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On Hardy’s Inequality for Hermite Expansions

Pawe l Plewa

Abstract. Sharp multi-dimensional Hardy’s inequality for the Laguerre functions of

Hermite type is proved for the type parameter α ∈ [−1/2,∞)d. As a consequence we

obtain the corresponding result for the generalized Hermite expansions. In particular,

it validates that the known version of Hardy’s inequality for the Hermite functions is

sharp.

1. Introduction

Hardy and Littlewood [4] proved the following inequality for Fourier coefficients

(1.1)
∑
k∈Z

|f̂(k)|
|k|+ 1

. ‖f‖ReH1 ,

where ReH1 denotes the real Hardy space constituted by the boundary values of the real

parts of functions in the Hardy space H1(D) with D the unit disk in the plane.

Kanjin [5] initiated investigation of analogues of (1.1) for orthogonal expansions. He

proved the one-dimensional version of the following inequality

(1.2)
∑
n∈Nd

|〈f, hn〉|
(n1 + · · ·+ nd + 1)E

. ‖f‖H1(Rd), f ∈ H1(Rd),

where n = (n1, . . . , nd), 〈 · , · 〉 stands for the inner product in L2(Rd), {hn}n∈Nd are the

Hermite functions, and H1(Rd) denotes the Hardy space. We will refer to the constant E

as the admissible exponent.

Recently many authors studied Hardy’s inequality for Hermite expansions. In the

mentioned article Kanjin examined only the case d = 1 and proved a version of (1.2)

with E = 29/36. Later Radha [14] investigated the multi-dimensional setting d ≥ 1.

For an arbitrary ε > 0, the admissible exponent E = (17d + 12 + ε)/(12d + 24) was

obtained. Then Radha and Thangavelu [15] received E = 3d/4 for d ≥ 2. Unfortunately,

the applied method did not work in the one-dimensional case. Kanjin [6] basing on a
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paper of Balasubramanian and Radha [2] justified that for d = 1 the admissible exponent

is E = 3/4 + ε, for an arbitrary ε > 0. He also conjectured that it can be lowered to 3/4.

It was indeed proved by Z. Li, Y. Yu and Y. Shi [9].

Hardy’s inequality was also investigated in the context of different orthonormal expan-

sions as well. Kanjin and Sato [7] studied the case of the Jacobi expansions. Moreover,

the author considered various Laguerre expansions in [12, 13]. Furthermore, an analogue

of Hardy’s inequality was scrutinized, namely the Hardy space H1 was replaced by Hp for

p ∈ (0, 1) (see [2, 15,16]).

The primary goal of this article is to prove that the admissible exponent in (1.2) cannot

be lowered. For this purpose we extend the result from [12] for Laguerre expansions of

Hermite type, to a wider range of the type parameter, namely α ∈ [−1/2,∞)d. We also

construct an explicit counterexample to show that the associated admissible exponent

E = 3d/4 is sharp. Moreover, we are able to deduce the corresponding result for the

generalized Hermite expansions along with its sharpness. Consequently, we get sharpness

of (1.2) with E = 3d/4.

Our main tool in establishing Hardy’s inequality is [13, Theorem 2.2]. The verification

of the required conditions for the type parameter α ∈ (−1/2, 1/2) is more complicated

than for α ∈ {−1/2} ∪ [1/2,∞) (as it was implicitly done in [12]). In order to deduce

Hardy’s inequality for the generalized Hermite setting from the result for the Laguerre

setting of Hermite type, we apply a decomposition of functions on Rd with respect to

its parity. Using the same method one can prove an L1-analogue of Hardy’s inequality

(compare [6, 12,13]).

The organization of this paper is as follows. In Section 2 we state preliminaries,

mainly some facts about the Hardy spaces, and recall [13, Theorem 2.2]. Section 3 is

devoted to the Laguerre expansions of Hermite type. We present some auxiliary results

leading to the verification of the assumptions of Theorem 2.2. Furthermore, we construct

the mentioned counterexample. In Section 4 we justify that Hardy’s inequality for the

generalized Hermite expansions follows from the corresponding result for the Laguerre

functions of Hermite type.

Notations. Throughout this paper we shall denote Rd+ = (0,∞)d and N+ = N \ {0} =

{1, 2, . . .}, where d ≥ 1 is the dimension. We shall distinguish the one-dimensional vari-

ables from the multi-dimensional ones. Therefore, in the case d = 1 we write u, v for

real variables and k or j for non-negative integers. On the other hand, in the case d ≥ 1

we use x = (x1, . . . , xd), y = (y1, . . . , yd) for real vectors, and n = (n1, . . . , nd) ∈ Nd for

multi-indices. The Euclidean norm is denoted by |x| and |y|, whereas |n| = n1 + · · ·+ nd

stands for the length of n. If a multi-index is constant, then we will use the bold font,

e.g., 0 = (0, . . . , 0). The Laguerre type multi-index α = (α1, . . . , αd) ∈ (−1,∞)d will be
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denoted by the same symbol in both cases d = 1 and d ≥ 1. It should be always clear from

the context whether α refers to d = 1 or d ≥ 1. Similarly as before, |α| = α1 + · · · + αd

stands for the length of the multi-index α. Note that |α| may be negative. We will use

the usual convention writing xα =
∏d
i=1 x

αi
i , x ∈ Rd+. If a function f is defined on Rd,

then its restriction to Rd+ is denoted by f+.

The symbol . stands for inequalities that hold with a multiplicative constant that may

vary from line to line. Such a constant may depend on parameters quantified beforehand,

but not on the ones quantified afterwards. If . and & hold simultaneously, then we will

write '.

2. Preliminaries

A measurable function f defined on Rd is called η-symmetric for some η ∈ {0, 1}d, if f is

even with respect to every i-th coordinate such that ηi = 0 and odd with respect to the

remaining coordinates. We shall make use of the decomposition

f =
∑

η∈{0,1}d
fη,

where

fη(x) = 2−d
∑

ε∈{−1,1}d
εηf(εx).

The classical Hardy space H1(Rd) can be defined in many ways (see [17]), e.g., given

a Schwartz function ψ such that
∫
ψ 6= 0, we say that a function f ∈ L1(Rd) belongs to

H1(Rd) if and only if

(2.1) ‖f‖H1
m(Rd) :=

∥∥∥∥sup
t>0
|f ∗ ψt|

∥∥∥∥
L1(Rd)

<∞,

where ψt(x) = t−dψ(x/t). The definition of H1(Rd) is independent of the chosen function

ψ. The definition (2.1) is referred to as the maximal characterization of H1(Rd). We

emphasize that

‖f‖L1(Rd) . ‖f‖H1
m(Rd).

A measurable function a is called an H1(Rd)-atom if it is supported in a Euclidean ball

B and satisfies the cancellation condition and the size condition, namely
∫
a(x) dx = 0

and ‖a‖L∞(Rd) ≤ |B|−1, respectively, where |B| denotes the Lebesgue measure of B.

A function f is in H1(Rd) if and only if it admits an atomic decomposition, i.e., there

exist a sequence of coefficients {λj}j∈N and a sequence of H1(Rd)-atoms {aj}j∈N such that

(2.2) f(x) =

∞∑
j=0

λjaj(x),
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where the series is convergent in H1(Rd). Moreover,

∞∑
j=0

|λj | . ‖f‖H1
m(Rd).

We define

‖f‖H1
at(Rd) = inf

∞∑
j=0

|λj |,

where the the infimum is taken over all atomic decompositions of f . The norms ‖·‖H1
m(Rd)

and ‖ · ‖H1
at(Rd) are equivalent. From now on, we shall use the latter and write simply

‖ · ‖H1(Rd).

We emphasise that for f ∈ H1(Rd) and every ε ∈ {−1, 1}d we have ‖f‖H1(Rd) =

‖f(ε · )‖H1(Rd). Hence, for any η ∈ {0, 1}d there is fη ∈ H1(Rd) and ‖fη‖H1(Rd) ≤
‖f‖H1(Rd).

The following lemma holds.

Lemma 2.1. If η ∈ {0, 1}d and f ∈ H1(Rd) is η-symmetric, then f1Rd+
∈ H1(Rd).

Moreover,

‖f1Rd+‖H1(Rd) ' ‖f‖H1(Rd).

Proof. Fix η ∈ {0, 1}d and η-symmetric function f ∈ H1(Rd). We choose an atomic

decomposition of f . Let

f(x) =
∞∑
j=0

λjaj(x),

where aj ’s are H1(Rd)-atoms. Hence,

f(x)1Rd+
(x) = fη(x)1Rd+

(x) =
∞∑
j=0

λj2
−d

∑
ε∈{−1,1}d

εηaj(εx)1Rd+
(x).

In order to prove that ‖f1Rd+‖H1(Rd) ≤ ‖f‖H1(Rd) it suffices to justify that for any

H1(Rd)-atom a, the function

aη(x)1Rd+
(x) = 2−d

∑
ε∈{−1,1}d

εηa(εx)1Rd+
(x)

is an H1(Rd)-atom as well. Indeed, if the inferior of the support of a does not intersect

any of the hyperplanes 〈ei〉⊥, i = 1, . . . , d, then for all but one ε ∈ {−1, 1}d, there is

a(ε · )1Rd+ ≡ 0. For the remaining ε there holds a(ε · )1Rd+ = εηa, so aη1Rd+
is an H1(Rd)-

atom.

Let us now define

I =
{
i ∈ {1, . . . , d} : int supp a ∩ 〈ei〉⊥ 6= ∅

}
,
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where int denotes the interior of a set. Without loss of generality we may assume that we

have I = {1, . . . , k} for some k ∈ {1, . . . , d} . Then, for any ε2 ∈ {−1, 1}d−k the function

2−k

 ∑
ε1∈{−1,1}k

(ε1, ε2)ηa((ε1, ε2)x)

1Rd+
(x)

is an H1(Rd)-atom. Moreover, for all but one ε2 ∈ {−1, 1}d−k the function above vanishes

identically. Therefore aη(x)1Rd+
(x) is an H1(Rd)-atom. Hence, f1Rd+

∈ H1(Rd) and

‖f1Rd+‖H1(Rd) ≤ ‖f‖H1(Rd).

In order to justify the opposite estimate we notice that

‖f‖H1(Rd) =

∥∥∥∥∥∥
∑

ε∈{−1,1}d
f(ε · )1Rd+

∥∥∥∥∥∥
H1(Rd)

=

∥∥∥∥∥∥
∑

ε∈{−1,1}d
εηf1Rd+

∥∥∥∥∥∥
H1(Rd)

≤ 2d‖f1Rd+‖H1(Rd).

This finishes the proof of the lemma.

We define the Hardy space H1(Rd+) as follows. A function f ∈ L1(Rd+) belongs to

H1(Rd+) if there exists g ∈ H1(Rd) such that supp g ⊂ [0,∞)d and g+ = f . Moreover, we

set ‖f‖H1(Rd+) = ‖g‖H1(Rd).

The proof of Lemma 2.1 yields that f ∈ H1(Rd+) if and only if it admits an atomic

decomposition as in (2.2), where aj are H1(Rd+)-atoms, e.g., aj are usual atoms and their

supports are Euclidean balls intersected with [0,∞)d. Furthermore, for η ∈ {0, 1}d and

f ∈ H1(Rd) there is

(2.3) ‖f+
η ‖H1(Rd+) ' ‖fη‖H1(Rd) ≤ ‖f‖H1(Rd).

We shall make use of [13, Theorem 2.2]. For the reader’s convenience we state it below

(only for Lebesgue measure).

Theorem 2.2. Let X be an open convex subset of Rd. For a given orthonormal basis

{ϕn}n∈Nd in L2(X), such that ϕn ∈ L∞(X), n ∈ Nd, we define a family of operators

{Rr}r∈(0,1) via

(2.4) Rrf =
∑
n∈Nd

r|n|〈f, ϕn〉ϕn, r ∈ (0, 1), f ∈ L2(X).

We assume that the operators Rr are integral operators and the associated kernels satisfy

for some γ > 0 and a finite set ∆ composed of positive numbers the condition

(2.5) ‖Rr(x, · )−Rr(x′, · )‖L2(X) .
∑
δ∈∆

|x− x′|δ(1− r)−γ(d+2δ)/(d+2)
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uniformly in r ∈ (0, 1), x′ ∈ X, and almost every x such that |x′ − x| ≤ 1/3. Then the

inequality ∑
n∈Nd

|〈f, ϕn〉|
(|n|+ 1)E

. ‖f‖H1(X)

holds uniformly in f ∈ H1(X), where

E =
γd

d+ 2
+
d

2
.

In the theorem above the space H1(X) is a Hardy space is the sense of Coifman-Weiss

(see [3, pp. 591–592]). If X = Rd or X = Rd+, then it coincides with the definitions

presented before.

3. Laguerre functions of Hermite type

The Laguerre functions of Hermite type are defined by the formula

ϕαk (u) =

(
2Γ(k + 1)

Γ(k + α+ 1)

)1/2

Lαk (u2)uα+1/2e−u
2/2, u > 0,

in the one-dimensional case, and as the tensor product in higher dimensions. The system

of functions {ϕαn}n∈Nd is an orthonormal basis in L2(Rd+).

We will make use of the known estimates (see [10, p. 435] and [1, p. 699])

(3.1) |ϕαk (u)| .



uα+1/2να/2 if 0 < u ≤ 1/
√
ν,

ν−1/4 if 1/
√
ν < u ≤

√
ν/2,

u1/2(ν(ν1/3 + |u2 − ν|))−1/4 if
√
ν/2 < u ≤

√
3ν/2,

u1/2 exp(−γu2) if
√

3ν/2 < u <∞,

where ν = ν(α, k) = max(4k + 2α+ 2, 2) and with γ > 0 depending only on α.

Using (3.1) for α ≥ −1/2 one gets

(3.2) ‖ϕαk‖L∞(R) . (k + 1)−1/12, ‖ϕαk‖L∞((0,1)) . (k + 1)−1/4, k ∈ N,

compare [18, p. 99]. Moreover, using (3.1) and the recurrence formula

(3.3)
d

du
ϕαk (u) = −2

√
kϕα+1

k−1 (u) +

(
2α+ 1

2u
− u
)
ϕαk (u),

where ϕα−1 ≡ 0, we obtain for α ∈ {−1/2} ∪ [1/2,∞),

(3.4)

∥∥∥∥ dd · ϕαk (·)
∥∥∥∥
L∞(R)

. (k + 1)5/12, k ∈ N.
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The estimate fails to hold for α ∈ (−1/2, 1/2). However, it is easy to prove that for

α ∈ [−1/2,∞) we have

(3.5)

∥∥∥∥ dd · ϕαk (·)
∥∥∥∥
L∞([1/2,∞))

. (k + 1)5/12, k ∈ N.

In order to prove Hardy’s inequality associated with the Laguerre functions of Hermite

type we shall use Theorem 2.2. The kernels associated with the family of integral operators

{Rαr }r∈(0,1) for Laguerre functions of Hermite type, defined as in (2.4), are of the form

Rαr (x, y) =
∑
n∈Nd

r|n|ϕαn(x)ϕαn(y), x, y ∈ Rd+,

and, for d = 1, can be explicitly expressed by (compare [19, p. 102])

(3.6) Rαr (u, v) =
2(uv)1/2

(1− r)rα/2
exp

(
− 1 + r

2(1− r)
(u2 + v2)

)
Iα

(
2r1/2

1− r
uv

)
,

where Iα denotes the modified Bessel function of the first kind, and as the tensor product

in higher dimensions.

We remark that in the light of [12, Lemma 3.1] in order to verify the multi-dimensional

assumption (2.5) (with γ = −(d + 2)/4 and ∆ = {1, α1 + 1/2, . . . , αd + 1/2}, excluding

zeros) for the Laguerre functions of Hermite type with α ∈ [−1/2,∞)d, it suffices to prove

the following one-dimensional result.

Proposition 3.1. If α ∈ [−1/2,∞), then

‖Rαr (u, · )−Rαr (u′, · )‖L2(R+) .
|u− u′|

(1− r)3/4
+
|u− u′|α+1/2

(1− r)(α+1)/2

uniformly in r ∈ (0, 1) and u, u′ > 0 such that |u− u′| ≤ 1/2. If α = −1/2, then we omit

the second component on the right-hand side of the estimate.

Before the proof of the proposition we present two auxiliary lemmas.

Lemma 3.2. If α ∈ (−1/2, 1/2), then

|ϕαk (u)− ϕαk (v)| . |u− v|(k + 1)−1/4 + |u− v|α+1/2(k + 1)α/2

uniformly in u, v ∈ (0, 1) and k ∈ N.

Proof. Without loss of generality we assume that 0 < u ≤ v < 1. Fix α ∈ (−1/2, 1/2) and

u, v ∈ (0, 1). Note that (3.1) yields

|ϕαk (s)|
s

. (k + 1)1/4 + sα−1/2(k + 1)α/2, s ∈ (0, 1), k ∈ N.



308 Pawe l Plewa

Hence, applying (3.3), (3.2), and using the fact that the function s→ sα+1/2 is (α+ 1/2)-

Hölder continuous on (0, 1), we get that

|ϕαk (u)− ϕαk (v)| =
∣∣∣∣∫ v

u

(
−2
√
kϕα+1

k−1 (s) +

(
2α+ 1

2s
− s
)
ϕαk (s)

)
ds

∣∣∣∣
. |u− v|(k + 1)1/4 + (k + 1)α/2

∣∣∣∣∫ v

u
sα−1/2 ds

∣∣∣∣
. |u− v|(k + 1)1/4 + (k + 1)α/2|u− v|α+1/2

uniformly in u, v ∈ (0, 1) and k ∈ N. This finishes the proof.

Lemma 3.3. For α ∈ (−1/2, 1/2) the estimate∥∥u−1Rαr (u, · )
∥∥
L2(R+)

. (1− r)−3/4 + uα−1/2(1− r)−(α+1)/2

holds uniformly in r ∈ (1/2, 1) and u > 0.

Proof. Fix α ∈ (−1/2, 1/2). Using (3.6) and the estimates (see [8, p. 136])

Iν(s) . sν , s ∈ (0, 1),

Iν(s) . s−1/2es, s ∈ (1,∞),

we obtain the pointwise bound (compare [12, (8)])

Rαr (u, v) .

(1− r)−α−1(uv)α+1/2 exp
(
− 1+r

2(1−r)(u2 + v2)
)

if v ≤ (1− r)/(2
√
ru),

(1− r)−1/2 exp
(
− 1+r

2(1−r)(v − u)2
)

if v ≥ (1− r)/(2
√
ru).

Now we shall prove the claim. The following estimates are uniform in r ∈ (1/2, 1) and

in the indicated ranges of u. Note first that for u > 0,∫ 1−r
2
√
ru

0
u−2Rαr (u, v)2 dv . (1− r)−2(α+1)

∫ 1−r
2
√
ru

0
u2α−1v2α+1 exp

(
−1 + r

1− r
v2

)
dv

. (1− r)−(α+1)u2α−1

∫ ∞
0

v2α+1e−v
2
dv

. (1− r)−(α+1)u2α−1.

Secondly, for u ≤ (1− r)/(4
√
ru), we have∫ ∞

1−r
2
√
ru

u−2Rαr (u, v)2 dv . (1− r)−3

∫ ∞
1−r
2
√
ru

v2 exp

(
−1 + r

1− r
(v − u)2

)
dv

. (1− r)−3

∫ ∞
1−r
2
√
ru
−u

(v + u)2 exp

(
−1 + r

1− r
v2

)
dv

. (1− r)−3

∫ ∞
0

v2 exp

(
−1 + r

1− r
v2

)
dv

. (1− r)−3/2,
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and for u ≥ (1− r)/(4
√
ru) we obtain∫ ∞

1−r
2
√
ru

u−2Rαr (u, v)2 dv . (1− r)−1

∫ ∞
1−r
2
√
ru

(1− r)−1 exp

(
−1 + r

1− r
(v − u)2

)
dv

. (1− r)−2

∫ ∞
−∞

exp

(
−1 + r

1− r
v2

)
dv

. (1− r)−3/2.

This finishes the proof of the lemma.

Proof of Proposition 3.1. For α ∈ {−1/2} ∪ [1/2,∞) the claim follows from [12, Propo-

sition 3.4], hence, from now on, we consider only α ∈ (−1/2, 1/2). Also, without loss of

generality, we assume u ≤ u′.
First, note that using the mean value theorem, Parseval’s identity, and (3.5) we obtain

‖Rαr (u, · )−Rαr (u′, · )‖L2(R+) ≤ |u− u′| sup
ξ≥1/2

‖∂uRαr (ξ, · )‖L2(R+)

. |u− u′|

( ∞∑
k=0

2−2k(k + 1)5/6

)1/2

. |u− u′|

uniformly in r ∈ (0, 1/2] and u, u′ ≥ 1/2. On the other hand, applying (3.4) and

Lemma 3.2, we receive

‖Rαr (u, · )−Rαr (u′, · )‖L2(R+) .
∞∑
k=0

2−k|ϕαk (u)− ϕαk (u′)| . |u− u′|+ |u− u′|α+1/2

uniformly in r ∈ (0, 1/2] and u, u′ ∈ (0, 1). Combining the above gives the claim for

r ∈ (0, 1/2].

Now we assume that r ∈ (1/2, 1). Invoking the formula (see [8, p. 110])

d

du
Iα(u) =

α

u
Iα(u) + Iα+1(u),

we get

∂uR
α
r (u, v) =

(
2α+ 1

2u
− 1 + r

1− r
u

)
Rαr (u, v) +

2rv

1− r
Rα+1
r (u, v).

Using [13, Lemma 3.2] (originally from [11, pp. 6–7]) we obtain∣∣∣∣ 2rv

1− r
Rα+1
r (u, v)− 1 + r

1− r
uRαr (u, v)

∣∣∣∣ . 1

u
Rα+1
r (u, v) +

(
u+

v − u
1− r

)
Rαr (u, v)

uniformly in r ∈ (1/2, 1), u, v > 0. Proceeding as in the proof of [12, Proposition 3.4] one

can show that ∥∥∥∥1

u
Rα+1
r (u, · ) +

(
u+

· − u
1− r

)
Rαr (u, · )

∥∥∥∥
L2(R+)

. (1− r)−3/4
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uniformly in r ∈ (1/2, 1) and u > 0. We leave the details for the interested reader. Thus,

we arrived at

‖Rαr (u, · )−Rαr (u′, · )‖L2(R+) =

∥∥∥∥∥
∫ u′

u
∂sR

α
r (s, · ) ds

∥∥∥∥∥
L2(R+)

.
|u− u′|

(1− r)3/4
+

∥∥∥∥∥
∫ u′

u

2α+ 1

2s
Rαr (s, · ) ds

∥∥∥∥∥
L2(R+)

uniformly in r ∈ (1/2, 1) and u, u′ > 0.

In order to complete the proof it suffices to estimate the remaining component. Using

Minkowski’s integral inequality and Lemma 3.3 we get∥∥∥∥∥
∫ u′

u

2α+ 1

2s
Rαr (s, · ) ds

∥∥∥∥∥
L2(R+)

.
∫ u′

u

∥∥s−1Rαr (s, · )
∥∥
L2(R+)

ds

. |u− u′|(1− r)−3/4 + (1− r)−(α+1)/2

∫ u′

u
sα−1/2 ds

uniformly in r ∈ (1/2, 1) and u, u′ > 0. Finally,∫ u′

u
sα−1/2 ds =

∫
(u,u′)∩(0,1)

sα−1/2 ds+

∫
(u,u′)∩(1,∞)

sα−1/2 ds . |u− u′|α+1/2 + |u− u′|

uniformly in r ∈ (1/2, 1) and u, u′ > 0.

Combining the above gives the claim.

Theorem 3.4. For α ∈ [−1/2,∞)d the inequality∑
n∈Nd

|〈f, ϕαn〉|
(|n|+ 1)3d/4

. ‖f‖H1(Rd+)

holds uniformly in f ∈ H1(Rd+). The result is sharp in the sense that for any ε > 0 there

exists f ∈ H1(Rd+) such that ∑
n∈Nd

|〈f, ϕαn〉|
(|n|+ 1)3d/4−ε =∞.

Proof. For the first part of the theorem it suffices to use Proposition 3.1, [12, Lemma 3.1],

and Theorem 2.2.

In order to prove sharpness, for a given K ∈ N, we shall construct an appropriate

H1(Rd+)-atom a such that

(3.7)

∞∑
n∈Nd

|〈a, ϕαn〉|
(|n|+ 1)3d/4−ε & Kε.
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We begin with the case d = 1 and α > −1/2.

First, note that for ϕαk we have the estimate (compare [10, pp. 435, 453)])

Akα/2uα+1/2 ≤ ϕαk (u) ≤ Bkα/2uα+1/2, 0 < u ≤ c√
k
,

where A,B, c > 0 are constants depending only on α.

Fix α > −1/2, ε > 0, and K ∈ N. For δ ∈ (0, 1/2) we define

a(u) =

δc−1(1− δ)−1K1/2 if u ∈ (cδK−1/2, cK−1/2),

−c−1K1/2 if u ∈ (0, cδK−1/2).

It is easy to check that a is an H1(R+)-atom. We estimate∫
R+

a(u)ϕαk (u) du ≥ δAK1/2kα/2

c(1− δ)

∫ cK−1/2

cδK−1/2

uα+1/2 du− K1/2Bkα/2

c

∫ cδK−1/2

0
uα+1/2 du

=
2kα/2Aδ

(2α+ 3)c(1− δ)Kα/2+1/4

(
1− δα+1/2(δ +B/A) + δα+3/2B/A

)
&

kα/2δ

Kα/2+1/4(1− δ)
(
1− δα+1/2(1 +B/A)

)
.

Choosing δ sufficiently small and independently of K we obtain

〈a, ϕαk 〉 & kα/2K−α/2−1/4.

Thus,
∞∑
k=0

|〈a, ϕαk 〉|
(k + 1)3/4−ε & K−α/2−1/4

K∑
k=1

kα/2+ε−3/4 & Kε,

which finishes the proof for d = 1 and α > −1/2.

Note that if α = −1/2, then by (3.3) and (3.1) we have

− d

du
ϕ
−1/2
k (u) & k3/4u, 0 < u ≤ c√

k
.

Hence, using the mean value theorem we obtain for k ≤ K,∫
B
a(u)ϕ

−1/2
k (u) du

=

∫ cK−1/2

0
a(u)(u− δcK−1/2)

dϕ
−1/2
k

du
(ξu) du

= c−1
√
K

∫ cK−1/2

0

(
δ(1− δ)−1

1B1(u) + 1B2(u)
)∣∣u− δcK−1/2

∣∣(−dϕ−1/2
k

du
(ξu)

)
du

& c−1
√
Kk3/4δ(1− δ)−1

∫ δcK−1/2

0
(δcK−1/2 − u)u du

' c2K−1k3/4δ3(1− δ)−1

& K−1k3/4,
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where ξu is between u and δcK−1/2.

In the multi-dimensional case we define

a(x) =

d∏
i=1

a(xi), x ∈ Rd+.

It can be checked that a is an H1(Rd+)-atom and that (3.7) holds. We leave the details

for the interested reader.

4. Generalized Hermite functions

The generalized Hermite functions of order λ ≥ 0 on R are defined by the relation

hλ2k(u) = (−1)k2−1/2ϕ
λ−1/2
k (|u|), hλ2k+1(u) = (−1)k2−1/2 sgn(u)ϕ

λ+1/2
k (|u|), u ∈ R,

(for u = 0 we naturally extend the definition of ϕαk ). In the case d ≥ 1 we define them

as tensor products of the one-dimensional hλk . Note that if λ = 0, then the functions

{h0n}n∈Nd are the classical Hermite functions.

In the following theorem we use two inner products: in L2(Rd) and in L2(Rd+) denoted

by 〈 · , · 〉 and 〈 · , · 〉+, respectively.

Theorem 4.1. Let λ ∈ [0,∞)d. The following inequality holds∑
n∈Nd

|〈f, hλn〉|
(|n|+ 1)3d/4

. ‖f‖H1(Rd)

uniformly in f ∈ H1(Rd). The exponent is sharp, in the sense that for every ε > 0 there

exists f ∈ H1(Rd) such that ∑
n∈Nd

|〈f, hλn〉|
(|n|+ 1)3d/4−ε =∞.

Proof. We shall justify that the claims follow from Theorem 3.4.

We introduce a function m : Nd → {0, 1}d defined by

m(n)i = ni (mod 2), i = 1, . . . , d.

Fix λ ∈ [0,∞)d. For η ∈ {0, 1}d we shall denote

λη =

(
λ1 −

(−1)η1

2
, . . . , λd −

(−1)ηd

2

)
.

Note that hλn is m(n)-symmetric. Hence,

〈f, hλn〉 '
〈
f+
m(n), ϕ

λm(n)

bn/2c
〉

+
, f ∈ H1(Rd), n ∈ Nd.
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Thus, we estimate using (2.3)

∑
n∈Nd

|〈f, hλn〉|
(|n|+ 1)3d/4

'
∑

η∈{0,1}d

∑
m(n)=η

|〈f+
η , ϕ

λη
bn/2c〉+|

(|n|+ 1)3d/4
≤

∑
η∈{0,1}d

∑
n∈Nd

|〈f+
η , ϕ

λη
n 〉+|

(|n|+ 1)3d/4

.
∑

η∈{0,1}d
‖f+
η ‖H1(Rd+) . ‖f‖H1(Rd).

This finishes the verification of the first claim.

In order to prove the second claim, we fix ε > 0. Let α = λ−1/2. Theorem 3.4 yields

that there exists g ∈ H1(Rd+) such that∑
n∈Nd

|〈g, ϕαn〉+|
(|n|+ 1)3d/4−ε =∞.

We extend g to an 0-symmetric function f . We emphasise that f ∈ H1(Rd). Hence,∑
n∈Nd

|〈f, hλn〉|
(|n|+ 1)3d/4−ε ≥

∑
m(n)=0

|〈f, hλn〉|
(|n|+ 1)3d/4−ε '

∑
n∈Nd

|〈g, ϕλ−1/2n 〉+|
(2d|n|+ 1)3d/4−ε =∞.

This finishes the proof of the theorem.

Theorem 4.1 holds for the classical Hermite functions (that is for λ = 0), and hence

the admissible exponent obtained in [9, 15] is sharp.

In the previous articles (see [12, 13]) we proved the L1-analogues of Hardy’s type

inequalities. Therefore we present a corresponding result for the generalized Hermite

functions below. It can be proved basing on [12, Theorem 5.1] and using similar arguments

as in the proof of Theorem 4.1.

Theorem 4.2. Let ε > 0 and λ ∈ [0,∞)d. Then∑
n∈Nd

|〈f, hλn〉|
(|n|+ 1)3d/4+ε

. ‖f‖L1(Rd)

uniformly in f ∈ L1(Rd). The result is sharp in the sense that there is f ∈ L1(Rd) such

that ∑
n∈Nd

|〈f, hλn〉|
(|n|+ 1)3d/4

=∞.
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