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Abstract. Several number knots are defined including the five knots introduced by

W. Jehne. The question of the splitting of the group extension of the Hilbert class

field can be read off in terms of the triviality of these knots.

1. Introduction

Let K be a number field. We embed K× into the idele group JK , and this gives rise to

the exact sequence

1 −→ K× −→ JK −→ CK −→ 1,

where CK is the idele class group of K. The kernel of the canonical map JK → IK of the

idele group onto the group of fractional ideals is the unit idele group UK , giving rise to

another exact sequence

1 −→ UK −→ JK −→ IK −→ 1.

We also have the exact sequence

1 −→ PK −→ IK −→ ClK −→ 1

defining the ideal class group ClK as the factor group of the group IK modulo the group

PK of principal ideals. All these three exact sequences fit into a commutative diagram,

called the fundamental square,

EK K× PK

UK JK IK

EK CK ClK

where EK is the global unit group and EK is the idele unit class group.
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For a Galois extension K/k of number fields with Galois group G = Gal(K/k) and

relative norm N = NK/k, Jehne, in a seminal paper [12], applied the snake lemma to the

following commutative diagram of certain abelian groups attached to number fields

AK BK CK

Ak Bk Ck

N N N

and obtained the exact sequence

1 NAK NBK NCK

Ak/NAK Bk/NBK Ck/NCK 1.

δ

The image of the connecting homomorphism δ is Ak ∩NBK/NAK =: [A,B], and he calls

[A,B] the knot associated to the exact sequence

Ak Bk Ck.

If one splits up the exact sequence at δ and gets two short exact sequences involving the

knot [A,B]:

1 −→ NAK −→ NBK −→ NCK −→ [A,B] −→ 1,

and

1 −→ [A,B] −→ Ak/NAK −→ Bk/NBK −→ Ck/NCK −→ 1.

The exact sequences of the fundamental square thus give rise to six knots (cf. [12, p. 220]):

[UK , JK ] = 1

ωK/k := [EK ,K
×] = Ek ∩NK×/NEK first unit knot,

ω′K/k := [EK , UK ] = Ek ∩NUK/NEK second unit knot,

νK/k := [K×, IK ] = k× ∩NJK/NK× Scholz’s number knot,

δK/k := [PK , IK ] = Pk ∩NIK/NPK divisor knot,

γK/k := [EK , CK ] = Ek ∩NCK/NEK idele class knot.

The vanishing of the knot [UK , JK ] of the idele units in the ideles reduces to the following

statement:

U℘ ∩NK`/k℘K
×
` = NK`/k℘U`

for `/℘ in K/k. If ℘ is a finite place, for α = πn · u (u ∈ U℘, π a prime element for `),

the condition NK`/k℘(α) = πfn0 η0 · NK`/k℘(u) ∈ U℘ (η0 ∈ U℘, π0 a prime element for ℘)
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induces that n = 0; so α ∈ U`. If ℘ is archimedian, we may assume that ℘ is real and ` is

complex, and so both sides are the group of positive real numbers.

By the functorial properties of number knots, Jehne also proved the following funda-

mental knot sequence

(1.1) ωK/k ω′K/k νK/k δK/k γK/k,

which extends the Scholz’s knot sequence

(1.2) ω0
K/k νK/k δ0K/k,

where ω0
K/k := ω′K/k

/
ωK/k and δ0K/k := Im(νK/k → δK/k) are the Scholz’s unit knot and

Scholz’s divisor knot, respectively.

Recall that an extension of number fields K/k satisfies the Hasse Norm Principle if any

element of k× that is a norm everywhere locally is a global norm from K. The Hasse Norm

Principle holds for the extension K/k if and only if Scholz’s number knot νK/k is trivial.

Hasse [7] has shown that νK/k = 1 for cyclic extension K/k, and Scholz introduced knots

in order to study the validity of Hasse Norm Principle in non-cyclic cases. It is known

that the Hasse Norm Principle holds for K/k in each of the following cases:

(1) there is a prime ℘ of k such that G℘ = G (cf. [4, §11.4]);

(2) the least common multiple of the local degrees [K` : k℘] equals [K : k] (cf. [12]).

Moreover, Scholz’s number knot νK/k can also be related to the Schur multiplier H2(G,

Q/Z) of the Galois group G.

The knots defined above can be interpreted in terms of Galois groups of certain sub-

fields in the Hilbert class field HK of K [12, Theorem 3]: The abelian genus field H ′K of

K over k is the maximal unramified abelian extension of K that is of the form EK where

E is an abelian extension of k. The central class field H∗K of K over k is the maximal

unramified extension of K such that H∗K is Galois over k and Gal(H∗K/K) is contained in

the center of Gal(H∗K/k). Obviously, we have H ′K ⊆ H∗K ⊆ HK . For original definition,

see [12, p. 228]. Then, we have

δ0K/k ' Gal(H∗K/H
′
K), δK/k ' Gal(H∗K/HkK) and γK/k ' Gal(H ′K/HkK).

The field tower of Galois extensions HK/K/k defines a group extension with abelian

kernel and factor set α:

(1.3) α : 1 −→ Gal(HK/K) −→ Gal(HK/k) −→ G −→ 1.

By class field theory, the abelian kernel is isomorphic to the ideal class group ClK of K

via the Artin map: Gal(HK/K) ' ClK . By the theorem of Weil and Shafarevich, the
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two-cohomology class [α] is the image of the fundamental class u = uK/k of K/k under

the natural map

(1.4)
H2(G,CK) −→ H2(G,ClK)

[u] 7−→ [α]

induced by the map CK → ClK . It is a well-known fact that H2(G,CK) is isomorphic to

the cyclic group generated by u.

The question of the splitting of the group extension (1.3), or equivalently, of the

triviality of the map (1.4) has been studied by several authors. Herz [10] has originally

believed that the group extension (1.3) always splits for k = Q. Wyman [20] showed that

this is true provided that the Galois group G is cyclic; however, he gave a counter-example

in the abelian case. In the same paper, Wyman also gave a sufficient condition for the

splitting of (1.3) which involves a certain cohomological knot. Gold, in [6, Theorem 2], gave

a simplified proof of Wyman’s result in the cyclic case. Cornell and Rosen [5], provided

another proof of Wyman-Gold’s results and gave necessary conditions and examples for

the splitting [5, Proposition 7] which involves Scholz’s divisor knot δ0K/k. Bond found

necessary and sufficient conditions in some cases of abelian unramified extension K/k

(see [2, Theorem 3.1, Proposition 3.7, and Corollary 3.9]).

In this note, we introduce further cohomological knots νn(K/k) for n = −1, 0, 2 and

τK/k in Section 2. We also relate them with the above number knots of Scholz and Jehne.

Moreover, in Section 3, we wish to point out that the splitting of the group extension

(1.3) can be read off in terms of triviality of certain cohomological knots. To this end, we

define a global inertia group, and we then prove our main theorem (Theorem 3.8) which

states that if the arithmetic condition of Wyman holds, the global inertia group equals

to the Galois group itself. Our main theorem yields, for abelian Galois group, a sufficient

condition for the splitting of the group extension (1.3) is Hk ∩K = k (cf. Corollary 3.10).

The above corollary of our main theorem generalizes a result of Wyman and Gold [6,20],

which is the preceding statement when G is cyclic.

In the final section, we introduce the group J which can be identified with a subgroup of

Ker(j), where j : Clk → ClK is the extension map of ideals. In a recent paper of Bond [3],

he studies the capitulation problem for arbitrary abelian extensions using cohomological

methods to describe Ker(j) and Coker(j). He investigates the intersection J of the image

of the norm map from ClK to Clk with Ker(j), and shows that if J is trivial then Ker(j) is

isomorphic to the Galois group of L over k where L is the intersection of K with the Hilbert

class field of k. We also provide examples of splitting and of non-splitting of the group

extension (1.3) which can be read off in terms of the triviality of certain cohomological

knots (cf. Theorem 4.5). Bond’s necessary and sufficient conditions mentioned above
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are direct consequence of a cohomological characterization of finite nilpotent groups, the

Scholz’s knot sequence, and our knots ν0 and v−1.

2. Number knots of a Galois extension

LetK/k be a Galois extension of number fields with Galois groupG = Gal(K/k). Consider

the following fundamental square of G-modules:

EK K× PK

UK JK IK

EK CK ClK

Applying Tate cohomology to the second and third lower sequences of the above fun-

damental square, we obtain, for n ∈ Z, the following commutative diagram with exact

rows

(2.1)

Hn(UK) Hn(JK) Hn(IK)

Hn(EK) Hn(CK) Hn(ClK)

where Hn(·) is the usual abbreviations for the Tate cohomology group Hn(G, · ). For any

n ∈ Z, we define the following cohomological knot

νn(K/k) := Coker(Hn(EK)→ Hn(CK)).

For places `/℘ of K/k, let T` ≤ G` be the inertia subgroup and the decomposition

group of K/k at `/℘, respectively. Let πG = H2(G,Z) be the fundamental group of G.

Since Q/Z is an injective abelian group, Ext(H1(G,Z),Q/Z) is trivial and hence, by the

universal coefficient theorem, H2(G,Q/Z)
'−→ Hom(H2(G,Z),Q/Z). That is, πG is the

Pontryagin dual of the Schur multiplier H2(G,Q/Z) of G. If, in addition, the group G is

cyclic, then πG = NZ/IGZ is trivial where IG is the augmentation ideal.

We now recall a well-known result of Tate [18, p. 198], one part of which has been

discovered by Scholz [14, Satz 3]. See also [12, p. 221].

Theorem 2.1 (Scholz-Tate). The Scholz’s number knot νK/k is the cokernel of the map∐
℘,`/℘ πG` → πG of the fundamental groups:

νK/k ' Coker

∐
℘,`/℘

πG` → πG

 .
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Therefore, the number knot νK/k is a quotient of the Pontryagin dual of Schur multi-

plier H2(G,Q/Z). We define the cohomological knot τK/k to be the cokernel of the map∐
℘,`/℘ πT` → πG:

τK/k := Coker

∐
℘,`/℘

πT` → πG

 .

To see the canonical map τK/k → νK/k is surjective, we can apply the kernel-cokernel

exact sequence to the pair of maps∐
℘,`/℘

πT`
∐
℘,`/℘

πG` πG
f g

which yields an exact sequence

· · · −→ Ker(g) −→ Coker(f) −→ τK/k −→ νK/k −→ 1.

The following results are important consequences of global and local class field theory

(cf. [13, 15,18]), and they are fundamental to the main results of this paper:

Proposition 2.2. Let K be a finite abelian extension over k with Galois group G.

(1) H1(K×) = 1 (Hilbert’s Theorem 90).

(2) For any n ∈ Z, the map − ∪ u : Hn−2(Z) → Hn(CK), where u ∈ H2(CK) is the

fundamental class, is an isomorphism. In particular, we have H0(CK) ' H−2(Z) '
G (see [18, p. 197]).

(3) For any n ∈ Z, we have Hn(JK) '
∐
℘H

n(G`,K
×
℘ ) '

∐
℘H

n−2(G`,Z), where

G` denotes the decomposition group for an ` | ℘ and ℘ runs over all places of

k. In particular, we have H0(JK) '
∐
℘H

−2(G`,Z) '
∐
℘G` and H1(JK) = 1

(see [18, p. 139 and p. 177]).

(4) UGK = Uk and H0(UK) '
∐
℘ T`, where T` denotes the inertia group for an ` | ℘.

(5) H−1(IK) = H1(IK) = 1.

By (1.4) and the bottom line of (2.1), the splitting of (1.3) is equivalent to the triviality

of the cohomological knot ν2(K/k):

Theorem 2.3. The group extension (1.3) splits if and only if

ν2(K/k) = 1.

Corollary 2.4 (Gold [6]). Suppose that G is cyclic. The splitting of (1.3) is equivalent

to ν0(K/k) = 1.
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Proof. Since G is cyclic, by the two-periodicity of the cohomology of a cyclic group, we

thus have

ν2 := Coker(H2(EK)→ H2(CK))

' Coker(H0(EK)→ H0(CK)) =: ν0,

and the result follows from Theorem 2.3.

To get necessary conditions for the splitting, we make use of the theorem of Weil-

Shafarevich in class field theory. If ν2(K/k) = 1, there exists [η] ∈ H2(EK) such that

[η] 7→ [u]. Now the functorial property of cup-products (cf. [4, Chapter 4, §7]) with [u],

[η] and [α] induces, for n = 0 and −1, the following commutative diagram

Hn−2(Z)

Hn(EK) Hn(CK) Hn(ClK)

∪[α]
∪[u]

∪[η]

where the middle vertical map Hn−2(Z)→ Hn(CK) is an isomorphism by Proposition 2.2.

From the above commutative diagram and noting that

Hn(EK) −→ Hn(CK) −→ Hn(ClK)

is exact for any n ∈ Z, we conclude the following necessary conditions for the splitting:

Lemma 2.5. For arbitrary group G, the splitting of (1.3), i.e., ν2(K/k) = 1, implies

ν0(K/k) = ν−1(K/k) = 1.

To describe ν0(K/k) more explicitly, we recall the following known result of Heider

(see [9, p. 343]):

Lemma 2.6. ν0(K/k) = 1 if and only if Ker(j) · N ClK = Clk, where j : Clk → ClK is

the extension map of ideals. Moreover, N ClK = Clk if and only if Hk ∩K = k.

Moreover, if G is cyclic and Hk ∩K = k, then N ClK = Clk by Lemma 2.6. Hence,

we have Ker(j) · N ClK = Ker(j) · Clk = Clk, and so ν0(K/k) = 1 by Lemma 2.6 again.

Therefore, by Corollary 2.5, we derive the following result proved by Wyman and Gold:

Corollary 2.7 (Wyman-Gold). If G is cyclic, a sufficient condition for the splitting of

(1.3) is Hk ∩K = k.
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To describe ν−1(K/k) and τK/k, we consider our exact and commutative diagram (2.1)

for n = −1 taking into account the fact that H−1(IK) = 1 (see Proposition 2.2(5)):

(2.2)

∐
℘ πT`

H−1(UK) H−1(JK)
∐
℘ πG` H−1(IK) = 1

H−1(EK) H−1(CK) πG Ȟ−1(ClK) γK/k

ω′K/k νK/k νK/k δK/k γK/k

'

'

' =

=

where Ȟ−1(ClK) = N ClK /NIK . If we let δ0K/k be the Scholz’s divisor knot, we can easily

prove the following:

Lemma 2.8. (1) Let H∗K and H ′K be the central genus and the abelian genus of HK/K/k,

respectively. We have ν−1(K/k) ' δ0K/k ' Gal(H∗K/H
′
K).

(2) The following assertions are equivalent:

(a) the map H−1(UK)→ H−1(CK) is surjective.

(b) νK/k = 1.

(3) If τK/k = 1, then νK/k = 1.

Proof. (1) The diagram (2.2) is exact and commutative by [12, Theorem 1]. Since Ȟ−1(ClK)

' δK/k, we can view δ0K/k := Im(νK/k → δK/k) as a subgroup of Ȟ−1(ClK) and so we have

δ0K/k := Im(νK/k → δK/k) ' Ker(Ȟ−1(ClK)→ γK/k)

= Im(πG→ Ȟ−1(ClK)) ' Coker(H−1(EK)→ H−1(CK)) =: ν−1(K/k).

(2) Since H−1(IK) = 1 by Proposition 2.2(5), the map H−1(UK) → H−1(JK) is

surjective. The exact and commutative diagram (2.2) reveals that νK/k = 1 is equivalent

to the map H−1(UK)→ H−1(CK) is surjective.

(3) The result is obvious, since τK/k → νK/k is surjective.

Remark 2.9. The referee has remarked that, in Lemma 2.8(2), the Scholz’s number knot

νK/k is actually isomorphic to Coker(H−1(UK) → H−1(CK)). This follows by applying

the kernel-cokernel exact sequence to the pair of maps

H−1(UK) H−1(JK) H−1(CK)
f g
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which yields an exact sequence

· · · −→ 1 = Coker(f) −→ Coker(g ◦ f) −→ Coker(g) = νK/k −→ 1.

Lemmas 2.5, 2.8(1), and the Scholz’s knot sequence (1.2) yield

Corollary 2.10. If (1.3) splits, then δ0K/k is trivial, or equivalently, the map ω′K/k → νK/k

is surjective by the exactness of (1.1). In other words, if (1.3) splits, then k× ∩NJK =

(Ek ∩NUK)NK× (⊆ Jk).

3. Wyman’s sufficient condition for the splitting

We let e0 be the least common multiple of all the ramification indices for K/k, finite and

infinite. Since each ramification index e℘ divides [K : k], we see that e0 divides [K : k] as

well.

A rather strong sufficient arithmetic condition given by Wyman is the following:

Theorem 3.1 (Wyman [20]). For an arbitrary G, if

(3.1) e0 = [K : k],

then the group extension (1.3) splits.

The original proof of Wyman is based on class field theory; later, Gold [6, Theorem 1],

and Cornell and Rosen [5, Proposition 5] gave simplified proofs for Wyman’s result.

The splitting of (1.3) means the triviality of ν2(K/k) = Coker(H2(EK) → H2(CK))

which can be read off from the following commutative diagram:

H2(UK) H2(JK)

H2(EK) H2(CK)

In fact, the splitting is ensured by the surjectivity of the following map g ◦ f :

H2(UK) H2(JK) H2(CK).
f g

Hence, to prove Wyman’s result is to show that the arithmetic condition (3.1) implies the

surjectivity of g ◦ f .

Remark 3.2. The map g is part of the exact sequence

1 H2(K×) H2(JK) H2(CK) H3(K×) 1,
g δ
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which is induced from the following exact sequence of G-modules

1 −→ K× −→ JK −→ CK −→ 1

with H1(CK) = 1 by global class field theory (cf. [18, Theorem 9.1(2), p. 180]). Thus, this

map g is surjective provided that H3(K×) = 1 which is the case for a cyclic extension K/k,

by the two-periodicity of the cohomology of a cyclic group and by Hilbert’s Theorem 90.

Moreover, g is also surjective if

[K : k] = lcm{|G`| : `/℘, ℘ a place of k},

where G` is the decomposition group of K/k at `/℘. The proof is based on the fact about

the cohomology of idele groups that H2(G, JK) '
∏
℘H

2(G`,K
×
` ) and via invariant maps.

See [20, §4].

We now give a proof of Wyman’s result:

Theorem 3.3. The arithmetic condition (3.1) implies the surjectivity of g ◦ f . In other

words, the arithmetic condition (3.1) implies the splitting of Hilbert class field.

Proof. Since the global invariant map inv : H2(CK)→ 1
[K:k]Z/Z is an isomorphism (cf. [18,

bottom of p. 196]), it suffices to show that it is possible to take, for each place ℘, the local

factor system u℘(G) ∈ H2(G,U℘) with invariant inv(u℘(G)) =
λ℘
e℘

+ Z.

First, we have H2(UK) =
∏
℘H

2(G,U℘), where

U℘ =
∏
`/℘

U` =
∏

σ∈G/G`

σU`.

Hence, for `/℘ we have the isomorphism H2(G,U`) ' H2(G`, U`) by Shapiro’s Lemma.

By Serre [16, p. 167], the corestriction map Cor : H2(T`, U`) → H2(G`, U`) is injec-

tive. Finally, by Wyman’s results [20, §2, Lemma and Theorem], the map H2(T`, U`) →
H2(T`,K

×
` ) is an isomorphism and the group H2(T`, U`) has order e℘. Altogether, we

have

H2(T`,K
×
` ) H2(T`, U`) H2(G`, U`) H2(G,U`).

' Cor '

Therefore, inv(H2(G,U℘)) contains 1
e℘

for all ramified ℘.

Now the fundamental class u = uK/k ∈ H2(CK) has invariant

inv(u) =
1

[K : k]
+ Z ∈ Q/Z.

The arithmetic condition (3.1) implies the solvability in λ℘ ∈ Z of the congruence equation∑
℘

λ℘
e℘
≡ 1

[K : k]
mod Z.

From this, we show the surjectivity of g ◦ f by taking for each place ℘ the local factor

system u℘(G) ∈ H2(G,U℘) with invariant inv(u℘(G)) =
λ℘
e℘

+ Z.
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Using arguments analogous as in the proof of Bemerkung (4) of [8, p. 41], one shows

that the exponent of τK/k divides [K : k]/e0. In particular, the arithmetic condition (3.1)

implies the triviality of τK/k hence that of Scholz’s number knot νK/k by Lemma 2.8(3).

Corollary 3.4. If the arithmetic condition (3.1) holds, then τK/k = νK/k = 1.

However, the splitting of (1.3) does not necessarily imply τK/k = νK/k = 1, as we shall

see later.

Remark 3.5. If K/k is a unramified cyclic extension of degree n, Hilbert’s Theorem 94

says that |Ker(j)| is divisible by n, where j : Clk → ClK is the extension map of ideals.

This result was extended to all unramified abelian extensions by Suzuki [17]. Moreover,

if L = Hk ∩K, the maximal unramified abelian extension of k in K, is a cyclic extension

of k, then |Ker(j)| is divisible by n/e0.

In the rest of this section, we will show how far is the triviality the cohomological knot

τK/k related to the splitting problem. To this end, we will introduce the global inertia

group and prove a group theoretic result.

Definition 3.6. For a Galois extension K/k of number fields with Galois group G, we

define the global inertia group T to be the group generated by all inertia groups T` of `/℘

for K/k, i.e.,

T := 〈T` : `/℘, ℘ a place of k〉.

We let T̃ be the normal subgroup of G generated by T , that is, T̃ = T · [T,G].

Remark 3.7. (1) Obviously, we have T ≤ T̃ ≤ G.

(2) Let L = Hk ∩ K. It is well-known that Gal(K/L) is the global inertia group T .

Moreover, if Gal(K/L) is cyclic, we have [K : L] = e0. See [20, p. 147].

(3) Suppose that K/k has a totally ramified prime ℘. Let T` be the inertia subgroup

in the extension HK/k of some prime ` lying over ℘. Note that T` ∩ Gal(HK/K) = 1

and T` · Gal(HK/K)/Gal(HK/K) = G. Hence, T` is a complement for Gal(HK/K) in

Gal(HK/k) and the group extension (1.3) splits. Moreover, if T is the inertia subgroup in

K/k of some ramified prime and KT is the fixed field of T , then the group extension

1 −→ Gal(HK/K) −→ Gal(HK/K
T ) −→ T −→ 1

splits. Here, the above-mentioned group extension is the restriction of (1.3) to T . Thus,

each restriction of (1.3) to an inertia subgroup of G splits.

We now state our first main theorem as follows:

Theorem 3.8. (1) If e0 = [K : k], we have G = T̃ = T .
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(2) For arbitrary Galois group G, the followings are equivalent:

(i) G = T̃ ·G′ = T ·G′, where G′ = [G,G] is the commutator subgroup of G.

(ii) N ClK = Clk.

(iii) Hk ∩K = k.

Proof. (1) The assumption says that [K : k] = e0 =
∏
p p

np , hence pnp divides some

e℘ which is the largest p-power dividing the latter. By the above, we have the Sylow

subgroups Sylp(G) = Sylp(T`) for `/℘/p; thus proves (1):

G =

〈 ⋃
p|[K:k]

Sylp(G)

〉
≤

〈 ⋃
p|[K:k]

Sylp(T`)

〉
≤ T ≤ T̃ .

(2) The equivalence of (ii) and (iii) is well-known (see Lemma 2.6). By class field

theory (cf. Proposition 2.2(2), (3), and (4)), we have compatible isomorphisms inducing

the following commutative diagram

(3.2)

∏
℘ T`

/
T` ∩G′`

∏
℘G`/G

′
` G/G′

H0(UK) H0(JK) H0(CK).

' ' '

Note that the rows of (3.2) are not exact. Now, we consider the two bottom exact

sequences of the diagram (1.6∗) of [12, p. 221]:

H0(UK) H0(JK) Coker(N : IK → Ik)

γ Coker(N : EK → Ek) H0(CK) Coker(N : ClK → Clk).

It follows from (3.2) that the the condition (i) is equivalent to the surjectivity of H0(UK)→
H0(JK) by Second Isomorphism Theorem, which is equivalent to the triviality of Coker(N :

IK → Ik) hence of Coker(N : ClK → Clk), i.e., the condition (ii) N ClK = Clk.

To apply our theorem to finite solvable groups, we need the following easy result from

group theory.

Lemma 3.9. Let G be a finite solvable group, and H be a subgroup of G. If G = H̃ ·G′ =
H ·G′, then we obtain G = H̃.

Proof. First, we see that H̃ = H ·[H,G]. SinceG is solvable, the t-th commutator subgroup

G(t) is trivial for some t ∈ N. Now, we have G′ = [H̃ · G′, H̃ · G′] ≤ H̃ · G(2). Hence, by

induction, we have G(i) ≤ H̃ ·G(i+1); therefore, we obtain

G(t−1) ≤ H̃,
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and

G ≤ H̃ ·G′ ≤ H̃ ·G(2) ≤ · · · ≤ H̃.

This proves the assertion.

For abelian group G, the two groups T and T̃ coincide. In this case, Theorem 3.8 and

Lemma 3.9 say that the condition Hk ∩K = k implies the equality of the Galois group

G of K/k with its global inertia group: G = T = T̃ . For this reason, Wyman’s sufficient

condition (3.1) for the splitting boils down to Hk ∩ K = k which generalizes the cyclic

case (cf. Corollary 2.7).

Corollary 3.10. If G is abelian, a sufficient condition for the splitting of (1.3) is Hk∩K
= k.

Remark 3.11. The equalities G = T = T̃ does not necessarily imply the splitting of (1.3),

as we shall see in the following. First, the equalities G = T = T̃ might not imply the

arithmetic condition (3.1): [K : k] = e0. For example, let p and q be two rational primes

congruent to 1 modulo 4, K = Q(
√
p,
√
q), and k = Q. Since Q has no unramified

extensions, we have G = T . There are two ramification subgroups, each of order 2. Thus

e0 = 2 6= 4 = [K : k] = |G|.
Now, we come to our counter-example: Let K = Q(

√
p1,
√
p2,
√
p3,
√
p4) where pi are

rational primes congruent 1 modulo 4, and let k = Q. For this extension, the hypothesis

of Corollary 3.10 is fulfilled, in fact HQ = Q. As before, we have G = T , but the group

extension (1.3) does not split since one can show that δ0K/k 6= 1, contrary to Lemmas 2.5

and 2.6.

Problem 3.12. Since G = T = T̃ does not necessarily implies the arithmetic condi-

tion (3.1), the above condition G = T = T̃ might not sufficient for the splitting. What

additional condition to the condition Hk ∩K = k will imply the splitting in the abelian

case?

4. Some examples

Various examples of splitting and of non-splitting of the group extension (1.3) which

appeared in the papers of Cornell and Rosen [5, Proposition 9], and Bond [2, Theorem 3.1,

Propositions 3.7, 3.8, and Corollary 3.9] can be read off in terms of the triviality of certain

number knots and by simple group theoretic arguments.

Example 4.1. Associated to the group extension (1.3) with factor set α and abelian

kernel A := ClK is the central group extension with factor set α∗:

(4.1) 1 −→ A/[A,E] −→ E/[A,E] −→ G −→ 1
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where E = Gal(HK/k), A/[A,E] ' Gal(H∗K/K) and E/[A,E] ' Gal(H∗K/k). Note that

(4.1) is the pushforward of (1.3) along E → E/[A,E], so that the splitting of (1.3), i.e.,

α = 1, implies that of (4.1).

Recall that a central extension is a (non-split) group extension where the base normal

subgroup is contained in the center of the whole group. It is a central stem extension if,

in addition, the base normal subgroup is contained in the derived subgroup of the whole

group. Therefore, a central stem extension never splits. Examples of non-splitting of (4.1)

now can be supplied. To illustrate this, by assuming K = HK′ , we have A ≤ [E,E], and

thus the extension (4.1) is a stem extension. So the example of non-splitting in Cornell

and Rosen [5, Proposition 9] is still valid without any assumption on the class number of

K.

To generalize Bond’s examples, we first define a group

J := Coker(H−1(CK)→ H−1(ClK)).

Remark 4.2. We let j : Clk → ClK be the extension map of ideals. In [3], Bond shows:

(1) The group J is a subgroup of Ker(j) consisting of those ideal classes of k that

are in the image of the norm map from ClK to Clk and that capitulate in K, i.e.,

J = Ker(j) ∩ N ClK . Moreover, if Hk ∩ K = k, we have Ker(j) = J . See also

Proposition 0.2 and Remark 2.1 of [3].

(2) There exists an unramified abelian extensionM of k such that Ker(j)/J ' Gal(L/M),

where L = Hk ∩K, and |J | is divisible by [M : k] by Suzuki’s Theorem. Hence, if

J = 1, by Remark 3.5, it is easy to see that Ker(j) ' Gal(L/k), that is, M = k. See

also [3, Theorem 2.3].

Recall that H−1(ClK) = NClK /IG ClK . The group J fits in into a part of the com-

mutative diagram with exact rows of (2.2) (cf. [12, Theorem 1]):

(4.2)

H−1(EK) H−1(CK) H−1(ClK) J

H−1(EK) H−1(CK) Ȟ−1(ClK) γK/k

ω′K/k νK/k δK/k γK/k

h λ

' '

where Ȟ−1(ClK) = NClK /NIK ' δK/k.

Remark 4.3. Let α be the class of the group extension (1.3). If the group extension (1.3)

splits, then λ is an isomorphism.
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Indeed, letting u ∈ H2(CK) be the fundamental class, the map H−3(Z) → H−1(CK)

defined by x 7→ u ∪ x is an isomorphism by Proposition 2.2(2). We consider the following

commutative diagram:

H2(CK)⊗H−3(Z) H−1(CK)

H2(ClK)⊗H−3(Z) H−1(ClK)

g⊗id h

We know that g(u) = α. Let z ∈ H−1(CK). Then z = u∪ x for some x ∈ H−3(Z), and so

h(z) = g(u) ∪ x = α ∪ x. Since the group extension (1.3) splits, we have α = 1; thus, we

derive that h(z) = 1 ∪ x and hence λ is an isomorphism.

We need the following cohomological characterization of finite nilpotent groups (see

[11,19]):

Lemma 4.4. A finite group G is nilpotent if and only if whenever M is a finite G-module

for which Hk(G,M) = 1 for some k, then Hn(G,M) = 1 for all n ∈ Z.

Lemma 4.4 and the diagram (4.2) above lead us easily to the following general results:

Theorem 4.5. Let K/k be a finite Galois extension with the Scholz’s number knot νK/k.

Suppose that νK/k ' H−1(CK) ' H2(G,Z), the Pontryagin dual of the Schur multiplier

of G. Then we have:

(1) The splitting of (1.3) implies that ν−1 = 1 and H−1(ClK) ' J . In particular, we

have ω0
K/k ' νK/k.

(2) Suppose that G is nilpotent. If ν−1 = 1 and J = 1, then (1.3) splits.

Proof. (1) Suppose that the group extension (1.3) splits. By Lemma 2.5, we have ν−1 =

1 = ν0; by Lemma 2.8(1), we see that δ0 = ν−1 = 1. Reading off in the diagram (4.2),

this is equivalent to saying that ω0
K/k ' νK/k and Ȟ−1(ClK) ' γ. Hence, H−1(EK) �

H−1(CK) ' νK/k is surjective, and so H−1(ClK) ' J .

(2) If J = 1, we have H−1(CK) � H−1(ClK) is surjective. If ν−1 = 1, the Scholz’s

divisor knot δ0 = 1 by Lemma 2.8(1); thus, by Scholz’s knot sequence (1.2), we see that

ω0
K/k ' νK/k and hence H−1(EK) � H−1(CK) is also surjective. Reading off in the

diagram (4.2), these imply that H−1(ClK) = 1. Since G is nilpotent, we obtain that

H2(ClK) = 1; thus this map H2(CK) → H2(ClK) is a trivial map and this is equivalent

to the splitting of (1.3).

Remark 4.6. It should be noticed that if J = 1, then every ideal of k which capitulates

in K capitulates in Hk ∩K. Indeed, if jL/k : Clk → ClL is the extension map of ideals,
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where L = Hk ∩K, then it is easy to see that Ker(jL/k) ⊆ Ker(j). By Lemma 2.6, the

norm map NK/L : ClK → ClL is surjective. Therefore, we have N ClK = NL/k ClL and

Ker(jL/k)∩NL/k ClL ⊆ Ker(j)∩N ClK = J . By Remark 4.2, we have Ker(jL/k) = Ker(j).

Theorem 4.5 covers the following Bond’s examples:

Example 4.7. Let k be an imaginary quadratic field and K/k be an abelian unramified

extension of odd degree. In the unramified case, all decomposition groups are cyclic, and

NUK = Uk. Thus, the Scholz’s number knot νK/k ' H−1(CK) ' H−3(Z), and the Scholz’s

unit knot ω0
K/k := Ek∩NUK/Ek∩NK× = Ek/Ek∩NK× = 1, since Ek = {±1} ≤ NK×,

by assumption on k and the odd degree of K/k. Moreover, in the abelian unramified case,

J can be identified with Ker(j)∩N ClK (see [1, Theorem 1]). By Theorem 4.5, necessary

and sufficient conditions for the splitting of (1.3) in this case are that G be cyclic and

J = 1. See also Theorem 3.1 of [2].

Example 4.8. Let k be an imaginary quadratic field and K/k be the unramified abelian

extension of degree 2t, t ≥ 1. Suppose that −1 is not the norm of a unit of K. Since

the Scholz’s unit knot ω0 has order 1 or 2, depending on whether or not −1 ∈ NK×, the

splitting of (1.3) is equivalent to J = 1, and whether the Schur multiplier of G has order

1 or 2. The latter is known to be depending on whether G is cyclic or G ' Z2t−1 ×Z2. So

we have two cases for the splitting:

(1) If G ' Z2t−1 × Z2, then the splitting is equivalent to J = 1 and −1 is not a global

norm from K.

(2) If G is cyclic, then the splitting is equivalent to J = 1.

See also Propositions 3.7, 3.8, and Corollary 3.9 of [2].
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