
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 23, No. 4, pp. 981–1000, August 2019

DOI: 10.11650/tjm/180901

Spectral Approximations for Nonlinear Fractional Delay Diffusion Equations

with Smooth and Nonsmooth Solutions

Haiyu Liu*, Shujuan Lü and Hu Chen

Abstract. A fully discrete scheme is proposed for the nonlinear fractional delay diffu-

sion equations with smooth solutions, where the fractional derivative is described in

Caputo sense with the order α (0 < α < 1). The scheme is constructed by combining

finite difference method in time and Legendre spectral approximation in space. Stabil-

ity and convergence are proved rigorously. Moreover, a modified scheme is proposed

for the equation with nonsmooth solutions by adding correction terms to the approxi-

mations of fractional derivative operator and nonlinear term. Numerical examples are

carried out to support the theoretical analysis.

1. Introduction

Fractional differential equations have received considerable attention because they are

more accurate for describing some certain phenomenons than classical integer-order dif-

ferential models. They have been applied in various fields of science and engineering,

such as physics, chemistry, biology, viscoelasticity and finance [6, 19, 21–23]. Some an-

alytical methods have been used to solve the fractional differential equations, for ex-

ample, Fourier transform method, Laplace transform method, Mellin transform method

and Green function method. The analytical methods do not work well for the majority

of fractional differential equations, especially for nonlinear problems. Thus some nu-

merical methods are considered, such as finite difference methods [2, 5, 11, 29, 30], finite

element methods [9, 12, 13, 34, 36], spectral methods [4, 16, 17, 37] and other numerical

methods [7, 20,26,32].

Time delay occurs frequently in realistic world and it has numerous applications in

mathematical modeling, such as population dynamics [14] and automatics control systems

with feedback [28]. The numerical solutions for fractional differential equations with de-

lay have been investigated by some authors. Zayernouri et al. [33] applied the fractional
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basic functions called Jacobi polyfractonomials as the basis functions in spectral and dis-

continuous spectral element methods of Petrov-Galerkin type to solve fractional delay

differential equations. Saeed et al. [27] proposed the Chebyshev wavelet method for the

fractional delay differential equations. Yaghoobi et al. [31] developed a scheme based on a

cubic spline interpolation to solve a class of nonlinear variable-order fractional differential

equation with delay. Rahimkhani et al. [24] introduced a new operational matrix based

on Bernoulli wavelets to solve fractional delay differential equations. The numerical ap-

proximations for fractional partial differential equations with delay is limited. Rihan [25]

provided an unconditionally stable implicit difference approximation for time fractional

partial differential equations with and without time delay. Hao et al. [10] constructed a

linearized quasi-compact finite difference scheme for semilinear space fractional diffusion

equations with a fixed time delay.

In this paper, we consider the following nonlinear fractional delay diffusion equations

(1.1)
C
0D

α
t u(x, t)− ν ∂

2u(x,t)
∂x2

= f(u(x, t), u(x, t− s)) + g(x, t) (x, t) ∈ (−1, 1)× (0, T ],

u(−1, t) = 0, u(1, t) = 0 t ∈ [0, T ],

u(x, t) = ϕ(x, t) (x, t) ∈ (−1, 1)× [−s, 0],

where ν > 0 is the diffusion coefficient, s > 0 is the time delay and ϕ(x, t) is a given

function. The Caputo derivative C
0D

α
t u(x, t) is defined as

C
0D

α
t u(x, t) =

1

Γ(1− α)

∫ t

0

u′(x, s)

(t− s)α
ds, 0 < α < 1.

We assume that the function f satisfies the following Lipschitz condition

(1.2) |f(u1, v1)− f(u2, v2)| ≤ L(|u1 − v1|+ |u2 − v2|),

where L is a positive constant.

The purpose of this paper is to study numerical solution of equation (1.1). We construct

fully discrete schemes based on finite difference method in time and Legendre spectral

approximation in space for the equation with smooth and nonsmooth solutions. More

precisely, we apply L1 formulation to discretize Caputo derivative and use f(2u(x, tk−1)−
u(x, tk−2), u(x, tk−n)) to approximate nonlinear term f(u(x, tk), u(x, tk−n)). Stability and

convergence are proved for the problem with smooth assumption. For the equation with

nonsmooth solutions, we follow Lubich’s correction approach [18] by adding correction

terms to L1 formulation and the approximation of nonlinear term, which not only makes

the new approximation exact for low regularity terms of the solutions but also maintains

accuracy for high regularity terms. Numerical results have verified the theoretical analysis.

To the best of our knowledge, there is no work on studying the delay problem with

nonsmooth solutions.
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The rest of the paper is organized as follows. Section 2 gives some preliminaries

and notations. In Section 3, we construct a fully discrete Legendre spectral scheme and

analyze its stability and convergence. In the next section, a modified scheme is proposed by

adding correction terms for the problem with nonsmooth solutions. Numerical examples

are presented in Section 5. Final section is for some conclusions.

2. Preliminaries and notations

For abbreviation, we denote ∂lxu(x, t) = ∂lu(x, t)/∂xl and Λ = (−1, 1). For any real

m ≥ 0, let Hm(Λ) be the Sobolev space endowed with the norm ‖ · ‖m and the seminorm

| · |m in the usual sense. In particular, L2(Λ) = H0(Λ). We also define the space-time

Sobolev space L∞(−s, T ;Hm(Λ)) : (−s, T )→ Hm(Λ) with the norm

‖φ‖L∞(−s,T ;Hm(Λ)) = sup
−s≤t≤T

‖φ‖Hm(Λ) <∞.

Let N be a positive integer, PN (Λ) stands for the set of all polynomials of degree at

most N . We define the spaces H1
0 (Λ) = {v : v ∈ H1(Λ), v(±1) = 0} and P0

N = {v ∈ PN :

v(±1) = 0}. Throughout the paper, c denotes a generic positive constant.

We introduce the orthogonal projection π1,0
N : H1

0 (Λ) → P0
N , such that for any v ∈

H1
0 (Λ),

(∂xπ
1,0
N u, ∂xv) = (∂xu, ∂xv), ∀ v ∈ P0

N .

For the orthogonal projection π1,0
N , we have

Lemma 2.1. [3, p. 288] For any u ∈ H1
0 (Λ) ∩Hm(Λ), it holds

‖π1,0
N u− u‖k ≤ cNk−m‖u‖m, k = 0, 1.

We define time step τ = s/n and M = [T/τ ]. Denote tk = kτ and uk = u( · , tk),
−n ≤ k ≤ M . To discretize the Caputo derivative, we introduce the L1 formulation as

follows:

Dα
τ u

k :=
τ−α

Γ(2− α)

a(α)
0 uk −

k−1∑
j=1

(a
(α)
k−1−j − a

(α)
k−j)u

j − a(α)
k−1u

0

(2.1)

with

a
(α)
l = (l + 1)(1−α) − l(1−α), l ≥ 0.

Then the truncation error satisfies

Lemma 2.2. [30, Lemma 4.1] For 0 < α < 1 and u(t) ∈ C2[0, T ], then

|C0Dα
t u

k −Dα
τ u

k| ≤ cuτ2−α,

where cu is related to u′′(t).
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According to [1], we can deduce that

(2.2) (Dα
τ u

k, uk) ≥ 1

2
Dα
τ ‖uk‖2.

Finally, we present the results of the Gronwall type inequality.

Lemma 2.3. [15, Lemma 3.1] Suppose that the nonnegative sequences {ωn, gn | n =

0, 1, 2, . . .} satisfy

Dα
τ ω

n ≤ λ1ω
n + λ2ω

n−1 + gn, n ≥ 1,

where λ1 and λ2 are positive constants. Then there exists a positive constant τ∗ =
α
√

1/(2Γ(2− α)λ1) such that, when τ ≤ τ∗,

ωn ≤ 2

(
ω0 +

tαn
Γ(1 + α)

max
0≤j≤n

gj
)
Eα(2λtαn), 1 ≤ n ≤ N,

where Eα(z) =
∑∞

k=0 z
k/Γ(1 + kα) is the Mittag-Leffler function and λ = λ1 + λ2/(2 −

21−α).

Using the same arguments as in the proof of Lemma 2.3, one can obtain more general

result as follows:

Corollary 2.4. If the nonnegative sequences {ωn, gn | n = 0, 1, 2, . . .} satisfy

Dα
τ ω

n ≤ λ1ω
n + λ2ω

n−1 + λ3ω
n−2 + λ4ω

n−k + gn, n ≥ k,

where λ1, λ2, λ3 and λ4 are positive constants. Then there exists a positive constant

τ∗ = α
√

1/(2Γ(2− α)λ1) such that, when τ ≤ τ∗,

ωn ≤ 2

(
(1 + Γ(2− α)τα(λ2 + λ3 + λ4))ω0 +

tαn
Γ(1 + α)

max
0≤j≤n

gj
)
Eα(2λtαn)

with λ = λ1 + λ2/(2− 21−α) + λ3/(2− 21−α)2 + λ4/(2− 21−α)k.

3. Stability and convergence of fully discrete scheme for smooth solutions

3.1. Fully discrete scheme and its stability

Applying L1 formulation to discrete Caputo derivative and f(2uk−1 − uk−2, uk−n) to ap-

proach f(uk, uk−n), we construct a linearized Legendre spectral scheme for (1.1). The

scheme in weak formulation is as follows: find {ukN}Mk=1 ∈ P0
N , such that

(3.1) (Dα
τ u

k
N , vN )+ν(∂xu

k
N , ∂xvN ) = (f(2uk−1

N −uk−2
N , uk−nN ), vN )+(gk, vN ), ∀ vN ∈ P0

N

with ukN = π1,0
N ϕk, −n ≤ k ≤ 0.



Spectral Method for Nonlinear Fractional Delay Equation 985

It is a linear iteration scheme and its well-posedness is guaranteed by the well-known

Lax-Milgram lemma. At each time level, one only needs to solve a system of linear

equations.

Assume that {ũkN}Mk=1 is the solution of

(3.2) (Dα
τ ũ

k
N , vN )+ν(∂xũ

k
N , ∂xvN ) = (f(2ũk−1

N −ũk−2
N , ũk−nN ), vN )+(g̃k, vN ), ∀ vN ∈ P0

N

with initial conditions ũkN = π1,0
N ϕk, −n ≤ k ≤ 0.

Next, we present the stability result in the following.

Theorem 3.1. The fully discrete scheme (3.1) is unconditionally stable in the sense that

for all τ > 0, it holds

‖ukN − ũkN‖2 ≤ C max
1≤k≤M

‖gk − g̃k‖2.

Proof. Denote ηkN = ukN − ũkN . Subtracting (3.2) from (3.1), it holds

(Dα
τ η

k
N , vN ) + ν(∂xη

k
N , ∂xvN )

= (f(2uk−1
N − uk−2

N , uk−nN )− f(2ũk−1
N − ũk−2

N , ũk−nN ), vN ) + (gk − g̃k, vN ).
(3.3)

According to (1.2) and using Hölder inequality and Young’s inequality, we derive that

(f(2uk−1
N − uk−2

N , uk−nN )− f(2ũk−1
N − ũk−2

N , ũk−nN ), vN )

≤ L(‖2ηk−1
N − ηk−2

N ‖+ ‖ηk−nN ‖)‖vN‖

≤ 3L2‖2ηk−1
N − ηk−2

N ‖2 + 3L2‖ηk−nN ‖2 +
1

6
‖vN‖2

≤ 24L2‖ηk−1
N ‖+ 6L2‖ηk−2

N ‖2 + 3L2‖ηk−nN ‖2 +
1

6
‖vN‖2,

and

(gk − g̃k, vN ) ≤ 3‖gk − g̃k‖2 +
1

12
‖vN‖2.

Then (3.3) becomes

(Dα
τ η

k
N , vN ) + ν(∂xη

k
N , ∂xvN )

≤ 1

4
‖vN‖2 + 24L2‖ηk−1

N ‖+ 6L2‖ηk−2
N ‖2 + 3L2‖ηk−nN ‖2 + 3‖gk − g̃k‖2.

Taking vN = ηkN and using (2.2), we can deduce that

1

2
Dα
τ ‖ηkN‖2 + ν‖∂xηkN‖2

≤ 1

4
‖ηkN‖2 + 24L2‖ηk−1

N ‖2 + 6L2‖ηk−2
N ‖2 + 3L2‖ηk−nN ‖2 + 3‖gk − g̃k‖2,

namely,

Dα
τ ‖ηkN‖2 ≤

1

2
‖ηkN‖2 + 48L2‖ηk−1

N ‖2 + 12L2‖ηk−2
N ‖2 + 6L2‖ηk−nN ‖2 + 6‖g − g̃‖2.
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By means of Corollary 2.4, there exists a positive constant τ∗ = α
√

1/Γ(2− α), when

τ < τ∗, we have

‖ηkN‖2 ≤
12tαk

Γ(1 + α)
Eα(2λtαk ) max

1≤k≤M
‖gk − g̃k‖2

with λ = 1/2+48L2/(2−21−α)+12L2/(2−21−α)2+6L2/(2−21−α)n. By simple calculation,

we know that τ∗ ≥ 1 for all 0 < α < 1. Thus the scheme is unconditionally stable.

3.2. Convergence analysis

In this subsection, we investigate the convergence of fully discrete scheme (3.1) using error

estimation.

Theorem 3.2. Let {uk}Mk=−n be the exact solution of equation (1.1) and {ukN}Mk=−n the

solution of (3.1). Suppose that C
0D

α
t u ∈ L∞(0, T ;Hm(Λ)), u ∈ L∞(−s, T ;Hm(Λ)), we

have

(3.4) ‖uk − ukN‖ ≤ C(N−m + τ2−α), 1 ≤ k ≤M,

where C is independent of N and τ .

Proof. Denote uk−ukN = (uk−π1,0
N uk) + (π1,0

N uk−ukN ) , ẽkN + êkN . The weak formulation

of equation (1.1) is

(3.5) (C0D
α
t u

k, vN ) + ν(∂xu
k, ∂xvN ) = (f(uk, uk−n), vN ) + (g, vN ).

Subtracting (3.1) from (3.5) and owing to the definition of orthogonal projection, the error

equation satisfies

(3.6) (Dα
τ ê

k
N , vN ) + ν(∂xêN , ∂x, vN ) , Rk1 +Rk2 ,

where

Rk1 = (f(uk, uk−n)− f(2uk−1
N − uk−2

N , uk−nN ), vN ),

Rk2 = (Dα
τ π

1,0
N uk − C

0D
α
t u

k, vN ).

We next estimate the right-hand terms Rk1 and Rk2 . For the first term Rk1 ,

Rk1 = (f(uk, uk−n)− f(2uk−1 − uk−2, uk−n), vN )

+ (f(2uk−1 − uk−2, uk−n)− f(2uk−1
N − uk−2

N , uk−nN ), vN )

, Rk11 +Rk12.

(3.7)

Applying Taylor expansion, it holds

f(uk, uk−n) = f(2uk−1 − uk−2, uk−n) + (uk − 2uk−1 + uk−2)f ′1(ξ, uk−n)

= f(2uk−1 − uk−2, uk−n) + c̃uτ
2,
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furthermore, by means of Hölder inequality and Young’s inequality, we have

Rk11 ≤ ‖f(uk, uk−n)− f(2uk−1 − uk−2, uk−n)‖‖vN‖

≤ c̃uτ4 +
1

36
‖vN‖2.

(3.8)

According to (1.2), we can deduce that

Rk12 ≤ L(‖2ek−1
N − ek−2

N ‖+ ‖ek−nN ‖)‖vN‖

≤ L(‖2êk−1
N − êk−2

N ‖+ ‖êk−nN ‖+ ‖2ẽk−1
N − ẽk−2

N ‖+ ‖ẽk−nN ‖)‖vN‖

≤ 48L2‖êk−1
N ‖2 + 12L2‖êk−2

N ‖2 + 6L2‖êk−nN ‖2 + 48L2‖ẽk−1
N ‖2

+ 12L2‖ẽk−2
N ‖2 + 6L2‖ẽk−nN ‖2 +

1

6
‖vN‖2,

(3.9)

moreover, owing to Lemma 2.1, it holds

‖ẽk−1
N ‖2 ≤ cN−2m‖uk−1‖2m, ‖ẽk−2

N ‖2 ≤ cN−2m‖uk−2‖2m, ‖ẽk−nN ‖2 ≤ cN−2m‖uk−n‖2m,

then (3.9) becomes

Rk12 ≤ 48L2‖êk−1
N ‖2 + 12L2‖êk−2

N ‖2 + 6L2‖êk−nN ‖2

+ cN−2m‖u‖2L∞(−s,T ;Hm(Λ)) +
1

6
‖vN‖2.

(3.10)

Substituting (3.8) and (3.10) into (3.7), we can derive that

Rk1 ≤
7

36
‖vN‖2 + 48L2‖êk−1

N ‖2 + 12L2‖êk−2
N ‖2 + 6L2‖êk−nN ‖2

+ cN−2m‖u‖2L∞(−s,T ;Hm(Λ)) + c̃uτ
4.

(3.11)

For the second term Rk2 , it holds

Rk2 = (Dα
τ π

1,0
N uk − C

0D
α
t π

1,0
N uk, vN ) + (C0D

α
t π

1,0
N uk − C

0D
α
t u

k, vN )

= (π1,0
N (Dα

τ u
k − C

0D
α
t u

k), vN )− (C0D
α
t ẽ

k
N , vN )

, Rk21 +Rk22,

(3.12)

using (2.1) and Poincaré inequality, it holds

Rk21 ≤ ‖π
1,0
N (Dα

τ u
k − C

0D
α
t u

k)‖2 +
1

36
‖vN‖2

≤ ‖Dα
τ ∂xu

k − C
0D

α
t ∂xu

k‖2 +
1

36
‖vN‖2

≤ c1,uτ
4−2α +

1

36
‖vN‖2,
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furthermore, according to Lemma 2.1, we have

Rk22 ≤ cN−2m‖C0Dα
t u

k‖2m +
1

36
‖vN‖2

≤ cN−2m‖C0Dα
t u‖2L∞(0,T ;Hm(Λ)) +

1

36
‖vN‖2.

Thus (3.12) becomes

(3.13) Rk2 ≤ cN−2m‖C0Dα
t u‖2L∞(0,T ;Hm(Λ)) + c3,uτ

4−2α +
1

18
‖vN‖2.

Substituting (3.11) and (3.13) into (3.6), we can infer that

(Dα
τ ê

k
N , vN ) + ν(∂xê

k
N , ∂xvN )

≤ 1

4
‖vN‖2 + 48L2‖êk−1

N ‖2 + 12L2‖êk−2
N ‖2 + 6L2‖êk−nN ‖2 + G̃,

(3.14)

where

G̃ = cN−2m
(
‖C0Dα

t u‖2L∞(0,T ;Hm(Λ)) + ‖u‖2L∞(−s,T ;Hm(Λ))

)
+ cuτ

4−2α.

Taking vN = êkN in (3.14) and applying (2.2), we can conclude that

1

2
Dα
τ ‖êkN‖2 + ν‖∂xêkN‖2 ≤

1

4
‖êkN‖2 + 48L2‖êk−1

N ‖2 + 12L2‖êk−2
N ‖2 + 6L2‖êk−nN ‖2 + G̃,

namely,

Dα
τ ‖êkN‖2 ≤

1

2
‖êkN‖2 + 96L2‖êk−1

N ‖2 + 24L2‖êk−2
N ‖2 + 12L2‖êk−nN ‖2 +G

with G = 2G̃. For −n ≤ k ≤ 0, ukN = π1,0
N uk, then we have êk−nN = 0, k−n ≤ 0. According

to Corollary 2.4, there exists a positive constant τ∗ = α
√

1/Γ(2− α) ≥ 1 such that, when

τ ≤ τ∗,
‖êkN‖2 ≤ 2G

tαk
Γ(1 + α)

Eα(2λtαk ), 1 ≤ k ≤M

with λ = 1/2+96L2/(2−21−α)+24L2/(2−21−α)2 +12L2/(2−21−α)n. Finally, by means

of triangle inequality and Lemma 2.1, we complete the proof of (3.4).

4. Modified fully discrete spectral scheme for nonsmooth solutions

Although the initial conditions and source terms are smooth, the solutions of fractional

differential equation can be nonsmooth and even have strong singularity at t = 0. The

rate of convergence maybe deteriorated significantly. To make up for the lost accuracy

near t = 0, we follow Lubich’s approach [18] by adding correction terms.

First, we introduce the modified L1 formulation which has been applied in [35]

(4.1) C
0D

α
t u

k = Dα
τ u

k + τ−α
m1∑
j=1

ωk,j(u
j − u0),
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where the starting weights ωk,j are chosen such that (4.1) is exact for u = tσr , 0 < σr <

σr+1, 1 ≤ r ≤ m1. Specifically, the starting weights ωk,j can be computed from the

following linear system

m1∑
j=1

ωk,jj
σr =

Γ(1 + σr)

Γ(1 + σr − α)
kσr−α − 1

Γ(2− α)

a0k
σr −

k−1∑
j=1

(a
(α)
k−1−j − a

(α)
k−j)j

σr

 .

According to [8], it is known that the above linear system is ill-conditioned. However,

the accuracy can significantly increase for the equations with low regularity solutions by

adding a few correction terms, which does not make that the condition number of the

exponential Vandermonde matrix too large. Thus the starting weights {ωk,j} can be

solved accurately.

Next, we add correction terms for the approximation of nonlinear term in the following.

Choosing the starting weights ω̃j,k such that the following equality is exact for u = tσr ,

0 < σr < σr+1, 1 ≤ r ≤ m2,

f(uk, uk−n) = f(2uk−1 − uk−2, uk−n) +

m2∑
j=1

ω̃k,j(f(uj , uk−n)− f(u0, uk−n)).

Then the modified fully discrete scheme for equation (1.1) in weak formulation is as

follows: find {ukN}Mk=1 ∈ P0
N , such that

(Dα
τ u

k
N , vN ) + ν(∂xu

k
N , ∂xvN )

= (f(2uk−1 − uk−2, uk−n), vN ) + (g, vN )− τ−α
m1∑
j=1

ωk,j(u
j − u0, vN )

+

m2∑
j=1

ω̃k,j(f(uj , uk−n)− f(u0, uk−n), vN ), ∀ vN ∈ P0
N

(4.2)

with ukN = π1,0
N ϕk, −n ≤ k ≤ 0.

The modified scheme (4.2) is exact for low regularity terms tσr , 1 ≤ r ≤ m by adding

correction terms, therefore, it has higher accuracy in temporal discretization than scheme

(3.1) for the equation with nonsmooth solutions.

5. Numerical experiment

In this section, we present some numerical examples to support the theoretical analysis.

5.1. The implementation of the schemes

As with [17], we also evaluate integrals using numerical quadratures. More precisely, we

choose Legendre-Gauss-Lobatto integration formulas. Let {xj , ωj}Nj=0 be Legendre-Gauss-

Lobatto quadrature nodes and weights, namely, {xj}Nj=0 are the zeros of (1 − x2)L′N (x)
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and weights are expressed as

ωj =
2

N(N + 1)

1

L2
N (xj)

, 0 ≤ j ≤ N,

where LN (x) stands for Legendre polynomial with degree N . Then the discrete inner

product relative to Legendre-Gauss-Lobatto quadrature is defined as follows:

(5.1) (u, v)N =
N∑
j=0

u(xj)v(xj)ωj .

With the above quadrature nodes and weights, it holds∫ 1

−1
p(x) dx =

N∑
j=0

p(xj)ωj , ∀ p ∈ P2N−1.

Denoting by {hj}Nj=0 Lagrange basis polynomials associated with Legendre-Gauss-Lobatto

points {xj}Nj=0, we have

hj(xi) = δij , ∀ i, j ∈ {0, 1, . . . , N},

where δij denotes the Kronecker-delta function. Then expanding ukN in terms of the

Lagrange basis polynomials

ukN (x) =
N∑
j=0

ûkjhj(x)

with ûkj = ukN (xj), unknowns of discrete solution.

As ukN (±1) = 0, we choose vN = hi(x), i = 1, 2, . . . , N −1. We rewrite scheme (3.1) as

(5.2)

N−1∑
j=1

(hj , hi)N û
k
j + γν

N−1∑
j=1

(∂xhj , ∂xhi)N û
k
j = F kN (hi), 1 ≤ i ≤ N − 1,

where

F kN (hi) = γ(f(2uk−1
N − uk−2

N , uk−nN ), hi)N + γ(gk, hi)N

+

k−2∑
j=0

(a
(α)
j − a

(α)
j+1)(uk−j−1

N , hi)N + a
(α)
k−1(u0

N , hi)N

with γ = ταΓ(2− α).

Similarly, the modified scheme (4.2) can be written as

(5.3)

N−1∑
j=1

(hj , hi)N û
k
j + γν

N−1∑
j=1

(∂xhj , ∂xhi)N û
k
j = F̃ kN (hi), 1 ≤ i ≤ N − 1,
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where

F̃ kN (hi) = γ(f(2uk−1
N − uk−2

N , uk−nN ), hi)N + γ(gk, hi)N

+

k−2∑
j=0

(a
(α)
j − a

(α)
j+1)(uk−j−1

N , hi)N + a
(α)
k−1(u0

N , hi)N

+ γ

m2∑
j=1

ω̃k,j(f(uj , uk−n)− f(u0, uk−n), hi)N − Γ(2− α)

m1∑
j=1

ωk,j(u
j − u0, hi)N .

Moreover, according to (5.1), it holds

(hj , hi)N =
N∑
l=0

hj(xl)hi(xl)ωl = ωiδij , (∂xhj , ∂xhi)N =

N∑
l=0

∂xhj(xl)∂xhi(xl)ωl.

Then one can obtain system of linear equations for (5.2) and (5.3) in the following,

ûki ωi + γν

N−1∑
j=1

N∑
l=0

∂xhj(xl)∂xhi(xl)ωlû
k
j = F kN (hi), 1 ≤ i ≤ N − 1,(5.4)

ûki ωi + γν
N−1∑
j=1

N∑
l=0

∂xhj(xl)∂xhi(xl)ωlû
k
j = F̃ kN (hi), 1 ≤ i ≤ N − 1,(5.5)

where the nonlinear terms F kN (hi) and F̃ kN (hi) on the right-hand side can be computed by

(f(2uk−1
N − uk−2

N , uk−nN ), hi)N =
N∑
l=0

f(2uk−1
N (xl)− uk−2

N (xl), u
k−n
N (xl))hi(xl)ωl

=

N∑
l=0

f(2ûk−1
l − ûk−2

l , ûk−nl )hi(xl)ωl

= f(2ûk−1
i − ûk−2

i , ûk−ni )ωi,

and
∑m2

j=1 ω̃k,j(f(uj , uk−n)− f(u0, uk−n), hi)N can be obtained analogously.

5.2. Numerical results

We now present some numerical examples to support theoretical analysis. First, we con-

sider the fractional Hutchinson’s equation with smooth solution and describe convergence

rates in temporal and spatial directions.

Example 5.1. We consider the following fractional Hutchinson’s equation
C
0D

α
t u(x, t)− ∂2xu(x, t) = u(x, t)(1− u(x, t− 0.1)) + g(x, t) (x, t) ∈ (−1, 1)× (0, T ],

u(−1, t) = 0, u(1, t) = 0 t ∈ [0, T ],

u(x, t) = t2+α sin(πx) (x, t) ∈ (−1, 1)× [−0.1, 0],
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where

g(x, t) =
Γ(3 + α)

2
t2 sin(πx) + π2t2+α sin(πx)− t2+α sin(πx)(1− (t− 0.1)2+α sin(πx)).

The exact solution is u(x, t) = t2+α sin(πx).

We first investigate the temporal accuracy by choosing N big enough to eliminate

spatial error. Taking T = 1 and N = 15, Table 5.1 shows the discrete L2 errors ‖uk−ukN‖N
and L∞ errors ‖uk − ukN‖∞,N and the associated temporal convergence rates for different

α, where the convergence rate is computed by logτ1/τ2(e1/e2).

τ
α = 0.01 α = 0.99 α = 0.01 α = 0.99

L2 Error Rate L2 Error Rate L∞ Error Rate L∞ Error Rate

0.1/22 3.9936e-04 1.9983 6.7679e-03 0.9600 4.5884e-04 1.9984 7.4645e-03 0.9429

0.1/23 9.9958e-05 1.9997 3.4792e-03 0.9851 1.1484e-04 1.9998 3.8829e-03 0.9773

0.1/24 2.4994e-05 2.0002 1.7577e-03 0.9975 2.8713e-05 2.0002 1.9722e-03 0.9938

0.1/25 6.2478e-06 2.0005 8.8037e-04 1.0037 7.1771e-06 2.0005 9.9033e-04 1.0019

0.1/26 1.5675e-06 2.0012 4.3905e-04 1.0068 1.7936e-06 2.0012 4.9450e-04 1.0059

0.1/27 3.9003e-07 * 2.1848e-04 * 4.4804e-07 * 2.4623e-04 *

Table 5.1: Errors and temporal convergence rates for Example 5.1.

From Table 5.1, (2−α)-order temporal accuracy has been obtained for L2 error, which

is consistent with theoretical analysis. In addition, L∞ error can also attain (2−α)-order

temporal accuracy.

Next, we present spatial convergence rate by choosing τ sufficiently small to avoid the

contamination of the temporal error. Taking T = 1 and τ = 0.001, Figure 5.1 plots the

L2 errors and L∞ errors in semi-log scale with respect to the polynomial degree N for

α = 0.2. Analogously, Figure 5.2 shows the errors for α = 0.8 with τ = 0.0001.

4 6 8 10 12 14 16 18
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

er
ro

r

 

 
L2 error
maximum error

Figure 5.1: Errors as a function of the polynomial degree N for α = 0.2.
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Figure 5.2: Errors as a function of the polynomial degree N for α = 0.8.

In Figures 5.1 and 5.2, the L2 errors and L∞ errors decay exponentially, that is to say,

we obtain spectral accuracy in spatial direction for smooth solution.

Since the spectral method depends on the regularity of the solution, we investigate

the equation with limit regularity solution and present the spatial accuracy in following

example.

Example 5.2. We consider the following equation
C
0D

α
t u(x, t)− ν∂2xu(x, t) = −u2(x, t) + u(x, t− 0.2) + g(x, t) (x, t) ∈ (−1, 1)× (0, T ],

u(−1, t) = 0, u(1, t) = 0 t ∈ [0, T ],

u(x, t) = t2(1− x2)x13/3 (x, t) ∈ (−1, 1)× [−0.2, 0],

where

g(x, t) =
2

Γ(3− α)
t2−α − νt2

(
130

9
x7/3 − 304

9
x13/3

)
+ t4(1− x2)2x26/3

− (t− 0.2)2(1− x2)x13/3.

The exact solution is u(x, t) = t2(1− x2)x13/3.
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Figure 5.3: Errors as a function of the polynomial degree N for α = 0.1.
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It is easily seen that u ∈ H4(Λ), but u /∈ H5(Λ). Taking T = 1 and τ = 0.001,

Figures 5.3 and 5.4 present the L2 errors and L∞ errors with respect to polynomial degree

N for different α. To make a close comparison, we also plot the decay rates with N−4 and

N−5.
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Figure 5.4: Errors as a function of the polynomial degree N for α = 0.5.

From Figures 5.3 and 5.4, it is obviously observed that both of L2 errors and L∞ errors

decay with a rate between N−4 and N−5, which is accordance with theoretical analysis.

Finally, we investigate the equation with nonsmooth solution and present temporal

convergence rates in following example.

Example 5.3. We consider the following equation
C
0D

α
t u(x, t)− ν∂2xu(x, t) = u(x, t)− (u(x, t− 0.1))2 + g(x, t) (x, t) ∈ (−1, 1)× (0, T ],

u(−1, t) = 0, u(1, t) = 0 t ∈ [0, T ],

u(x, t) = (tα + t3) sin(πx) (x, t) ∈ (−1, 1)× [−0.1, 0],

where

g(x, t) =

(
Γ(1 + α) +

6

Γ(4− α)
t3−α

)
sin(πx) + νπ2(tα + t3) sin(πx)

− (tα + t3) sin(πx) + ((t− 0.1)α + (t− 0.1)3)2(sin(πx))2.

The exact solution is u(x, t) = (tα + t3) sin(πx).

Taking T = 1 and N = 25, Tables 5.2 and 5.3 show the L2 errors and L∞ errors and

associated temporal convergence rates for α = 0.2, which are obtained by solving systems

of linear equations (5.4) and (5.5). More precisely, errors and temporal convergence rates

are obtained by adding correction terms for three cases: m1 = 0, m2 = 0; m1 = 1, m2 = 0

and m1 = 1, m2 = 1. In addition, we also present errors and temporal convergence rates

for α = 0.8 in Table 5.4.
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τ
m1 = 0, m2 = 0 m1 = 1, m2 = 0 m1 = 1, m2 = 1

Error Rate Error Rate Error Rate

0.1/25 1.7830e-05 1.3045 2.4169e-06 0.7092 5.6767e-06 2.1348

0.1/26 7.2186e-06 1.1963 1.4783e-06 0.8721 1.2926e-06 2.1751

0.1/27 3.1502e-06 1.1310 8.0771e-07 1.0617 2.8622e-07 2.2332

0.1/28 1.4384e-06 1.0954 3.8693e-07 1.1512 6.0876e-08 2.3255

0.1/29 6.7319e-07 1.0765 1.7422e-07 1.1933 1.2145e-08 2.4959

0.1/210 3.1921e-07 * 7.6189e-08 * 2.1531e-09 *

Table 5.2: L2 errors and temporal convergence rates for Example 5.3.

τ
m1 = 0, m2 = 0 m1 = 1, m2 = 0 m1 = 1, m2 = 1

Error Rate Error Rate Error Rate

0.1/25 2.2823e-05 1.3098 2.7844e-06 0.8112 7.2587e-06 2.1347

0.1/26 9.2066e-06 1.2023 1.5868e-06 0.7522 1.6529e-06 2.1751

0.1/27 4.0011e-06 1.1363 9.4209e-07 1.0159 3.6600e-07 2.2331

0.1/28 1.8203e-06 1.0994 4.6590e-07 1.1308 7.7847e-08 2.3254

0.1/29 8.4952e-07 1.0796 2.1275e-07 1.1827 1.5532e-08 2.4957

0.1/210 4.0196e-07 * 9.3719e-08 * 2.7539e-09 *

Table 5.3: L∞ errors and temporal convergence rates for Example 5.3.

τ
m1 = 0, m2 = 0 m1 = 1, m2 = 0 m1 = 0, m2 = 0 m1 = 1, m2 = 0

L2 Error Rate L2 Error Rate L∞ Error Rate L∞ Error Rate

0.1/25 2.3242e-04 1.1898 2.5256e-04 1.1811 2.8366e-04 1.1911 3.1183e-04 1.1810

0.1/26 1.0189e-04 1.1997 1.1138e-04 1.1891 1.2423e-04 1.2014 1.3753e-04 1.1890

0.1/27 4.4359e-05 1.2062 4.8848e-05 1.1937 5.4022e-05 1.2084 6.0371e-05 1.1937

0.1/28 1.9226e-05 1.2110 2.1355e-05 1.1964 2.3378e-05 1.2137 2.6371e-05 1.1963

0.1/29 8.3501e-06 1.2148 9.3185e-06 1.1979 1.0080e-05 1.2182 1.1508e-05 1.1979

0.1/210 3.5780e-06 * 4.0620e-06 * 4.3323e-06 * 5.0165e-06 *

Table 5.4: Errors and temporal convergence rates for Example 5.3.

From Table 5.2, it is obviously seen that L2 errors do not attain (2−α)-order temporal

accuracy for smaller fractional order α by solving systems of linear equations (5.4), which

is caused by low the regularity of solution. After adding one correction term, namely, we

correct L1 formulation by (4.1), the temporal convergence rates do not improve, but the
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errors become smaller. Then continuing to add one correction term for nonlinear term,

the temporal convergence rates are really improved. It also demonstrates that we can

obtain better accuracy for low regularity solution only by adding a few correction terms.

In addition, similar results have been obtained for L∞ errors in Table 5.3.

It is observed that the accuracy almost does not improve for α = 0.8 in Table 5.4. It is

because that the solution has higher regularity and the temporal accuracy is lower for big

α. According to above numerical results, it can be seen that adding suitable correction

terms not only makes the new approximations exact for low regularity terms of solutions

but also maintains accuracy for high regularity terms.

The numerical results are in accordance with theoretical analysis. We obtain (2− α)-

order temporal accuracy and spectral accuracy in space for smooth solution. For the

solution with limited regularity, algebra accuracy in space has been obtained. By adding

a few correction terms to the approximations of fractional derivative and nonlinear term for

the problem with nonsmooth solutions, the temporal accuracy can be improved for small

α, and it can also maintains accuracy for high regularity terms. It should be pointed that

only modifying the L1 formulation can not attain the desired accuracy for small α, the

nonlinear term also need to be modified.

6. Conclusion

We have constructed finite difference/spectral scheme for nonlinear fractional delay diffu-

sion equation with smooth solutions. It has been proved that the scheme is unconditionally

stable and convergent with order O(τ2−α+N−m). For the problems with nonsmooth solu-

tions, we add a few correction terms to the approach of fractional derivative and nonlinear

term, which not only makes the new approximations exact for low regularity terms of

solutions but also maintains accuracy for high regularity terms. Numerical examples have

been presented to confirm our theoretical results.

It should be pointed that the schemes constructed in this paper for smooth and non-

smooth solutions can be extended to solve the fractional multidelay equations, where

nonlinear term f(u(x, t), u(x, t− s)) is replaced by f(u(x, t), u(x, t− s1), . . . , u(x, t− sl)).
Similarly, the unconditional stability and convergence will be obtained.
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