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Products of Composition, Multiplication and Iterated Differentiation

Operators Between Banach Spaces of Holomorphic Functions

Shuming Wang, Maofa Wang and Xin Guo*

Abstract. Let H(D) denote the space of holomorphic functions on the unit disk D
of C, ψ,ϕ ∈ H(D), ϕ(D) ⊂ D and n ∈ N ∪ {0}. Let Cϕ, Mψ and Dn denote the

composition, multiplication and iterated differentiation operators, respectively. To

treat the operators induced by products of these operators in a unified manner, we

introduce a sum operator
∑n
j=0Mψj

CϕD
j . We characterize the boundedness and

compactness of this sum operator mapping from a large class of Banach spaces of

holomorphic functions into the kth weighted-type space W(k)
µ (or W(k)

µ,0), k ∈ N ∪
{0}, and give its estimates of norm and essential norm. Our results show that the

boundedness and compactness of the sum operator depend only on the symbols and

the norm of the point-evaluation functionals on the domain space. Our results cover

many known results in the literature. Moreover, we introduce the order boundedness

of the sum operator and turn its study into that of the boundedness and compactness.

1. Introduction

Let D be the open unit disk in the complex plane C, H(D) the class of holomorphic

functions on D, S(D) the class of holomorphic self-maps of D, Aut(D) the group of disk

automorphisms, N the set of all positive integers, and N0 = N ∪ {0}. A Banach space X

contained in H(D) is called a Banach space of holomorphic functions provided that the

point-evaluation functional on X is continuous. We denote by BX the closed unit ball of

X.

Each ϕ ∈ S(D) induces a composition operator Cϕ defined by

Cϕf = f ◦ ϕ, f ∈ H(D).

Each ψ ∈ H(D) induces a multiplication operator Mψ defined by

Mψf = ψ · f, f ∈ H(D).
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The product MψCϕ of these two operators is known as the weighted composition operator

which becomes the composition operator Cϕ for ψ ≡ 1 and the multiplication operator

Mψ for ϕ(z) = z for z ∈ D. The weighted composition operators play an important

role in the isometry theory of Banach spaces. The relationship between the operator-

theoretic properties of Cϕ or Mψ and the function-theoretic properties of ϕ or ψ has been

extensively studied over the past several decades. We refer to a standard reference [3] for

various aspects on the theory of (weighted) composition operators acting on several spaces

of holomorphic functions.

For n ∈ N0, the nth differentiation operator Dn is defined by

Dnf = f (n), f ∈ H(D),

where f (0) = f . If n = 1, it is the classical differentiation operator D and typically un-

bounded on many familiar spaces of holomorphic functions. Denote by Dn
ψ,ϕ the weighted

differentiation composition operator MψCϕD
n, i.e.,

Dn
ψ,ϕf = ψ · f (n) ◦ ϕ, f ∈ H(D),

where ψ ∈ H(D) and ϕ ∈ S(D). Note that we have: MψCϕ = D0
ψ,ϕ, CϕMψ = D0

ψ◦ϕ,ϕ,

DCϕ = D1
ϕ′,ϕ, CϕD = D1

1,ϕ and MψD = D1
ψ,id, where id(z) = z, z ∈ D. For more about

the weighted differentiation composition operators, see [9, 16,22].

The products of Cϕ, Mψ and Dn can be obtained in six ways, i.e., MψCϕD
n, CϕMψD

n,

MψD
nCϕ, CϕD

nMψ, DnMψCϕ and DnCϕMψ. Many authors studied these product-type

operators separately, see, e.g., [7,8]. In order to treat these operators in a unified manner,

we introduce a sum operator
∑n

j=0D
j
ψj ,ϕ

, denoted by Tψ(n),ϕ, i.e.,

Tψ(n),ϕf =
n∑
j=0

ψj · f (j) ◦ ϕ, f ∈ H(D),

where ϕ ∈ S(D), ψj ∈ H(D) and ψ(n) denotes the sequence {ψ0, ψ1, . . . , ψn}. The sum

operator for n = 1 has been studied in several papers, see [10–12, 17–20]. Recall that the

Bell polynomial for n, k ∈ N0 is defined as

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!∏n−k+1

i=1 ji!

n−k+1∏
i=1

(xi
i!

)ji
,

where the sum is taken over all sequences j1, j2, . . . , jn−k+1 of non-negative integers satis-

fying
∑n−k+1

i=1 ji = k and
∑n−k+1

i=1 iji = n. For ϕ ∈ S(D), we set

Bϕ
n,j := Bn,j(ϕ

′, ϕ′′, . . . , ϕ(n−j+1)).
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Due to the following classical Faà di Bruno’s formula

(1.1) (f ◦ ϕ)(n) =
n∑
j=0

Bϕ
n,j · f

(j) ◦ ϕ, f ∈ H(D), ϕ ∈ S(D)

for l,m, n ∈ N0, we have that

DlMψD
mCϕD

nf =

l+m+n∑
j=n

 l∑
i=max{0,j−m−n}

(
l

i

)
ψ(l−i)Bϕ

m+i,j−n

 f (j) ◦ ϕ

and

DlCϕD
mMψD

nf =
l+m+n∑
j=n

 l∑
i=max{0,j−m−n}

(
m+ i

j − n

)
ψ(m+n+i−j) ◦ ϕBϕ

l,i

 f (j) ◦ ϕ.

As special cases of the above two identities or by direct calculations, we have

MψCϕD
nf = ψ · f (n) ◦ ϕ, CϕMψD

nf = ψ ◦ ϕ · f (n) ◦ ϕ,

MψD
nCϕf =

n∑
j=0

ψBϕ
n,j · f

(j) ◦ ϕ, CϕD
nMψf =

n∑
j=0

(
n

j

)
ψ(n−j) ◦ ϕ · f (j) ◦ ϕ,

DnMψCϕf =
n∑
j=0

 n∑
i=j

(
n

i

)
ψ(n−i)Bϕ

i,j

 f (j) ◦ ϕ,

DnCϕMψf =
n∑
j=0

 n∑
i=j

(
n

i

)
(ψ ◦ ϕ)(n−i)Bϕ

i,j

 f (j) ◦ ϕ.

Recall that a positive continuous function on D is called a weight. Let µ be a weight

and k ∈ N0. The kth weighted-type space on D (see [16]), denoted by W(k)
µ , consists of all

f ∈ H(D) such that

bW(k)
µ

(f) := sup
z∈D

µ(z)|f (k)(z)| <∞.

The quantity bW(k)
µ

(f) is a semi-norm on W(k)
µ and a norm on W(k)

µ /Pk−1, where Pk−1 is

the set of all polynomials whose degrees are less than or equal to k− 1. Here, we identify

the quotient spaces W(k)
µ /Pk−1 with the subspace of W(k)

µ which satisfies the condition

that f (i)(0) = 0 for i = 0, 1, . . . , k − 1. A natural norm on W(k)
µ is

‖f‖W(k)
µ

=

k−1∑
i=0

|f (i)(0)|+ bW(k)
µ

(f).

W(k)
µ becomes a Banach space with the norm above. The corresponding little kth weighted-

type space, denoted by W(k)
µ,0 , is a closed subspace of W(k)

µ consisting of those f for which

lim
|z|→1

µ(z)|f (k)(z)| = 0.
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It is well known that W(k)
µ and W(k)

µ,0 are the weighted-type space H∞µ and the little

weighted-type space H∞µ,0, the Bloch-type space Bµ and the little Bloch-type space Bµ,0,

the Zygmund-type space Zµ and the little Zygmund-type space Zµ,0 for k = 0, k = 1,

k = 2, respectively. For µ(z) = (1 − |z|2)α, α > 0, the space H∞µ is the growth space

A−α (see [5]), H∞µ,0 is the closure A−α0 of the polynomials in A−α, Bµ is the α-Bloch space

Bα, and Bµ,0 is the little α-Bloch space Bα,0 which is the closure of the polynomials in Bα
(see [21]). In particular, if α = 1, Bα and Bα,0 are the classical Bloch space B and the

little Bloch space B0. For µ(z) = (1 − |z|2) log 2
1−|z| , Bµ is the logarithmic Bloch space

Blog and Bµ,0 is its little version Blog,0. For µ ≡ 1, H∞µ becomes the space H∞ of bounded

holomorphic functions on D with norm usually denoted by ‖ · ‖∞.

Recall that for 1 ≤ p < ∞ and −1 < α < ∞, the Hardy space Hp and the weighted

Bergman space Apα are Banach spaces defined as

Hp =

{
f ∈ H(D) : ‖f‖Hp :=

(
sup

0<r<1

1

2π

∫ 2π

0
|f(reiθ)|p dθ

)1/p

<∞

}

and

Apα =

{
f ∈ H(D) : ‖f‖Apα :=

(
(α+ 1)

∫
D
|f(z)|p(1− |z|2)α dA(z)

)1/p

<∞

}
,

respectively, where dA(z) denotes the normalized area measure on D.

There is a vast literature on the multiplication, composition, differentiation, integration

or weighted composition operators between specific holomorphic function spaces. Recently,

much attention has been paid to the study of these operators acting from general classes of

Banach spaces of holomorphic functions mapping into weighted-type or Bloch-type spaces

(see [1,2,4,23]). Motivated by these work, we provide the following framework that unified

the settings studied in several papers.

Let X be a Banach space of holomorphic functions on D. For each z ∈ D, denote by

K(z) (more precisely, KX(z)) the norm of the point-evaluation functional at z on X, i.e.,

K(z) := sup
f∈BX

|f(z)|.

Thus, for any function f ∈ X and z ∈ D,

|f(z)| ≤ K(z)‖f‖X ,

and K is bounded on compact subsets of D by the Uniform Boundedness Principle. The

space X is admissible provided it satisfies the following conditions:

(I) X contains the polynomials;
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(II) BX is compact with respect to the compact-open topology co;

(III) there is a constant C such that for S ∈ Aut(D) and f ∈ X,

‖S · f‖X ≤ C‖f‖X ;

(IV) for j ∈ N, there exists a constant Cj > 0, such that for f ∈ X, z ∈ D,

(1− |z|2)j |f (j)(z)| ≤ CjK(z)‖f‖X .

An admissible space X is said to be polynomial dense if the set of polynomials is dense in

X.

For example, the spaces H∞, A−α (α > 0), Hp and Apα (1 ≤ p < ∞, −1 < α < ∞)

are admissible. Indeed, it is obvious that these spaces fulfill the conditions (I) and (III).

Condition (II) is valid for these spaces using Montel’s theorem and Fatou’s lemma. It

is well known that KH∞ ≡ 1, KA−α(z) = (1 − |z|2)−α, KHp(z) = (1 − |z|2)−1/p and

KApα
(z) = (1−|z|2)−(α+2)/p (see [4]). By [5,21] and Schwarz’s lemma, (IV) holds for these

spaces. Furthermore, Hp and Apα are also polynomial dense (see [5]).

Recall that the essential norm of an operator is its distance from the compact operators

in the operator norm. More precisely, assume that X1 and X2 are Banach spaces and

T : X1 → X2 is a bounded operator, then the essential norm of T , denoted by ‖T‖e,X1→X2 ,

is defined as

‖T‖e,X1→X2 = inf
K : X1→X2 is compact

‖T −K‖X1→X2 ,

where ‖ · ‖X1→X2 denotes the operator norm. Obviously, T is compact if and only if

‖T‖e,X1→X2 = 0. For more about the essential norm, see [1, 3, 4, 9, 14].

In this paper, we characterize the boundedness and compactness of the operator∑n
j=0D

j
ψj ,ϕ

mapping from an admissible space X into the space W(k)
µ (or W(k)

µ,0) (k ∈ N0).

Our results show that the boundedness and compactness of the sum operator depend only

on the symbols and the norm of the point-evaluation functionals on X. As a corollary,

we obtain that the boundedness and compactness of
∑n

j=0D
j
ψj ,ϕ

is equivalent to that of

all the Dj
ψj ,ϕ

, j = 0, . . . , n for k = 0. Moreover, we construct an explicit example showing

that this equivalence is not expected for k ∈ N. We also obtain the estimates of norm and

essential norm of the sum operator. Since the sum operators and its domain and range

spaces are very general, our main results cover many known results in the literature.

Recall that the order boundedness is a property of operators which is closely related

to the notion of boundedness (see [6, 15]). For the notion of the order boundedness of

T : X → W(k)
µ (or W(k)

µ,0), k ∈ N0, we introduce the following spaces. Let µ be a weight.

We denote by BCµ the space of all continuous functions on D such that

‖f‖µ = sup
z∈D

µ(z)|f(z)| <∞.
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BCµ is a Banach space with the above norm. Moreover, we denote by BCµ,0 the closed

subspace of BCµ consisting of those f for which

lim
|z|→1

µ(z)|f(z)| = 0.

It is obvious that H∞µ = BCµ ∩H(D) and H∞µ,0 = BCµ,0 ∩H(D). Furthermore, ‖f‖H∞µ =

‖f‖µ for f ∈ H∞µ . Now we give the definition of order boundedness of T : X → W(k)
µ

and T : X → W(k)
µ,0 respectively. We say T : X → W(k)

µ is order bounded if there exists

an h ∈ BCµ such that |(Tf)(k)| ≤ h for all f ∈ BX . Here and below the notation f ≤ g

means that f(z) ≤ g(z) for all z ∈ D. Notice that there are two kinds of order boundedness

of T : X → W(k)
µ,0 . We say that T : X → W(k)

µ,0 is (big) order bounded if there exists an

h ∈ BCµ such that |(Tf)(k)| ≤ h for all f ∈ BX and that T : X → W(k)
µ,0 is (little) order

bounded if there exists an h ∈ BCµ,0 such that |(Tf)(k)| ≤ h for all f ∈ BX . Our main

result shows that the study of the order boundedness of the sum operator can be turned

into that of the boundedness and compactness.

This paper is organized as follows. In Section 2, we give some notation and auxiliary

results to be used in the sequel. In Section 3, we characterize the boundedness of the

operator Tψ(n),ϕ : X →W(k)
µ (orW(k)

µ,0) for k ∈ N0 and give its norm estimate. In Section 4,

we characterize its compactness and give its essential norm estimate. In Section 5, we study

its order boundedness.

Constants. In the rest of the paper the letter C will be used to denote various pos-

itive constants which may vary at each occurrence but do not depend on the essential

parameters. We use the notion X � Y for nonnegative quantities X and Y to mean

Y/C ≤ X ≤ CY for some inessential constant C > 0.

2. Preliminaries

2.1. Test functions

In most of the literature on characterizing the boundedness and compactness of the sum

operators for n = 1, the choice of test functions is separate and needs a large amount

of computation. Below we provide a systematical and simple method to do this. In this

subsection, we suppose that n, k ∈ N0 and X satisfies (I) and (III).

Fix ε > 0. For w ∈ D, choose fw ∈ BX such that

(2.1) |fw(w)| > K(w)− ε.

For w ∈ D and j ∈ {0, 1, . . . , n+ k}, let

(2.2) fw,j(z) :=

n+k∑
i=0

c
(j)
i

(
1− |w|2

1− wz

)i+1
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and

(2.3) gw,j := fw,j · fw,

where {c(j)
0 , c

(j)
1 , . . . , c

(j)
n+k} is the unique solution of the n+ k + 1 linear equations

n+k∑
i=0

(
l∏

m=1

(m+ i)

)
c

(j)
i =

1 if l = j,

0 if l ∈ {0, 1, . . . , n+ k} \ {j}

whose determinant of coefficient matrix equals
∏n+k
i=1 i! 6= 0. Since for i, l ∈ {0, 1, . . . , n+k}((

1− |w|2

1− wz

)i+1
)(l)

(w) =
wl
∏l
m=1(m+ i)

(1− |w|2)l
,

it follows that for j ∈ {0, 1, . . . , n+ k},

f
(l)
w,j(w) =

 wj

(1−|w|2)j
if l = j,

0 if l ∈ {0, 1, . . . , n+ k} \ {j}

and

g
(l)
w,j(w) =


(
l
j

)
wj

(1−|w|2)j
f

(l−j)
w (w) if l ∈ {j, . . . , n+ k},

0 if l ∈ {0, . . . , j − 1}.

By (III) and the fact that z−w
1−wz ∈ Aut(D), we have that for f ∈ X,∥∥∥∥1− |w|2

1− wz
· f
∥∥∥∥
X

=

∥∥∥∥(1 + w
z − w
1− wz

)
· f
∥∥∥∥
X

≤ ‖f‖X +

∥∥∥∥( z − w
1− wz

)
· f
∥∥∥∥
X

≤ C‖f‖X .

By induction, we have that for i ∈ {0, 1, . . . , n+ k} and f ∈ X,∥∥∥∥∥
(

1− |w|2

1− wz

)i+1

· f

∥∥∥∥∥
X

≤ C‖f‖X .

Since each c
(j)
i is independent of w, letting f ≡ 1 and f = fw in the above inequality

respectively, we have that

sup
w∈D
‖fw,j‖X <∞ and sup

w∈D
‖gw,j‖X <∞.

The test functions fw,j and gw,j will be used in Sections 3 and 4.
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2.2. Compactness criterion

The following criterion for compactness follows easily from the standard arguments (see,

e.g., [3, Proposition 3.11]). We omit its proof.

Lemma 2.1. Suppose X and Y are Banach spaces of holomorphic functions such that X

satisfies (II) and the identity map I : (Y, ‖·‖Y )→ (Y, co) is continuous. Then the operator

Tψ(n),ϕ : X → Y is compact if and only if Tψ(n),ϕ : X → Y is bounded and for any bounded

sequence {fi}i∈N in X which converges to zero uniformly on compact subsets of D, we have

‖Tψ(n),ϕfi‖Y → 0 as i→∞.

It is obvious that W(k)
µ , W(k)

µ,0 and all the admissible spaces satisfy the above condition

on Y .

The next lemma can be proved similarly as in [13, Lemma 1].

Lemma 2.2. Assume µ is a weight and k ∈ N0. A set K in W(k)
µ,0 is relatively compact if

and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

µ(z)|f (k)(z)| = 0.

2.3. Notations

We also need the following notations. For any fixed n, k ∈ N0, ψ(n) = {ψj}nj=0 and

ϕ ∈ S(D), set ψ
[k]
(n) := Ψ(n+k) = {Ψj}n+k

j=0 , where

Ψj :=

min{j,k}∑
l=max{0,j−n}

k∑
i=l

(
k

i

)
ψ

(k−i)
j−l Bϕ

i,l, j ∈ {0, . . . , n+ k}.

Noticing that Bϕ
0,0 = 1, Bϕ

1,0 = 0 and Bϕ
1,1 = ϕ′, we have that

ψ
[0]
(n) = ψ(n) and ψ

[1]
(n) = Ψ(n+1) = {Ψj}n+1

j=0 ,

where

(2.4) (when k = 1) Ψj(z) =


ψ′0(z) if j = 0,

ψj−1(z)ϕ′(z) + ψ′j(z) if j ∈ {1, . . . , n},

ψn(z)ϕ′(z) if j = n+ 1.

Due to Faà di Bruno’s formula (1.1), we have

(2.5) (Tψ(n),ϕf)(k) = T
ψ
[k]
(n)
,ϕ
f, f ∈ H(D).
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By (2.5) and the fact that (f (k−i))(i) = f (k), we have for i ∈ {0, . . . , k},

(T
ψ
[k−i]
(n)

,ϕ
f)(i) = T

ψ
[k]
(n)
,ϕ
f, f ∈ H(D).

Then

(2.6) (ψ
[k−i]
(n) )[i] = ψ

[k]
(n).

Note that if X is admissible and Ψ(n+k) = ψ
[k]
(n), then by (2.5) and (IV), for z ∈ D and

f ∈ X,

(2.7) |(Tψ(n),ϕf)(k)(z)| ≤
n+k∑
j=0

|Ψj(z)||f (j)(ϕ(z))| ≤ C
n+k∑
j=0

|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
‖f‖X .

We make the following assumption on the mapping Tψ(n),ϕ : X →W(k)
µ for the theorems

and corollaries in Sections 3, 4 and 5.

Assumption. Unless otherwise specified, we will always assume that n, k ∈ N0, X is

admissible, µ is a weight, ψj ∈ H(D) (j ∈ {0, 1, . . . , n}), ϕ ∈ S(D) and Ψ(n+k) = ψ
[k]
(n).

3. Boundedness and norm estimate

In this section, we characterize the boundedness of Tψ(n),ϕ : X →W(k)
µ (orW(k)

µ,0) for k ∈ N0

and give its norm estimate. The following is our first result.

Theorem 3.1. The following are equivalent:

(i) Tψ(n),ϕ : X →W(k)
µ is bounded;

(ii) Mj := sup
z∈D

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
<∞ for j ∈ {0, . . . , n+ k}.

Moreover, if Tψ(n),ϕ : X →W(k)
µ /Pk−1 is bounded, then

(3.1) ‖Tψ(n),ϕ‖X→W(k)
µ /Pk−1

�
n+k∑
j=0

Mj .

Proof. (i) ⇒ (ii). Suppose that Tψ(n),ϕ : X → W(k)
µ is bounded. We first prove Ψj ∈ H∞µ

by induction. It follows from the condition (I) that zj ∈ X and

sup
z∈D

µ(z)

∣∣∣∣∣
j∑
i=0

j!

(j − i)!
Ψi(z)ϕ

j−i(z)

∣∣∣∣∣ ≤ ‖Tψ(n),ϕz
j‖W(k)

µ

≤ C‖Tψ(n),ϕ‖X→W(k)
µ

(3.2)
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for j ∈ {0, 1, . . . , n+k}. When j = 0, (3.2) means supz∈D µ(z)|Ψ0(z)| ≤ C‖Tψ(n),ϕ‖X→W(k)
µ

.

Fixing j ∈ {1, . . . , n+ k}, assume that

(3.3) sup
z∈D

µ(z)|Ψi(z)| ≤ C‖Tψ(n),ϕ‖X→W(k)
µ

holds for i ∈ {0, 1, . . . , j − 1}. Notice that ‖ϕ‖∞ ≤ 1, it follows from (3.2), (3.3) that

sup
z∈D

µ(z)|Ψj(z)| ≤ sup
z∈D

µ(z)

∣∣∣∣∣
j∑
i=0

1

(j − i)!
Ψi(z)ϕ

j−i(z)

∣∣∣∣∣+ sup
z∈D

µ(z)

∣∣∣∣∣
j−1∑
i=0

1

(j − i)!
Ψi(z)ϕ

j−i(z)

∣∣∣∣∣
≤ sup

z∈D
µ(z)

∣∣∣∣∣
j∑
i=0

1

(j − i)!
Ψi(z)ϕ

j−i(z)

∣∣∣∣∣+

j−1∑
i=0

1

(j − i)!
sup
z∈D

µ(z)|Ψi(z)|

≤ C‖Tψ(n),ϕ‖X→W(k)
µ
.

That is, (3.3) holds for i = j. Thus, for j ∈ {0, 1, . . . , n+ k}, Ψj ∈ H∞µ and

(3.4) sup
z∈D

µ(z)|Ψj(z)| ≤ C‖Tψ(n),ϕ‖X→W(k)
µ
.

Now we prove that Mj ≤ C‖Tψ(n),ϕ‖X→W(k)
µ

by reverse induction. We first deal with

the case j = n+ k. By (2.1), we have that

µ(w)|Ψn+k(w)|K(ϕ(w))|ϕ(w)|n+k

(1− |ϕ(w)|2)n+k

≤
µ(w)|Ψn+k(w)||fϕ(w)(ϕ(w))||ϕ(w)|n+k

(1− |ϕ(w)|2)n+k
+ ε

µ(w)|Ψn+k(w)||ϕ(w)|n+k

(1− |ϕ(w)|2)n+k

≤ ‖Tψ(n),ϕgϕ(w),n+k‖W(k)
µ

+ ε‖Tψ(n),ϕfϕ(w),n+k‖W(k)
µ

≤ C‖Tψ(n),ϕ‖X→W(k)
µ
,

where fϕ(w),n+k and gϕ(w),n+k are defined by (2.2) and (2.3), respectively. Thus,

(3.5) sup
|ϕ(w)|>1/2

µ(w)|Ψn+k(w)|K(ϕ(w))

(1− |ϕ(w)|2)n+k
≤ C‖Tψ(n),ϕ‖X→W(k)

µ
.

It follows from the boundedness of K on compact subsets of D and (3.4) that

(3.6) sup
|ϕ(w)|≤1/2

µ(w)|Ψn+k(w)|K(ϕ(w))

(1− |ϕ(w)|2)n+k
≤ C‖Tψ(n),ϕ‖X→W(k)

µ
.

By (3.5) and (3.6), we have that Mn+k ≤ C‖Tψ(n),ϕ‖X→W(k)
µ

.
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Fix j ∈ {0, . . . , n+k−1}, assume that Ml ≤ C‖Tψ(n),ϕ‖X→W(k)
µ

for l ∈ {j+1, . . . , n+k}.
Then by (IV),

µ(w)|Ψj(w)|K(ϕ(w))|ϕ(w)|j

(1− |ϕ(w)|2)j

≤
µ(w)|Ψj(w)||fϕ(w)(ϕ(w))||ϕ(w)|j

(1− |ϕ(w)|2)j
+ ε

µ(w)|Ψj(w)||ϕ(w)|j

(1− |ϕ(w)|2)j

≤ µ(w)

∣∣∣∣∣∣
n+k∑
l=j

Ψl(w)

(
l

j

)
ϕ(w)

j

(1− |ϕ(w)|2)j
f

(l−j)
ϕ(w) (ϕ(w))

∣∣∣∣∣∣
+ µ(w)

∣∣∣∣∣∣
n+k∑
l=j+1

Ψl(w)

(
l

j

)
ϕ(w)

j

(1− |ϕ(w)|2)j
f

(l−j)
ϕ(w) (ϕ(w))

∣∣∣∣∣∣+ ε
µ(w)|Ψj(w)||ϕ(w)|j

(1− |ϕ(w)|2)j

≤ ‖Tψ(n),ϕgϕ(w),j‖W(k)
µ

+ C

n+k∑
l=j+1

µ(w)|Ψl(w)|
(1− |ϕ(w)|2)j

K(ϕ(w))

(1− |ϕ(w)|2)l−j
+ ε‖Tψ(n),ϕfϕ(w),j‖W(k)

µ

≤ C‖Tψ(n),ϕ‖X→W(k)
µ

+ C

n+k∑
l=j+1

Ml ≤ C‖Tψ(n),ϕ‖X→W(k)
µ
,

where fϕ(w),j and gϕ(w),j are defined by (2.2) and (2.3), respectively. Similar to the

case j = n + k, replacing n + k by j in (3.5) and (3.6), we can also prove that Mj ≤
C‖Tψ(n),ϕ‖X→W(k)

µ
for j ∈ {0, . . . , n+ k − 1}. Hence,

(3.7)

n+k∑
j=0

Mj ≤ C‖Tψ(n),ϕ‖X→W(k)
µ
.

(ii) ⇒ (i). Suppose that (ii) holds. Then (2.7) implies that

k−1∑
i=0

|(Tψ(n),ϕf)(i)(0)| ≤ C

and

(3.8) bW(k)
µ

(Tψ(n),ϕf) ≤ C
n+k∑
j=0

Mj

for f ∈ BX . Hence, Tψ(n),ϕ : X →W(k)
µ is bounded.

Moreover, (3.7) and (3.8) imply the desired estimate (3.1).

For the case k = 0, we have the following corollary.

Corollary 3.2. Tψ(n),ϕ : X → H∞µ is bounded if and only if each Dj
ψj ,ϕ

: X → H∞µ is

bounded, j = 0, 1, . . . , n.
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Proof. Since ψ
[0]
(n) = ψ(n), we have Ψj = ψj in the definition of Mj for j ∈ {0, 1, . . . , n}.

Fixing any j ∈ {0, 1, . . . , n}, let ψi ≡ 0 for i ∈ {0, 1, . . . , n} \ {j}. Then Theorem 3.1

implies that Dj
ψj ,ϕ

: X → H∞µ is bounded if and only if Mj < ∞. This completes the

proof.

Note that Corollary 3.2 does not hold for the case k ∈ N, see Example 4.5. For

Corollaries 3.4, 4.2 and 4.4, we have similar proofs and notes.

The following is the corresponding little version of Theorem 3.1.

Theorem 3.3. Suppose that X is polynomial dense. If Tψ(n),ϕ : X → W(k)
µ is bounded,

then the following are equivalent:

(i) Tψ(n),ϕ : X →W(k)
µ,0 is bounded;

(ii) Ψj ∈ H∞µ,0 for j ∈ {0, 1, . . . , n+ k}.

Moreover, if Tψ(n),ϕ : X →W(k)
µ,0/Pk−1 is bounded, then

(3.9) ‖Tψ(n),ϕ‖X→W(k)
µ,0/Pk−1

�
n+k∑
j=0

Mj .

Proof. (i) ⇒ (ii). Suppose that Tψ(n),ϕ : X →W(k)
µ,0 is bounded. Then

(3.10) lim
|z|→1

µ(z)

∣∣∣∣∣
j∑
i=0

j!

(j − i)!
Ψi(z)ϕ

j−i(z)

∣∣∣∣∣ ≤ lim
|z|→1

µ(z)
∣∣(Tψ(n),ϕz

j
)(k)∣∣ = 0

for j ∈ {0, 1, . . . , n + k}. When j = 0, (3.10) means that Ψ0 ∈ H∞µ,0. Fixing j ∈
{1, . . . , n+ k}, assume that Ψi ∈ H∞µ,0 holds for i ∈ {0, 1, . . . , j− 1}. It follows from (3.10)

that

lim
|z|→1

µ(z)|Ψj(z)|

≤ lim
|z|→1

µ(z)

∣∣∣∣∣
j∑
i=0

1

(j − i)!
Ψi(z)ϕ

j−i(z)

∣∣∣∣∣+ lim
|z|→1

µ(z)

∣∣∣∣∣
j−1∑
i=0

1

(j − i)!
Ψi(z)ϕ

j−i(z)

∣∣∣∣∣
≤ lim
|z|→1

µ(z)

∣∣∣∣∣
j∑
i=0

1

(j − i)!
Ψi(z)ϕ

j−i(z)

∣∣∣∣∣+

j−1∑
i=0

1

(j − i)!
lim
|z|→1

µ(z)|Ψi(z)| = 0.

Thus, Ψj ∈ H∞µ,0 for j ∈ {0, 1, . . . , n+ k}.
(ii) ⇒ (i). Assume Ψj ∈ H∞µ,0 for j ∈ {0, 1, . . . , n+ k}. For each polynomial p,

µ(z)|(Tψ(n),ϕp)
(k)(z)| ≤

n+k∑
j=0

µ(z)|Ψj(z)|‖p(j)‖∞,
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which implies that Tψ(n),ϕp ∈ W
(k)
µ,0 . Since X is polynomial dense, for every f ∈ X there is

a sequence {pi}i∈N of polynomials such that pi → f as i→∞. Hence Tψ(n),ϕpi → Tψ(n),ϕf

as i→∞ and then Tψ(n),ϕ(X) ⊂ W(k)
µ,0 .

The estimate (3.9) follows from (3.1).

Corollary 3.4. Suppose that X is polynomial dense. Then Tψ(n),ϕ : X → H∞µ,0 is bounded

if and only if each Dj
ψj ,ϕ

: X → H∞µ,0 is bounded, j = 0, 1, . . . , n.

Remark 3.5. For simplicity, we suppose that X is admissible in this paper. However, we

do not need the condition (II) in this section.

4. Compactness and essential norm estimate

In this paper, we will follow the convention that supz∈∅ f(z) = 0 for any non-negative

function f ≥ 0. Thus, if ‖ϕ‖∞ < 1 and f ≥ 0, then

(4.1) lim sup
|ϕ(z)|→1

f(z) = lim
δ→1−

sup
|ϕ(z)|>δ

f(z) = 0.

This implies that for all ϕ ∈ S(D) and f ≥ 0, we have

(4.2) lim sup
|ϕ(z)|→1

f(z) ≤ lim sup
|z|→1

f(z).

In this section, we characterize the compactness of Tψ(n),ϕ : X →W(k)
µ (orW(k)

µ,0) for k ∈
N0 and give its essential norm estimate. The following is the big version characterization.

Theorem 4.1. If Tψ(n),ϕ : X →W(k)
µ is bounded, then the following are equivalent:

(i) Tψ(n),ϕ : X →W(k)
µ is compact;

(ii) lim
|ϕ(z)|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
= 0 for j ∈ {0, 1, . . . , n+ k}.

Proof. (i) ⇒ (ii). Suppose that Tψ(n),ϕ : X → W(k)
µ is compact. Consider a sequence

{zi}i∈N satisfying the condition |ϕ(zi)| → 1 as i → ∞. If such sequence does not ex-

ist, then (ii) obviously holds according to (4.1). Define fϕ(zi),j and gϕ(zi),j by (2.2) and

(2.3), respectively. Then both {fϕ(zi),j}i∈N and {gϕ(zi),j}i∈N converge to zero uniformly

on compacts of D as i → ∞ for j ∈ {0, 1, . . . , n + k}. From Lemma 2.1 it follows that

‖Tψ(n),ϕfϕ(zi),j‖W(k)
µ
→ 0 and ‖Tψ(n),ϕgϕ(zi),j‖W(k)

µ
→ 0 as i→∞ for j ∈ {0, 1, . . . , n+ k}.
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Thus,

µ(zi)|Ψn+k(zi)|K(ϕ(zi))|ϕ(zi)|n+k

(1− |ϕ(zi)|2)n+k

≤
µ(zi)|Ψn+k(zi)||fϕ(zi)(ϕ(zi))||ϕ(zi)|n+k

(1− |ϕ(zi)|2)n+k
+ ε

µ(zi)|Ψn+k(zi)||ϕ(zi)|n+k

(1− |ϕ(zi)|2)n+k

≤ ‖Tψ(n),ϕgϕ(zi),n+k‖W(k)
µ

+ ε‖Tψ(n),ϕfϕ(zi),n+k‖W(k)
µ
→ 0

as i→∞, from which it follows that

(4.3) lim
i→∞

µ(zi)|Ψj(zi)|K(ϕ(zi))

(1− |ϕ(zi)|2)j
= 0

for j = n+k. Similar to the proof of Theorem 3.1, we can prove by reverse induction that

(4.3) holds for j ∈ {0, 1, . . . , n+ k}. From this it follows that (ii) holds.

(ii)⇒ (i). Now assume that (ii) holds. Then for every ε > 0 there is an r ∈ (0, 1) such

that when r < |ϕ(z)| < 1,

(4.4)
µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
<

ε

n+ k + 1

for j ∈ {0, 1, . . . , n+ k}. Assume that {hi}i∈N converges to zero uniformly on compacts of

D as i→∞ and supi∈N ‖hi‖X ≤ L. It follows from the Weierstrass Theorem that {h(j)
i }i∈N

also converges to zero uniformly on compacts of D as i → ∞ for j ∈ {0, 1, . . . , n + k}.
Then by (2.7) and (4.4), for r < |ϕ(z)| < 1,

(4.5) µ(z)|(Tψ(n),ϕhi)
(k)(z)| < CLε.

If |ϕ(z)| ≤ r, by (2.7) and (3.4), we have

(4.6) µ(z)|(Tψ(n),ϕhi)
(k)(z)| ≤ C

n+k∑
j=0

sup
|w|≤r

|h(j)
i (w)| → 0

as i→∞. From (4.5) and (4.6) it follows that

(4.7) bW(k)
µ

(Tψ(n),ϕhi)→ 0

as i→∞. Since {ϕ(0)} is a compact subset of D, we have

(4.8)
k−1∑
l=0

|(Tψ(n),ϕhi)
(l)(0)| ≤ C

n+k−1∑
l=0

|h(l)
i (ϕ(0))| → 0

as i → ∞. From (4.7) and (4.8) it follows that ‖Tψ(n),ϕhi‖W(k)
µ
→ 0 as i → ∞, which

completes the proof by Lemma 2.1.
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Corollary 4.2. Tψ(n),ϕ : X → H∞µ is compact if and only if each Dj
ψj ,ϕ

: X → H∞µ is

compact, j = 0, 1, . . . , n.

Here is the corresponding little version of Theorem 4.1.

Theorem 4.3. The following are equivalent:

(i) Tψ(n),ϕ : X →W(k)
µ,0 is compact;

(ii) lim
|z|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
= 0 for j ∈ {0, 1, . . . , n+ k}.

Proof. (i)⇒ (ii). Suppose that Tψ(n),ϕ : X →W(k)
µ,0 is compact. By Theorem 4.1, for every

ε > 0 there exists an r ∈ (0, 1) such that for j ∈ {0, 1, . . . , n+k}, whenever r < |ϕ(z)| < 1,

(4.9)
µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
< ε.

By (i) ⇒ (ii) of Theorem 3.3 (note that this implication does not need the polynomial

density of X), we have Ψj ∈ H∞µ,0 for j ∈ {0, 1, . . . , n+ k}. Then there exists a ρ ∈ (0, 1)

such that for j ∈ {0, 1, . . . , n+ k}, whenever ρ < |z| < 1 and |ϕ(z)| ≤ r, we have

(4.10)
µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
≤ Cµ(z)|Ψj(z)| < ε.

Inequalities (4.9) and (4.10) imply (ii) holds.

(ii) ⇒ (i). Assume that (ii) holds. Then Theorem 3.1 implies that Tψ(n),ϕ : X →W(k)
µ

is bounded. It follows from (2.7) that Tψ(n),ϕ(X) ⊂ W(k)
µ,0 and

lim
|z|→1

sup
f∈BX

µ(z)|(Tψ(n),ϕf)(k)(z)| ≤ lim
|z|→1

n+k∑
j=0

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
= 0.

By Lemma 2.2, Tψ(n),ϕ : X →W(k)
µ,0 is compact.

Corollary 4.4. Tψ(n),ϕ : X → H∞µ,0 is compact if and only if each Dj
ψj ,ϕ

: X → H∞µ,0 is

compact, j = 0, 1, . . . , n.

The above corollaries in Sections 3 and 4 show that the boundedness (resp., compact-

ness) of the sum operator is equivalent to the boundedness (resp., compactness) of all the

summands for the case k = 0. However, this equivalence can not be expected for k ∈ N.

We construct an example for k = 1 as follows.

Example 4.5. D0
ψ0,ϕ

: H1 → B1/2 and D1
ψ1,ϕ

: H1 → B1/2 are unbounded but D0
ψ0,ϕ

+

D1
ψ1,ϕ

: H1 → B1/2,0 is compact, where ψ0 ≡ −1, ψ1(z) = ϕ(z) = 1
M (1 − z)1/2 log(1 − z)

for z ∈ D and M = 1 + supz∈D(1− z)1/2 log(1− z) <∞.
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Proof. Since KH1(z) = (1− |z|2)−1, by Theorems 3.1, 4.3 and (2.4), we have that

(i) D0
ψ0,ϕ

: H1 → B1/2 is unbounded, since supz∈D
(1−|z|2)1/2|ψ0(z)ϕ′(z)|

(1−|ϕ(z)|2)2
=∞.

(ii) D1
ψ1,ϕ

: H1 → B1/2 is unbounded, since supz∈D
(1−|z|2)1/2|ψ′1(z)|

(1−|ϕ(z)|2)2
=∞.

(iii) D0
ψ0,ϕ

+D1
ψ1,ϕ

: H1 → B1/2,0 is compact, i.e., lim|z|→1
(1−|z|2)1/2|ψ′0(z)|

1−|ϕ(z)|2 = 0,

lim|z|→1
(1−|z|2)1/2|ψ0(z)ϕ′(z)+ψ′1(z)|

(1−|ϕ(z)|2)2
= 0, lim|z|→1

(1−|z|2)1/2|ψ1(z)ϕ′(z)|
(1−|ϕ(z)|2)3

= 0.

The verification is easy and is left to the reader.

Our characterizations of boundedness and compactness of Tψ(n),ϕ : X →W(k)
µ (orW(k)

µ,0)

are in terms of ψ
[k]
(n). By (2.6), (ψ

[k−i]
(n) )[i] = ψ

[k]
(n). This shows that the boundedness and

compactness of T
ψ
[k−i]
(n)

,ϕ
: X → W(i)

µ,0 (or W(i)
µ,0) have the same characterizations for any

i ∈ {0, . . . , k − 1}. Thus, we have the following corollary.

Corollary 4.6. (i) Tψ(n),ϕ : X →W(k)
µ is bounded (resp., compact) if and only if

T
ψ
[k−i]
(n)

,ϕ
: X →W(i)

µ is bounded (resp., compact) for any i ∈ {0, . . . , k − 1}.

(ii) Tψ(n),ϕ : X →W(k)
µ,0 is bounded if and only if T

ψ
[k−i]
(n)

,ϕ
: X →W(i)

µ,0 is bounded for any

i ∈ {0, . . . , k − 1} whenever X is polynomial dense.

(iii) Tψ(n),ϕ : X →W(k)
µ,0 is compact if and only if T

ψ
[k−i]
(n)

,ϕ
: X →W(i)

µ,0 is compact for any

i ∈ {0, . . . , k − 1}.

In order to study the essential norm of Tψ(n),ϕ : X → W(k)
µ (or W(k)

µ,0), we denote by

Cr the composition operator Cr(id) (i.e., (Cr(f))(z) = f(rz), z ∈ D) and introduce two

additional conditions on X:

(V) Cr is compact on X for all 0 < r < 1;

(VI) There exists C > 0 such that K(rz) ≤ CK(z) for all z ∈ D and 0 < r < 1.

Obviously, (VI) holds for the spaces H∞, A−α (α > 0), Hp and Apα (1 ≤ p < ∞, −1 <

α <∞). It follows from Lemma 2.1 that (V) also holds for these spaces.

Now we give an essential norm estimate of Tψ(n),ϕ : X →W(k)
µ (or W(k)

µ,0).

Theorem 4.7. Suppose that X satisfies (V) and (VI).

(i) If Tψ(n),ϕ : X →W(k)
µ is bounded, then

‖Tψ(n),ϕ‖e,X→W(k)
µ
�

n+k∑
j=0

lim sup
|ϕ(z)|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
.
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(ii) If Tψ(n),ϕ : X →W(k)
µ,0 is bounded, then

‖Tψ(n),ϕ‖e,X→W(k)
µ,0

�
n+k∑
j=0

lim sup
|z|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
.

Proof. (i). We begin by showing the upper estimate. Since X contains the constant

functions, we have K(z) ≥ 1/‖1‖ > 0 for z ∈ D. For any |ϕ(0)| < δ < 1, let

r = 1− K(ϕ(0))(1− δ)n+k+2

sup|w|≤δK(w)
∈ (0, 1).

By the mean value theorem and (IV), if f ∈ BX and |ϕ(z)| ≤ δ, then

|((I − Cr)f)(j)(ϕ(z))| = |f (j)(ϕ(z))− rjf (j)(rϕ(z))|

≤ (1− rj)|f (j)(ϕ(z))|+ |f (j)(ϕ(z))− f (j)(rϕ(z))|

≤ (1− rj)|f (j)(ϕ(z))|+ (1− r) sup
|w|≤|ϕ(z)|

|f (j+1)(w)|

≤ C(1− r)

[
K(ϕ(z))

(1− |ϕ(z)|2)j
+ sup
|w|≤|ϕ(z)|

K(w)

(1− |w|2)j+1

]

≤ C(1− r) sup
|w|≤δ

K(w)

(1− δ)j+1
≤ C(1− δ)

for j ∈ {0, 1, . . . , n+ k}. By (V), Tψ(n),ϕCr : X →W(k)
µ is compact. Thus, from (IV), (VI)

and the fact that Ψj ∈ H∞µ for j ∈ {0, 1, . . . , n + k} implied by Theorem 3.1, it follows

that

‖Tψ(n),ϕ‖e,X→W(k)
µ
≤ ‖Tψ(n),ϕ − Tψ(n),ϕCr‖X→W(k)

µ
= sup

f∈BX
‖Tψ(n),ϕ(I − Cr)f‖W(k)

µ

≤ C
n+k−1∑
i=0

sup
f∈BX

|((I − Cr)f)(i)(ϕ(0))|

+
n+k∑
j=0

sup
f∈BX

sup
|ϕ(z)|≤δ

µ(z)|Ψj(z)||((I − Cr)f)(j)(ϕ(z))|

+
n+k∑
j=0

sup
f∈BX

sup
|ϕ(z)|>δ

µ(z)|Ψj(z)||((I − Cr)f)(j)(ϕ(z))|

≤ C(1− δ) +
n+k∑
j=0

sup
f∈BX

sup
|ϕ(z)|>δ

µ(z)|Ψj(z)|
(
|f (j)(ϕ(z))|+ |f (j)(rϕ(z))|

)
≤ C(1− δ) + C

n+k∑
j=0

sup
|ϕ(z)|>δ

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
.
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Letting δ → 1, we get the desired upper estimate.

We next prove the lower estimate. Let T : X → W(k)
µ be any compact operator. It

follows from Lemma 2.1 that ‖Tfϕ(z),j‖W(k)
µ
→ 0 and ‖Tgϕ(z),j‖W(k)

µ
→ 0 as |ϕ(z)| → 1 for

j ∈ {0, 1, . . . , n+ k}, where fϕ(z),j and gϕ(z),j are defined by (2.2) and (2.3), respectively.

Thus,

‖Tψ(n),ϕ − T‖X→W(k)
µ

≥ C lim sup
|ϕ(z)|→1

(
‖(Tψ(n),ϕ − T )gϕ(z),n+k‖W(k)

µ
+ ε‖(Tψ(n),ϕ − T )fϕ(z),n+k‖W(k)

µ

)
≥ C lim sup

|ϕ(z)|→1

(
‖Tψ(n),ϕgϕ(z),n+k‖W(k)

µ
+ ε‖Tψ(n),ϕfϕ(z),n+k‖W(k)

µ

)
≥ C lim sup

|ϕ(z)|→1

µ(z)|Ψn+k(z)|
(
|fϕ(z)(ϕ(z))|+ ε

)
|ϕ(z)|n+k

(1− |ϕ(z)|2)n+k

≥ C lim sup
|ϕ(z)|→1

µ(z)|Ψn+k(z)|K(ϕ(z))

(1− |ϕ(z)|2)n+k
.

Similar to the proof of Theorem 3.1, we can prove by reverse induction that

‖Tψ(n),ϕ − T‖X→W(k)
µ
≥ C lim sup

|ϕ(z)|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j

for j ∈ {0, 1, . . . , n+ k}. Adding them and taking the infimum over the set of all compact

operators T : X →W(k)
µ , we obtain the desired lower estimate.

(ii). Assume that
{
z

(j)
i

}
i∈N, j ∈ {0, 1, . . . , n + k} are n + k + 1 sequences in D such

that

(4.11)

n+k∑
j=0

lim
i→∞

µ(z
(j)
i )|Ψj(z

(j)
i )|K(ϕ(z

(j)
i ))(

1− |ϕ(z
(j)
i )|2

)j =

n+k∑
j=0

lim sup
|z|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
.

Let Γ =
{
j ∈ {0, 1, . . . , n + k} : supi∈N |ϕ(z

(j)
i )| = 1

}
. If Γ = ∅, in view of the fact

that Ψj ∈ H∞µ,0 for j ∈ {0, 1, . . . , n+ k}, the above two quantities are zero, which implies

by Theorem 4.3 that Tψ(n),ϕ : X → W(k)
µ,0 is compact and (ii) holds. If Γ 6= ∅, there are

subsequences
{
z

(j)

i
(j)
l

}
l∈N of

{
z

(j)
i

}
i∈N such that |ϕ(z

(j)

i
(j)
l

)| → 1 as l→∞ for j ∈ Γ. Then by

(4.11), we have that

n+k∑
j=0

lim sup
|z|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
=
∑
j∈Γ

lim
l→∞

µ(z
(j)

i
(j)
l

)|Ψj(z
(j)

i
(j)
l

)|K(ϕ(z
(j)

i
(j)
l

))(
1− |ϕ(z

(j)

i
(j)
l

)|2
)j

≤
∑
j∈Γ

lim sup
|ϕ(z)|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j

=
n+k∑
j=0

lim sup
|ϕ(z)|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
.
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It follows from (4.2) that

n+k∑
j=0

lim sup
|z|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
≥

n+k∑
j=0

lim sup
|ϕ(z)|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
.

Hence,
n+k∑
j=0

lim sup
|z|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
=

n+k∑
j=0

lim sup
|ϕ(z)|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
.

Similar to (i), we can prove that

‖Tψ(n),ϕ‖e,X→W(k)
µ,0

�
n+k∑
j=0

lim sup
|ϕ(z)|→1

µ(z)|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
.

Thus, (ii) follows. The proof is completed.

Remark 4.8. For the case k = 0 of Theorem 4.7, we do not need the condition (V). Indeed,

by (VI), Theorems 3.1 and 4.1, we have that Tψ(n),rϕ : X → H∞µ is compact. Thus,

‖Tψ(n),ϕ‖e,X→H∞µ ≤ ‖Tψ(n),ϕ − Tψ(n),rϕ‖X→H∞µ .

The rest of proof is similar and is left to the reader.

5. Order boundedness

In this section, we characterize the order boundedness of Tψ(n),ϕ : X → W(k)
µ (or W(k)

µ,0).

It is obvious that K is continuous in D for the spaces H∞, A−α (α > 0), Hp and Apα

(1 ≤ p <∞, −1 < α <∞).

Theorem 5.1. Suppose that K is continuous in D. Then

(i) Tψ(n),ϕ : X →W(k)
µ is order bounded if and only if Tψ(n),ϕ : X →W(k)

µ is bounded.

(ii) Tψ(n),ϕ : X → W(k)
µ,0 is (big) order bounded if and only if Tψ(n),ϕ : X → W(k)

µ,0 is

bounded.

(iii) Tψ(n),ϕ : X → W(k)
µ,0 is (little) order bounded if and only if Tψ(n),ϕ : X → W(k)

µ,0 is

compact.

Proof. (i). Suppose that Tψ(n),ϕ : X →W(k)
µ is order bounded. Then there exists h ∈ BCµ

such that

(5.1) |(Tψ(n),ϕf)(k)| ≤ h
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for f ∈ BX . Multiplying two sides by µ(z) and taking the supremum over D, we have that

bW(k)
µ

(Tψ(n),ϕf) ≤ ‖h‖µ for f ∈ BX . It follows from (2.7) that
∑k−1

i=0 |(Tψ(n),ϕf)(i)(0)| ≤

C‖f‖X . Thus, Tψ(n),ϕ : X →W(k)
µ is bounded with ‖Tψ(n),ϕ‖X→W(k)

µ
≤ C + ‖h‖µ.

Conversely, suppose that Tψ(n),ϕ : X →W(k)
µ is bounded. Set

(5.2) h(z) = C

n+k∑
j=0

|Ψj(z)|K(ϕ(z))

(1− |ϕ(z)|2)j
,

where the constant C is taken from (2.7). Theorem 3.1 implies that h ∈ BCµ. It follows

from (2.7) that (5.1) holds for f ∈ BX , i.e., Tψ(n),ϕ : X →W(k)
µ is order bounded.

(ii). It is obvious that Tψ(n),ϕ : X → W(k)
µ,0 is bounded (resp., (big) order bounded) if

and only if Tψ(n),ϕ(X) ⊂ W(k)
µ,0 and Tψ(n),ϕ : X →W(k)

µ is bounded (resp., order bounded).

Thus, (ii) follows from (i).

(iii). Assume that Tψ(n),ϕ : X → W(k)
µ,0 is (little) order bounded. Then there exists

h ∈ BCµ,0 such that (5.1) holds for f ∈ BX and

lim
|z|→1

sup
f∈BX

µ(z)|(Tψ(n),ϕf)(k)(z)| ≤ lim
|z|→1

µ(z)h(z) = 0.

Since Tψ(n),ϕ : X →W(k)
µ is order bounded, (i) implies that Tψ(n),ϕ : X →W(k)

µ is bounded.

By Lemma 2.2, Tψ(n),ϕ : X →W(k)
µ,0 is compact.

Conversely, suppose that Tψ(n),ϕ : X → W(k)
µ,0 is compact. Define h by (5.2). Theo-

rem 4.3 implies that h ∈ BCµ,0. It follows from (2.7) that (5.1) holds for f ∈ BX , i.e.,

Tψ(n),ϕ : X →W(k)
µ,0 is (little) order bounded.

Theorem 5.1 shows that for the operator Tψ(n),ϕ : X → W(k)
µ (or W(k)

µ,0), we can turn

the study of the order boundedness into that of the boundedness and compactness.
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[20] , On a Stević-Sharma operator from Hardy spaces to Zygmund-type spaces on

the unit disk, Complex Anal. Oper. Theory 12 (2018), no. 1, 81–100.

[21] K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23

(1993), no. 3, 1143–1177.

[22] X. Zhu, Products of differentiation, composition and multiplication from Bergman

type spaces to Bers type spaces, Integral Transforms Spec. Funct. 18 (2007), no. 3-4,

223–231.

[23] N. Zorboska, Intrinsic operators from holomorphic function spaces to growth spaces,

Integral Equations Operator Theory 87 (2017), no. 4, 581–600.

Shuming Wang, Maofa Wang and Xin Guo

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

E-mail address: wangsm@whu.edu.cn, mfwang.math@whu.edu.cn,

xguo.math@whu.edu.cn


	Introduction
	Preliminaries
	Test functions
	Compactness criterion
	Notations

	Boundedness and norm estimate
	Compactness and essential norm estimate
	Order boundedness

