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Generalized Fractional Integral Operators and Their Commutators with

Functions in Generalized Campanato Spaces on Orlicz Spaces

Minglei Shi, Ryutaro Arai and Eiichi Nakai*

Abstract. We investigate the commutators [b, Iρ] of generalized fractional integral

operators Iρ with functions b in generalized Campanato spaces and give a necessary

and sufficient condition for the boundedness of the commutators on Orlicz spaces.

To do this we define Orlicz spaces with generalized Young functions and prove the

boundedness of generalized fractional maximal operators on the Orlicz spaces.

1. Introduction

Let Rn be the n-dimensional Euclidean space, and let Iα be the fractional integral operator

of order α ∈ (0, n), that is,

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy, x ∈ Rn.

Then it is known as the Hardy-Littlewood-Sobolev theorem that Iα is bounded from

Lp(Rn) to Lq(Rn), if α ∈ (0, n), p, q ∈ (1,∞) and −n/p + α = −n/q. This boundedness

was extended to Orlicz spaces by several authors, see [3, 5, 15,27,32–34], etc. Chanillo [2]

considered the commutator

[b, Iα]f = bIαf − Iα(bf)

with b ∈ BMO and proved that [b, Iα] has the same boundedness as Iα. The result was

also extended to Orlicz spaces by Fu, Yang and Yuan [6] and Guliyev, Deringoz and

Hasanov [8].

In this paper we consider generalized fractional integral operators Iρ on Orlicz spaces.

For a function ρ : (0,∞)→ (0,∞), the operator Iρ is defined by

(1.1) Iρf(x) =

∫
Rn

ρ(|x− y|)
|x− y|n

f(y) dy, x ∈ Rn,

where we always assume that

(1.2)

∫ 1

0

ρ(t)

t
dt <∞.
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If ρ(r) = rα, 0 < α < n, then Iρ is the usual fractional integral operator Iα. The

condition (1.2) is needed for the integral in (1.1) to converge for bounded functions f with

compact support. In this paper we also assume that there exist positive constants C, K1

and K2 with K1 < K2 such that, for all r > 0,

(1.3) sup
r≤t≤2r

ρ(t) ≤ C
∫ K2r

K1r

ρ(t)

t
dt.

The operator Iρ was introduced in [20] to extend the Hardy-Littlewood-Sobolev the-

orem to Orlicz spaces whose partial results were announced in [19]. For example, the

generalized fractional integral Iρ is bounded from expLp(Rn) to expLq(Rn), where

(1.4) ρ(r) =

1/(log(1/r))α+1 for small r,

(log r)α−1 for large r,
α > 0,

p, q ∈ (0,∞), −1/p+ α = −1/q and expLp(Rn) is the Orlicz space LΦ(Rn) with

(1.5) Φ(r) =

1/ exp(1/rp) for small r,

exp(rp) for large r.

See also [21–24, 26]. Recently, in [4] some necessary and sufficient conditions for the

boundedness of Iρ on Orlicz spaces have been given.

In this paper we consider the commutator [b, Iρ] with a function b in generalized Cam-

panato spaces. To prove the boundedness of [b, Iρ] on Orlicz spaces we need the sharp

maximal operator M ] and generalized fractional maximal operators Mρ, see (1.6) and (1.7)

below for their definitions. Moreover, we need a generalization of the Young function.

First we recall the definition of the generalized Campanato space and the sharp max-

imal and generalized fractional maximal operators. We denote by B(x, r) the open ball

centered at x ∈ Rn and of radius r, that is,

B(x, r) = {y ∈ Rn : |y − x| < r}.

For a measurable set G ⊂ Rn, we denote by |G| and χG the Lebesgue measure of G and

the characteristic function of G, respectively. For a function f ∈ L1
loc(Rn) and a ball B,

let

fB = −
∫
B
f = −

∫
B
f(y) dy =

1

|B|

∫
B
f(y) dy.

Definition 1.1. For p ∈ [1,∞) and ψ : (0,∞) → (0,∞), let Lp,ψ(Rn) be the set of all

functions f such that the following functional is finite:

‖f‖Lp,ψ(Rn) = sup
B=B(x,r)

1

ψ(r)

(
−
∫
B
|f(y)− fB|p dy

)1/p

,

where the supremum is taken over all balls B(x, r) in Rn.
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Then ‖f‖Lp,ψ(Rn) is a norm modulo constant functions and thereby Lp,ψ(Rn) is a

Banach space. If p = 1 and ψ ≡ 1, then Lp,ψ(Rn) = BMO(Rn). If p = 1 and ψ(r) = rα

(0 < α ≤ 1), then Lp,ψ(Rn) coincides with Lipα(Rn).

The sharp maximal operator M ] is defined by

(1.6) M ]f(x) = sup
B3x
−
∫
B
|f(y)− fB| dy, x ∈ Rn,

where the supremum is taken over all balls B containing x. For a function ρ : (0,∞) →
(0,∞), let

(1.7) Mρf(x) = sup
B(z,r)3x

ρ(r)−
∫
B(z,r)

|f(y)| dy, x ∈ Rn,

where the supremum is taken over all balls B(z, r) containing x. We don’t assume the

condition (1.2) or (1.3) on the definition of Mρ. The operator Mρ was studied in [31] on

generalized Morrey spaces. If ρ(r) = |B(0, r)|α/n, then Mρ is the usual fractional maximal

operator Mα. If ρ ≡ 1, then Mρ is the Hardy-Littlewood maximal operator M , that is,

Mf(x) = sup
B3x
−
∫
B
|f(y)| dy, x ∈ Rn.

It is known that the usual fractional maximal operator Mα is dominated pointwise by

the fractional integral operator Iα, that is, Mαf(x) ≤ CIα|f |(x) for all x ∈ Rn. Then

the boundedness of Mα follows from one of Iα. However, we need a better estimate on

Mρ than Iρ to prove the boundedness of the commutator [b, Iρ]. In this paper we give

a necessary and sufficient condition of the boundedness of Mρ which sharpens the result

in [4].

The organization of this paper is as follows. In Section 2 we recall the definition of the

Young function and give its generalization. Then we define Orlicz spaces with generalized

Young functions. We state main results in Section 3. We give some lemmas in Section 4

to prove the main results. The boundedness of Iρ has been proved in [4]. We prove the

boundedness of Mρ in Section 5. Moreover, we investigate pointwise estimate by using

the sharp maximal operator and the norm estimate by the sharp maximal operator in

Section 6. Finally, using the generalized Young function and the results in Sections 4–6,

we prove the boundedness of [b, Iρ] in Section 7.

At the end of this section, we make some conventions. Throughout this paper, we

always use C to denote a positive constant that is independent of the main parameters

involved but whose value may differ from line to line. Constants with subscripts, such as

Cp, are dependent on the subscripts. If f ≤ Cg, we then write f . g or g & f ; and if

f . g . f , we then write f ∼ g.
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2. Generalization of the Young function and Orlicz spaces

First we define a set Φ of increasing functions Φ: [0,∞]→ [0,∞] and give some properties

of functions in Φ.

For an increasing function Φ: [0,∞]→ [0,∞], let

a(Φ) = sup{t ≥ 0 : Φ(t) = 0}, b(Φ) = inf{t ≥ 0 : Φ(t) =∞}

with convention sup ∅ = 0 and inf ∅ = ∞. Then 0 ≤ a(Φ) ≤ b(Φ) ≤ ∞. Let Φ be the set

of all increasing functions Φ: [0,∞]→ [0,∞] such that

0 ≤ a(Φ) <∞, 0 < b(Φ) ≤ ∞,

lim
t→+0

Φ(t) = Φ(0) = 0,(2.1)

Φ is left continuous on [0, b(Φ)),(2.2)

if b(Φ) =∞, then lim
t→∞

Φ(t) = Φ(∞) =∞,(2.3)

if b(Φ) <∞, then lim
t→b(Φ)−0

Φ(t) = Φ(b(Φ)) (≤ ∞).(2.4)

In what follows, if an increasing and left continuous function Φ: [0,∞) → [0,∞)

satisfies (2.1) and limt→∞Φ(t) = ∞, then we always regard that Φ(∞) = ∞ and that

Φ ∈ Φ.

For Φ ∈ Φ, we recall the generalized inverse of Φ in the sense of O’Neil [27, Defini-

tion 1.2].

Definition 2.1. For Φ ∈ Φ and u ∈ [0,∞], let

Φ−1(u) =

inf{t ≥ 0 : Φ(t) > u} if u ∈ [0,∞),

∞ if u =∞.

Let Φ ∈ Φ. Then Φ−1 is finite, increasing and right continuous on [0,∞) and positive

on (0,∞). If Φ is bijective from [0,∞] to itself, then Φ−1 is the usual inverse function of

Φ. Moreover, we have the following proposition, which is a generalization of Property 1.3

in [27].

Proposition 2.2. Let Φ ∈ Φ. Then

(2.5) Φ(Φ−1(u)) ≤ u ≤ Φ−1(Φ(u)) for all u ∈ [0,∞].

Proof. First we show that, for all t, u ∈ [0,∞],

(2.6) Φ(t) ≤ u =⇒ t ≤ Φ−1(u).
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If Φ(t) ≤ u, then Φ(s) > u ⇒ Φ(s) > Φ(t) ⇒ s > t and

{s ≥ 0 : Φ(s) > u} ⊂ {s ≥ 0 : s > t}.

Hence,

Φ−1(u) = inf{s ≥ 0 : Φ(s) > u} ≥ inf{s ≥ 0 : s > t} = t.

This shows (2.6). Now, letting Φ(t) = u and using (2.6), we have that t ≤ Φ−1(u) =

Φ−1(Φ(t)), which is the second inequality in (2.5).

Next we show that, for all t ∈ (0,∞] and u ∈ [0,∞],

Φ(t) > u =⇒ t > Φ−1(u),(2.7)

t ≤ Φ−1(u) =⇒ Φ(t) ≤ u.(2.8)

We only show (2.7), since (2.8) is equivalent to (2.7). If Φ(t) > u, then Φ(s) > u for some

s < t by the properties (2.2)–(2.4). By the definition of Φ−1 we have that s ≥ Φ−1(u).

That is, t > Φ−1(u), which shows (2.7). Now, if Φ−1(u) = 0, then the first inequality in

(2.5) is true by (2.1). If t = Φ−1(u) > 0, then, using (2.8), we have that Φ(Φ−1(u)) =

Φ(t) ≤ u, which is the first inequality in (2.5).

For Φ,Ψ ∈ Φ, we write Φ ≈ Ψ if there exists a positive constant C such that

Φ(C−1t) ≤ Ψ(t) ≤ Φ(Ct) for all t ∈ [0,∞].

For functions P,Q : [0,∞]→ [0,∞], we write P ∼ Q if there exists a positive constant C

such that

C−1P (t) ≤ Q(t) ≤ CP (t) for all t ∈ [0,∞].

Then, for Φ,Ψ ∈ Φ,

(2.9) Φ ≈ Ψ ⇐⇒ Φ−1 ∼ Ψ−1.

Actually we have the following lemma.

Lemma 2.3. Let Φ,Ψ ∈ Φ, and let C be a positive constant. Then

Φ(t) ≤ Ψ(Ct) for all t ∈ [0,∞]

if and only if

Ψ−1(u) ≤ CΦ−1(u) for all u ∈ [0,∞].

Proof. Let Φ(t) ≤ Ψ(Ct) for all t ∈ [0,∞]. If t = Ψ−1(u), then by Proposition 2.2 we have

that Ψ(t) = Ψ(Ψ−1(u)) ≤ u and that

Ψ−1(u)/C = t/C ≤ Φ−1(Φ(t/C)) ≤ Φ−1(Ψ(t)) ≤ Φ−1(u).
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Conversely, let Ψ−1(u) ≤ CΦ−1(u) for all u ∈ [0,∞]. If u = Ψ(t), then by Proposi-

tion 2.2 we have t ≤ Ψ−1(Ψ(t)) = Ψ−1(u) and

Φ(t/C) ≤ Φ(Ψ−1(u)/C) ≤ Φ(Φ−1(u)) ≤ u = Ψ(t).

Next we recall the definition of the Young function and give its generalization.

Definition 2.4. A function Φ ∈ Φ is called a Young function (or sometimes also called

an Orlicz function) if Φ is convex on [0, b(Φ)).

By the convexity, any Young function Φ is continuous on [0, b(Φ)) and strictly increas-

ing on [a(Φ), b(Φ)]. Hence Φ is bijective from [a(Φ), b(Φ)] to [0,Φ(b(Φ))]. Moreover, Φ

is absolutely continuous on any closed subinterval in [0, b(Φ)). That is, its derivative Φ′

exists a.e. and

(2.10) Φ(t) =

∫ t

0
Φ′(s) ds, t ∈ [0, b(Φ)).

Definition 2.5. (i) Let ΦY be the set of all Young functions.

(ii) Let ΦY be the set of all Φ ∈ Φ such that Φ ≈ Ψ for some Ψ ∈ ΦY .

(iii) Let Y be the set of all Young functions such that a(Φ) = 0 and b(Φ) =∞.

For Φ ∈ ΦY , we define the Orlicz space LΦ(Rn) and the weak Orlicz space wLΦ(Rn).

Let L0(Rn) be the set of all complex valued measurable functions on Rn.

Definition 2.6. For a function Φ ∈ ΦY , let

LΦ(Rn) =

{
f ∈ L0(Rn) :

∫
Rn

Φ(ε|f(x)|) dx <∞ for some ε > 0

}
,

‖f‖LΦ = inf

{
λ > 0 :

∫
Rn

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
,

wLΦ(Ω) =

{
f ∈ L0(Rn) : sup

t∈(0,∞)
Φ(t)m (εf, t) <∞ for some ε > 0

}
,

‖f‖wLΦ = inf

{
λ > 0 : sup

t∈(0,∞)
Φ(t)m

(
f

λ
, t

)
≤ 1

}
,

where m(f, t) = |{x ∈ Rn : |f(x)| > t}|.

Then ‖ · ‖LΦ and ‖ · ‖wLΦ are quasi-norms and LΦ(Rn) ⊂ L1
loc(Rn). If Φ ∈ ΦY , then

‖ · ‖LΦ is a norm and thereby LΦ(Rn) is a Banach space. For Φ,Ψ ∈ ΦY , if Φ ≈ Ψ, then

LΦ(Rn) = LΨ(Rn) and wLΦ(Rn) = wLΨ(Rn) with equivalent quasi-norms, respectively.

Orlicz spaces are introduced by [28,29]. For the theory of Orlicz spaces, see [14–17,30] for

example.
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We note that, for any Young function Φ, we have that

sup
t∈(0,∞)

Φ(t)m(f, t) = sup
t∈(0,∞)

tm(Φ(|f |), t),

and then

‖f‖wLΦ = inf

{
λ > 0 : sup

t∈(0,∞)
Φ(t)m

(
f

λ
, t

)
≤ 1

}

= inf

{
λ > 0 : sup

t∈(0,∞)
tm

(
Φ

(
|f |
λ

)
, t

)
≤ 1

}
.

For the above equality, see [11, Proposition 4.2] for example.

Definition 2.7. (i) A function Φ ∈ Φ is said to satisfy the ∆2-condition, denote Φ ∈
∆2, if there exists a constant C > 0 such that

Φ(2t) ≤ CΦ(t) for all t > 0.

(ii) A function Φ ∈ Φ is said to satisfy the ∇2-condition, denote Φ ∈ ∇2, if there exists

a constant k > 1 such that

(2.11) Φ(t) ≤ 1

2k
Φ(kt) for all t > 0.

(iii) Let ∆2 = ΦY ∩∆2 and ∇2 = ΦY ∩∇2.

Remark 2.8. (i) ∆2 ⊂ Y and ∇2 ⊂ ΦY (see [15, Lemma 1.2.3]).

(ii) Let Φ ∈ ΦY . Then Φ ∈ ∆2 if and only if Φ ≈ Ψ for some Ψ ∈ ∆2, and, Φ ∈ ∇2 if

and only if Φ ≈ Ψ for some Ψ ∈ ∇2.

(iii) Let Φ ∈ ΦY . Then Φ ∈ ∆2 if and only if C∞comp(Rn) is dense in LΦ(Rn), and, Φ ∈ ∇2

if and only if the Hardy-Littlewood maximal operator M is bounded on LΦ(Rn).

(iv) Let Φ ∈ ΦY . Then Φ−1 satisfies the doubling condition by its concavity, that is,

Φ−1(u) ≤ Φ−1(2u) ≤ 2Φ−1(u) for all u ∈ [0,∞].

The following theorem is known, see [15, Theorem 1.2.1] for example.

Theorem 2.9. Let Φ ∈ ΦY . Then M is bounded from LΦ(Rn) to wLΦ(Rn), that is, there

exists a positive constant C0 such that, for all f ∈ LΦ(Rn),

‖Mf‖wLΦ ≤ C0‖f‖LΦ .

Moreover, if Φ ∈ ∇2, then M is bounded on LΦ(Rn), that is, there exists a positive constant

C0 such that, for all f ∈ LΦ(Rn),

‖Mf‖LΦ ≤ C0‖f‖LΦ .

See also [3, 12,13] for the Hardy-Littlewood maximal operator on Orlicz spaces.



1346 Minglei Shi, Ryutaro Arai and Eiichi Nakai

3. Main results

The following theorem is an extension of the result in [20] and has been proved in [4]

essentially, by using Hedberg’s method in [9].

Theorem 3.1. [4] Let ρ : (0,∞) → (0,∞) satisfy (1.2) and (1.3), and let Φ,Ψ ∈ ΦY .

Assume that there exists a positive constant A such that, for all r ∈ (0,∞),

(3.1)

∫ r

0

ρ(t)

t
dt Φ−1(1/rn) +

∫ ∞
r

ρ(t)Φ−1(1/tn)

t
dt ≤ AΨ−1(1/rn).

Then, for any positive constant C0, there exists a positive constant C1 such that, for all

f ∈ LΦ(Rn) with f 6≡ 0,

Ψ

(
|Iρf(x)|
C1‖f‖LΦ

)
≤ Φ

(
Mf(x)

C0‖f‖LΦ

)
.

Consequently, Iρ is bounded from LΦ(Rn) to wLΨ(Rn). Moreover, if Φ ∈ ∇2, then Iρ is

bounded from LΦ(Rn) to LΨ(Rn).

Remark 3.2. In [4] the condition that Φ,Ψ ∈ ΦY was assumed. We can extend it to

Φ,Ψ ∈ ΦY as Theorem 3.1. Actually, if (3.1) holds for some Φ,Ψ ∈ ΦY , then take

Φ1,Ψ1 ∈ ΦY with Φ ≈ Φ1 and Ψ ≈ Ψ1. Then, instead of Φ and Ψ, Φ1 and Ψ1 satisfy (3.1)

for some positive constant A′ by (2.9).

Here, we give some examples of the pair of (ρ,Φ,Ψ) which satisfies the assumption

in Theorem 3.1. For other examples, see [21]. See also [18] for the boundedness of Iρ on

Orlicz space LΦ(Ω) with bounded domain Ω ⊂ Rn.

Example 3.3. If ρ(r) = rα, Φ(t) = tp and Ψ(t) = tq with p, q ∈ [1,∞) and 0 < α < n/p,

then∫ r

0

ρ(t)

t
dt Φ−1(1/rn) ∼

∫ ∞
r

ρ(t)Φ−1(1/tn)

t
dt ∼ rα−n/p and Ψ−1(1/rn) = r−n/q.

In this case,

(3.1) ⇐⇒ rα−n/p . r−n/q, r ∈ (0,∞) ⇐⇒ α− n/p = −n/q.

Therefore, the Hardy-Littlewood-Sobolev theorem is a corollary of Theorem 3.1.

Example 3.4. Let ρ and Φ be as in (1.4) and in (1.5), respectively, and let Ψ be as in

(1.5) with q instead of p. Assume that α, p, q ∈ (0,∞) and −1/p+ α = −1/q. Then

∫ r

0

ρ(t)

t
dt ∼

(log(1/r))−α for small r > 0,

(log r)α for large r > 0,
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and

(3.2) Φ−1(1/rn) ∼

(log(1/r))1/p,

(log r)−1/p,
Ψ−1(1/rn) ∼

(log(1/r))1/q for small r > 0,

(log r)−1/q for large r > 0.

In this case we have∫ r

0

ρ(t)

t
dt Φ−1(1/rn) ∼

∫ ∞
r

ρ(t)Φ−1(1/tn)

t
dt

∼

(log(1/r))−α+1/p for small r > 0,

(log r)α−1/p for large r > 0.

Then the pair (ρ,Φ,Ψ) satisfies (3.1), that is, Iρ is bounded from expLp(Rn) to expLq(Rn).

Example 3.5. Let α ∈ (0, n), p, q ∈ [1,∞) and −n/p+ α = −n/q. Let

ρ(r) =

rα for small r > 0,

e−r for large r > 0.

Then ∫ r

0

ρ(t)

t
dt ∼

rα for small r > 0,

1 for large r > 0.

(i) If Φ(r) = rp and Ψ(r) = max(rp, rq), then (3.1) holds. In this case LΦ(Rn) = Lp(Rn)

and LΨ(Rn) = Lp(Rn) ∩ Lq(Rn).

(ii) If Φ(r) = max(0, rp − 1) and Ψ(r) = max(0, rq − 1), then (3.1) holds, since

Φ−1(u) ∼

1 for small u > 0,

u1/p for large u > 0,
Φ−1(1/rn) ∼

r−n/p for small r > 0,

1 for large r > 0.

In this case LΦ(Rn) = Lp(Rn) + L∞(Rn) and LΨ(Rn) = Lq(Rn) + L∞(Rn).

A function Φ ∈ Y is called an N -function if

lim
t→+0

Φ(t)

t
= 0, lim

t→∞

Φ(t)

t
=∞.

We say that a function θ : (0,∞) → (0,∞) is almost increasing (resp. almost decreasing)

if there exists a positive constant C such that, for all r, s ∈ (0,∞),

θ(r) ≤ Cθ(s) (resp. θ(s) ≤ Cθ(r)) if r < s.

Then we have the following corollary.
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Corollary 3.6. Let 1 < s < ∞ and ρ : (0,∞) → (0,∞). Assume that ρ satisfies (1.2)

and that r 7→ ρ(r)/rn/s−ε is almost decreasing for some positive constant ε. Then there

exist an N -function Ψ and a positive constant C such that, for all r > 0,

(3.3) C−1Ψ−1

(
1

rn

)
≤ 1

rn/s

∫ r

0

ρ(t)

t
dt ≤ CΨ−1

(
1

rn

)
.

Moreover, Iρ is bounded from Ls(Rn) to LΨ(Rn).

In the above, (3.3) can be shown by the same way as the proof of [1, Theorem 3.5].

The boundedness of Iρ from Ls(Rn) to LΨ(Rn) is proven by the following way. First note

that ρ satisfies (1.3) by Remark 3.7 below. Let Φ(t) = ts. Then we have∫ ∞
r

ρ(t)Φ−1(1/tn)

t
dt =

∫ ∞
r

ρ(t)/tn/s

t
dt .

ρ(r)

rn/s−ε

∫ ∞
r

1

t1+ε
dt

∼ ρ(r)

rn/s
.

1

rn/s

∫ r

0

ρ(t)

t
dt = Φ−1

(
1

rn

)∫ r

0

ρ(t)

t
dt,

where we used (3.4) below for the last inequality. Combining this and (3.3), we have (3.1).

Then we have the conclusion by Theorem 3.1.

Remark 3.7. If r 7→ ρ(r)/rk is almost decreasing for some positive constant k, then ρ

satisfies (1.3). Actually,

(3.4) sup
r≤t≤2r

ρ(t) ∼ rk sup
r≤t≤2r

ρ(t)

tk
. rk

∫ r

r/2

ρ(t)

tk+1
dt ∼

∫ r

r/2

ρ(t)

t
dt.

Next we state the result on the operator Mρ defined by (1.7) in which we don’t assume

(1.2) or (1.3).

Theorem 3.8. Let ρ : (0,∞)→ (0,∞), and let Φ,Ψ ∈ ΦY .

(i) Assume that there exists a positive constant A such that, for all r ∈ (0,∞),

(3.5)

(
sup

0<t≤r
ρ(t)

)
Φ−1(1/rn) ≤ AΨ−1(1/rn).

Then, for any positive constant C0, there exists a positive constant C1 such that, for

all f ∈ LΦ(Rn) with f 6≡ 0,

(3.6) Ψ

(
Mρf(x)

C1‖f‖LΦ

)
≤ Φ

(
Mf(x)

C0‖f‖LΦ

)
.

Consequently, Mρ is bounded from LΦ(Rn) to wLΨ(Rn). Moreover, if Φ ∈ ∇2, then

Mρ is bounded from LΦ(Rn) to LΨ(Rn).

(ii) Conversely, if Mρ is bounded from LΦ(Rn) to wLΨ(Rn), then (3.5) holds for some

A and all r ∈ (0,∞).
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Remark 3.9. Let ρ : (0,∞)→ (0,∞), and let Φ,Ψ ∈ ΦY .

(i) Let ρ1(r) = sup0<t≤r ρ(t). Then we conclude from the theorem above that Iρ and

Iρ1 have the same boundedness, that is, we may assume that ρ is increasing.

(ii) Since Φ−1 is pseudo-concave, u 7→ Φ−1(u)/u is almost decreasing, and then r 7→
Φ−1(1/rn)rn is almost increasing. Therefore, from (3.5) it follows that r 7→ ρ(r)/rn

is dominated by the almost decreasing function r 7→ Ψ−1(1/rn)
Φ−1(1/rn)rn

.

(iii) In [4], under the conditions that Φ,Ψ ∈ ΦY , that ρ is increasing and that r 7→ ρ(r)/rn

is decreasing, a necessary and sufficient condition for the boundedness ofMρ has been

given.

Example 3.10. If ρ(r) = rα, Φ(t) = tp and Ψ(t) = tq with p, q ∈ [1,∞) and 0 ≤ α ≤ n/p,
then

ρ(r)Φ−1(1/rn) ∼ rα−n/p and Ψ−1(1/rn) = r−n/q.

In this case,

(3.5) ⇐⇒ rα−n/p . r−n/q, r ∈ (0,∞) ⇐⇒ α− n/p = −n/q.

In this example, if α = 0, then Mρ is the Hardy-Littlewood maximal operator M and

(3.5) ⇔ p = q. If α− n/p = 0, then Mρ is the fractional maximal operator Mα and it is

bounded from Lp(Rn) to L∞(Rn), since we can take

(3.7) Ψ(r) =

0 for r ∈ [0, 1],

∞ for r ∈ (1,∞]
and Ψ−1(r) =

1 for r ∈ [0,∞),

∞ for r =∞.

Example 3.11. Let Φ be as in (1.5), and let Ψ be as in (1.5) with q instead of p. Assume

that α ∈ [0,∞) and p, q ∈ (0,∞). Let

(3.8) ρ(r) =

(log(1/r))−α for small r > 0,

(log r)α for large r > 0

instead of (1.4). Here, we note that, if 0 ≤ α ≤ 1, then
∫ 1

0
ρ(t)
t dt = ∞, that is, Iρ is

not well defined, while Mρ is well defined. Actually, Mρ is bounded from expLp(Rn) to

expLq(Rn), if −1/p + α = −1/q for any α ∈ [0,∞), see (3.2) for the inverse functions of

Φ and Ψ. Moreover, if −1/p + α = 0, then Mρ is bounded from expLp(Rn) to L∞(Rn),

since we can take Ψ as in (3.7).
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Example 3.12. Assume that α, q ∈ [0,∞) and p ∈ (1,∞). Let ρ be as in (3.8). Then

Mρ is bounded from Lp(Rn) to Lp(logL)p1(Rn), if p1/p = α, where Lp(logL)p1(Rn) is the

Orlicz space LΦ(Rn) with

Φ(r) =

rp(log(1/r))−p1 for small r > 0,

rp(log r)p1 for large r > 0.

In this case we have

(3.9) Φ−1(1/rn) ∼

r−n/p(log(1/r))−p1/p for small r > 0,

r−n/p(log r)p1/p for large r > 0.

In this example, if we take p = 1, then Mρ is bounded from L1(Rn) to wL1(logL)α(Rn)

which is weak type of L1(logL)α(Rn).

Finally, we state the result on the commutator [b, Iρ]. Let

(3.10) ρ∗(r) =

∫ r

0

ρ(t)

t
dt.

Theorem 3.13. Let ρ, ψ : (0,∞) → (0,∞), and let Φ,Ψ ∈ ΦY . Assume that ρ satisfies

(1.2). Let b ∈ L1
loc(Rn).

(i) Let Φ,Ψ ∈ ∆2 ∩ ∇2. Assume that ψ is almost increasing and that r 7→ ρ(r)/rn−ε

is almost decreasing for some ε ∈ (0, n). Assume also that there exists a positive

constant A and Θ ∈ ∇2 such that, for all r ∈ (0,∞),∫ r

0

ρ(t)

t
dt Φ−1(1/rn) +

∫ ∞
r

ρ(t)Φ−1(1/tn)

t
dt ≤ AΘ−1(1/rn),(3.11)

ψ(r)Θ−1(1/rn) ≤ AΨ−1(1/rn),(3.12)

and that there exists a positive constant Cρ such that, for all r, s ∈ (0,∞),

(3.13)

∣∣∣∣ρ(r)

rn
− ρ(s)

sn

∣∣∣∣ ≤ Cρ|r − s|ρ∗(r)rn+1
if

1

2
≤ r

s
≤ 2.

If b ∈ L1,ψ(Rn), then [b, Iρ] is bounded from LΦ(Rn) to LΨ(Rn) and there exists a

positive constant C such that, for all f ∈ LΦ(Rn),

(3.14) ‖[b, Iρ]f‖LΨ ≤ C‖b‖L1,ψ
‖f‖LΦ .

(ii) Conversely, assume that there exists a positive constant A such that, for all r ∈
(0,∞),

Ψ−1(1/rn) ≤ Arαψ(r)Φ−1(1/rn).
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If [b, Iα] is well defined and bounded from LΦ(Rn) to LΨ(Rn), then b is in L1,ψ(Rn)

and there exists a positive constant C, independent of b, such that

‖b‖L1,ψ
≤ C‖[b, Iα]‖LΦ→LΨ ,

where ‖[b, Iα]‖LΦ→LΨ is the operator norm of [b, Iα] from LΦ(Rn) to LΨ(Rn).

Example 3.14. Let α ∈ (0, n), β ∈ [0, 1] and p, q ∈ (1,∞), and, let

ρ(r) = rα, ψ(r) = rβ, Φ(r) = rp, Ψ(r) = rq.

Assume that −n/p + α + β = −n/q. Take Θ(r) = rq̃ with −n/q̃ = −n/p + α. Then

(3.11), (3.12) and (3.13) hold, that is, [b, Iα] is bounded from Lp(Rn) to Lq(Rn), where

b ∈ Lipβ(Rn) if β ∈ (0, 1], and b ∈ BMO(Rn) if β = 0 which is Chanillo’s result in [2].

Example 3.15. Let α ∈ (0, n) and α1 ∈ (−∞,∞). Let β ∈ (0, 1) and β1 ∈ (−∞,∞), or,

let β = 0 and β1 ∈ [0,∞). Let

ρ(r) =


rα(log(1/r))−α1 ,

rα,

rα(log r)α1 ,

ψ(r) =


rβ(log(1/r))−β1 for r ∈ (0, 1/e),

rβ for r ∈ [1/e, e],

rβ(log r)β1 for r ∈ (e,∞).

Then ρ∗ ∼ ρ and ρ′(t) ∼ ρ(t)/t. In this case ρ satisfies (3.13), since ρ is Lipschitz

continuous on [1/(2e), 2e], and, for r, s ∈ (0, 1/e] ∪ [e,∞), there exists θ ∈ (0, 1) such that∣∣∣∣ρ(r)

rn
− ρ(s)

sn

∣∣∣∣ = |r − s|

∣∣∣∣∣ ddt
(
ρ(t)

tn

) ∣∣∣∣
t=(1−θ)r+θs

∣∣∣∣∣ . |r − s| ρ(r)

rn+1
if

1

2
≤ r

s
≤ 2.

Let p, q ∈ (1,∞) and p1, q1 ∈ (−∞,∞), and let

Φ(r) =

rp(log(1/r))−p1 ,

rp(log r)p1 ,
Ψ(r) =

rq(log(1/r))−q1 for small r > 0,

rq(log r)q1 for large r > 0.

For the inverse functions of Φ and Ψ, see (3.9). If

−n/p+ α+ β = −n/p̃+ β = −n/q, p1/p+ α1 + β1 = p̃1/p̃+ β1 = q1/q

and

Θ(r) =

rp̃(log(1/r))−p̃1 for small r > 0,

rp̃(log r)p̃1 for large r > 0,

then ∫ r

0

ρ(t)

t
dt Φ−1(1/rn) ∼

∫ ∞
r

ρ(t)Φ−1(1/tn)

t
dt ∼ Θ−1(r−n),

and

ψ(r)Θ−1(r−n) ∼ Ψ−1(r−n) ∼

r−n/p+α+β(log(1/r))−(p1/p+α1+β1) for small r > 0,

r−n/p+α+β(log r)p1/p+α1+β1 for large r > 0.

In this case [b, Iρ] is bounded from Lp(logL)p1(Rn) to Lq(logL)q1(Rn).
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4. Lemmas

In this section we prepare some lemmas to prove our main results.

For a Young function Φ, its complementary function is defined by

Φ̃(t) =

sup{tu− Φ(u) : u ∈ [0,∞)} if t ∈ [0,∞),

∞ if t =∞.

Then Φ̃ is also a Young function and Young’s inequality

tu ≤ Φ(t) + Φ̃(u), t, u ∈ [0,∞)

holds. It is also known that

(4.1) t ≤ Φ−1(t)Φ̃−1(t) ≤ 2t, t ≥ 0.

From Young’s inequality we have a generalized Hölder’s inequality:

(4.2)

∫
Rn
|f(x)g(x)| dx ≤ 2‖f‖LΦ‖g‖

LΦ̃

(see [35, Theorem 6] and [27, Theorem 2.3]).

Lemma 4.1. Let Φ ∈ ΦY . For a measurable set G ⊂ Rn with finite measure,

‖χG‖LΦ = ‖χG‖wLΦ =
1

Φ−1(1/|G|)
.

From (4.1) it follows that, for the characteristic function χB of the ball B,

(4.3) ‖χB‖LΦ̃ =
1

Φ̃−1(1/|B|)
≤ |B|Φ−1(1/|B|).

Lemma 4.2. [1] Let k > 0 and ρ : (0,∞) → (0,∞). Assume that ρ satisfies (1.2). Let

ρ∗ be as in (3.10). If r 7→ ρ(r)/rk is almost decreasing, then r 7→ ρ∗(r)/rk is also almost

decreasing.

Remark 4.3. Since ρ∗ is increasing with respect to r, if r 7→ ρ(r)/rk is almost decreasing

for some k > 0, then we see that ρ∗ satisfies the doubling condition, that is, there exists

a positive constant C such that, for all r ∈ (0,∞),

ρ∗(r) ≤ ρ∗(2r) ≤ Cρ∗(r).

Lemma 4.4. If Φ ∈ ∆2, then its derivative Φ′ satisfies

Φ′(2t) ≤ CΦΦ′(t) a.e. t ∈ [0,∞),

where the constant CΦ is independent of t.
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Proof. From the convexity of Φ and Φ(0) = 0 it follows that its right derivative Φ′+(t)

exists for all t ∈ [0,∞) and it is increasing. By (2.10) we have

Φ(t) =

∫ t

0
Φ′(s) ds =

∫ t

0
Φ′+(s) ds,

since Φ′ = Φ′+ a.e. Then, for all t ∈ (0,∞),

Φ′+(2t) ≤ 1

t

∫ 3t

2t
Φ′+(s) ds ≤ 1

t
Φ(3t) ≤ CΦ

t
Φ(t) ≤ CΦΦ′+(t).

This shows the conclusion.

Lemma 4.5. If Φ ∈ ∇2, then Φ((·)θ) ∈ ∇2 for some θ ∈ (0, 1).

Proof. If Φ ∈ ∇2, then there exists a constant k > 1 such that

Φ(t) ≤ 1

2k
Φ(kt).

Take θ ∈ (0, 1) such that k2(1/θ−1) ≤ 2. Then k2 ≤ (2k2)θ and

Φ(tθ) ≤ 1

2k
Φ(ktθ) ≤ 1

(2k)2
Φ(k2tθ) ≤ 1

2(2k2)
Φ((2k2t)θ).

That is, Φ((·)θ) ∈ ∇2.

Remark 4.6. There exists Φ ∈ ∇2 such that Φ((·)θ) /∈ ΦY for any θ ∈ (0, 1). Actually, let

Φ(r) = max(r2, 3r − 2) =


r2 if 0 ≤ r ≤ 1,

3r − 2 if 1 < r < 2,

r2 if 2 ≤ r.

Then Φ is convex and satisfies (2.11) with k = 8. However, 3rθ − 2 is not convex for any

θ ∈ (0, 1).

5. Proof of Theorem 3.8

In this section we prove Theorem 3.8.

Proof of Theorem 3.8(i). We may assume that Φ,Ψ ∈ ΦY by (2.9). Let f ∈ LΦ(Rn). We

may also assume that ‖f‖LΦ = 1 and Mf(x) > 0 for all x ∈ Rn. For any x ∈ Rn and any

ball B = B(z, r) 3 x, if

Φ

(
Mf(x)

C0

)
≥ 1

rn
,
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then, by (4.2), ‖f‖LΦ = 1, (4.3), the doubling condition of Φ−1 and (3.5), we have

ρ(r)−
∫
B
|f | ≤ 2

ρ(r)

|B|
‖χB‖LΦ̃ ≤ 2

ρ(r)

|B|
|B|Φ−1

(
1

|B|

)
. ρ(r)Φ−1

(
1

rn

)
≤ AΨ−1

(
1

rn

)
≤ AΨ−1

(
Φ

(
Mf(x)

C0

))
.

Conversely, if

Φ

(
Mf(x)

C0

)
≤ 1

rn
,

then, choosing t0 ≥ r such that

Φ

(
Mf(x)

C0

)
=

1

tn0
,

and using (3.5) and (2.5), we have

ρ(r) ≤ sup
0<t≤t0

ρ(t) ≤ A
Ψ−1

(
Φ
(Mf(x)

C0

))
Φ−1

(
Φ
(Mf(x)

C0

)) ≤ AΨ−1
(

Φ
(Mf(x)

C0

))
Mf(x)
C0

,

which implies

ρ(r)−
∫
B
|f | ≤ AC0

Ψ−1
(

Φ
(Mf(x)

C0

))
Mf(x)

−
∫
B
|f | ≤ AC0Ψ−1

(
Φ

(
Mf(x)

C0

))
.

Hence, we have

Mρf(x) ≤ C1Ψ−1

(
Φ

(
Mf(x)

C0

))
,

which shows (3.6) by (2.5).

To prove Theorem 3.8(ii) we need the following lemma.

Lemma 5.1. Let ρ : (0,∞)→ (0,∞). Then, for all x ∈ Rn and r ∈ (0,∞),

(5.1)

(
sup

0<t≤r
ρ(t)

)
χB(0,r)(x) ≤ (MρχB(0,r))(x).

Proof. Let x ∈ B(0, r). If t ≤ r, then we can choose a ball B(z, t) such that x ∈ B(z, t) ⊂
B(0, r). Hence,

ρ(t) = ρ(t)−
∫
B(z,t)

χB(0,r)(y) dy ≤ (MρχB(0,r))(x).

Therefore, we have (5.1).

Proof of Theorem 3.8(ii). By Lemma 5.1 and the boundedness of Mρ from LΦ(Rn) to

wLΨ(Rn) we have(
sup

0<t≤r
ρ(t)

)
‖χB(0,r)‖wLΨ ≤ ‖MρχB(0,r)‖wLΨ . ‖χB(0,r)‖LΦ .

Then, by Lemma 4.1 and the doubling condition of Φ−1 and Ψ−1 we have the conclusion.
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6. Sharp maximal operators

In this section, to prove Theorem 3.13, we prove two propositions involving the sharp

maximal operator M ] defined by (1.6).

First we state the John-Nirenberg type theorem for the Campanato space, which is

known by [25, Theorem 3.1] for spaces of homogeneous type. See also [1] for its proof in

the case of Rn.

Theorem 6.1. Let p ∈ (1,∞) and ψ : (0,∞)→ (0,∞). Assume that ψ is almost increas-

ing. Then Lp,ψ(Rn) = L1,ψ(Rn) with equivalent norms.

Proposition 6.2. Assume that ρ : (0,∞) → (0,∞) satisfies (1.2). Let ρ∗(r) be as in

(3.10). Assume that ψ is almost increasing, that r 7→ ρ(r)/rn−ε is almost decreasing for

some ε > 0 and that the condition (3.13) holds. Then, for any η ∈ (1,∞), there exists a

positive constant C such that, for all b ∈ L1,ψ(Rn), f ∈ C∞comp(Rn) and x ∈ Rn,

M ]([b, Iρ]f)(x) ≤ C‖b‖L1,ψ

((
Mψη(|Iρf |η)(x)

)1/η
+
(
M(ρ∗ψ)η(|f |η)(x)

)1/η)
.

To prove the proposition we need the following known lemma, for its proof, see

Lemma 4.7 and Remark 4.1 in [1] for example.

Lemma 6.3. Let p ∈ [1,∞). Assume that ψ is almost increasing. Then there exists a

positive constant C such that, for all f ∈ L1,ψ, x ∈ Rn and r, s ∈ (0,∞),(
−
∫
B(x,s)

|f(y)− fB(x,r)|p dy

)1/p

≤ C
(

1 + log2

s

r

)
ψ(s)‖f‖L1,ψ

if r ≤ s.

Proof of Proposition 6.2. For any ball B = B(x, t), let f = f1 + f2 with f1 = fχ2B, and

let

F1(y) = (b(y)− b2B)Iρf(y), F2(y) = Iρ((b− b2B)f1)(y), F3(y) = Iρ((b− b2B)f2)(y)−CB

for y ∈ B, where CB = Iρ((b− b2B)f2)(x) and

Iρ((b− b2B)f2)(y) =

∫
Rn

ρ(|y − z|)
|y − z|n

(b(z)− b2B)f2(z) dz, y ∈ B.

Then we have

[b, Iρ]f + CB = [b− b2B, Iρ]f + CB = F1 − F2 − F3.

We show that

(6.1)

−
∫
B
|Fi(y)| dy ≤ C‖b‖L1,ψ

((
Mψη(|Iρf |η)(x)

)1/η
+
(
M(ρ∗ψ)η(|f |η)(x)

)1/η)
, i = 1, 2, 3.
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Then we have the conclusion.

Now, by Hölder’s inequality with 1/η + 1/η′ = 1 and Theorem 6.1 we have

−
∫
B
|F1(y)| dy ≤

(
−
∫
B
|b(y)− b2B|η

′
dy

)1/η′ (
−
∫
B
|Iρf(y)|η dy

)1/η

=
1

ψ(t)

(
−
∫
B
|b(y)− b2B|η

′
dy

)1/η′ (
ψ(t)η −

∫
B
|Iρf(y)|η dy

)1/η

. ‖b‖L1,ψ

(
Mψη(|Iρf |η)(x)

)1/η
.

Choose v ∈ (1, η) such that n/v − ε/2 ≥ n − ε. Then by the almost decreasingness of

r 7→ ρ(r)/rn−ε we have the almost decreasingness of r 7→ ρ(r)/rn/v−ε/2. Hence, from

Corollary 3.6 it follows that there exists an N -function Ψ such that Iρ is bounded from

Lv(Rn) to LΨ(Rn). Let Ψ̃ be the complementary function of Ψ. Then by the generalized

Hölder’s inequality (4.2), (4.3), (3.3) and the boundedness of Iρ we have

−
∫
B
|F2(y)| dy ≤ 2

|B|
‖χB‖LΨ̃(Rn)

‖F2‖LΨ(Rn)

. Ψ−1(1/|B|)‖(b− b2B)f1‖Lv(Rn)

.
ρ∗(t)

|B|1/v
‖(b− b2B)f‖Lv(2B).

Let 1/v = 1/u+ 1/η. Then by Hölder’s inequality and Theorem 6.1 we have

−
∫
B
|F2(y)| dy . ρ∗(t)

(
−
∫

2B
|b(y)− b2B|u dy

)1/u(
−
∫

2B
|f(y)|η dy

)1/η

.
1

ψ(2t)

(
−
∫

2B
|b(y)− b2B|u dy

)1/u(
(ρ∗(2t)ψ(2t))η −

∫
2B
|f(y)|η dy

)1/η

. ‖b‖L1,ψ

(
M(ρ∗ψ)η(|f |η)(x)

)1/η
.

Finally, using the relation

1

2
≤ |y − z|
|x− z|

≤ 2 for y ∈ B and z /∈ 2B

and (3.13), we have

|F3(y)| = |Iρ((b− b2B)f2)(y)− Iρ((b− b2B)f2)(x)|

=

∣∣∣∣∫
Rn

(
ρ(|y − z|)
|y − z|n

− ρ(|x− z|)
|x− z|n

)
(b(z)− b2B)f2(z) dz

∣∣∣∣
.
∫
Rn\2B

|x− y|ρ∗(|x− z|)
|x− z|n+1

|b(z)− b2B||f(z)| dz

=
∞∑
j=0

∫
2j+2B\2j+1B

|x− y|ρ∗(|x− z|)
|x− z|n+1

|b(z)− b2B||f(z)| dz.
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By the doubling condition of ρ∗ (see Remark 4.3), Hölder’s inequality and Lemma 6.3 we

have ∫
2j+2B\2j+1B

|x− y|ρ∗(|x− z|)
|x− z|n+1

|b(z)− b2B||f(z)| dz

.
tρ∗(2j+2t)

(2j+2t)n+1

∫
2j+2B\2j+1B

|b(z)− b2B||f(z)| dz

.
ρ∗(2j+2t)

2j+2

(
−
∫

2j+2B
|b(z)− b2B|η

′
dz

)1/η′ (
−
∫

2j+2B
|f(z)|η dz

)1/η

≤ j + 2

2j+2
‖b‖L1,ψ

(
(ρ∗(2j+2t)ψ(2j+2t))η −

∫
2j+2B

|f(z)|η dz
)1/η

.

Then

|F3(y)| . ‖b‖L1,ψ

∞∑
j=0

j + 2

2j+2

(
(ρ∗(2j+2t)ψ(2j+2t))η −

∫
2j+2B

|f(z)|η dz
)1/η

. ‖b‖L1,ψ

(
M(ρ∗ψ)η(|f |η)(x)

)1/η
,

which shows

−
∫
B
|F3(y)| dy . ‖b‖L1,ψ

(
M(ρ∗ψ)η(|f |η)(x)

)1/η
.

Therefore, we have (6.1) and the conclusion.

Next we define the dyadic maximal operator Mdy. We denote by Qdy the set of all

dyadic cubes, that is,

Qdy =

{
Qj,k =

n∏
i=1

[2−jki, 2
−j(ki + 1)) : j ∈ Z, k = (k1, . . . , kn) ∈ Zn

}
.

Then we define

Mdyf(x) = sup
R∈Qdy,R3x

−
∫
R
|f(y)| dy, x ∈ Rn,

where the supremum is taken over all R ∈ Qdy containing x.

Next we prove the following proposition.

Proposition 6.4. Let Φ ∈ ∆2. If Mdyf ∈ LΦ(Rn), then

(6.2) ‖Mdyf‖LΦ ≤ C‖M ]f‖LΦ ,

where C is a positive constant which is dependent only on n and Φ.

The following lemma is well known as the good lambda inequality, see [7, Theo-

rem 3.4.4.] for example.
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Lemma 6.5. For all γ > 0, all λ > 0, and all locally integrable functions f on Rn, the

following estimate holds

|{x ∈ Rn : Mdyf(x) > 2λ,M ]f(x) ≤ γλ}| ≤ 2nγ|{x ∈ Rn : Mdyf(x) > λ}|.

Proof of Proposition 6.4. For a positive real number N we set

IN =

∫ N

0
Φ′(λ)|{x ∈ Rn : Mdyf(x) > λ}| dλ.

We note that IN ≤
∫
Rn Φ(Mdyf(x)) dx <∞. By Lemma 4.4 we have

IN = 2

∫ N/2

0
Φ′(2λ)|{x ∈ Rn : Mdyf(x) > 2λ}| dλ

≤ 2CΦ

∫ N/2

0
Φ′(λ)|{x ∈ Rn : Mdyf(x) > 2λ}| dλ.

Then, using the good lambda inequality, we obtain the following sequence of inequalities:

IN ≤ 2CΦ

∫ N/2

0
Φ′(λ)|{x ∈ Rn : Mdyf(x) > 2λ,M ]f(x) ≤ γλ}| dλ

+ 2CΦ

∫ N/2

0
Φ′(λ)|{x ∈ Rn : M ]f(x) > γλ}| dλ

≤ 2n+1CΦγ

∫ N/2

0
Φ′(λ)|{x ∈ Rn : Mdyf(x) > λ}| dλ

+ 2CΦ

∫ N/2

0
Φ′(λ)|{x ∈ Rn : M ]f(x) > γλ}| dλ

≤ 2n+1CΦγIN + 2CΦ
1

γ

∫ Nγ/2

0
Φ′(λ/γ)|{x ∈ Rn : M ]f(x) > λ}| dλ.

At this point we let 2n+1CΦγ = 1/2. Since IN is finite, we can subtract from both sides

of the inequality the quantity IN/2 to obtain

IN ≤ 2n+4C2
Φ

∫ N/(2n+3CΦ)

0
Φ′(2n+2CΦλ)|{x ∈ Rn : M ]f(x) > λ}| dλ

≤ Cn,Φ
∫ ∞

0
Φ′(λ)|{x ∈ Rn : M ]f(x) > λ}| dλ,

where Cn,Φ is a constant dependent only on n and Φ, from which we obtain∫
Rn

Φ(Mdyf(x)) dx ≤ Cn,Φ
∫
Rn

Φ(M ]f(x)) dx.

This shows (6.2).



Generalized Fractional Integral Operators 1359

7. Proof of Theorem 3.13

We first note that, for θ ∈ (0,∞),

(7.1) ‖|g|θ‖LΦ =
(
‖g‖

LΦ((·)θ)

)θ
.

Lemma 7.1. Under the assumption in Theorem 3.13(i), if f ∈ L∞comp(Rn), then Iρf ∈
LΨ(Rn).

Proof. If f ∈ L∞comp(Rn), then f ∈ LΦ(Rn), since L∞comp(Rn) ⊂ LΦ(Rn). By (3.11) and

Theorem 3.1, Iρ is bounded from LΦ(Rn) to LΘ(Rn). Then Iρf is in LΘ(Rn). On the

other hand, since r 7→ ρ(r)/rn is almost decreasing, if the support of f is in B(0, R), then

|Iρf(x)| ≤ ‖f‖L∞
∫
B(0,R)

ρ(|x− y|)
|x− y|n

dy . ‖f‖L∞
∫ R

0

ρ(t)

t
dt <∞.

Then Iρf is in LΘ(Rn) ∩ L∞(Rn).

Next, by (3.12) and the almost increasingness of ψ we have

Θ−1(1/rn) .
Ψ−1(1/rn)

ψ(r)
.

Ψ−1(1/rn)

ψ(1)
for r ≥ 1,

and then

Θ−1(u) . Ψ−1(u) for u ≤ 1.

Hence, we conclude that

Ψ(t) ≤

Θ(Ct) if t ≤ 1,

∞ if t > 1,

which shows that LΘ(Rn) ∩ L∞(Rn) ⊂ LΨ(Rn).

Proof of Theorem 3.13(i). We may assume that Φ,Ψ ∈ ∆2 ∩ ∇2 and Θ ∈ ∇2. We may

also assume that b is real valued, since the commutator [b, Iρ]f is linear with respect to b

and ‖<(b)‖L1,ψ
, ‖=(b)‖L1,ψ

≤ ‖b‖L1,ψ
. Let

bk(x) =


k if b(x) > k,

b(x) if −k ≤ b(x) ≤ k,

−k if b(x) < −k.

Then bk ∈ L∞(Rn) and ‖bk‖L1,ψ
≤ (9/4)‖b‖L1,ψ

. For f ∈ C∞comp(Rn), bkf lies in L∞comp(Rn),

thus Iρ(bkf) lies in LΨ(Rn) by Lemma 7.1. Likewise, bkIρf also lies in LΨ(Rn). Since
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Ψ ∈ ∇2, Mdy[b, Iρ]f is also in LΨ(Rn). From this fact and Propositions 6.2 and 6.4 it

follows that

‖[bk, Iρ]f‖LΨ ≤ ‖Mdy([bk, Iρ]f)‖LΨ . ‖M ]([bk, Iρ]f)‖LΨ

. ‖b‖L1,ψ

(∥∥∥(Mψη(|Iρf |η)
)1/η∥∥∥

LΨ
+
∥∥∥(M(ρ∗ψ)η(|f |η)

)1/η∥∥∥
LΨ

)
,

here, we can choose η ∈ (1,∞) such that Φ((·)1/η), Ψ((·)1/η) and Θ((·)1/η) are in ∇2 by

Lemma 4.5. We show that∥∥∥(Mψη(|Iρf |η)
)1/η∥∥∥

LΨ
+
∥∥∥(M(ρ∗ψ)η(|f |η)

)1/η∥∥∥
LΨ

. ‖f‖LΦ ,

where we note that ψη and (ρ∗ψ)η are almost increasing.

By Theorems 3.1 and 3.8 we see that Iρ is bounded from LΦ(Rn) to LΘ(Rn) and Mψη

is bounded from LΘ((·)1/η)(Rn) to LΨ((·)1/η)(Rn), respectively. Then, using (7.1), we have∥∥∥(Mψη(|Iρf |η)
)1/η∥∥∥

LΨ
=
(
‖Mψη(|Iρf |η)‖LΨ((·)1/η)

)1/η
.
(
‖|Iρf |η‖LΘ((·)1/η)

)1/η
= ‖Iρf‖LΘ . ‖f‖LΦ .

From (3.11) and (3.12) it follows that

(ρ∗(r)ψ(r))η
(
Φ−1(1/rn)

)η ≤ A2η
(
Ψ−1(1/rn)

)η
.

By using Theorem 3.8, we have the boundedness of M(ρ∗ψ)η from LΦ((·)1/η) to LΨ((·)1/η).

That is,∥∥∥(M(ρ∗ψ)η(|f |η)
)1/η∥∥∥

LΨ
=
(
‖M(ρ∗ψ)η(|f |η)‖

LΨ((·)1/η)

)1/η
.
(
‖|f |η‖

LΦ((·)1/η)

)1/η
= ‖f‖LΦ .

Therefore, we obtain

‖[bk, Iρ]f‖LΨ . ‖b‖L1,ψ
‖f‖LΦ for all f ∈ C∞comp(Rn).

By the standard argument (see [7, p. 240] for example) we deduce that, for some subse-

quence of integers kj , [bkj , Iρ]f → [b, Iρ]f a.e. Letting j → ∞ and using Fatou’s lemma,

we have

‖[b, Iρ]f‖LΨ . ‖b‖L1,ψ
‖f‖LΦ for all f ∈ C∞comp(Rn).

Since C∞comp(Rn) is dense in LΦ(Rn) (see Remark 2.8(ii)), it follows that the commutator

admits a bounded extension on LΦ(Rn) that satisfies (3.14).

Proof of Theorem 3.13(ii). We use the method by Janson [10]. Since |z|n−α is infinitely

differentiable in an open set, we may choose z0 6= 0 and δ > 0 such that |z|n−α can be

expressed in the neighborhood |z − z0| < 2δ as an absolutely convergent Fourier series,

|z|n−α =
∑
aje

ivj ·z. (The exact form of the vectors vj is irrelevant.)
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Set z1 = z0/δ. If |z − z1| < 2, we have the expansion

|z|n−α = δ−n+α|δz|n−α = δ−n+α
∑

aje
ivj ·δz.

Choose now any ball B = B(x0, r). Set y0 = x0 − rz1 and B′ = B(y0, r). Then, if x ∈ B
and y ∈ B′, ∣∣∣∣x− yr − z1

∣∣∣∣ ≤ ∣∣∣∣x− x0

r

∣∣∣∣+

∣∣∣∣y − y0

r

∣∣∣∣ < 2.

Denote sgn(f(x)− fB′) by s(x). Then∫
B
|b(x)− bB′ | dx =

∫
B

(b(x)− bB′)s(x) dx =
1

|B′|

∫
B

∫
B′

(b(x)− b(y))s(x) dydx

=
1

|B′|

∫
Rn

∫
Rn

(b(x)− b(y))
rn−α

∣∣x−y
r

∣∣n−α
|x− y|n−α

s(x)χB(x)χB′(y) dydx

=
rn−αδ−n+α

|B′|

∫
Rn

∫
Rn

b(x)− b(y)

|x− y|n−α
∑

aje
ivj ·δ x−yr s(x)χB(x)χB′(y) dydx.

Here, we set C = δ−n+α|B(0, 1)|−1 and

gj(y) = e−ivj ·δ
y
r χB′(y), hj(x) = eivj ·δ

x
r s(x)χB(x).

Then ∫
B
|b(x)− bB′ | dx = Cr−α

∑
aj

∫
Rn

∫
Rn

b(x)− b(y)

|x− y|n−α
gj(y)hj(x) dydx

= Cr−α
∑

aj

∫
Rn

([b, Iα]gj)(x)hj(x) dx

≤ Cr−α
∑
|aj |

∫
Rn
|([b, Iα]gj)(x)||hj(x)| dx

= Cr−α
∑
|aj |

∫
B
|([b, Iα]gj)(x)| dx

≤ 2Cr−α
∑
|aj |‖χB‖LΨ̃‖[b, Iα]gj‖LΨ

≤ 2Cr−α‖[b, Iα]‖LΦ→LΨ |B|Ψ−1(|B|−1)
∑
|aj |‖gj‖LΦ .

Since ‖gj‖LΦ = ‖χB′‖LΦ = 1/Φ−1(|B′|−1) ∼ 1/Φ−1(r−n), we have

1

ψ(B)
−
∫
B
|b(x)− bB′ | dx . ‖[b, Iα]‖LΦ→LΨ

Ψ−1(r−n)

rαψ(B)Φ−1(r−n)
. ‖[b, Iα]‖LΦ→LΨ .

That is, ‖b‖L1,ψ
. ‖[b, Iα]‖LΦ→LΨ and we have the conclusion.
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