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Reducibility, Lyapunov Exponent, Pure Point Spectra Property for

Quasi-periodic Wave Operator

Jing Li

Abstract. In the present paper, it is shown that the linear wave equation subject to

Dirichlet boundary condition

utt − uxx + εV (ωt, x)u = 0, u(t,−π) = u(t, π) = 0

can be changed by a symplectic transformation into

vtt − vxx + εMξv = 0, v(t,−π) = v(t, π) = 0,

where V is finitely smooth and time-quasi-periodic potential with frequency ω ∈ Rn in

some Cantor set of positive Lebeague measure and where Mξ is a Fourier multiplier.

Moreover, it is proved that the corresponding wave operator ∂2t − ∂2x + εV (ωt, x)

possesses the property of pure point spectra and zero Lyapunov exponent.

1. Introduction

If a self-adjoint differential operator with time-quasi-periodic coefficients can be reduced

to one with constant coefficients, the spectrum property and Lyapunov exponent of the

operator can be easily obtained. To this end, there are many literatures dealing with

Schrödinger operator with time-quasi-periodic potential of the form

iu̇ = (H0 + εW (ωt, x,−i∇))u, x ∈ Rd or x ∈ Td = Rd/2πZd,

where H0 = −∆ + V (x) or an abstract self-adjoint (unbounded) operator and the pertur-

bation W is quasiperiodic in time t and it may or may not depend on x or/and ∇. When

x ∈ Rd, there are many interesting and important results. See [2, 4, 10–12, 30], and the

references therein. When x ∈ Td with any integer d ≥ 1, it is in [13], proved that

(1.1) u̇ = −i(∆u− εW (φ0 + ωt, x;ω)u), x ∈ Td

is reduced to an autonomous equation for most values of the frequency vector ω, where W

is analytic in (t, x) and quasiperiodic in time t with frequency vector ω. The reduction is
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made by means of Töplitz-Lipschitz property of operator and very hard KAM technique.

The basic difficulty is that the frequencies of the unperturbed operator −∆, denoted by

λk (k ∈ Z), have multiplicity

λ]k ' |k|
d−1 →∞ as |k| → ∞ if d > 1.

Fortunately, the frequencies have a good separation property and

|λk − λk′ | ≥ 1 when λk 6= λk′ .

When the reducibility for a linear wave equation

(1.2) utt = (−∆ + εV (φ0 + ωt, x;ω))u, x ∈ Td,

the unperturbed operator is
√
−∆ by writing (1.2) as a system of order 1. At this time,

a serious difficulty is that the frequencies of
√
−∆, still denoted by λk (k ∈ Z), have no

good separation property and |λk − λk′ | is dense, at least, in some interval of R, when

d > 1. Thus, the reducibility for (1.2) with d > 1 is a challenging open problem. See [24]

for recent progress. However, the reducibility for (1.2) with d = 1 can be derived from

the earlier KAM theorem (see [20] and [25]) for nonlinear partial differential equations,

assuming V is analytic in (t, x). Also see, [21].

According to our knowledge, the reducibility for (1.2) with perturbation of finite

smoothness has not been treated explicitly in the literatures. Usually, the spectrum prop-

erty of operators depends heavily on the smoothness of the perturbation. For example, the

Anderson localization and positivity of the Lyapunov exponent for one frequency discrete

quasi-period Schrödinger operator with analytic potential occur in non-perturbative sense

(the largeness of the potential does not depend on the Diophantine condition. See [8], for

the detail). However, one can only get perturbative results when the analytic property of

the potential is weakened to Gevrey regularity (see [19]). Thus, the reducibility is worth

studying when the perturbation V is of finite smoothness in (t, x). We also mention the

papers by Baldi-Berti-Montalto [1] for KdV equation and Feola-Procesi [15] for nonlinear

Schrödinger equation where the reducibility is obtained in the finite differentiable case

(using “tame” estimates on Sobolev spaces) and in the case of unbounded nonlinearities.

Let us consider a linear wave equation with quasi-periodic coefficient:

(1.3) utt − uxx + εV (ωt, x)u = 0

subject to the boundary condition

(1.4) u(t,−π) = u(t, π) = 0.
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For p ≥ 0, let H p[−π, π] be the usual Sobolev space. Define

H p
0 [−π, π] =

{
u ∈H p[−π, π] :

∫ π

−π
u(x) dx = 0, u(−π) = u(π) = 0

}
.

Assumption A. Assume V is a CN -smooth and quasi-periodic in time t with frequency

ω ∈ Rn: that is, there is a hull function V (θ, x) ∈ CN (Tn × [−π, π],R) such that

V (ωt, x) = V (θ, x)
∣∣
θ=ωt

, Tn = Rn/2πZn,

where N > 200n.

Assumption B. We also assume that V is an even function of x, with zero-average:∫ π

−π
V (ωt, x) dx ≡ 0.

Assumption C. Assume ω = τω0, where ω0 is Diophantine:

|〈k, ω0〉| ≥
γ

|k|n+1
, k ∈ Zn \ {0},

where γ is a constant and 0 < γ � 1, τ ∈ [1, 2] is a parameter.

Let w = ut. Endow L2[−π, π] × L2[−π, π] with the symplectic form dw ∧ du. Take

(L2[−π, π]×L2[−π, π], dw ∧ du) as phase space. Then (1.3) is a hamiltonian system with

hamiltonian functional

H(u,w) =

∫ π

−π

(
1

2
(w2 + u2

x) +
1

2
εV (ωt, x)u2

)
dx,

and the Hamiltonian equation

ut =
δH

δw
, wt = −δH

δu
.

With these three assumptions, we can describe the main results of this paper.

Theorem 1.1. With Assumptions A, B, C, for given 1 � γ > 0, there exists ε∗ with

0 < ε∗ = ε∗(n, γ)� γ, and exists a subset Π ⊂ [1, 2] with

mes Π ≥ 1−O(γ1/3)

such that for any 0 < ε < ε∗ and for any τ ∈ Π, there is a quasi-periodic symplectic change

u = Φ(θ, x)v
∣∣
θ=ωt

with the map θ 7→ Φ(θ, · ) being of class CN−µ(Tn, L(H N
0 [−π, π],

H N
0 [−π, π])) for any µ ∈ (0, 1) and satisfying

‖Φ(θ, · )− id ‖L(H N
0 [−π,π],H N

0 [−π,π]) ≤ Cµε,
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where id is the identity from H N
0 [−π, π]→H N

0 [−π, π], Cµ is a constant depending µ and

L(H N
0 [−π, π],H N

0 [−π, π]) is the class of all bounded linear operators from H N
0 [−π, π]

to itself which changes (1.3) subject to (1.4) into

(1.5) vtt − vxx + εMξv = 0, v(t,−π) = v(t, π) = 0,

where Mξ is a real Fourier multiplier:

Mξ sin kx = ξk sin kx, k ∈ N

with constants ξk ∈ R and |ξk| ≤ C/|k|, where C is an absolute constant, mes Π denotes

Lebesgue measure for set Π.

Corollary 1.2. With Assumptions A, B, C, for any τ ∈ Π and 0 < ε < ε∗, the wave

operator

L u(t, x) = (∂2
t − ∂2

x + εV (ωt, x))u(t, x), u(t,−π) = u(t, π) = 0

is of pure point spectrum property and of zero Lyapunov exponent.

Corollary 1.3. With Assumptions A, B, C, for any τ ∈ Π and 0 < ε < ε∗, the initial

problem of the linear wave equation

(1.6) (∂2
t − ∂2

x + εV (ωt, x))u(t, x) = 0, u(0, x) = u0(x), ut(0, x) = ũ0(x)

with (u0, ũ0) ∈ H N
0 [−π, π] ×H N−1

0 [−π, π] has a unique solution u(t, x) which is almost

periodic in time and obeys the following estimate

(1− c
√
ε)
(
‖u0‖2H N + ‖ũ0‖2H N−1

)
≤ ‖u(t)‖2H N ≤ (1 + c

√
ε)
(
‖u0‖2H N + ‖ũ0‖2H N−1

)
,

(1− c
√
ε)
(
‖u0‖2H N + ‖ũ0‖2H N−1

)
≤ ‖ut(t)‖2H N−1 ≤ (1 + c

√
ε)
(
‖u0‖2H N + ‖ũ0‖2H N−1

)
,

where c is a positive constant which might be different in different places.

Remark 1.4. In references [7, 23], there are solutions u(t, x) obey

‖u(t)‖H N = C(log |t|)C →∞ as |t| → ∞

for the nonlinear Schrödinger equation (1.1). In [21], it is proved that for the following

linear wave equation

utt − uxx +Mu− ε(cos 2t)u = 0

subject to Dirichlet boundary condition on [0, π], there is a solution u(t, x) obeying

‖u(tj)‖H 1(T) →∞, |tj | → ∞.

The above results show that one can not avoid restricting the choice of parameters ω (or

τ) to a Cantor type subset Π of the parameter set [1, 2] in Corollary 1.3.
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Remark 1.5. In [5], it is proved that there is a quasi-periodic solution for d-dimensional

nonlinear wave equation with a quasi-periodic in time nonlinearity like

utt −∆u− V (x)u = εf(ωt, x, u), x ∈ Td,

where the multiplicative potential V is in Cq(Td;R), ω ∈ Rn is a non-resonant frequency

vector and f ∈ Cq(Tn × Td × R;R). Because of the application of Nash-Moser iteration,

it is not clear whether the obtained quasi-periodic solution is linearly stable or has zero

Lyapunov exponent. As a corollary of Theorem 1.1, we can prove that the quasi-periodic

solution by [5] is linearly stable and has zero Lyapunov exponent, when d = 1.

Remark 1.6. As mentioned above, the reducibility of the linear wave equation with time

quasi-periodic and analytic coefficients can be implicitly derived from the KAM theory

dealing with the existence of KAM tori for nonlinear wave equation. Here we should note

the difference between the analytic coefficient and the finitely smooth one. By passing to

Fourier coefficients, the wave equation (1.3) can be written as a linear Hamiltonian system

with Hamiltonian

H = 〈Λz, z〉+ ε
[
〈Rzz(θ)z, z〉+ 〈Rzz(θ)z, z〉+ 〈Rzz(θ)z, z〉

]
,

where the symplectic form is idz ∧ dz. The basic task is to search a series of symplectic

coordinate changes to eliminate the perturbations Rzz(θ), Rzz(θ) and Rzz(θ) except for

the averages of the diagonal terms of Rzz(θ). To this end, the symplectic coordinate

changes are the time-1 map of the flow for the Hamiltonian εF , where F is of the form

F = 〈F zz(θ, τ)z, z〉+ 〈F zz(θ, τ)z, z〉+ 〈F zz(θ, τ)z, z〉.

• When the potential V (θ) (θ = ωt) is analytic in some strip domain | Im θ| ≤ s∗ν ,

(where ν is the KAM iteration step), the perturbations Rzz(θ), Rzz(θ) and Rzz(θ)

are also analytic in | Im θ| ≤ s∗ν . An important fact in this analytic case is that s∗ν ’s

have a uniform non-zero below bound:

s∗ν ≥
s0

2
, s0 > 0 for all ν = 1, 2, . . ..

• When the potential V (θ) is finitely smooth of order N , by using Jackson-Moser-

Zehnder approximate lemma, we can still make sure that Rzz(θ), Rzz(θ) and Rzz(θ)

are analytic in | Im θ| ≤ sν at the ν-th KAM step. However, the strip width sν ’s

have no non-zero below bound. Actually, sν goes to zero very rapidly:

sν = ε
1/N
ν+1, εν = ε(4/3)ν , ν = 1, 2, . . . .

• For analytic case, we can prove the Hamiltonian εF = O(εν) at the ν-th KAM

step, because of s∗ν ≥ s0/2. It follows immediately that the new perturbation is

{εF, εR} = O(ε2
ν) = O(εν+1).
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• For the finitely smooth case, the situation is much more complicated. At this

case, we find εF = O(ε
1−6(n+1)/N
ν ) at the ν-th KAM step. Thus, for the finitely

smooth potential V ∈ CN , the new perturbation is {εF, εR} = O(ε
2−6(n+1)/N
ν ).

In order to guarantee the quadratic convergence of the KAM iterations, that is,

O(ε
2−6(n+1)/N
ν ) = O(ε

4/3
ν ) = O(εν+1), it is necessary to assume the smoothness or-

der N � 1. It is enough to assume N > 200n. Clearly, this is not sharp. In this

paper, we do not pursue the lowest smoothness for the potential V .

Finally, we list some related results:

In [3], Bambusi and Graffi eliminated by KAM methods the time dependence in 1-

dimensional Schrödinger equation

(1.7) H(t)ψ(x, t) = i∂tψ(x, t), x ∈ R; H(t) := − d2

dx2
+Q(x) + εV (x, ωt), ε ∈ R,

where Q(x) ∈ C∞(R;R), Q(x) ∼ |x|α for α > 2 as |x| → ∞ and V (x, φ) is a C∞(R;R)-

valued holomorphic function of φ ∈ Tn, with |V (x, φ)||x|−β bounded as |x| → ∞ for

some β < (α− 2)/2. The proof is based on Kuksin’s estimate of solutions of homological

equations with nonconstant coefficients. When α > 2 and β = (α − 2)/2, the methods

used in [3] will become invalid. Afterward, Liu and Yuan [22] solved this case by a new

estimate for the solution of the homological equation. Wang [29] proved the pure-point

nature of the spectrum of the Floquet operator KF :

KF = −i
n∑
k=1

ωk
∂

∂θk
− d2

dx2
+ x2 + εV (θ, x).

The spectral properties of the Floquet operator KF is closely related to the long-time be-

havior of the solution ψ(t, x) of the equation (1.7) with Q(x) = x2. The author considered

V (x, θ) = e−x
2∑n

k=1 cos θk, which has exponential decay. The case β < (α − 2)/2 = 0

was solved by Grébert and Thomann [17], where V (x, θ) has polynomial decay. In [30]

the above results were improved, in which V (x, θ) has logarithmic decay.

Grébert and Paturel [16] proved that a linear d-dimensional Schrödinger equation on

Rd with harmonic potential |x|2 and small t-quasiperiodic potential

i∂tu−∆u+ |x|2u+ εV (tω, x)u = 0, x ∈ Rd

reduces to an autonomous system for most values of the frequency vector ω ∈ Rn.

In [14], Fang, Han and Wang proved Anderson localization for the Klein-Gordon op-

erator under non-resonant perturbations. The authors showed that the Sobolev norms of

solutions to the corresponding Klein-Gordon equations remain bounded for all time.

Remark 1.7. In [28], it is proved that the wave equation of time quasi-periodic coefficients

utt − uxx +Mu+ ε(V0(ωt)uxx + V (ωt, x)u) = 0
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subject to periodic boundary condition x ∈ T = R/2πZ can be reduced by a time quasi-

periodic symplectic change to a linear Hamiltonian system of constant coefficients

(1.8) ˙̃q = (Λ + εQ̃)p̃, ˙̃p = −(Λ + εQ̃)q̃,

where Λ = diag(Λj : j = 0, 1, 2, . . .), Λ0 = ρ
√
M , Λj = ρ

√
j2 +ME22, ρ is a constant

close to 1, E22 is a 2× 2 unit matrix, and Q̃ = diag(Q̃i : i = 0, 1, 2, . . .) is independent of

time with Q̃0 ∈ R, Q̃i being a real 2× 2 matrix, and |Q̃i| ≤ C/i, i = 1, 2, . . ..

Since the eigenvalues of the differential operator −∂xx with the periodic boundary

condition x ∈ T = R/2πZ possesses multiplicity 2, the reduced linear operator Λ + εQ̃ is

not diagonal, although it is block diagonal. Thus (1.8) can not be written as a linear wave

equation with Fourier multiplier Mξ:

utt − uxx +Mξu = 0.

In the present paper, the eigenvalues of the differential operator −∂xx with Dirichlet

boundary condition are simple. By this fact, we can reduce the wave equation

utt − uxx + εV (ωt, x)u = 0

with boundary condition

u(t,−π) = u(t, π) = 0

to a new equation with Fourier multiplier Mξ:

vtt − vxx + εMξv = 0.

2. Passing to Fourier coefficients

Consider the differential equation

(2.1) L u = utt − uxx + εV (ωt, x)u = 0

subject to the boundary condition

u(t,−π) = u(t, π) = 0.

It is well-known that the Sturm-Liouville problem

−y′′ = λy

with the boundary condition

y(−π) = y(π) = 0
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has the eigenvalues and eigenfunctions, respectively,

λk = k2, k = 1, 2, . . . ,

φk(x) = sin kx, k = 1, 2, . . . .

Make the ansatz

(2.2) u(t, x) = S (uk) =
∞∑
k=1

uk(t)φk(x).

Note that V is an even function of x such that
∫ π
−π V (ωt, x) dx ≡ 0. Write

V (ωt, x) =
∞∑
k=1

vk(ωt)ϕk(x),

where ϕk(x) = cos kx, k = 1, 2, . . .. Let

duk
dt

= wk.

By the fact that

ϕjφl =
∞∑
k=1

〈ϕjφl, φk〉φk, j, l = 1, 2, . . . ,

then (2.1) can be expressed as

∞∑
k=1

dwk
dt

+ λkuk + ε

∞∑
l=1

∞∑
j=1

cjlkvjul

φk = 0,

which implies that

dwk
dt

= −λkuk − ε
∞∑
l=1

∞∑
j=1

cjlkvjul,

where

(2.3) cjlk = 〈ϕjφl, φk〉 =

∫ π

−π
cos jx · sin lx · sin kx dx =


0 if k 6= ±l ± j,

π/2 if k = l ± j ≥ 1,

−π/2 if k = −l ± j ≥ 1.

Rescale

T : wk = 4
√
λkpk, uk =

1
4
√
λk
qk.

Then

q̇k =
√
λkpk, ṗk = −

√
λkqk − ε

∞∑
l=1

∞∑
j=1

cjlk
vj(θ)
4
√
λkλl

ql.
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This is a linear Hamiltonian system

(2.4) q̇k =
∂H

∂pk
, ṗk = −∂H

∂qk
,

where the symplectic structure is dp∧ dq =
∑∞

j=1 dpj ∧ dqj and the Hamiltonian function

is

H(p, q) =
∞∑
k=1

√
λk(p

2
k + q2

k)

2
+ ε

∞∑
k=1

∞∑
l=1

∞∑
j=1

cjlk
vj(θ)
4
√
λkλl

qlqk, θ = ωt.

Introduce complex variables:

zj =
1√
2

(qj − ipj), zj =
1√
2

(qj + ipj),

which is a symplectic transformation with dp ∧ dq = idz ∧ dz. Thus (2.4) is changed into

G : żk = i
∂H

∂zk
, żk = −i∂H

∂zk
,

where

H(z, z) =
∞∑
k=1

√
λkzkzk + ε

∞∑
k=1

∞∑
l=1

∞∑
j=1

cjlk
vj(θ)
4
√
λkλl

(
zl + zl√

2

)(
zk + zk√

2

)
.

For two sequences x = (xj ∈ C, j = 1, 2, . . .), y = (yj ∈ C, j = 1, 2, . . .), define

〈x, y〉 =
∞∑
j=1

xjyj .

Then we can write

H = 〈Λz, z〉+ ε
[
〈Rzz(θ)z, z〉+ 〈Rzz(θ)z, z〉+ 〈Rzz(θ)z, z〉

]
,

where

Λ = diag
(√

λj : j = 1, 2, . . .
)
, θ = ωt,

Rzz(θ) =
(
Rzzkl (θ) : k, l = 1, 2, . . .

)
, Rzzkl (θ) =

1

2

∞∑
j=1

cjlkvj(θ)
4
√
λk

4
√
λl
,(2.5)

Rzz(θ) =
(
Rzzkl (θ) : k, l = 1, 2, . . .

)
, Rzzkl (θ) =

∞∑
j=1

cjlkvj(θ)
4
√
λk

4
√
λl
,

Rzz(θ) =
(
Rzzkl (θ) : k, l = 1, 2, . . .

)
, Rzzkl (θ) =

1

2

∞∑
j=1

cjlkvj(θ)
4
√
λk

4
√
λl
.

Define a Hilbert space hN as follows:

hN = {z = (zk ∈ C : k = 1, 2, . . .)}.
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Let

〈y, z〉N :=

∞∑
k=1

k2Nykzk, ∀ y, z ∈ hN , and ‖z‖2N = 〈z, z〉N .

Recall that

V (θ, x) ∈ CN (Tn × [−π, π],R).

Note that the Fourier transformation (2.2) is isometric from u ∈H N [−π, π] to (uk : k =

1, 2, . . .) ∈ hN , where H N [−π, π] is the usual Sobolev space.

Now we need the following lemmas.

Lemma 2.1.

sup
θ∈Tn

∥∥∥∥ ∑
|α|=N

∂αθ JR
zz(θ)J

∥∥∥∥
hN→hN

≤ C,

sup
θ∈Tn

∥∥∥∥ ∑
|α|=N

∂αθ JR
zz(θ)J

∥∥∥∥
hN→hN

≤ C,

sup
θ∈Tn

∥∥∥∥ ∑
|α|=N

∂αθ JR
zz(θ)J

∥∥∥∥
hN→hN

≤ C,

(2.6)

where ‖ · ‖hN→hN is the operator norm from hN to hN , and α = (α1, α2, . . . , αn), |α| =

|α1| + |α2| + · · · + |αn|, αj’s are positive integers, and J = diag( 4
√
λj : j = 1, 2, . . .) =

diag(
√
j : j = 1, 2, . . .).

Proof. By (2.5),

∂αθ JR
zz(θ)J =

(
1

2

∞∑
j=1

Cjlk∂
α
θ vj(θ) : l, k = 1, 2, . . .

)
,

where Cjlk is defined as (2.3). For any z = (zk ∈ C : k = 1, 2, . . .) ∈ hN ,( ∑
|α|=N

∂αθ JR
zz(θ)J

)
z =

(
1

2

∞∑
j=1

∞∑
k=1

Cjlk

( ∑
|α|=N

∂αθ vj(θ)

)
zk : l = 1, 2, . . .

)
.

Let

γlj =
(±l ± j)j

l
, where (±l ± j)jl 6= 0.

Thus, ∥∥∥∥( ∑
|α|=N

∂αθ JR
zz(θ)J

)
z

∥∥∥∥2

N

=

∞∑
l=1

l2N
∣∣∣∣12

∞∑
j=1

∞∑
k=1

Cjlk

( ∑
|α|=N

∂αθ vj(θ)

)
zk

∣∣∣∣2
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=

∞∑
l=1

l2N
∣∣∣∣12

∞∑
j=1

Cjl(±l±j)

( ∑
|α|=N

∂αθ vj(θ)

)
z±l±j

∣∣∣∣2

=
1

4

∞∑
l=1

l2N
∣∣∣∣ ∞∑
j=1

1

γNlj
· γNlj Cjl(±l±j)

( ∑
|α|=N

∂αθ vj(θ)

)
z±l±j

∣∣∣∣2

≤ C
∞∑
l=1

( ∞∑
j=1

1

γ2N
lj

)( ∞∑
j=1

|j|2N
∣∣∣∣ ∑
|α|=N

∂αθ vj(θ)

∣∣∣∣2| ± l ± j|2N |z±l±j |2)

≤ C
( ∞∑
j=1

|j|2N
∣∣∣∣ ∑
|α|=N

∂αθ vj(θ)

∣∣∣∣2 ∞∑
l=1

| ± l ± j|2N |z±l±j |2
)

≤ C
∞∑
j=1

|j|2N
∣∣∣∣ ∑
|α|=N

∂αθ vj(θ)

∣∣∣∣2‖z‖2N
≤ C sup

(θ,x)∈Tn×[−π,π]

∣∣∣∣ ∑
|α|=N

∂αθ ∂
N
x V (θ, x)

∣∣∣∣‖z‖2N ≤ C‖z‖2N ,
where C is a universal constant which might be different in different places. It follows

(2.7) sup
θ∈Tn

∥∥∥∥ ∑
|α|=N

∂αθ JR
zz(θ)J

∥∥∥∥
hN→hN

≤ C.

The proofs of the last two inequalities in (2.6) are similar to that of (2.7).

3. Analytical approximation lemma

We need to find a series of operators which are analytic in some complex strip domains

to approximate the operators Rzz(θ), Rzz(θ) and Rzz(θ). To this end, we use an approxi-

mation lemma developed in [18,26,27]. This method is used in [31], too.

We start by recalling some definitions and setting some new notations. Assume X is

a Banach space with the norm ‖ · ‖X . First recall that Cµ(Rn;X) for 0 < µ < 1 denotes

the space of bounded Hölder continuous functions f : Rn 7→ X with the form

‖f‖Cµ,X = sup
0<|x−y|<1

‖f(x)− f(y)‖X
|x− y|µ

+ sup
x∈Rn

‖f(x)‖X .

If µ = 0 then ‖f‖Cµ,X denotes the sup-norm. For ` = k+µ with k ∈ N and 0 ≤ µ < 1, we

denote by C`(Rn;X) the space of functions f : Rn 7→ X with Hölder continuous partial

derivatives, i.e., ∂αf ∈ Cµ(Rn;Xα) for all multi-indices α = (α1, . . . , αn) ∈ Nn with the

assumption that |α| := |α1| + · · · + |αn| ≤ k and Xα is the Banach space of bounded

operators T :
∏|α|(Rn) 7→ X with the norm

‖T‖Xα = sup{‖T (u1, u2, . . . , u|α|)‖X : ‖ui‖ = 1, 1 ≤ i ≤ |α|}.
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We define the norm

‖f‖C` = sup
|α|≤`

‖∂αf‖Cµ,Xα .

Lemma 3.1 (Jackson-Moser-Zehnder). Let f ∈ C`(Rn;X) for some ` > 0 with finite

C` norm over Rn. Let φ be a radial-symmetric, C∞ function, having as supporting the

closure of the unit ball centered at the origin, where φ is completely flat and takes value

1, let K = φ̂ be its Fourier transform. For all σ > 0 define

fσ(x) := Kσ ∗ f =
1

σn

∫
Rn
K

(
x− y
σ

)
f(y) dy.

Then there exists a constant C ≥ 1 depending only on ` and n such that the following

holds: For any σ > 0, the function fσ(x) is a real-analytic function from Cn/(πZ)n to X

such that if ∆n
σ denotes the n-dimensional complex strip of width σ,

∆n
σ := {x ∈ Cn | | Imxj | ≤ σ, 1 ≤ j ≤ n},

then ∀α ∈ Nn such that |α| ≤ ` one has

sup
x∈∆n

σ

∥∥∥∥∂αfσ(x)−
∑

|β|≤`−|α|

∂β+αf(Rex)

β!
(i Imx)β

∥∥∥∥
Xα

≤ C‖f‖C`σ`−|α|,

and for all 0 ≤ s ≤ σ,

sup
x∈∆n

s

‖∂αfσ(x)− ∂αfs(x)‖Xα ≤ C‖f‖C`σ`−|α|.

The function fσ preserves periodicity (i.e., if f is T -periodic in any of its variable xj,

so is fσ). Finally, if f depends on some parameter ξ ∈ Π ⊂ Rn and if

‖f(x, ξ)‖LC`(X) := sup
ξ∈Π
‖∂ξf(x, ξ)‖C`(X)

are uniformly bounded by a constant C then all the above estimates hold with ‖ · ‖ replaced

by ‖ · ‖L .

The proof of this lemma consists in a direct check which is based on standard tools

from calculus and complex analysis. It is used to deal with KAM theory for finitely smooth

systems by Zehnder [32]. Also see [9] and [31] and references therein, for example. For

ease of notation, we shall replace ‖ · ‖X by ‖ · ‖. Now let us apply this lemma to the

perturbation P (φ).

Fix a sequence of fast decreasing numbers sν ↓ 0, υ ≥ 0, and s0 ≤ 1/2. For an X-

valued function P (φ), construct a sequence of real analytic functions P (υ)(φ) = Psυ(φ)

such that the following conclusions hold:
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(1) P (υ)(φ) is real analytic on the complex strip Tnsυ of the width sυ around Tn.

(2) The sequence of functions P (υ)(φ) satisfies the bounds:

sup
φ∈Tn

‖P (υ)(φ)− P (φ)‖ ≤ C‖P‖C`s`υ,(3.1)

sup
φ∈Tnsυ+1

‖P (υ+1)(φ)− P (υ)(φ)‖ ≤ C‖P‖C`s`υ,

where C denotes (different) constants depending only on n and `.

(3) The first approximate P (0) is “small” with the perturbation P . Precisely speaking,

for arbitrary φ ∈ Tns0 , we have

‖P (0)(φ)‖ ≤
∥∥∥∥P (0)(φ)−

∑
|α|≤`

∂αP (Reφ)

α!
(i Imφ)α

∥∥∥∥+

∥∥∥∥ ∑
|α|≤`

∂αP (Reφ)

α!
(i Imφ)α

∥∥∥∥
≤ C

(
‖P‖C`s`0 +

∑
0≤m≤`

‖P‖Cmsm0
)
≤ C‖P‖C`

∑̀
m=0

sm0

≤ C‖P‖C`
∞∑
m=0

sm0 ≤ C‖P‖C` ,

where constant C is independent of s0, and the last inequality holds true due to the

hypothesis that s0 ≤ 1/2.

(4) From the first inequality (3.1), we have the equality below. For arbitrary φ ∈ Tn,

(3.2) P (φ) = P (0)(φ) +
+∞∑
υ=0

(P (υ+1)(φ)− P (υ)(φ)).

Now take a sequence of real numbers {sv ≥ 0}∞v=0 with sv > sv+1 goes fast to zero.

Let Rp,q(θ) = P (θ) for p, q ∈ {z, z}. Then by (3.2) we can write, for p, q ∈ {z, z},

(3.3) Rp,q(θ) = Rp,q0 (θ) +

∞∑
l=1

Rp,ql (θ),

where Rp,q0 (θ) is analytic in Tns0 with

(3.4) sup
θ∈Tns0

‖Rp,q0 (θ)‖hN→hN ≤ C,

and Rp,ql (θ) (l ≥ 1) is analytic in Tnsl with

(3.5) sup
θ∈Tnsl

‖JRp,ql (θ)J‖hN→hN ≤ Cs
N
l−1.
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4. Iterative parameters of domains

Let

• ε0 = ε, εν = ε(4/3)ν , ν = 0, 1, 2, . . ., which measures the size of perturbation at ν-th

step.

• sν = ε
1/N
ν+1, ν = 0, 1, 2, . . ., which measures the strip-width of the analytic domain

Tnsν , Tnsν = {θ ∈ Cn/2πZn : | Im θ| ≤ sν}.

• C(ν) is a constant which may be different in different places, and it is of the form

C(ν) = C12C2ν ,

where C1, C2 are constants.

• Kν = 100s−1
ν 2ν | log ε|.

• γν = γ/2ν , 0 < γ � 1.

• a family of subsets Πν ⊂ [1, 2] with [1, 2] ⊃ Π0 ⊃ · · · ⊃ Πν ⊃ · · · , and

mes Πν ≥ mes Πν−1 − Cγ1/3
ν−1.

• For an operator-value (or a vector-value) function B(θ, τ), whose domain is (θ, τ) ∈
Tnsν ×Πν , set

‖B‖Tnsν×Πν = sup
(θ,τ)∈Tnsν×Πν

‖B(θ, τ)‖hN→hN ,

where ‖ · ‖hN→hN is the operator norm, and set

‖B‖LTnsν×Πν = sup
(θ,τ)∈Tnsν×Πν

‖∂τB(θ, τ)‖hN→hN .

5. Iterative lemma

In the following, for a function f(ω), denote by ∂ω the derivative of f(ω) with respect to

ω in Whitney’s sense.

Lemma 5.1. For p, q ∈ {z, z}, let Rp,q0,0 = Rp,q0 , Rp,ql,0 = Rp,ql , where Rp,q0 , Rp,ql are defined

by (3.3), (3.4) and (3.5). Assume that we have a family of Hamiltonian functions Hν :

(5.1) Hν =
∞∑
j=1

λ
(ν)
j zjzj +

∞∑
l≥ν

εl
(
〈Rzzl,νz, z〉+ 〈Rzzl,νz, z〉+ 〈Rzzl,νz, z〉

)
, ν = 0, 1, . . . ,m,

where Rzzl,ν , Rzzl,ν , Rzzl,ν are operator-valued functions defined on the domain Tnsν × Πν , and

θ = ωt.
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(A1)ν

(5.2) λ
(0)
j =

√
λj = j, λ

(ν)
j =

√
λj +

ν−1∑
i=0

εiµ
(i)
j , ν ≥ 1

and µ
(i)
j = µ

(i)
j (τ) : Πi → R with

|µ(i)
j |Πi := sup

τ∈Πi

|µ(i)
j (τ)| ≤ C(i)/j, 0 ≤ i ≤ ν − 1,(5.3)

|µ(i)
j |

L
Πi := sup

τ∈Πi

|∂τµ(i)
j (τ)| ≤ C(i)/j, 0 ≤ i ≤ ν − 1.(5.4)

(A2)ν For p, q ∈ {z, z}, Rp,ql,ν = Rp,ql,ν (θ, τ) is defined in Tnsl ×Πν with l ≥ ν, and is analytic

in θ for fixed τ ∈ Πν , and

‖JRp,ql,ν J‖Tnsl×Πν ≤ C(ν),(5.5)

‖JRp,ql,ν J‖
L
Tnsl×Πν ≤ C(ν).(5.6)

Then there exists a compact set Πm+1 ⊂ Πm with

mes Πm+1 ≥ mes Πm − Cγ1/3
m

and symplectic coordinate changes

Ψm : Tnsm+1
×Πm+1 → Tnsm ×Πm,(5.7)

‖Ψm − id ‖hN→hN ≤ ε
1/2, (θ, τ) ∈ Tnsm+1

×Πm+1(5.8)

such that the Hamiltonian function Hm is changed into

Hm+1 , Hm ◦Ψm

=
∞∑
j=1

λ
(m+1)
j zjzj +

∞∑
l≥m+1

εl
[
〈Rzzl,m+1z, z〉+ 〈Rzzl,m+1z, z〉+ 〈Rzzl,m+1z, z〉

]
,

(5.9)

which is defined on the domain Tnsm+1
×Πm+1, and λ

(m+1)
j ’s satisfy Assumption (A1)m+1

and Rp,ql,m+1 (p, q ∈ {z, z}) satisfy Assumption (A2)m+1.

6. Derivation of homological equations

Our end is to find a symplectic transformation Ψν such that the terms Rzzl,v, R
zz
l,v, R

zz
l,v

(with l = v) disappear. To this end, let F be a linear Hamiltonian of the form

(6.1) F = 〈F zz(θ, τ)z, z〉+ 〈F zz(θ, τ)z, z〉+ 〈F zz(θ, τ)z, z〉,
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where θ = ωt, (F zz(θ, τ))T = F zz(θ, τ), (F zz(θ, τ))T = F zz(θ, τ), (F zz(θ, τ))T = F zz(θ, τ).

Moreover, let

(6.2) Ψ = Ψm = Xt
εmF

∣∣
t=1

,

where Xt
εmF

is the flow of the Hamiltonian, XεmF is the vector field of the Hamiltonian

εmF with the symplectic structure idz ∧ dz. Let

(6.3) Hm+1 = Hm ◦Ψm.

By (5.1), we write

(6.4) Hm = Nm +Rm

with

Nm =

∞∑
j=1

λ
(m)
j zjzj ,(6.5)

Rm =
∞∑
l=m

εlRlm,(6.6)

Rlm = 〈Rzzl,m(θ)z, z〉+ 〈Rzzl,m(θ)z, z〉+ 〈Rzzl,m(θ)z, z〉,(6.7)

where (Rzzl,m(θ))T = Rzzl,m(θ), (Rzzl,m(θ))T = Rzzl,m(θ), (Rzzl,m(θ))T = Rzzl,m(θ). Since the

Hamiltonian Hm = Hm(ωt, z, z) depends on time t, we introduce a fictitious action I =

constant, and let θ = ωt be angle variable. Then the non-autonomous Hm(ωt, z, z) can be

written as

ωI +Hm(θ, z, z)

with symplectic structure dI ∧ dθ + idz ∧ dz. By combination of (6.1)–(6.7) and Taylor

formula, we have

Hm+1 = Hm ◦X1
εmF

= Nm + εm{Nm, F}+ ε2
m

∫ 1

0
(1− τ){{Nm, F}, F} ◦Xτ

εmF dτ + εmω · ∂θF

+ εmRmm +

( ∞∑
l=m+1

εlRlm

)
◦X1

εmF + ε2
m

∫ 1

0
{Rmm, F} ◦Xτ

εmF dτ,

where { · , · } is the Poisson bracket with respect to idz ∧ dz, that is

{H(z, z), F (z, z)} = i

(
∂H

∂z
· ∂F
∂z
− ∂H

∂z
· ∂F
∂z

)
.
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Let ΓKm be a truncation operator. For any

f(θ) =
∑
k∈Zn

f̂(k)ei〈k,θ〉, θ ∈ Tn,

define, for given Km > 0,

ΓKmf(θ) = (ΓKmf)(θ) ,
∑
|k|≤Km

f̂(k)ei〈k,θ〉,

(1− ΓKm)f(θ) = ((1− ΓKm)f)(θ) ,
∑
|k|>Km

f̂(k)ei〈k,θ〉.

Then

f(θ) = ΓKmf(θ) + (1− ΓKm)f(θ).

Let

(6.8) ω · ∂θF + {Nm, F}+ ΓKmRmm = 〈[Rzzmm]z, z〉,

where

[Rzzmm] := diag
(
R̂zzmmjj(0) : j = 1, 2, . . .

)
,

and Rzzmmij(θ) is the matrix element of Rzzm,m(θ) and R̂zzmmij(k) is the k-Fourier coefficient

of Rzzmmij(θ). Then

Hm+1 = Nm+1 + Cm+1Rm+1,

where

Nm+1 = Nm + εm〈[Rzzmm]z, z〉 =
∞∑
j=1

λ
(m+1)
j zjzj ,

λ
(m+1)
j = λ

(m)
j + εmR̂

zz
mmjj(0) =

√
λj +

m∑
l=1

εlµ
(l)
j , µ

(m)
j := R̂zzmmjj(0).(6.9)

Cm+1Rm+1 = εm(1− ΓKm)Rmm(6.10)

+ ε2
m

∫ 1

0
(1− τ){{Nm, F}, F} ◦Xτ

εmF dτ(6.11)

+ ε2
m

∫ 1

0
{Rmm, F} ◦Xτ

εmF dτ(6.12)

+

( ∞∑
l=m+1

εlRlm

)
◦X1

εmF .(6.13)
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The equation (6.8) is called homological equation. Developing the Poisson bracket {Nm, F}
and comparing the coefficients of zizj , zizj , zizj (i, j = 1, 2, . . .), we get

ω · ∂θF zz(θ, τ) + i(Λ(m)F zz(θ, τ) + F zz(θ, τ)Λ(m)) = ΓKmR
zz
mm(θ),(6.14)

ω · ∂θF zz(θ, τ)− i(Λ(m)F zz(θ, τ) + F zz(θ, τ)Λ(m)) = ΓKmR
zz
mm(θ),(6.15)

ω · ∂θF zz(θ, τ) + i(F zz(θ, τ)Λ(m) − Λ(m)F zz(θ, τ)) = ΓKmR
zz
mm(θ)− [Rmm],(6.16)

where

Λ(m) = diag(λ
(m)
j : j = 1, 2, . . .),

and we assume

ΓKmF
zz(θ, τ) = F zz(θ, τ), ΓKmF

zz(θ, τ) = F zz(θ, τ), ΓKmF
zz(θ, τ) = F zz(θ, τ).

Here F zzij (θ), F zzij (θ), F zzij (θ) are the matrix elements of F zz(θ, τ), F zz(θ, τ), F zz(θ, τ),

respectively. Then (6.14)–(6.16) can be rewritten as

ω · ∂θF zzij (θ) + i(λ
(m)
i + λ

(m)
j )F zzij (θ) = ΓKmR

zz
mmij(θ),(6.17)

ω · ∂θF zzij (θ)− i(λ
(m)
i + λ

(m)
j )F zzij (θ) = ΓKmR

zz
mmij(θ),(6.18)

ω · ∂θF zzij (θ)− i(λ
(m)
i − λ(m)

j )F zzij (θ) = ΓKmR
zz
mmij(θ), i 6= j,(6.19)

ω · ∂θF zzii (θ) = ΓKmR
zz
mmii(θ)− R̂mmii(0),

where i, j = 1, 2, . . ..

7. Solutions of the homological equations

Lemma 7.1. There exists a compact subset Π+−
m+1 ⊂ Πm with

(7.1) mes(Π+−
m+1) ≥ mes Πm − Cγ1/3

m

such that for any τ ∈ Π+−
m+1 (Recall ω = τω0), the equation (6.19) has a unique solution

F zz(θ, τ), which is defined on the domain Tnsm+1
×Π+−

m+1, with

‖JF zz(θ, τ)J‖Tnsm+1
×Π+−

m+1
≤ C(m+ 1)ε−6(n+1)/N

m ,

‖JF zz(θ, τ)J‖LTnsm+1
×Π+−

m+1
≤ C(m+ 1)ε−12(n+1)/N

m .

Proof. By passing to Fourier coefficients, we can rewrite (6.19) as

(7.2) (−〈k, ω〉+ λ
(m)
i − λ(m)

j )F̂ zzij (k) = iR̂zzmmij(k),

where i, j = 1, 2, . . ., k ∈ Zn with |k| ≤ Km. Recall ω = τω0.
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Let

Ak = |k|2n+3 + 8,

and let

(7.3) Q
(m)
kij ,

{
τ ∈ Πm

∣∣∣ ∣∣− 〈k, ω0〉τ + λ
(m)
i − λ(m)

j

∣∣ < (|i− j|+ 1)γm
Ak

}
,

where i, j = 1, 2, . . ., k ∈ Zn with |k| ≤ Km, and k 6= 0 when i = j. Let

Π+−
m+1 = Πm \

⋃
|k|≤Km

∞⋃
i=1

∞⋃
j=1

Q
(m)
kij .

Then for any τ ∈ Π+−
m+1, we have

(7.4)
∣∣− 〈k, ω〉+ λ

(m)
i − λ(m)

j

∣∣ ≥ (|i− j|+ 1)γm
Ak

.

Recall that Rzzmm(θ) is analytic in the domain Tnsm for any τ ∈ Πm,

|R̂zzmmij(k)| ≤ C(m)√
ij

e−sm|k|.

It follows

|F̂ zzij (k)| =

∣∣∣∣∣ R̂zzmmij(k)

−〈k, ω〉+ λ
(m)
i − λ(m)

j

∣∣∣∣∣ ≤ Ak
γm(|i− j|+ 1)

· |R̂zzmmij(k)|

≤ (|k|2n+3 + 8)

γm(|i− j|+ 1)
· C(m)√

ij
e−sm|k|.

(7.5)

Now we need the following lemmas:

Lemma 7.2. [6] For 0 < δ < 1, ν > 1, one has

∑
k∈Zn

e−2|k|δ|k|ν <
(ν
e

)ν (1 + e)n

δν+n
.

Lemma 7.3. [25] If A = (Aij) is a bounded linear operator on `2, then also B = (Bij)

with

Bij =
|Aij |
|i− j|

, i 6= j,

and Bii = 0 is a bounded linear operator on `2, and ‖B‖ ≤
(
π√
3

)
‖A‖, where ‖·‖ is `2 → `2

operator norm.

Remark 7.4. Lemma 7.3 holds true for the weight norm ‖ · ‖N .
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Therefore, by (7.5), we have

sup
θ∈Tn

s′m
×Πm+1

(√
i|F zzij (θ, τ)|

√
j
)

≤

 ∑
|k|≤Km

(|k|2n+3 + 8)e−(sm−s′m)|k|

 · C(m)

γm(|i− j|+ 1)

≤ C
(

2n+ 3

e

)2n+3

(1 + e)n
(

2

sm − s′m

)3n+3

· C(m)

γm(|i− j|+ 1)
(by Lemma 7.2)

≤ C · C(m)

(sm − s′m)3(n+1)
· 1

γm(|i− j|+ 1)

≤ C · ε−6(n+1)/N
m · C(m)

γm(|i− j|+ 1)
,

where C is a constant depending on n, s′m = sm − (sm − sm+1)/4.

By Lemma 7.3 and Remark 7.4, we have

(7.6) ‖JF zz(θ, τ)J‖Tn
s′m
×Π+−

m+1
≤ C · C(m)γ−1

m ε−6(n+1)/N
m ≤ C(m+ 1)ε−6(n+1)/N

m .

It follows from s′m > sm+1 that

‖JF zz(θ, τ)J‖Tnsm+1
×Π+−

m+1
≤ ‖JF zz(θ, τ)J‖Tn

s′m
×Π+−

m+1
≤ C(m+ 1)ε−6(n+1)/N

m .

Applying ∂τ to both sides of (7.2), we have

(7.7)
(
− 〈k, ω〉+ λ

(m)
i − λ(m)

j

)
∂τ F̂

zz
ij (k) = i∂τ R̂

zz
mmij(k) + (∗),

where

(∗) = −
(
− 〈k, ω0〉+ ∂τ (λ

(m)
i − λ(m)

j )
)
F̂ zzij (k).

Recalling |k| ≤ Km = 100s−1
m 2m| log ε|, and using (5.2) and (5.3) with ν = m, and using

(7.6), we have, on τ ∈ Πm+1,

(7.8)
√
i|(∗)|

√
j ≤ C(m)Km|F̂ zzij (k)|.

According to (5.6),

(7.9)
∣∣√i∂τ R̂zzmmij(k)

√
j
∣∣ ≤ C(m+ 1)e−s

∗
m|k|.

By (7.4), (7.7), (7.8) and (7.9), we have

∣∣√i∂τ F̂ zzij (k)
√
j
∣∣ ≤ Ak

γm(|i− j|+ 1)
· C · C(m+ 1)Kmγ

−1
m ε−6(n+1)/N

m e−s
′
m|k| for i 6= j.
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Note that sm > s′m > sm+1. Again using Lemmas 7.2 and 7.3, we have

‖JF zz(θ, τ)J‖LTsm+1×Π+−
m+1

= ‖J∂τF zz(θ, τ)J‖Tsm+1×Π+−
m+1

≤ C2 · C(m+ 1)Kmγ
−1
m ε−12(n+1)/N

m ≤ C(m+ 1)ε−12(n+1)/N
m .

The proof of the measure estimate (7.1) will be postponed to Section 10. This completes

the proof of Lemma 7.1.

Lemma 7.5. There exists a compact subset Π++
m+1 ⊂ Πm with

(7.10) mes(Π++
m+1) ≥ mes Πm − Cγ1/3

m

such that for any τ ∈ Π++
m+1 (Recall ω = τω0), the equation (6.17) has a unique solution

F zz(θ), which is defined on the domain Tnsm+1
×Π++

m+1, with

‖JF zz(θ, τ)J‖Tnsm+1
×Π++

m+1
≤ C(m+ 1)ε−6(n+1)/N

m ,

‖JF zz(θ, τ)J‖LTnsm+1
×Π++

m+1
≤ C(m+ 1)ε−12(n+1)/N

m .

Lemma 7.6. There exists a compact subset Π−−m+1 ⊂ Πm with

(7.11) mes(Π−−m+1) ≥ mes Πm − Cγ1/3
m

such that for any τ ∈ Π−−m+1 (Recall ω = τω0), the equation (6.18) has a unique solution

F zz(θ), which is defined on the domain Tnsm+1
×Π−−m+1, with

‖JF zz(θ, τ)J‖Tnsm+1
×Π−−m+1

≤ C(m+ 1)ε−6(n+1)/N
m ,

‖JF zz(θ, τ)J‖LTnsm+1
×Π−−m+1

≤ C(m+ 1)ε−12(n+1)/N
m .

The proofs of Lemmas 7.5 and 7.6 are a little bit simpler than that of Lemma 7.1. So

we omit them.

Let

Πm+1 = Π+−
m+1 ∩Π++

m+1 ∩Π−−m+1.

By (7.1), (7.10) and (7.11), we have

mes Πm+1 ≥ mes Πm − Cγ1/3
m .

8. Coordinate change Ψ by εmF

Recall Ψ = Ψm = Xt
εmF

∣∣
t=1

, where Xt
εmF

is the flow of the Hamiltonian εmF , vector field

XεmF with symplectic idz ∧ dz. So

iż = εm
∂F

∂z
, −iż = εm

∂F

∂z
, θ̇ = ω.
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More exactly,

iż = εm(F zz(θ, τ)z + 2F zz(θ, τ)z), θ = ωt,

−iż = εm(2F zz(θ, τ)z + F zz(θ, τ)z), θ = ωt,

θ̇ = ω.

Let u = ( zz ),

Bm =

−iF zz(θ, τ) −2iF zz(θ, τ)

2iF zz(θ, τ) iF zz(θ, τ)

 , θ = ωt.

Then

(8.1)
du(t)

dt
= εmBm(θ)u, θ̇ = ω.

Let u(0) = u0 ∈ hN × hN , θ(0) = θ0 ∈ Tnsm+1
be initial value. Then

(8.2) u(t) = u0 +

∫ t

0
εmBm(θ0 + ωs)u(s) ds, θ(t) = θ0 + ωt.

By Lemmas 7.1, 7.5 and 7.6,

‖JBm(θ)J‖Tnsm+1
×Πm+1 ≤ C(m+ 1)ε−6(n+1)/N

m ,

‖JBm(θ)J‖LTnsm+1
×Πm+1

≤ C(m+ 1)ε−12(n+1)/N
m .

It follows from (8.2) that

u(t)− u0 =

∫ t

0
εmBm(θ0 + ωs)u0 ds+

∫ t

0
εmBm(θ0 + ωs)(u(s)− u0) ds.

Moreover, for t ∈ [0, 1], ‖u0‖N ≤ 1,

‖u(t)− u0‖N ≤ εmC(m+ 1)ε−6(n+1)/N
m +

∫ t

0
εm‖Bm(θ0 + ωs)‖‖u(s)− u0‖N ds,

where ‖ · ‖ is the operator norm from hN × hN → hN × hN .

By Gronwall’s inequality,

‖u(t)− u0‖N ≤ C(m+ 1)ε1−6(n+1)/N
m · exp

(∫ t

0
εm‖Bm(θ0 + ωs)‖ ds

)
≤ ε1/2

m .

Thus,

Ψm : Tnsm+1
×Πm+1 → Tnsm ×Πm,

and

(8.3) ‖Ψm − id ‖hN→hN ≤ ε
1/2
m .
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Since (8.1) is linear, so Ψm is linear coordinate change. According to (8.2), construct

Picard sequence

u0(t) = u0, uj+1(t) = u0 +

∫ t

0
εmB(θ0 + ωs)uj(s) ds, j = 0, 1, 2, . . . .

By (8.3), this sequence with t = 1 goes to

Ψm(u0) = u(1) = (id +Pm(θ0))u0,

where id is the identity from hN × hN → hN × hN , and Pm(θ0) is an operator form

hN × hN → hN × hN for any fixed θ0 ∈ Tnsm+1
, τ ∈ Πm+1, and is analytic in θ0 ∈ Tnsm+1

,

with

‖Pm(θ0)‖Tnsm+1
×Πm+1 ≤ ε1/2

m .

Note that (8.1) is a Hamiltonian system. So Pm(θ0) is a symplectic linear operator from

hN × hN to hN × hN .

9. Estimates of remainders

The section is aimed to estimate the remainders:

Cm+1Rm+1 = (6.10) + · · ·+ (6.13).

Case 1: Estimate of (6.10). By (6.7), let

R̃mm = R̃mm(θ) =

 Rzz
m,m

(θ) 1
2R

zz
m,m(θ)

1
2R

zz
m,m(θ) Rzzm,m(θ)

 ,

then

Rmm =

〈
R̃mm

z
z

 ,

z
z

〉 .
So

(1− ΓKm)Rmm ,

〈
(1− ΓKm)R̃mm

z
z

 ,

z
z

〉 .
By the definition of truncation operator ΓKm ,

(1− ΓKm)R̃mm =
∑
|k|>Km

̂̃
Rmm(k)ei〈k,θ〉, θ ∈ Tnsm , τ ∈ Πm.

Since R̃mm = R̃mm(θ) is analytic in θ ∈ Tnsm ,

sup
(θ,τ)∈Tnsm+1

×Πm+1

‖J(1− ΓKm)R̃mmJ‖2hN→hN ≤
∑
|k|>Km

‖J ̂̃Rmm(k)J‖2Ne2|k|sm+1
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≤ ‖JR̃mmJ‖2Tnsm×Πm

∑
|k|>Km

e−2(sm−sm+1)|k|

≤ C2(m)ε−1
m e−2Km(sm−sm+1) (by (5.5))

≤ C2(m)ε2
m.

That is,

‖J(1− ΓKm)R̃mmJ‖Tnsm+1
×Πm+1 ≤ εmC(m).

Thus,

‖εmJ(1− ΓKm)R̃mmJ‖Tnsm+1
×Πm+1 ≤ ε2

mC(m) ≤ εm+1C(m+ 1).

Similarly,

‖εmJ(1− ΓKm)R̃mmJ‖LTnsm+1
×Πm+1

≤ εm+1C(m+ 1).

Case 2: Estimate of (6.12). Let

Sm =

 F zz(θ, τ) 1
2F

zz(θ, τ)

1
2F

zz(θ, τ) F zz(θ, τ)

 , J =

 0 −i id

i id 0

 .

Then we can write

F =

〈
Sm(θ)

z
z

 ,

z
z

〉 = 〈Smu, u〉, u =

z
z

 .

Then

ε2
m{Rmm, F} = 4ε2

m〈R̃mm(θ)J Sm(θ)u, u〉.

Noting Tnsm ×Πm ⊃ Tnsm+1
×Πm+1. By (5.6) with l = m, v = m,

‖R̃mm(θ)‖Tnsm+1
×Πm+1 ≤ ‖R̃mm(θ)‖Tnsm×Πm ≤ C(m),(9.1)

‖R̃mm(θ)‖LTnsm+1
×Πm+1

≤ C(m).(9.2)

Let S̃m(θ) = J Sm(θ). Then by Lemmas 7.1, 7.5 and 7.6, we have

‖JS̃m(θ)J‖Tnsm+1
×Πm+1 ≤ C(m+ 1)ε−6(n+1)/N

m ,(9.3)

‖JS̃m(θ)J‖LTnsm+1
×Πm+1

≤ C(m+ 1)ε−12(n+1)/N
m(9.4)

and

‖R̃mmJ Sm‖Tnsm+1
×Πm+1 = ‖R̃mmS̃m‖Tnsm+1

×Πm+1

≤ C(m)C(m+ 1)ε−6(n+1)/N
m .
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Set

[R̃mm, S̃m] = R̃mmS̃m + (R̃mmS̃m)T .

Note that the vector field is linear. So, by Taylor formula, one has

(6.12) = ε2
m〈R̃∗m(θ)u, u〉,

where

R̃∗m(θ) = 22R̃mmS̃m +
∞∑
j=2

2j+1εj−1
m

j!
[· · · [R̃mm, S̃m], . . . , S̃m]︸ ︷︷ ︸

(j−1)-fold

S̃m.

By (9.1) and (9.3),

‖JR̃∗m(θ)J‖Tnsm+1
×Πm+1 ≤

∞∑
j=1

C(m)C(m+ 1)εj−1
m (ε

−6(n+1)/N
m )j

j!

≤ C(m)C(m+ 1)ε−6(n+1)/N
m .

By (9.2) and (9.4),

‖JR̃∗m(θ)J‖LTnsm+1
×Πm+1

≤ C(m)C(m+ 1)ε−12(n+1)/N
m .

Thus,

‖ε2
mJR̃

∗
mJ‖Tnsm+1

×Πm+1 ≤ C(m)C(m+ 1)ε2−6(n+1)/N
m ≤ C(m+ 1)εm+1

and

‖ε2
mJR̃

∗
mJ‖LTnsm+1

×Πm+1
≤ C(m)C(m+ 1)ε2−12(n+1)/N

m ≤ C(m+ 1)εm+1.

Case 3: Estimate of (6.11). By (6.8),

{Nm, F} = 〈[Rzzmm]z, z〉 − ΓKmRmm − ω · ∂θF , R∗mm.

Thus,

(9.5) (6.11) = ε2
m

∫ 1

0
(1− τ){R∗mm, F} ◦Xτ

εmF dτ.

Note R∗mm is a quadratic polynomial in z and z. So we write

R∗mm = 〈Rm(θ, τ)u, u〉, u =

z
z

 .

By (5.3) and (5.4) with l = ν = m, and using (9.3) and (9.4),

‖JRmJ‖Tnsm+1×Πm+1 ≤ C(m)ε−6(n+1)/N
m ,

‖JRmJ‖LTnsm+1×Πm+1
≤ C(m)ε−12(n+1)/N

m ,
(9.6)
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where ‖ · ‖ is the operator norm in hN × hN → hN × hN . Recall F = 〈Sm(θ, τ)u, u〉. Set

(9.7) [Rm, S̃m] = RmS̃m + (RmS̃m)T .

Using Taylor formula to (9.5), we get

(6.11) =
ε2
m

2!
{{R∗mm, F}, F}+ · · ·+ εjm

j!
{· · · {R∗mm, F}, . . . , F}︸ ︷︷ ︸

j-fold

+ · · ·

=

〈( ∞∑
j=2

2j+1εjm
j!

[· · · [Rm, S̃m], . . . , S̃m]︸ ︷︷ ︸
(j−1)-fold

S̃m

)
ũ, ũ

〉

, 〈R∗∗(θ, τ)u, u〉.

By (9.3),(9.6) and (9.7), we have

‖JR∗∗(θ, τ)J‖Tnsm+1
×Πm+1

≤
∞∑
j=2

2j+1

j!
‖JRm(θ, τ)J‖Tnsm×Πm

(
‖JS̃mJ‖Tnsm+1

×Πm+1εm
)j

≤
∞∑
j=2

C(m)

j!

(
εmC(m+ 1)ε−6(n+1)/N

m

)j
≤ C(m+ 1)ε4/3

m = C(m+ 1)εm+1.

Similarly,

‖JR∗∗J‖LTnsm+1
×Πm+1

≤ C(m+ 1)εm+1.

Case 4: Estimate of (6.13).

(6.13) =

∞∑
l=m+1

εl(Rlm ◦X1
εmF ).

Write Rlm = 〈R̃lm(θ)u, u〉. Then, by Taylor formula

Rlm ◦X1
εmF = Rlm +

∞∑
j=1

1

j!
〈R̃lmju, u〉,

where

R̃lmj = 2j+1 [· · · [R̃lm, S̃m], . . .]︸ ︷︷ ︸
(j−1)-fold

S̃mε
j
m.

By (5.5), (5.6),

‖JR̃lmJ‖Tnsl×Πm ≤ C(l), ‖JR̃lmJ‖LTnsl×Πm ≤ C(l).
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Combing the last inequalities with (9.3) and (9.4), we have

‖JR̃lmjJ‖Tnsl×Πm+1 ≤ ‖JR̃lmJ‖Tnsl×Πm+1 ·
(
‖JS̃mJ‖Tnsl×Πm+14εm

)j
≤ C2(m)

(
εmε

−6(n+1)/N
m

)j
,

where we use ‖J−1‖Tnsl×Πm+1 ≤ C, and

‖JR̃lmjJ‖LTnsl×Πm+1
≤ ‖JR̃lmJ‖LTnsl×Πm+1

(
‖JS̃mJ‖Tnsl×Πm+14εm

)j
+ ‖JR̃lmJ‖Tnsl×Πm+1

(
‖JS̃mJ‖LTnsl×Πm+1

εm
)j

≤ C2(m)
(
εmε

−12(n+1)/N
m

)j
.

Thus, let

Rl,m+1 := R̃lm +
∞∑
j=1

1

j!
R̃lmj ,

then

(6.13) =
∞∑

l=m+1

εl〈Rl,m+1u, u〉

and

‖JRl,m+1J‖Tnsl×Πm+1 ≤ C2(m) ≤ C(m+ 1),

‖JRl,m+1J‖LTnsl×Πm+1
≤ C2(m) ≤ C(m+ 1).

As a whole, the remainder Rm+1 can be written as

Cm+1Rm+1 =

∞∑
l=m+1

εl
(
〈Rzzl,ν(θ)z, z〉+ 〈Rzzl,ν(θ)z, z〉+ 〈Rzzl,ν(θ)z, z〉

)
, ν = m+ 1,

where, for p, q ∈ {z, z}, Rp,qlν satisfies (5.5) and (5.6) with ν = m + 1, l ≥ m + 1. This

shows that Assumption (A2)ν with ν = m+ 1 holds true.

By (6.9),

µ
(m)
j = R̂zzmmjj(0).

In (5.5) and (5.6), taking p = z, q = z, we have

|µ(m)
j |Πm ≤ |R

zz
mmjj(θ, τ)|/j ≤ C(m)/j,

|µ(m)
j |

L
Πm ≤ |∂τR

zz
mmjj(θ, τ)|/j ≤ C(m)/j.

This shows that Assumption (A1)ν with ν = m+ 1 holds true.
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10. Estimate of measure

In this section, C denotes a universal constant, which may be different in different places.

Now let us return to (7.3).

(10.1) Q
(m)
kij ,

{
τ ∈ Πm

∣∣∣ ∣∣− 〈k, ω0〉τ + λ
(m)
i − λ(m)

j

∣∣ < (|i− j|+ 1)γm
Ak

}
.

First let i = j, then k 6= 0. At this time, (10.1) becomes

Q
(m)
kii =

{
τ ∈ Πm

∣∣∣ |〈k, ω0〉τ | <
γm
Ak

}
.

It follows

|〈k, ω0〉| <
γm

(|k|2n+3 + 8)τ
.

Recall |〈k, ω0〉| > γ/|k|n+1. Then

(10.2) mesQ
(m)
kii = 0.

In the following, let i 6= j. If Q
(m)
kij = ∅, then mesQ

(m)
kij = 0. So we assume Q

(m)
kij 6= ∅. Then

∃ τ ∈ Πm such that

(10.3)
∣∣− 〈k, ω0〉τ + λ

(m)
i − λ(m)

j

∣∣ < |i− j|+ 1

Ak
γm.

It follows from (5.2) and (5.3) that

(10.4) λ
(m)
i − λ(m)

j = i− j +O(ε0/i) +O(ε0/j).

Moreover,

(10.5)
∣∣λ(m)
i − λ(m)

j

∣∣ ≥ 1

2
|i− j|.

By (10.3) and (10.5), one has

|〈k, ω0〉τ | ≥
∣∣λ(m)
i − λ(m)

j

∣∣− |i− j|+ 1

Ak
γm ≥

1

2
|i− j| − |i− j|+ 1

Ak
γm ≥

1

4
|i− j|.

Recall ω = ω0τ . So

(10.6) 4|〈k, ω〉| ≥ |i− j|.

Again by (10.3) and (10.4), we have that, when τ ∈ Πm such that (10.3) holds true, the

following inequality holds true:

| − 〈k, ω〉+ i− j| ≤ |i− j|+ 1

Ak
γm +

C1ε0

i
+
C2ε0

j

≤ |i− j|+ 1

Ak
γm +

C1ε0

i0
+
C2ε0

j0
if i ≥ i0, j ≥ j0,
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where C1 > 0, C2 > 0 are constants.

Thus

Q
(m)
kij ⊂

{
τ ∈ Πm

∣∣∣ | − 〈k, ω〉+ l| < |l|+ 1

Ak
γm +

C1ε0

i0
+
C2ε0

j0

}
, Q̃kl,

when i ≥ i0, j ≥ j0. By (10.6), one has

|l| ≤ 4|〈k, ω〉| ≤ C|k|.

Note that

−〈k, ω〉+ l = −〈k, ω0〉τ + l = τ

(
−〈k, ω0〉+

l

τ

)
, τ ∈ [1, 2].

Thus

Q̃kl ⊂
{
τ ∈ Πm

∣∣∣ ∣∣∣∣−〈k, ω0〉+
l

τ

∣∣∣∣ < |l|+ 1

Ak
γm +

C1ε0

i0
+
C2ε0

j0

}
, Q̃∗kl.

Note ∣∣∣∣ ddτ
(
−〈k, ω0〉+

l

τ

)∣∣∣∣ =
|l|
τ2
≥ 1

4
|l|.

It follows that

mes Q̃kl ≤ mes Q̃∗kl ≤
8

|l|

(
|l|+ 1

Ak
γm +

C1ε0

i0
+
C2ε0

j0

)
.

Take

j0 = i0 = |k|n+1γ−1/3
m .

Then

mes
⋃

1≤l≤C|k|

Q̃kl ≤
C|k|γm
Ak

+ C
∑

1≤|l|≤C|k|

1

|l|

(
C1ε0

i0
+
C2ε0

j0

)

≤ C|k|γm
Ak

+ Cγ1/3
m ε0

log |k|
|k|n+1

≤ Cγ1/3
m ε0

log |k|
|k|n+1

.

Thus,

(10.7) mes
⋃
i≥i0
j≥j0

|i−j|≤C|k|

Q
(m)
kij ≤ Cγ

1/3
m ε0

log |k|
|k|n+1

.

Now assume

i ≤ i0 or j ≤ j0 and |i− j| ≤ C|k|.
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By (10.3) and (10.5), we have∣∣∣∣ ddτ
(−〈k, ω0〉τ + λ

(m)
i − λ(m)

j

τ

)∣∣∣∣ ≥
∣∣λ(m)
i − λ(m)

j

∣∣
4

≥ |i− j|+ 1

16
,

mes
⋃
i≤i0

|i−j|≤C|k|

Q
(m)
kij ≤

∑
1≤i≤i0
|i−j|≤C|k|

2(|i− j|+ 1)γm
Ak

· 16

|i− j|+ 1

≤ Ci0
C|k|γm
Ak

≤ C|k|n+2γ2/3
m

1

Ak
≤ Cγ

2/3
m

|k|n+1

(10.8)

and

(10.9) mes
⋃
j≤j0

|i−j|≤C|k|

Q
(m)
kij ≤

Cγ
2/3
m

|k|n+1
.

Combining (10.2), (10.7) (10.8) and (10.9), we have

mes
⋃

|k|≤Km

∞⋃
i=1

∞⋃
j=1

Q
(m)
kij ≤ Cγ

1/3
m .

Let

Π+−
m+1 = Πm \

⋃
|k|≤Km

∞⋃
i,j=1

Q
(m)
kij .

Then we have proved the following Lemma 10.1.

Lemma 10.1.

mes Π+−
m+1 ≥ mes Πm − Cγ1/3

m .

11. Proofs of theorem and corollaries

Proofs of Theorem 1.1 and Corollary 1.2. Let

Π∞ =

∞⋂
m=1

Πm and Ψ∞ = lim
m→∞

Ψ0 ◦Ψ1 ◦ · · · ◦Ψm.

By (5.7) and (5.8), one has

Ψ∞ : Tn ×Π∞ → Tn ×Π∞, ‖Ψ∞ − id ‖hN→hN ≤ ε
1/2,

and, by (5.9),

H∞ = H ◦Ψ∞ =

∞∑
j=1

λ∞j ZjZj ,
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where

λ∞j = lim
m→∞

λ
(m)
j .

By (5.2) and (5.3), the limit λ∞j does exist and

λ∞j = j +O(ε/j) :=
√
j2 + ξj .

Introduce a transformation G : Z = (Zj ∈ C : j ≥ 1) 7→ v(t, x) by

v(t, x) =

∞∑
j=1

qj(t) sin jx, Zj =
1√
2

(qj − ipj), Zj =
1√
2

(qj + ipj).

Let

Φ = (S T G Ψ∞G−1T −1S −1)−1.

Then Φ is a symplectic transformation and changes (1.3) subject to (1.4) into (1.5). Also,

the transformation Φ changes the wave operator

LV : LV u(t, x) = (∂2
t − ∂2

x + εV (ωt, x))u(t, x), u(t,−π) = u(t, π) = 0

into

LM : LMv(t, x) = (∂2
t − ∂2

x + εMξ)v(t, x), v(t,−π) = v(t, π) = 0,

which possesses the property of pure point spectra and zero Lyapunov exponent.

This completes the proofs of Theorem 1.1 and Corollary 1.2.

Proof of Corollary 1.3. By Theorem 1.1, we have that if u = u(t, x) is a solution to (1.6),

then

v(t, x) := (Φ(u, ut))(t, x)

is the solution to (1.5) with

v(0, x) = (Φ(u, ut))(0, x) = (Φ(u0, ũ0))(x),

vt(0, x) = ∂t(Φ(u, ut))(0, x) = (Φt(u0, ũ0))(x).

Write

v0 = v(0, x) =
∑
k∈N

Ck sin kx, ṽ0 = vt(0, x) =
∑
k∈N

C ′k sin kx.

By solving (1.5) directly, we have

v(t, x) =
∞∑
k=1

(
C ′k(λk + εξk)

−1/2 sin(
√
λk + εξk t) + Ck cos(

√
λk + εξk t)

)
sin kx.
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Note k2(1− cε) ≤ λk + εξk ≤ k2(1 + cε). It follows

‖v(t)‖2H N =
∞∑
k=1

(
|Ck|2 + (λk + εξk)

−1|C ′k|2
)
k2N

≤
∞∑
k=1

(
|Ck|2 + (1 + cε)k−2|C ′k|2

)
k2N

= ‖v0‖2H N + (1 + cε)‖ṽ0‖2H N−1 .

Noting S , T , G are isometric maps, using ‖Ψ∞ − id ‖hN→hN ≤ ε1/2, we have

‖u(t)‖2H N ≤ (1 + c
√
ε)‖v(t)‖2H N ≤ (1 + c

√
ε)
(
‖v0‖2H N + (1 + cε)‖ṽ0‖2H N−1

)
≤ (1 + c

√
ε)
(
‖u0‖2H N + ‖ũ0‖2H N−1

)
.

And

‖v(t)‖2H N =
∞∑
k=1

(
|Ck|2 + (λk + εξk)

−1|C ′k|2
)
k2N

≥
∞∑
k=1

(
|Ck|2 + (1− cε)k−2|C ′k|2

)
k2N

= ‖v0‖2H N + (1− cε)‖ṽ0‖2H N−1 ,

thus

‖u(t)‖2H N ≥ (1− c
√
ε)‖v(t)‖2H N ≥ (1− c

√
ε)
(
‖u0‖2H N + ‖ũ0‖2H N−1

)
,

where c is a positive constant which might be different in different places. Note

vt(t, x) =
∞∑
k=1

(
C ′k cos(

√
λk + εξk t)− Ck

√
λk + εξk sin(

√
λk + εξk t)

)
sin kx.

Then

‖vt(t)‖2H N−1 =
∞∑
k=1

((√
λk + εξk

)2|Ck|2 + |C ′k|2
)
k2(N−1)

≤
∞∑
k=1

(
(1 + cε)|Ck|2k2N + |C ′k|2k2(N−1)

)
≤ (1 + cε)

(
‖v0‖2H N + ‖ṽ0‖2H N−1

)
.

Thus, by the preceding proof, we have

(1− c
√
ε)
(
‖u0‖2H N + ‖ũ0‖2H N−1

)
≤ ‖ut(t)‖2H N−1 ≤ (1 + c

√
ε)
(
‖u0‖2H N + ‖ũ0‖2H N−1

)
.

This completes the proof of Corollary 1.3.
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