equilibrium 0 can be

represented by

P(c, λ) = cλ− d(eλ + e−λ − 2) + 1− g′(0)G(λ),

where

G(λ) =
∑
i∈Z

K(i)e−λ(i+cτ) <∞.

One can easily show that the following result holds.

Lemma 2.1. Assume that g′(0) > 1. Then there exist λ∗ > 0 and c∗ > 0 such that

P(c∗, λ∗) = 0 and
∂

∂λ
P(c∗, λ)

∣∣∣
λ=λ∗

= 0.

Furthermore, if c > c∗, then P(c, λ) = 0 has two distinct positive real roots λ1(c) and

λ2(c) with λ1(c) < λ∗ < λ2(c), and P(c, λ) > 0 for λ ∈ (λ1(c), λ2(c)).

The existence of traveling waves has been obtained by Yang and Zhang, see [28, The-

orem 2.3].

Proposition 2.2. Assume that (G1)–(G3) hold. Then for every c > c∗, (1.1) admits a

traveling wave u(t, x) = φ(x + ct) satisfying φ(−∞) = 0 and u∗− < lim infξ→+∞ φ(ξ) ≤
lim supξ→+∞ φ(ξ) ≤ u∗+ for some positive constant u∗+ > u+.
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Remark 2.3. We should point out if we further assume that the following assumption (G4)

holds, then φ(+∞) = u+.

(G4) g(u) < 2u+−u for u ∈ [u∗−, u+) and g(u) > 2u+−u for u ∈ (u+, u
∗
+], where 0 < u∗− ≤

u+ ≤ u∗+ and g+(u∗+) = du∗+ and g−(u∗−) = du∗−, where g+(u) := minw∈[0,u] g(w) and

g−(u) := minw∈[u,u∗+] g(w).

Notations. C > 0 denotes a generic constant, while Ci (i = 1, 2, . . .) represents a specific

constant. Let I be an interval, typically I = R. Denote by L1(I) the space of integrable

functions defined on I, and W k,1(I) (k ≥ 0) the Sobolev space of the L1-functions f(x)

defined on the interval I whose derivatives dn

dxn f (n = 1, . . . , k) also belong to L1(I). Let

L1
w(I) be the weighted L1-space with a weight function w(x) > 0 and its norm is defined

by

‖f‖L1
w(I)

=

∫
I
w(x)|f(x)| dx,

W k,1
w (I) be the weighted Sobolev space with the norm given by

‖f‖
Wk,1
w (I)

=

k∑
i=0

∫
I
w(x)

∣∣∣∣dif(x)

dxi

∣∣∣∣ dx.
Let T > 0 be a number and B be a Banach space. We denote by C([0, T ];B) the space of

the B-valued continuous functions on [0, T ], and by L1([0, T ];B) the space of the B-valued

L1-functions on [0, T ]. The corresponding spaces of the B-valued functions on [0,∞) are

defined similarly. For any function f(x), its Fourier transform is defined by

F [f ](η) = f̂(η) =

∫
R
e−ixηf(x) dx

and the inverse Fourier transform is given by

F−1[f̂ ](x) =
1

2π

∫
R
eixηf̂(η) dη,

where i is the imaginary unit, i2 = −1.

Define a weight function

ω(ξ) := e−2λξ, ξ ∈ R,

where λ = c∗. Notice that limξ→−∞ ω(ξ) = +∞ and limξ→+∞ ω(ξ) = 0, since λ = c∗ > 0.

For the sake of simplicity, we denote

L1 := d(ec∗ + e−c∗ − 2), L2 := ed(e
c∗+e−c∗ )τg′(0)

∑
i∈Z

K(i)e−c∗i.

Now we state the stability result of traveling waves of (1.1) with a general nonmonotone

function g(u).
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Theorem 2.4 (Global stability). Assume that (G1)–(G3) hold. For any given traveling

wave φ(x+ ct) = φ(ξ) connecting 0 and u+ with

(2.5) c > c̃ := max

{
c∗,

L1 − 1 + L2

c∗

}
,

whether it is monotone or non-monotone, when the initial perturbation satisfies u0 − φ ∈
Cunif [−τ, 0]∩C([−τ, 0];W 1,1

ω (R)) and ∂s(u0−φ) ∈ L1([−τ, 0];L1
ω(R)), we have the following

global stability

sup
x∈R
|u(t, x)− φ(x+ ct)| ≤ Ce−µt,

where µ and C are positive numbers, and Cunif [−τ, T ] is the uniformly continuous space,

for 0 < T ≤ ∞, defined by

Cunif [−τ, T ]

=

{
u ∈ C([−τ, T ]× R) such that lim

x→+∞
u(t, x) exists uniformly in t ∈ [−τ, T ]

}
.

3. The global stability of traveling waves

In this section, we are devoted to the proof of global stability of those monotone or non-

monotone traveling waves of (1.1) with speed c > c̃, when g is non-monotone.

Let φ(x+ ct) = φ(ξ) be any given traveling wave with speed c > c∗, and define

U(t, ξ) := u(t, x)− φ(x+ ct) = u(t, ξ − ct)− φ(ξ),

U0(s, ξ) := u0(s, x)− φ(x+ cs).

Then it follows from (1.1) and (1.4) that U(t, ξ) satisfies

(3.1)∂U
∂t + c∂U∂ξ −D2[U ] + U =

∑
i∈ZK(i)Q(U(t− τ, ξ − cτ − i)), (t, ξ) ∈ R+ × R,

U(s, ξ) = U0(s, ξ), s ∈ [−τ, 0], ξ ∈ R,

where

(3.2) Q(U) := g(φ+ U)− g(φ) = g′(φ̃)U

for some φ̃ between φ and φ+ U , with φ = φ(ξ − cτ − i) and U = U(t− τ, ξ − cτ − i) for

c > c∗.

We first prove the existence and uniqueness of solution to the initial value problem (3.1)

in the uniformly continuous space Cunif [−τ,∞).

Lemma 3.1. Assume that (G1)–(G3) hold. If the initial perturbation U0 ∈ Cunif [−τ, 0]

for c > c∗, then the solution U(t, ξ) of perturbed equation (3.1) is unique and time-globally

exists in Cunif [−τ,∞).



944 Tao Su and Guo-Bao Zhang

Proof. Let V (t, x) = u(t, x)− φ(x+ ct). It is clear that V (t, x) = U(t, ξ) and satisfies

(3.3)

∂V
∂t −D2[V ] + V =

∑
i∈ZK(i)Q(V (t− τ, x− i)), (t, x) ∈ R+ × R,

V (s, x) = u0(s, x)− φ(x+ cs) := V0(s, x), (s, x) ∈ [−τ, 0]× R.

Thus, the global existence and uniqueness of solutions of (3.1) are transformed into that

of (3.3).

When t ∈ [0, τ ], we have t−τ ∈ [−τ, 0] and V (t−τ, x−i) = V0(t−τ, x−i). Consequently,

the solution of (3.3) can be explicitly and uniquely solved by

V (t, x)

= e−(2d+1)t
∞∑

m=−∞
Im(2dt)V0(0, x−m)

+

∞∑
m=−∞

∫ t

0
e−(2d+1)(t−s)Im(2d(t− s))

(∑
i∈Z

K(i)Q(V0(s− τ, x−m− i))

)
ds

(3.4)

for t ∈ [0, τ ].

Since U0 ∈ Cunif [−τ, 0], limξ→+∞ U0(ξ, t) exists uniformly in t ∈ [−τ, 0], which implies

limx→+∞ V0(t, x) exists uniformly in t ∈ [−τ, 0]. Denote V0(t,∞) = limx→+∞ V0(t, x).

Taking the limit x→ +∞ to (3.4) yields

lim
x→+∞

V (t, x)

= e−(2d+1)t
∞∑

m=−∞
Im(2dt) lim

x→+∞
V0(0, x−m)

+
∞∑

m=−∞

∫ t

0
e−(2d+1)(t−s)Im(2d(t− s))

(∑
i∈Z

K(i) lim
x→+∞

Q(V0(s− τ, x−m− i))

)
ds

= e−tV0(0,∞) +

∫ t

0
e−(t−s)Q(V0(s− τ,∞))

∞∑
m=−∞

e−2d(t−s)Im(2d(t− s)) ds

=: V1(t) uniformly in t ∈ [0, τ ].

(3.5)

Here we use the fact that
∑

i∈ZK(i) = 1 and (2.3). Thus, we obtain that V ∈ Cunif [−τ, τ ],

i.e., U ∈ Cunif [−τ, τ ].

When t ∈ [τ, 2τ ], equation (3.3) with the initial data V (s, x) for s ∈ [0, τ ] is still linear

because the source term
∑

i∈ZK(i)Q(V (t − τ, x − i)) is known due to t − τ ∈ [0, τ ] and

V (t − τ, x) is solved in (3.4). Hence, the solution V (t, x) for t ∈ [τ, 2τ ] is uniquely and
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explicitly given by

V (t, x) = e−(2d+1)(t−τ)
∞∑

m=−∞
Im(2d(t− τ))V (τ, x−m)

+
∞∑

m=−∞

∫ t

τ
e−(2d+1)(t−s)Im(2d(t− s))

(∑
i∈Z

K(i)Q(V (s− τ, x−m− i))

)
ds.

Similarly, by (3.5), we have

lim
x→+∞

V (t, x)

= e−(2d+1)(t−τ)
∞∑

m=−∞
Im(2d(t− τ)) lim

x→+∞
V (τ, x−m)

+

∞∑
m=−∞

∫ t

τ
e−(2d+1)(t−s)Im(2d(t− s))

(∑
i∈Z

K(i) lim
x→+∞

Q(V (s− τ, x−m− i))

)
ds

= e−(t−τ)V1(τ) +

∫ t

τ
e−(t−s)Q(V1(s− τ))

∞∑
m=−∞

e−2d(t−s)Im(2d(t− s)) ds

=: V2(t) uniformly in t ∈ [τ, 2τ ].

Repeating the above procedure for t ∈ [nτ, (n+ 1)τ ] with n = 2, 3, . . ., we can obtain

that U ∈ Cunif [−τ, (n+ 1)τ ] uniquely exists. Step by step, we can finally prove the global

existence and uniqueness of solution U ∈ Cunif [−τ,+∞).

Now we state the stability result for the perturbed equation (3.1), which automatically

implies Theorem 2.4.

Proposition 3.2. Assume that (G1)–(G3) hold. If the initial perturbation

U0 ∈ Cunif [−τ, 0] ∩ C([−τ, 0];W 1,1
ω (R)), ∂sU0 ∈ L1([−τ, 0];L1

ω(R)),

then when c > c̃, it holds

sup
ξ∈R
|U(t, ξ)| ≤ Ce−µt, t > 0

for some positive constant µ.

Proposition 3.2 is a straightforward consequence of the following Propositions 3.3 and

3.11. In the rest of this section, we always assume the assumptions (G1)–(G3) hold.

Proposition 3.3. Assume that U0 ∈ Cunif [−τ, 0]. Then there exists a large number x0 � 1

such that the solution U(t, ξ) of (3.1) satisfies

sup
ξ∈[x0,∞)

|U(t, ξ)| ≤ Ce−µ1t, t > 0

for some 0 < µ1 < 1.
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Proof. Since U0 ∈ Cunif [−τ, 0], by Lemma 3.1, we have U ∈ Cunif [−τ,∞), which implies

limξ→+∞ U(t, ξ) = U(t,∞) =: z(t) exists uniformly for t ∈ [−τ,∞). Taking the limit

ξ →∞ to (3.1), one has

d

dt
z(t) + z(t)− g′(u+)z(t− τ) = P (z(t− τ)), z(s) = z0(s), s ∈ [−τ, 0],

where

P (z) = g(u+ + z)− g(u+)− g′(u+)z.

It follows from the Taylor expansion that |P (z)| ≤ C|z|2 for some positive constant C. By

the nonlinear Halanay’s inequality given in [13], we obtain

(3.6) |U(t,∞)| = |z(t)| ≤ Ce−µ1t, t > 0

for some constant 0 < µ1 < 1, provided ‖z0‖L∞ � 1.

By the continuity and the uniform convergence of U(t, ξ) as ξ → +∞, there exists a

large number x0 � 1 such that (3.6) implies

sup
ξ∈[x0,∞)

|U(t, ξ)| ≤ Ce−µ1t, t > 0,

provided supξ∈[x0,+∞) |U0(s, ξ)| � 1 for s ∈ [−τ, 0]. Such a smallness for the initial

perturbation U0 near ξ → +∞ can be automatically verified, since limx→+∞ u0(s, x) = u+

(see (1.3)), which implies limξ→+∞ U0(s, ξ) = limξ→+∞[u0(s, ξ) − φ(ξ)] = u+ − u+ = 0

uniformly for s ∈ [−τ, 0].

It remains to establish a priori decay estimate of supξ∈(−∞,x0] |U(t, ξ)|. We shall use

the anti-weighted technique [4,11] together with Fourier’s transform to treat this problem.

Define

Ũ(t, ξ) =
√
ω(ξ)U(t, ξ + x0) = e−λξU(t, ξ + x0),

where λ = c∗. It is easy to see that Ũ(t, ξ) satisfies

(3.7)


∂Ũ
∂t + c∂Ũ∂ξ + c1Ũ(t, ξ)− deλŨ(t, ξ + 1)− de−λŨ(t, ξ − 1)

=
∑

i∈ZK(i)Q̃(Ũ(t− τ, ξ − cτ − i)), (t, ξ) ∈ R+ × R,

Ũ(s, ξ) =
√
ω(ξ)U(s, ξ + x0) =: Ũ0(s, ξ), s ∈ [−τ, 0], ξ ∈ R,

where c1 = cλ+ 2d+ 1 and

Q̃(Ũ) = e−λξQ(U).

By (3.2), we obtain

Q̃(Ũ(t− τ, ξ − cτ − i)) = e−λξQ(U(t− τ, ξ + x0 − cτ − i))

= e−λξg′(φ̃)U(t− τ, ξ + x0 − cτ − i)

= e−λ(i+cτ)g′(φ̃)Ũ(t− τ, ξ − cτ − i)

(3.8)
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for some function φ̃ between φ and φ+ U . By (G3), we further have

|Q̃(Ũ(t− τ, ξ − cτ − i))| ≤ g′(0)e−λ(i+cτ)|Ũ(t− τ, ξ − cτ − i)|.

Since g′(s) can be negative for s ∈ (0, u+), then the solution Ũ of (3.7) with the non-

linear term (3.8) may be oscillation around u+ when the time delay τ is large. At the same

time, the comparison principle may not hold for (3.7). Hence, the monotonic technique

cannot be applied. Note that the coefficient g′(φ̃) in (3.8) is variable. As such, we are un-

able to derive the decay estimate directly by applying Fourier’s transform. In this paper,

we shall provide some new idea to establish the decay estimate of supξ∈(−∞,x0] |U(ξ, t)|. By

replacing g′(φ̃) in (3.7) with g′(0), we obtain a linear delayed discrete diffusion equation

(3.9)
∂U+

∂t + c∂U
+

∂ξ + c1U
+(t, ξ)− deλU+(t, ξ + 1)− de−λU+(t, ξ − 1)

= g′(0)
∑

i∈ZK(i)e−λ(i+cτ)U+(t− τ, ξ − cτ − i), (t, ξ) ∈ R+ × R,

U+(s, ξ) = U+
0 (s, ξ) ≥ 0, s ∈ [−τ, 0], ξ ∈ R.

We first prove that the solution Ũ of (3.7) can be bounded by the solution U+ of (3.9),

i.e., |Ũ(t, ξ)| ≤ U+(t, ξ) for (t, ξ) ∈ R+ ×R. Since (3.9) is a linear equation, we can apply

Fourier’s transform to investigate the decay estimate of U+. Then the decay estimate of

Ũ can be obtained.

In order to obtain the crucial boundedness estimate of Ũ , we need the following max-

imum principle.

Lemma 3.4. Let T > 0. For any a1, a2 ∈ R and ν > 0, if the bounded function v satisfies

(3.10)

∂v
∂t + a1

∂v
∂ξ + a2v − deνv(t, ξ + 1)− de−νv(t, ξ − 1) ≥ 0, (t, ξ) ∈ (0, T ]× R,

v(0, ξ) ≥ 0, ξ ∈ R,

then v(t, ξ) ≥ 0 for all (t, ξ) ∈ (0, T ]× R.

Proof. Let ṽ(t, ξ) = v(t, ξ + a1t). Then by (3.10), ṽ(ξ, t) satisfies∂ṽ
∂t + a2ṽ − deν ṽ(t, ξ + 1)− de−ν ṽ(t, ξ − 1) ≥ 0, (t, ξ) ∈ (0, T ]× R,

ṽ(0, ξ) = v(0, ξ) ≥ 0, ξ ∈ R.

Let w(t, ξ) = ektṽ(t, ξ), where k > 0 is chosen such that p0 := k − a2 > 0. Then we have

(3.11)
∂w(t, ξ)

∂t
≥ deνw̃(t, ξ + 1) + de−νw̃(t, ξ − 1) + p0w(t, ξ), (t, ξ) ∈ (0, T ]× R.

Denote 0 < T0 < min
{
T, 1

2(deν+de−ν+p0)

}
. We now prove that w ≥ 0 in (0, T0) × R.

Suppose on the contrary that there are t̃ ∈ (0, T0) and ξ̃ ∈ R such that w(t̃, ξ̃) <



948 Tao Su and Guo-Bao Zhang

0. Then by the assumption of the lemma, there exists t∗ ∈ (0, T0) such that winf :=

inf(t,ξ)∈[0,t∗]×Rw(t, ξ) < 0. Observe that there exists (tn, ξn) ∈ (0, t∗] × R such that

w(tn, ξn)→ winf as n→∞. Integrating (3.11) from 0 to tn, we obtain

w(tn, ξn)− w(0, ξn) ≥ d
∫ tn

0

(
eνw(s, ξn + 1) + e−νw(s, ξn − 1)

)
ds

+

∫ tn

0
p0w(s, ξn) ds

≥ (deν + de−ν + p0)winftn

≥ (deν + de−ν + p0)winft
∗.

Note that w(0, ξn) ≥ 0 for n = 1, 2, . . .. Then we have w(tn, ξn) ≥ (deν + de−ν + p0)winft
∗.

Letting n→∞, we obtain

winf ≥ (deν + de−ν + p0)winft
∗ >

1

2
winf ,

a contradiction. Hence, v(t, ξ) ≥ 0 for all (t, ξ) ∈ (0, T ]× R.

Lemma 3.5. If U+
0 (s, ξ) ≥ 0 for (s, ξ) ∈ [−τ, 0] × R, then U+(t, ξ) ≥ 0 for (t, ξ) ∈

[−τ,+∞)× R.

Proof. For t ∈ [0, τ ], we have t− τ ∈ [−τ, 0] and

g′(0)
∑
i∈Z

K(i)e−λ(i+cτ)U+(t− τ, ξ − cτ − i)

= g′(0)
∑
i∈Z

K(i)e−λ(i+cτ)U+
0 (t− τ, ξ − cτ − i) ≥ 0.

Then it follows from (3.9) that

∂U+

∂t
+ c

∂U+

∂ξ
+ c1U

+(t, ξ)− deλU+(t, ξ + 1)− de−λU+(t, ξ − 1) ≥ 0,

which implies U+(t, ξ) ≥ 0 for t ∈ [0, τ ] due to Lemma 3.4. Repeating this procedure

step by step, we can prove that U+(t, ξ) ≥ 0 for t ∈ [nτ, (n+ 1)τ ]. Furthermore, we have

U+(t, ξ) ≥ 0 for (t, ξ) ∈ R+ × R.

The following result shows the boundedness estimate for the solution Ũ(t, ξ) of (3.7).

Lemma 3.6. Let Ũ(t, ξ) and U+(t, ξ) be the solutions of (3.7) and (3.9), respectively.

When

(3.12) |Ũ0(s, ξ)| ≤ U+
0 (s, ξ), (s, ξ) ∈ [−τ, 0]× R,

then

|Ũ(t, ξ)| ≤ U+(t, ξ), (t, ξ) ∈ R+ × R.
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Proof. We first prove |Ũ(t, ξ)| ≤ U+(t, ξ) for (t, ξ) ∈ [0, τ ] × R. When t ∈ [0, τ ], namely,

t− τ ∈ [−τ, 0], by (3.12), we have

|Ũ(t− τ, ξ − cτ − i)| = |Ũ0(t− τ, ξ − cτ − i)|

≤ U+
0 (t− τ, ξ − cτ − i) = U+(t− τ, ξ − cτ − i).

(3.13)

Let

V −(t, ξ) := U+(t, ξ)− Ũ(t, ξ) and V +(t, ξ) := U+(t, ξ) + Ũ(t, ξ).

By (3.7), (3.8) and (3.9), we see that V −(t, ξ) satisfies

∂V −

∂t
+ c

∂V −

∂ξ
+ c1V

−(t, ξ)− deλV −(t, ξ + 1)− de−λV −(t, ξ − 1)

= g′(0)
∑
i∈Z

K(i)e−λ(i+cτ)U+(t− τ, ξ − cτ − i)

− g′(φ̃)
∑
i∈Z

K(i)e−λ(i+cτ)Ũ(t− τ, ξ − cτ − i)

≥ g′(0)
∑
i∈Z

K(i)e−λ(i+cτ)U+(t− τ, ξ − cτ − i)

−
∑
i∈Z

K(i)e−λ(i+cτ)|g′(φ̃)||Ũ(t− τ, ξ − cτ − i)|.

(3.14)

Furthermore, by (3.13) and (G3), we obtain from (3.14) that

(3.15)
∂V −

∂t
+ c

∂V −

∂ξ
+ c1V

−(t, ξ)− deλV −(t, ξ + 1)− de−λV −(t, ξ − 1) ≥ 0

for (t, ξ) ∈ [0, τ ]×R. Thus, (3.15) with the initial data V −0 (s, ξ) = U+
0 (s, ξ)− Ũ0(s, ξ) ≥ 0

reduces to

∂V −

∂t
+ c

∂V −

∂ξ
+ c1V

−(t, ξ)− deλV −(t, ξ + 1)− de−λV −(t, ξ − 1) ≥ 0, V −0 (0, ξ) ≥ 0.

By Lemma 3.4, we have

(3.16) V −(t, ξ) = U+(t, ξ)− Ũ(t, ξ) ≥ 0 for (t, ξ) ∈ [0, τ ]× R.

On the other hand, V +(t, ξ) satisfies

∂V +

∂t
+ c

∂V +

∂ξ
+ c1V

+(t, ξ)− deλV +(t, ξ + 1)− de−λV +(t, ξ − 1)

= g′(0)
∑
i∈Z

K(i)e−λ(i+cτ)U+(t− τ, ξ − cτ − i)

− g′(φ̃)
∑
i∈Z

K(i)e−λ(i+cτ)Ũ(t− τ, ξ − cτ − i)(3.17)
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≥ g′(0)
∑
i∈Z

K(i)e−λ(i+cτ)U+(t− τ, ξ − cτ − i)

−
∑
i∈Z

K(i)e−λ(i+cτ)|g′(φ̃)||Ũ(t− τ, ξ − cτ − i)|

≥ 0, t ∈ [0, τ ].

Similarly, we can prove that (3.17) with the initial data V +
0 (s, ξ) = U+

0 (s, ξ)+ Ũ0(s, ξ) ≥ 0

implies

(3.18) V +(t, ξ) = U+(t, ξ) + Ũ(t, ξ) ≥ 0 for (t, ξ) ∈ [0, τ ]× R.

Combining (3.16) and (3.18), we have

(3.19) |Ũ(t, ξ)| ≤ U+(t, ξ) for (t, ξ) ∈ [0, τ ]× R.

Next, when t ∈ [τ, 2τ ], namely, t− τ ∈ [0, τ ], based on (3.19), we can similarly prove

V −(t, ξ) = U+(t, ξ)− Ũ(t, ξ) ≥ 0,

V +(t, ξ) = U+(t, ξ) + Ũ(t, ξ) ≥ 0

for (t, ξ) ∈ [τ, 2τ ]× R, namely,

|Ũ(t, ξ)| ≤ U+(t, ξ) for (t, ξ) ∈ [τ, 2τ ]× R.

Repeating this procedure, we then further prove

|Ũ(t, ξ)| ≤ U+(t, ξ) for (t, ξ) ∈ [nτ, (n+ 1)τ ]× R, n = 1, 2, . . .,

which implies

|Ũ(t, ξ)| ≤ U+(t, ξ) for (t, ξ) ∈ R+ × R.

This completes the proof.

Now we are in a position to establish the decay estimate of the solution U+ of (3.9).

We first recall some properties of the solutions to the delayed ODE.

Lemma 3.7. [12, Theorem 1] Let z(t) be the solution to the following scalar differential

equation with delay

(3.20)

 d
dtz(t) + k1z(t) = k2z(t− τ), t ≥ 0, τ > 0,

z(s) = z0(s), s ∈ [−τ, 0].

Then

(3.21) z(t) = e−k1(t+τ)ek2tτ z0(−τ) +

∫ 0

−τ
e−k1(t−s)ek2(t−τ−s)τ [z′0(s) + k1z0(s)] ds,



Global Stability of Non-monotone Waves 951

where

k2 = k2e
k1τ

and ek2tτ is the so-called delayed exponential function in the form

ek2tr =



0, −∞ < t < −τ,

1, −τ ≤ t < 0,

1 + k2
t
1! , 0 ≤ t < τ,

1 + k2
t
1! + k

2
2
(t−τ)2

2! , τ ≤ t < 2τ,
...

...

1 + k2
t
1! + k

2
2
(t−τ)2

2! + · · ·+ k
m
2

[t−(m−1)τ ]m
m! , (m− 1)τ ≤ t < mτ,

...
...

and ek2tτ is a solution to the following linear homogeneous equation with pure delay

(3.22)

 d
dtz(t) = k2z(t− τ), t ≥ 0,

z(s) ≡ 1, s ∈ [−τ, 0].

Lemma 3.8. [21, Lemma 2.2] Let k1 ≥ 0 and k2 ≥ 0. Then the solution z(t) to (3.20)

(or equivalently (3.21)) satisfies

|z(t)| ≤ C0e
−k1tek2tτ ,

where

C0 := e−k1τ |z0(−τ)|+
∫ 0

−τ
ek1s|z′0(s) + k1z0(s)| ds,

and the fundamental solution ek2tτ with k2 > 0 to (3.22) satisfies

ek2tτ ≤ C(1 + t)−γek2t

for arbitrary number γ > 0.

Furthermore, when k1 ≥ k2 ≥ 0, there exists a constant ε1 = ε(τ) with 0 < ε < 1 for

τ > 0, and ε1 = 1 for τ = 0, and ε1 = ε(τ)→ 0 as τ → +∞, such that

(3.23) e−k1tek2tτ ≤ Ce−ε1(k1−k2)t, t > 0,

and the solution z(t) to (3.20) satisfies

|z(t)| ≤ Ce−ε1(k1−k2)t, t > 0.
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Taking Fourier’s transform to (3.9), and denoting the Fourier’s transform of U+(t, ξ)

by Û+(t, η), we obtain

(3.24)

 d
dt Û

+(t, η) +A(η)Û+(t, η) = B(η)Û+(t− τ, η),

Û+(s, η) = Û+
0 (s, η), s ∈ [−τ, 0], η ∈ R,

where

A(η) := c1 − d(eλ+iη + e−(λ+iη)) + icη,

B(η) := g′(0)
∑
i∈Z

e−i(i+cτ)ηK(i)e−λ(i+cτ).
(3.25)

By the solution formula (3.21) in Lemma 3.7, the linear time-delayed ordinary differential

equation (3.24) can be solved by

Û+(t, η) = e−A(η)(t+τ)eB(η)t
τ Û+

0 (−τ, η)

+

∫ 0

−τ
e−A(η)(t−s)eB(η)(t−τ−s)

τ

[
∂sÛ

+
0 (s, η) +A(η)Û+

0 (s, η)
]
ds,

(3.26)

where

(3.27) B(η) := B(η)eA(η)τ .

Taking the inverse Fourier transform to (3.26), we have

U+(t, ξ) =
1

2π

∫ ∞
−∞

eiξηe−A(η)(t+τ)eB(η)t
τ Û+

0 (−τ, η) dη

+
1

2π

∫ 0

−τ

∫ ∞
−∞

eiξηe−A(η)(t−s)eB(η)(t−τ−s)
τ

[
∂sÛ

+
0 (s, η) +A(η)Û+

0 (s, η)
]
dηds.

We now estimate the decay rate of U+(t, ξ).

Lemma 3.9. Let the initial data U+
0 (s, ξ) be such that

U+
0 ∈ C([−τ, 0];W 1,1(R)) and ∂sU

+
0 ∈ L

1([−τ, 0];L1(R)).

Then

‖U+(t)‖L∞(R) ≤ Ce−µ2t

for any c > c̃ and some µ2 > 0.

Proof. By Parseval’s inequality, it then follows from (3.26) that

(3.28) ‖U+(t)‖L∞(R) ≤ ‖Û+(t)‖L1(R) ≤ I1(t) + I2(t),
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where

I1(t) :=

∫ ∞
−∞

∣∣∣e−A(η)(t+τ)eB(η)t
τ Û+

0 (−τ, η)
∣∣∣ dη,

I2(t) :=

∫ 0

−τ

∫ ∞
−∞

∣∣∣e−A(η)(t−s)eB(η)(t−τ−s)
τ

[
∂sÛ

+
0 (s, η) +A(η)Û+

0 (s, η)
]∣∣∣ dηds.

We are going to estimate Ii(t), i = 1, 2. By (3.25), one has

|e−A(η)(t+τ)| = e−c1(t+τ)
∣∣∣exp

(
(t+ τ)d(eλ+iη + e−(λ+iη))

)∣∣∣
= e−c1(t+τ) exp

(
(t+ τ)d(eλ cos η + e−λ cos η)

)
= e−c1(t+τ) exp

(
(t+ τ)d(eλ + e−λ) cos η

)
= e−k1(c)(t+τ)e−m(η)(t+τ),

where

k1(c) := c1 − d(eλ + e−λ) and m(η) := (1− cos η)d(eλ + e−λ).

By (3.27) and (3.25), we obtain

|B(η)| = |B(η)||eA(η)τ | ≤ ed(eλ+e−λ)τg′(0)G(λ)ek1(c)τ =: k2(c),

where

k2(c) := k2(c)e
k1(c)τ and k2(c) := ed(e

λ+e−λ)τg′(0)G(λ).

Then we get

|eB(η)t
τ | ≤ e|B(η)|t

τ = ek2(c)tτ .

It is easy to see that

k1(c)− k2(c) = cλ− d(eλ + e−λ − 2) + 1− ed(eλ+e−λ)τg′(0)G(λ)

= cλ− d(eλ + e−λ − 2) + 1− ed(eλ+e−λ)τg′(0)
∑
i∈Z

K(i)e−λ(i+cτ)

≥ cλ− d(eλ + e−λ − 2) + 1− ed(eλ+e−λ)τg′(0)
∑
i∈Z

K(i)e−λi > 0,

due to (2.5). Let µ0 := k1(c)− k2(c) > 0. Then by (3.23), we have∣∣e−A(η)(t+τ)eB(η)t
τ

∣∣ ≤ e−m(η)(t+τ)e−k1(c)(t+τ)ek2(c)tτ

≤ Ce−ε1[k1(c)−k2(c)]te−m(η)t = Ce−ε1µ0te−m(η)t.
(3.29)

Applying (3.29), we derive the optimal estimate for I1(t):

I1(t) =

∫ ∞
−∞

∣∣∣e−A(η)(t+τ)eB(η)t
r Û+

0 (−τ, η)
∣∣∣ dη

≤ Ce−ε1µ0t‖Û+
0 (−τ)‖L∞(R)

∫ ∞
−∞

e−m(η)t dη

≤ Ce−µ2t‖U+
0 (−τ)‖L1(R),

(3.30)
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where µ2 := ε1µ0.

Similarly, we can estimate I2(t). Note that

sup
η∈R
|A(η)Û+

0 (s, η)| = sup
η∈R

∣∣∣[c1 − d(eλ+iη + e−(λ+iη)) + icη
]
Û+
0 (s, η)

∣∣∣
≤ C‖U+

0 (s)‖W 1,1(R).

Thus, we can derive the decay rate for I2(t) as follows:

I2(t) =

∫ 0

−τ

∫ ∞
−∞

∣∣∣e−A(η)(t−s)eB(η)(t−τ−s)
r

[
∂sÛ

+
0 (s, η) +A(η)Û+

0 (s, η)
]∣∣∣ dηds

≤ C
∫ 0

−τ

∫ ∞
−∞

e−ε1µ0(t−s)e−m(η)(t−s)
∣∣∣[∂sÛ+

0 (s, η) +A(η)Û+
0 (s, η)

]∣∣∣ dηds
≤ Ce−ε1µ0t

∫ 0

−τ

∫ ∞
−∞

e−m(η)(t−s) sup
∣∣∣[∂sÛ+

0 (s, η) +A(η)Û+
0 (s, η)

]∣∣∣ dηds
≤ Ce−ε1µ0t

∫ 0

−τ

[
‖∂sU+

0 (s)‖L1(R) + ‖U+
0 (s)‖W 1,1(R)

]
ds

≤ Ce−µ2t
[
‖∂sU+

0 (s)‖L1([−τ,0];L1(R)) + ‖U+
0 (s)‖L1([−τ,0];W 1,1(R))

]
.

(3.31)

Substituting (3.30) and (3.31) to (3.28), we obtain

‖U+(t)‖L∞(R) ≤ Ce−µ2t for c > c̃.

The proof is complete.

Let us choose U+
0 (s, ξ) such that U+

0 ∈ C([−τ, 0];W 1,1(R)) and ∂sU
+
0 ∈ L1([−τ, 0];

L1(R)), and U+
0 (s, ξ) ≥ |Ũ0(s, ξ)| for (s, ξ) ∈ [−τ, 0] × R. Then combining Lemmas 3.6

and 3.9, we immediately obtain the convergence rate for Ũ(t, ξ).

Lemma 3.10. When Ũ0 ∈ C([−τ, 0];W 1,1(R)) and ∂sŨ0 ∈ L1([−τ, 0];L1(R)), then

‖Ũ(t)‖L∞(R) ≤ Ce−µ2t for c > c̃.

Proposition 3.11. It holds

sup
ξ∈(−∞,x0]

|U(t, ξ)| ≤ Ce−µ2t for c > c̃.

Proof. Notice that Ũ(t, ξ) =
√
ω(ξ)U(t, ξ+x0) = e−λξU(t, ξ+x0), and

√
ω(ξ) = e−λξ ≥ 1

for ξ ∈ (−∞, 0]. Then we obtain

sup
ξ∈(−∞,0]

|U(t, ξ + x0)| ≤ ‖Ũ(t)‖L∞(R) ≤ Ce−µ2t for c > c̃,

which implies

sup
ξ∈(−∞,x0]

|U(t, ξ)| ≤ Ce−µ2t for c > c̃.

The proof is complete.
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