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A Note on Number Knots and the Splitting of the Hilbert Class Field
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Abstract. Several number knots are defined including the five knots introduced by

W. Jehne. The question of the splitting of the group extension of the Hilbert class
field can be read off in terms of the triviality of these knots.

1. Introduction

Let K be a number field. We embed K* into the idele gro this gives rise to
the exact sequence %

1—K* —Jgx —C 1

where Ck is the idele class group of K. The ker f the @nonical map Jxg — I of the

idele group onto the group of fractional ideals i§the it idele group Uy, giving rise to

another exact sequence

1—U JE — Ix — 1.
We also have the exact sequen&
1

— I — Clg — 1

Ej < KX Py
I
UK c JK IK
L
Ek < Ck Clg

where E is the global unit group and £k is the idele unit class group.
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For a Galois extension K/k of number fields with Galois group G = Gal(K/k) and
relative norm N = N/, Jehne, in a seminal paper [12], applied the snake lemma to the

following commutative diagram of certain abelian groups attached to number fields
Ak < Bk Ck
oo
Ay, By, Ck

and obtained the exact sequence

1 —— NAk NBk NCk j
4
Ak/NAK E— Bk/NBK E— Ck/N 1.
The image of the connecting homomorphism § is A NN, k=¥ |A, B], and he calls

[A, B] the knot associated to the exact sequence

If one splits up the exact sequence at § an two short exact sequences involving the
knot [A, B:
1—>NAK NC}(—)[A,B} —)1,
and
1—>[A,B k/ K—)Bk/NBKHCk/NCK—)l.
The exact sequences f ental square thus give rise to six knots (cf. [12, p. 220]):
Uk, k] =1

wg/k = |[Ex, K*| = By N NK* /NEg first unit knot,

w}{/k = [Ex,Uk]| = ExNNUg/NEg second unit knot,

Vi = [K*, Ix] = k* N NJg /NK* Scholz’s number knot,

Or/k = [Pk, Ix] = P N NI /N Pk divisor knot,

Vi = €k, Crk]| =& NNCg/NEK idele class knot.

The vanishing of the knot [Ug, Jx] of the idele units in the ideles reduces to the following
statement:
Uo N Nic i, K¢ = Nicy i, Ut

for ¢/p in K/k. If p is a finite place, for & = 7" - u (u € Uy, 7 a prime element for /),
the condition N, /i (o) = 7'(‘5”170 - Nic i, (1) € Uy, (o € Uy, mo a prime element for o)
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induces that n = 0; so a € Uy. If p is archimedian, we may assume that g is real and ¢ is
complex, and so both sides are the group of positive real numbers.
By the functorial properties of number knots, Jehne also proved the following funda-

mental knot sequence

(1.1) WKk w}qk VK /k Ok /k — VK /k>

which extends the Scholz’s knot sequence

(1.2) Wk VKK 0% 1k

where w?{/k = W/K/k/wK/k and 6?{/k: = Im(vg/, — k1) are the Scholz’s unit knot and
Scholz’s divisor knot, respectively.

Recall that an extension of number fields K /k satisfies the 14 @ Principle if any
element of £* that is a norm everywhere locally is a global gg#fmgro . The Hasse Norm

Principle holds for the extension K/k if and only if Scjglz Nu r knot vy is trivial.

Hasse [7] has shown that vk, = 1 for cyclic extensi , ai®l Scholz introduced knots
in order to study the validity of Hasse Norm Pgnciple in Won-cyclic cases. It is known
that the Hasse Norm Principle holds for K /k inQach gff the following cases:

(1) there is a prime @ of k such that [4, §11.4]);

(2) the least common multiple egrees [Ky : k| equals [K : k| (cf. [12]).

Moreover, Scholz’s number t ca® also be related to the Schur multiplier H?(G,
Q/Z) of the Galois grou

The knots define e interpreted in terms of Galois groups of certain sub-
fields in the Hilber Hp of K 12, Theorem 3]: The abelian genus field Hy of

K over k is the maxim®unramified abelian extension of K that is of the form FK where

E is an abelian extension of k. The central class field Hy of K over k is the maximal
unramified extension of K such that Hj; is Galois over k and Gal(Hj,/K) is contained in
the center of Gal(Hj}./k). Obviously, we have Hj. C Hj, C Hg. For original definition,
see |12, p. 228]. Then, we have

O = Gal(Hy /Hy), Oxyp =~ Gal(Hy /HpK) and g =~ Gal(Hy /HpK).

The field tower of Galois extensions Hx /K /k defines a group extension with abelian

kernel and factor set a:
(1.3) a1l — Gal(Hg/K) — Gal(Hg /k) — G — 1.

By class field theory, the abelian kernel is isomorphic to the ideal class group Clg of K
via the Artin map: Gal(Hg/K) ~ Clg. By the theorem of Weil and Shafarevich, the
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two-cohomology class [a] is the image of the fundamental class u = ug/, of K/k under

the natural map

HQ(G, CK) — H2(G, CIK)

(1.4)
[u] — [a]

induced by the map Cx — Clg. It is a well-known fact that H?(G,C) is isomorphic to
the cyclic group generated by w.

The question of the splitting of the group extension (L.3)), or equivalently, of the
triviality of the map has been studied by several authors. Herz [10] has originally
believed that the group extension always splits for £ = Q. Wyman [20] showed that

this is true provided that the Galois group G is cyclic; however, N counter-example

in the abelian case. In the same paper, Wyman also gave condition for the

splitting of (|1.3]) which involves a certain cohomological kn d, 1M6, Theorem 2|, gave
a simplified proof of Wyman’s result in the cyclic cagl Co nd Rosen [5], provided

another proof of Wyman-Gold’s results and gave ess conditions and examples for
the splitting [5, Proposition 7] which involves §cholzg divisor knot 59( Ik Bond found
necessary and sufficient conditions in so as elian unramified extension K/k
(see |2, Theorem 3.1, Proposition 3.7, agd 3.9]).

@ ompgical knots v, (K/k) for n = —1,0,2 and

vith the above number knots of Scholz and Jehne.

In this note, we introduce furthg
Tk in Section 2] We also relat
sh oinlt out that the splitting of the group extension

)}

Moreover, in Section [3 we
can be read off in t
define a global inerti
states that if the a
to the Galois group its
condition for the splitting of the group extension is H, N K = k (cf. Corollary .

The above corollary of our main theorem generalizes a result of Wyman and Gold [6}20],

triviality of certain cohomological knots. To this end, we
we then prove our main theorem (Theorem [3.8) which
ondition of Wyman holds, the global inertia group equals

Our main theorem yields, for abelian Galois group, a sufficient

which is the preceding statement when G is cyclic.

In the final section, we introduce the group J which can be identified with a subgroup of
Ker(j), where j: Cly — Clg is the extension map of ideals. In a recent paper of Bond [3],
he studies the capitulation problem for arbitrary abelian extensions using cohomological
methods to describe Ker(j) and Coker(j). He investigates the intersection J of the image
of the norm map from Clg to Cl with Ker(j), and shows that if J is trivial then Ker(5) is
isomorphic to the Galois group of L over k where L is the intersection of K with the Hilbert
class field of k. We also provide examples of splitting and of non-splitting of the group
extension which can be read off in terms of the triviality of certain cohomological

knots (cf. Theorem [4.5). Bond’s necessary and sufficient conditions mentioned above



Number Knots and Splitting 287

are direct consequence of a cohomological characterization of finite nilpotent groups, the

Scholz’s knot sequence, and our knots vy and v_j.

2. Number knots of a Galois extension

Let K/k be a Galois extension of number fields with Galois group G = Gal(K/k). Consider

the following fundamental square of G-modules:

EK < K~ PK
UK € JK IK
5}( < CK ClK
Applying Tate cohomology to the second and third lg uegees of the above fun-
damental square, we obtain, for n € Z, the followi mm ive diagram with exact
rows
H"(Ug) —— H"(Jk) H™(Ik)
(2.1)
H"(Ek) ) —— H"(Clg)

where H™(-) is the usual abbr jons the Tate cohomology group H"(G,-). For any
n € Z, we define the followj#s cohoglogical knot

"= Coker(H"(éx) — H"(Ck)).

For places ¢/p o k, let Ty < Gy be the inertia subgroup and the decomposition
group of K/k at ¢/, reSpectively. Let 7G = Hy(G,Z) be the fundamental group of G.
Since Q/Z is an injective abelian group, Ext(H1(G,Z),Q/Z) is trivial and hence, by the
universal coefficient theorem, H?(G,Q/Z) — Hom(H»(G,Z),Q/Z). That is, 7G is the
Pontryagin dual of the Schur multiplier H2(G,Q/Z) of G. If, in addition, the group G is
cyclic, then 7G = NyZ/1GZ is trivial where I is the augmentation ideal.

We now recall a well-known result of Tate |18, p. 198], one part of which has been
discovered by Scholz [14, Satz 3]. See also [12, p. 221].

Theorem 2.1 (Scholz-Tate). The Scholz’s number knot VK /K 8 the cokernel of the map
]_[p7g/p 7Gy — G of the fundamental groups:

vi i ~ Coker H Gy = G
pl/p
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Therefore, the number knot v ;. is a quotient of the Pontryagin dual of Schur multi-
plier H?(G,Q/Z). We define the cohomological knot Tk, to be the cokernel of the map
[T — 7G:

Tk = Coker H ly — 7G
ot/ p
To see the canonical map T/, — Vg i is surjective, we can apply the kernel-cokernel

exact sequence to the pair of maps

Hﬂ'TgL> HWG@L>7TG
oL/ p.t/p

which yields an exact sequence
--- — Ker(g) — Coker(f) — T/ e

The following results are important consequences lob local class field theory

(cf. [13,[15,|18]), and they are fundamental to the gagin reQgts of this paper:

Proposition 2.2. Let K be a finite abelian ext®sion Bver k with Galois group G.

(1) HY(K*) =1 (Hilbert’s Theorem 90).

) = H"(Ck), where u € H*(Ck) is the
. In particular, we have H°(Cx) ~ H2(Z) ~

(2) For any n € Z, the map —
fundamental class, is an g
G (see |18, p. 197]).

(3) For any n € vl (Jx) ~ [[, H"(Go, K) =~ HKDH”_Q(Gg,Z), where
Gy denotes t sition group for an £ | @ and p runs over all places of
k. In particularNge have H(Jk) ~ H@H”(G@,Z) ~ [[,Ge and H'(Jg) =1
(see [18, p. 139 and p. 177]).

(4) U¢ = Uy and H'(Uk) ~ [1,, T, where T, denotes the inertia group for an (| .
(5) Hil(IK) = HI(IK) =1.

By (/1.4) and the bottom line of (2.1)), the splitting of (|1.3]) is equivalent to the triviality
of the cohomological knot vo(K/k):

Theorem 2.3. The group extension (1.3)) splits if and only if
v (K/k) = 1.

Corollary 2.4 (Gold [6]). Suppose that G is cyclic. The splitting of (1.3|) is equivalent
to vy(K/k) = 1.
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Proof. Since G is cyclic, by the two-periodicity of the cohomology of a cyclic group, we

thus have
Vg = COkeI‘(H2(gK) — HQ(CK))
~ Coker(H(£x) — H°(Ck)) =: v,
and the result follows from Theorem [2.3 O

To get necessary conditions for the splitting, we make use of the theorem of Weil-
Shafarevich in class field theory. If vo(K/k) = 1, there exists [§] € H?(Ex) such that
[n] — [u]. Now the functorial property of cup-products (cf. |4, Chapter 4, §7]) with [u],

[n] and [a] induces, for n = 0 and —1, the following commutatiyg

H=2(2)
( 59

H"(Ex) —— H"(Ck)

where the middle vertical map H"~2(Z) — .1 isomorphism by Proposition
From the above commutative dia, a oting that
H" "(Cg) — H"(Clk)

is exact for any n € Z, wefo de the following necessary conditions for the splitting:

Lemma 2.5. For
w(K/k) =v_1(K/k)

group G, the splitting of (L.3)), i.e., vro(K/k) = 1, implies

To describe 1vy(K/k) more explicitly, we recall the following known result of Heider
(see |9} p. 343]):

Lemma 2.6. vo(K/k) = 1 if and only if Ker(j) - N Clg = Clg, where j: Cly — Clg is
the extension map of ideals. Moreover, N Clg = Clg if and only if H, N K = k.

Moreover, if G is cyclic and Hy N K = k, then N Clg = Cl; by Lemma Hence,
we have Ker(j) - N Clg = Ker(j) - Cly = Clg, and so v9(K/k) = 1 by Lemma again.
Therefore, by Corollary we derive the following result proved by Wyman and Gold:

Corollary 2.7 (Wyman-Gold). If G is cyclic, a sufficient condition for the splitting of

([T3) is Hy N K = k.
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To describe v_1 (K /k) and 7 ., we consider our exact and commutative diagram ({2.1)
for n = —1 taking into account the fact that H!(Ix) = 1 (see Proposition [2.2[5)):

I, 7T

Hil(UK) —> Hil(JK) — Hp’iTGg E— Hil(IK) =1

(2.2) l J

Hﬁl(SK) — Hil(CK) G ﬁil(CIK) — 7 VK /k

T F

w’K/k E— VK/k e VK/k —_— (S[( A EE— YK /k
where ﬁ_l(ClK) = yClg /nIk. If we let 5?{//%: be the Schol ot, we can easily

prove the following;:
Lemma 2.8. (1) Let Hj, and H} be the central e&th abelian genus of Hi /| K /k,
H

respectively. We have v_1(K/k) ~ 59(/19 ~ fhal(Hg /HY,).

12

(2) The following assertions are equivale

(a) the map H Y (Uyx) — H isQurjective.

(3) [f TK/k = 1, then Vi

Proof. (1) The diagr

~ O/, We can vie

228 2 fct and commutative by [12, Theorem 1]. Since H~'(Cly)
Q m(Vg /i — Ok /i) as a subgroup of H~'(Clg) and so we have

6?(/k = Im(yK/k, — 5K/k:) ~ Ker(H_l(ClK) — ny/k)
= Im(7G — H1(Clg)) ~ Coker(H Y (Ex) = H Y (Ck)) =: v_1(K/k).

(2) Since H~'(Ix) = 1 by Proposition [2.2(5), the map H ' (Uyx) — H '(Jg) is
surjective. The exact and commutative diagram (2.2)) reveals that Vi/k = 118 equivalent
to the map H ' (Ux) — H~'(Ck) is surjective.

(3) The result is obvious, since 7/, — v/ is surjective. O

Remark 2.9. The referee has remarked that, in Lemma [2.8/(2), the Scholz’s number knot
vk is actually isomorphic to Coker(H ~1(Ux) - H Y(Ck)). This follows by applying

the kernel-cokernel exact sequence to the pair of maps

H '\ (Ug) —Ls H ' (Jx) —2— HY(Ck)
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which yields an exact sequence
- — 1 = Coker(f) — Coker(g o f) — Coker(g) = vg/, — 1.

Lemmas 2.8(1), and the Scholz’s knot sequence ([1.2) yield

Corollary 2.10. If . splits, then 5K/k is trivial, or equivalently, the map w’K/k — VKK
1s surjective by the exactness of - In other words, if (1.3|) splits, then k* N NJg =
(Ek ﬁNUK)NKX (g Jk)

3. Wyman’s sufficient condition for the splitting

We let eg be the least common multiple of all the ramification i 1 or K /k, finite and
infinite. Since each ramification index e, divides [K : k], we gpe W ' divides [K : k| as
well.

A rather strong sufficient arithmetic condition g & n is the following:
Theorem 3.1 (Wyman [20]). For an arbitrary g, if
(3.1)

then the group extenszon 1 3|) split

The original proof of Wym&;}ée n class field theory; later, Gold [6, Theorem 1],

and Cornell and Rosen [5
The splitting of

which can be read

OROSIt1 | gave simplified proofs for Wyman’s result.
ns ghe triviality of vo(K/k) = Coker(H?(Ex) — H*(Ck))

ollowing commutative diagram:

H2(Ug) — H(

| |

K Jr)
HZ(gK) — HQ(CK)

In fact, the splitting is ensured by the surjectivity of the following map g o f:
H2(Ux) —L H2(Jx) —2 H2(Ck).

Hence, to prove Wyman'’s result is to show that the arithmetic condition (3.1)) implies the
surjectivity of g o f.

Remark 3.2. The map g is part of the exact sequence

1 —— HX(K*) —— H2(Jg) —2» H%*(Ck) —>— H3(K*) —— 1,



292 Yih-Jeng Yu

which is induced from the following exact sequence of G-modules
1 —-K* —Jgx —Cxg —1

with H'(Cf) = 1 by global class field theory (cf. [18, Theorem 9.1(2), p. 180]). Thus, this
map g is surjective provided that H3(K*) = 1 which is the case for a cyclic extension K /k,
by the two-periodicity of the cohomology of a cyclic group and by Hilbert’s Theorem 90.

Moreover, g is also surjective if
[K : k] =lem{|Gy| : ¢/p, p a place of k},

where Gy is the decomposition group of K/k at £/p. The proof is based on the fact about
the cohomology of idele groups that H?(G, Ji) ~ [] oH 2(Gy, K[*) and via invariant maps.

See |20} §4].
We now give a proof of Wyman’s result:
Theorem 3.3. The arithmetic condition (3.1)) implies ectgptty of g o f. In other
words, the arithmetic condition (3.1)) implies the sply of Nert class field.

Proof. Since the global invariant map inv: H2(C g — e /7 is an isomorphism (cf. [18,

bottom of p. 196]), it suffices to show that it is pRgsiblefo take, for each place p, the local
factor system u,(G) € H%(G,U,) with inva Wy u,(G)) = % + Z.
First, we have H?(Uy) = I, H?
= H oUy.
o 0€G/Gy

Hence, for ¢/ we have orphism H?(G,Uy) ~ H?(Gy,Uy) by Shapiro’s Lemma.
By Serre [16, p. 167 riction map Cor: H?(T,,Us)) — H?*(Gy,Up) is injec-
tive. Finally, by ults |20, §2, Lemma and Theorem], the map H?(T,,U;) —
H*(T;, K)) is an iso hism and the group H?(1y, Uy) has order e,. Altogether, we

have

¢)

H2(Ty, K)) —=— H*(Ty,Uy)) S5 H2(Gy,Up) —=— H(G,Uy).

Therefore, inv(H?*(G, U,,)) contains e% for all ramified g.
Now the fundamental class u = uy; € H?(C) has invariant

inv(u) = [Klk] +ZeQ/z.

The arithmetic condition (3.1]) implies the solvability in A, € Z of the congruence equation

Ao 1
= mod Z.
% o [K : k]

From this, we show the surjectivity of g o f by taking for each place g the local factor
system u,(G) € H*(G,U,) with invariant inv(u,(G)) = Qf +Z. O
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Using arguments analogous as in the proof of Bemerkung (4) of [8, p. 41], one shows
that the exponent of 7y, divides [K : k]/eg. In particular, the arithmetic condition (3.1
implies the triviality of 7/, hence that of Scholz’s number knot v /5, by Lemma (3)

Corollary 3.4. If the arithmetic condition (3.1)) holds, then T/, = vi, = 1.

However, the splitting of (1.3)) does not necessarily imply TK/k = Vi /k = 1, as we shall

see later.

Remark 3.5. If K/k is a unramified cyclic extension of degree n, Hilbert’s Theorem 94
says that | Ker(j)| is divisible by n, where j: Cliy — Clg is the extension map of ideals.
This result was extended to all unramified abelian extensions by Suzuki [17]. Moreover,
if L = Hy N K, the maximal unramified abelian extension of k in W a cyclic extension
of k, then | Ker(j)| is divisible by n/ey.

In the rest of this section, we will show how far is the t cohomological knot

Tk /i, Telated to the splitting problem. To this end, wil uce the global inertia

group and prove a group theoretic result.

Definition 3.6. For a Galois extension K/k oRgumbr fields with Galois group G, we
define the global inertia group T to be the nerated by all inertia groups Ty of ¢/p
for K/k, i.e.,

W a place of k).

We let T' be the normal sub (G generated by T, that is, T=T- T,G].

5] e el < T <G@.

(2) Let L = H, ell-known that Gal(K/L) is the global inertia group 7.
Moreover, if Gal(K/L®ys cyclic, we have [K : L] = eg. See [20, p. 147].

(3) Suppose that K/k has a totally ramified prime p. Let Ty be the inertia subgroup

Remark 3.7. (1) Obvi

in the extension Hg /k of some prime ¢ lying over p. Note that Ty N Gal(Hg/K) = 1
and Ty - Gal(Hk/K)/ Gal(Hk/K) = G. Hence, Ty is a complement for Gal(Hg/K) in
Gal(Hg /k) and the group extension splits. Moreover, if T' is the inertia subgroup in
K /k of some ramified prime and K7 is the fixed field of T, then the group extension

1 — Gal(Hg/K) — Gal(Hg /KT) — T — 1

splits. Here, the above-mentioned group extension is the restriction of (1.3) to 7". Thus,
each restriction of (1.3)) to an inertia subgroup of G splits.

‘We now state our first main theorem as follows:

Theorem 3.8. (1) Ifeg = [K : k], we have G =T =T.
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(2) For arbitrary Galois group G, the followings are equivalent:
() G=T -G =T-&, where G' =[G, G] is the commutator subgroup of G.
(ii) N Clg = Cl.
(iii) HyNK = k.
Proof. (1) The assumption says that [K : k] = eg = [[,p", hence p"» divides some

e, which is the largest p-power dividing the latter. By the above, we have the Sylow
subgroups Syl,(G) = Syl,(Ty) for £/p/p; thus proves (1):

G = < U Sylp(G)> < < U Sylp(Tg)> <T<T.
p|[K:K]

(K:k p|[K:k]

(2) The equivalence of (ii) and (iii) is well-known (see Le

theory (cf. Proposition [2.2/(2), (3), and (4)), we have compgible
the following commutative diagram
HpTg/TgﬂGZHHpGg/ ’& /G/

(3-2) lﬁ

HO(JK) E— Coker(N: IK — Ik)

| )

gk) E— HO(CK) E— Coker(N: CIK — Clk)

v — Co

It follows from (3.2]) thathe the condition (i) is equivalent to the surjectivity of HO(Ux) —
H°(Jx) by Second Isomorphism Theorem, which is equivalent to the triviality of Coker(N :
Ik — Ij) hence of Coker(N: Clg — Clg), i.e., the condition (ii) N Clg = Cli. O

To apply our theorem to finite solvable groups, we need the following easy result from

group theory.

Lemma 3.9. Let G be a finite solvable group, and H be a subgroup of G. If G = H-G' =
H -G, then we obtain G = H.

Proof. First, we see that H=H- [H,G]. Since G is solvable, the ¢t-th commutator subgroup
G® ig trivial for some ¢ € N. Now, we have G/ = [ﬁ' G H - G < H - G®. Hence, by

induction, we have G < H - GU+D): therefore, we obtain

GV < H,
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and

G<H G<H-G?<..<H.
This proves the assertion. ]

For abelian group G, the two groups T and T coincide. In this case, Theorem and
Lemma (3.9 say that the condition Hp N K = k implies the equality of the Galois group
G of K/k with its global inertia group: G =T = T. For this reason, Wyman’s sufficient
condition for the splitting boils down to Hi N K = k which generalizes the cyclic

case (cf. Corollary [2.7).

Corollary 3.10. If G is abelian, a sufficient condition for the splitting of (1.3|) is Hy N K
= k.

Remark 3.11. The equalities G =T = T does not necessarilyg @;plitting of ,
as we shall see in the following. First, the equalities G €T 1ight not imply the
arithmetic condition (3.1): [K : k] = ep. For example 4t p e two rational primes
congruent to 1 modulo 4, K = Q(,/p,/q), an = Since Q has no unramified
extensions, we have G = T'. There are two ramiffcationgsubgroups, each of order 2. Thus
eo=2#4=[K:k]=|G|

Now, we come to our counter-example: Q(\/P1, /P2, /P3,\/P1) Where p; are
rational primes congruent 1 modulogh k = Q. For this extension, the hypothesis

of Corollary is fulfilled, in N = 0 As before, we have G = T, but the group
extension ((1.3)) does not splif #Inc an show that (5?( Ik # 1, contrary to Lemmas
and 2.6

Problem 3.12. Si N T does not necessarily implies the arithmetic condi-
tion (3.1]), the abov M®n G = T = T might not sufficient for the splitting. What

additional condition to #he condition Hy N K = k will imply the splitting in the abelian

case?

4. Some examples

Various examples of splitting and of non-splitting of the group extension (|1.3) which
appeared in the papers of Cornell and Rosen [5, Proposition 9], and Bond [2, Theorem 3.1,
Propositions 3.7, 3.8, and Corollary 3.9] can be read off in terms of the triviality of certain

number knots and by simple group theoretic arguments.

Example 4.1. Associated to the group extension (1.3) with factor set o and abelian

kernel A := Clg is the central group extension with factor set a*:

(4.1) 1 — AJ[AE] — EJ[AE] — G — 1
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where E = Gal(Hg /k), A/[A, E] ~ Gal(H};/K) and E/[A, E] ~ Gal(H} /k). Note that
is the pushforward of along E — E/[A, E], so that the splitting of (L.3), i.e.,
a = 1, implies that of .

Recall that a central extension is a (non-split) group extension where the base normal
subgroup is contained in the center of the whole group. It is a central stem extension if,
in addition, the base normal subgroup is contained in the derived subgroup of the whole
group. Therefore, a central stem extension never splits. Examples of non-splitting of
now can be supplied. To illustrate this, by assuming K = Hgs, we have A < [E, E], and
thus the extension is a stem extension. So the example of non-splitting in Cornell

and Rosen [5, Proposition 9] is still valid without any assumption on the class number of
K.

To generalize Bond’s examples, we first define a group
J := Coker(H Y(Ckg) - H™!
Remark 4.2. We let j: Cl — Clg be the extensiogmapQy ideals. In [3], Bond shows:

(1) The group J is a subgroup of Ker(j) coRsistin@ of those ideal classes of k that
are in the image of the norm map fr Cl; and that capitulate in K, i.e.,
J = Ker(j) N N Clg. Moreove
Proposition 0.2 and Remark 2§ Sy

= k, we have Ker(j) = J. See also

(2) There exists an unramifjé® aMy
where L = H, N K
J =1, by Rema
also 3, Theo

ian &tension M of k such that Ker(j)/J ~ Gal(L/M),
| is ®ivisible by [M : k] by Suzuki’s Theorem. Hence, if
sy to see that Ker(j) ~ Gal(L/k), that is, M = k. See

Recall that H~'(CI}® = nClg /Ig Clg. The group J fits in into a part of the com-
mutative diagram with exact rows of (2.2]) (cf. [12, Theorem 1]):

HY&x) —— H Y (Ckg) —— H 1 (Clg) —2— J
(4.2) HY&k) —— H Y (Cg) —— H Y (Clg) — vrm

| 5 F |

Wiep, — VK — Ok —* VK/k

where H_I(CIK) = nyClg /NIK ~ 5K/k

Remark 4.3. Let a be the class of the group extension (1.3)). If the group extension (|1.3))
splits, then A is an isomorphism.
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Indeed, letting u € H?(Ck) be the fundamental class, the map H3(Z) — H }(Ck)
defined by z — wU z is an isomorphism by Proposition [2.2(2). We consider the following

commutative diagram:

H2(Cx) ® H3(Z) —— H Y(Ck)

Jsei s

H?(Clg) ® H3(Z) —— H~'(Clg)

We know that g(u) = a. Let 2 € H 1(Ck). Then z = uUx for some z € H~3(Z), and so
h(z) = g(u) Uz = a U z. Since the group extension (1.3 splits, we have o = 1; thus, we

derive that h(z) = 1 Ux and hence A is an isomorphism.

We need the following cohomological characterization of fig otent groups (see
[11,/19]):

Lemma 4.4. A finite group G is nilpotent if and only zuwhMgve is a finite G-module

for which H*(G, M) = 1 for some k, then H"(G, M

or atl n € 7.
Lemma and the diagram (4.2)) above leadus easPy to the following general results:

Theorem 4.5. Let K/k be a ﬁmte Galois with the Scholz’s number knot vy
Suppose that vy, ~ H™ ), Qe Pontryagin dual of the Schur multiplier

of G. Then we have:
(1) The splitting of (1.3 gMnpliesNgat v—1 = 1 and H *(Clg) ~ J. In particular, we

have wK/k ~ VK k-

(2) Suppose that ent. If v_1 =1 and J =1, then (1.3|) splits.

Proof. (1) Suppose that¥he group extension splits. By Lemma we have v_1 =
1 = vp; by Lemma (1), we see that 6 = v_; = 1. Reading off in the diagram {“.2),
this is equivalent to saying that wK/k ~ I/K/k and H~Y(Clg) ~ ~. Hence, H ' (Ex) —
HY(Cg) ~ VK is surjective, and so H ™~ HClg) ~ J.

(2) If J =1, we have H ' (Ckx) - H1(Clg) is surjective. If v_; = 1, the Scholz’s
divisor knot 6° = 1 by Lemma 1); thus, by Scholz’s knot sequence , we see that
w%/k ~ vg ), and hence H ' (€x) — H'(Ck) is also surjective. Reading off in the
diagram (4.2)), these imply that H !(Clk) = 1. Since G is nilpotent, we obtain that
H?(Clg) = 1; thus this map H?(Ck) — H?(Clg) is a trivial map and this is equivalent
to the splitting of . O

Remark 4.6. It should be noticed that if J = 1, then every ideal of k£ which capitulates
in K capitulates in Hy N K. Indeed, if jr/: Cly — Clg is the extension map of ideals,
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where L = Hj N K, then it is easy to see that Ker(j ;) C Ker(j). By Lemma the
norm map Ng,r: Clg — Clg is surjective. Therefore, we have N Clg = Ny, Cl, and
Ker(jr/x) NNy i, Cly, € Ker(j)NN Clg = J. By Remark we have Ker(jy, /1) = Ker(j).

Theorem [4.5] covers the following Bond’s examples:

Example 4.7. Let k be an imaginary quadratic field and K/k be an abelian unramified
extension of odd degree. In the unramified case, all decomposition groups are cyclic, and
NUg = Uy. Thus, the Scholz’s number knot vy, ~ H™1(Ck) ~ H3(Z), and the Scholz’s
unit knot w%/k = ExNNUk/ExNNK* = Ey/ExNNK* =1, since B}, = {1} < NK*,
by assumption on k and the odd degree of K/k. Moreover, in the abelian unramified case,
J can be identified with Ker(j) N N Clg (see [1, Theorem 1]). By Theorem necessary
and sufficient conditions for the splitting of in this case G be cyclic and
J = 1. See also Theorem 3.1 of [2].

Example 4.8. Let k£ be an imaginary quadratic field bgfthe unramified abelian
extension of degree 2!, t > 1. Suppose that —1 is ot Wge norm of a unit of K. Since
the Scholz’s unit knot w® has order 1 or 2, depeffing gn whether or not —1 € NK*, the
splitting of is equivalent to J = 1, and whqQger e Schur multiplier of G has order
1 or 2. The latter is known to be depending her G is cyclic or G =~ Zgt—1 X Zso. So

we have two cases for the splitting:

(1) If G ~ Zgt—1 X Zgy, then plit is equivalent to J = 1 and —1 is not a global

norm from K.

(2) If G is cyclic, t h&gpLghng is equivalent to J = 1.

See also Propositions %, 3.8, and Corollary 3.9 of [2].
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