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Abstract. In this article, the authors characterize the variable Besov-type spaces

B
s(·),φ
p(·),q(·)(R

n), with 1/p(·) and 1/q(·) satisfying the globally log-Hölder continuous

conditions, via Peetre maximal functions and averages on balls. The latter charac-

terization, via averages on balls, gives one way to introduce these spaces on metric

measure spaces.

1. Introduction

The main purpose of this article is to establish some new characterizations of the variable

Besov-type space B
s(·),φ
p(·),q(·)(R

n) with p(·), q(·) ∈ P log(Rn) as in (1.4) below. Recall that the

variable Besov-type space B
s(·),φ
p(·),q(·)(R

n) was first introduced in [46], however, the variable

exponents p(·) and q(·) in [46] are required to belong to C log(Rn) as in (1.2) and (1.3)

below, which is stronger than P log(Rn) (see Remark 1.6(ii) below).

In the last decade, motivated by the articles [29] of Kováčik and Rákosńık and [23] of

Fan and Zhao as well as [11] of Cruz-Uribe and [16] of Diening, real-variable theories of

function spaces with variable exponents, especially based on Besov and Triebel-Lizorkin

spaces, have been rapidly developed (see, for instance, [4,6,18,20,22,32–35,39,40,44–46]).

Precisely, in 2008, Xu [39,40] studied Besov spaces Bs
p(·),q(R

n) and Triebel-Lizorkin spaces

F sp(·),q(R
n) with variable exponent p(·) but with fixed q and s. The concept of func-

tion spaces with variable smoothness and variable integrability was firstly mixed up

by Diening, Hästö and Roudenko in [18], in which the variable Triebel-Lizorkin spaces

F
s(·)
p(·),q(·)(R

n) were introduced. Later, Almeida and Hästö introduced the variable Besov

spaces B
s(·)
p(·),q(·)(R

n), where p(·), q(·) ∈ P log(Rn). Moreover, it turns out that these spaces

behave nicely with respect to the trace operator (see [18, Theorem 3.13], [7, Theorem 5.2]

and [34, Theorem 5.1]). Here we point out that the vector-valued convolution inequal-

ities, developed in [6, Lemma 4.7] and [18, Theorem 3.2], supply well remedy for the
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absence of the Fefferman-Stein vector-valued inequalities on the Hardy-Littlewood max-

imal operator, in the setting of the mixed Lebesgue sequence spaces `q(·)(Lp(·)(Rn)) and

Lp(·)(`q(·)(Rn)), respectively, when studying Besov spaces and Triebel-Lizorkin spaces with

variable smoothness and integrability.

Based on Besov-type spaces Bs,τ
p,q (Rn) and Triebel-Lizorkin-type spaces F s,τp,q (Rn) stud-

ied in [47], as generalizations of the Besov and the Triebel-Lizorkin spaces with variable

smoothness and integrability, the Besov-type and the Triebel-Lizorkin-type spaces with

variable exponents were also introduced in [45, 46]. However, as was mentioned above,

when studying the variable Besov-type space in [46], the variable exponents p(·), q(·) are

required to satisfy the globally log-Hölder continuous conditions C log(Rn), which is a little

bit stronger than P log(Rn) adopted in [46]. So it is a natural and interesting question to

study the variable Besov-type space under the assumption that p(·), q(·) ∈ P log(Rn). We

should point out that variable function spaces have found their applications in fluid dy-

namics [1,2,36], image processing [10,26,38], partial differential equations and variational

calculus [8, 19,37] and harmonic analysis [5, 12,17,41].

On another hand, motivated by a new characterization of Sobolev spaces obtained

in [3], there exist some attempts to characterize Besov(-type) spaces and Triebel-Lizorkin(-

type) spaces on Rn via ball averages (see, for instance, [9, 13–15,25, 42, 43, 48, 49]). These

ball averages, used in such new characterizations, only depend on the metric of Rn and the

Lebesgue measure and hence these new characterizations provide some possible ways to

introduce the corresponding function spaces with positive smoothness on metric measure

spaces.

In this article, we aim to introduce and develop the Besov-type space with variable

exponent B
s(·),φ
p(·),q(·)(R

n) for any locally log-Hölder continuous functions s(·) ∈ L∞(Rn)

and measurable functions φ on Rn+1
+ , under the assumption p(·), q(·) ∈ P log(Rn), which

is weaker than p(·), q(·) ∈ C log(Rn) used in [46]. In this sense, the Besov-type spaces

considered in this article have more generality than those in [46]. As the main result of

this article, we characterize the spaces B
s(·),φ
p(·),q(·)(R

n) by means of Peetre maximal functions

and averages on balls, and the latter one is new even when φ ≡ 1 and gives a way to

introduce the variable Besov-type spaces on metric measure spaces. To limit the length

of this article, we leave the study of characterizations of Triebel-Lizorkin-type spaces with

variable exponents via averages on balls in a forthcoming article.

We begin with some basic notation and notions. Denote by P(Rn) the collection of all

variable exponent functions p(·) : Rn → [0,∞] satisfying

(1.1) 0 < ess inf
x∈Rn

p(x) =: p− ≤ p+ := ess sup
x∈Rn

p(x) ≤ ∞.
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For any p(·) ∈ P(Rn) and x ∈ Rn, define the function ϕp(x) by setting, for any t ∈ [0,∞),

ϕp(x)(t) :=


tp(x) if p(x) ∈ (0,∞),

0 if p(x) =∞ and t ∈ [0, 1],

∞ if p(x) =∞ and t ∈ (1,∞).

The variable exponent modular, with respect to p(·) ∈ P(Rn), of a measurable function f

on Rn is defined by setting

%p(·)(f) :=

∫
Rn
ϕp(x)(|f(x)|) dx.

Definition 1.1. Let p ∈ P(Rn) and E be a measurable subset of Rn. Then the variable

Lebesgue space Lp(·)(E) is defined to be the set of all measurable functions f such that

‖f‖Lp(·)(E) := inf{λ ∈ (0,∞) : %p(·)(f1E/λ) ≤ 1} <∞,

here and hereafter, for any subset E ⊂ Rn, 1E denotes its characteristic function.

Remark 1.2. Let p ∈ P(Rn). If p− ∈ [1,∞], then Lp(·)(Rn) is a Banach space (see [17,

Theorem 3.2.7]). In particular, for any λ ∈ C, ‖λf‖Lp(·)(Rn) = |λ|‖f‖Lp(·)(Rn) and, for any

f, g ∈ Lp(·)(Rn),

‖f + g‖Lp(·)(Rn) ≤ ‖f‖Lp(·)(Rn) + ‖g‖Lp(·)(Rn).

For more properties of variable Lebesgue spaces, we refer the reader to the monographs

[12, 17]. Next, we recall the mixed Lebesgue space `q(·)(Lp(·)(E)) introduced by Almeida

and Hästö in [6].

Definition 1.3. Let p, q ∈ P(Rn) and E be a measurable subset of Rn. Then the mixed

Lebesgue-sequence space `q(·)(Lp(·)(E)) is defined to be the set of all sequences {fv}v∈N of

functions in Lp(·)(E) such that

‖{fv}v∈N‖`q(·)(Lp(·)(E)) := inf{λ ∈ (0,∞) : %`q(·)(Lp(·))({fv1E/λ}v∈N) ≤ 1} <∞,

where, for any sequence {gv}v∈N of measurable functions on Rn,

%`q(·)(Lp(·))({gv}v∈N) :=
∑
v∈N

inf{µv ∈ (0,∞) : %p(·)(gv/µ
1/q(·)
v ) ≤ 1}

with the convention λ1/∞ = 1 for any λ ∈ (0,∞).

Remark 1.4. Let p, q ∈ P(Rn).

(i) Let {gv}v∈N be a sequence of functions in Lp(·)(Rn). By [6, Example 3.4], we know

that, if, for any v ∈ {2, 3, . . .}, gv ≡ 0, then

‖{gv}v∈N‖`q(·)(Lp(·)(Rn)) = ‖g1‖Lp(·)(Rn).
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(ii) ‖ · ‖`q(·)(Lp(·)(Rn)) is a quasi-norm on `q(·)(Lp(·)(Rn)) (see [6, Theorem 3.8]); if either

1/p(x)+1/q(x) ≤ 1 or q is a constant, then ‖·‖`q(·)(Lp(·)(Rn)) is a norm (see [6, Theorem 3.6]);

if either p(x) ≥ 1 and q ∈ [1,∞) is a constant almost everywhere or 1 ≤ q(x) ≤ p(x) ≤ ∞
for almost every x ∈ Rn, then ‖ · ‖`q(·)(Lp(·)(Rn)) is also a norm (see [28, Theorem 1]).

(iii) By [6, Proposition 3.3], we know that, if q ∈ (0,∞] is a constant, then

‖{gv}v∈N‖`q(Lp(·)(Rn)) =

{∑
v∈N
‖gv‖qLp(·)(Rn)

}1/q

with the usual modification made when q =∞.

(iv) It is easy to see that, for any sequence {gv}v∈N of measurable functions on Rn and

r ∈ (0,∞),

‖{gv}v∈N‖`q(·)(Lp(·)(Rn)) = ‖{|gv|r}v∈N‖
1/r

`q(·)/r(Lp(·)/r(Rn)).

A function g : Rn → R is said to satisfy the locally log-Hölder continuous condition,

denoted by g ∈ C log
loc (Rn), if there exists a positive constant Clog(g) such that, for any

x, y ∈ Rn,

(1.2) |g(x)− g(y)| ≤
Clog(g)

log(e+ 1/|x− y|)
;

moreover, g is said to satisfy the globally log-Hölder continuous condition, denoted by

g ∈ C log(Rn), if g ∈ C log
loc (Rn) and there exist constants C∞(g) ∈ (0,∞) and g∞ ∈ R such

that, for any x ∈ Rn,

(1.3) |g(x)− g∞| ≤
C∞(g)

log(e+ |x|)
.

In what follows, we let

(1.4) P log(Rn) :=

{
p(·) ∈ P(Rn) :

1

p(·)
∈ C log(Rn)

}
.

Here, it should be pointed out that, if p+ ∈ (0,∞), then it is easy to see that p ∈ P log(Rn)

if and only if p ∈ C log(Rn).

Let G(Rn+1
+ ) be the set of all measurable functions φ : Rn+1

+ → (0,∞) having the

following properties: there exist positive constants c1 and c2 such that, for any x ∈ Rn

and r ∈ (0,∞),

(1.5) c−11 φ(x, 2r) ≤ φ(x, r) ≤ c1φ(x, 2r)

and, for any x, y ∈ Rn and r ∈ (0,∞) with |x− y| ≤ r,

(1.6) c−12 φ(y, r) ≤ φ(x, r) ≤ c2φ(y, r).
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In what follows, for any φ ∈ G(Rn+1
+ ) and any cube Q := Q(x, r) ⊂ Rn with center x ∈ Rn

and radius r ∈ (0,∞), define φ(Q) := φ(Q(x, r)) := φ(x, r). Here we point out that (1.5)

and (1.6) are called, respectively, the doubling condition and the compatibility condition,

which have been used by Nakai [30, 31] and Nakai and Sawano [32] when they studied

generalized Campanato spaces. There exist several examples of φ that satisfy (1.5) and

(1.6); see [45, Remark 1.3].

Let S(Rn) be the space of all Schwartz functions on Rn equipped with the well-known

classical topology determined by a countable family of seminorms and S ′(Rn) its topolog-

ical dual space equipped with the weak-∗ topology. A pair of functions, (ϕ,Φ), is said to

be admissible if ϕ,Φ ∈ S(Rn) satisfy

(1.7) supp ϕ̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ constant > 0

when 3/5 ≤ |ξ| ≤ 5/3, and

(1.8) supp Φ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2} and |Φ̂(ξ)| ≥ constant > 0 when |ξ| ≤ 5/3,

where, for any f ∈ S(Rn) and ξ ∈ Rn,

f̂(ξ) := (2π)−n/2
∫
Rn
f(x)e−ix·ξ dx

denotes its Fourier transform. For any j ∈ N, ϕ ∈ S(Rn) and x ∈ Rn, we put ϕj(x) :=

2jnϕ(2jx). For any j ∈ Z and k ∈ Zn, denote by Qjk the dyadic cube 2−j([0, 1)n + k), by

xQjk := 2−jk its lower left corner and by `(Qjk) its side length. Let

(1.9) Q := {Qjk : j ∈ Z, k ∈ Zn}

and jQ := − log2 `(Q) for any Q ∈ Q.

Now we introduce the definition of variable Besov-type spaces.

Definition 1.5. Let (ϕ,Φ) be a pair of admissible functions on Rn. Let p, q ∈ P log(Rn),

s ∈ C log
loc (Rn) ∩ L∞(Rn) and φ ∈ G(Rn+1

+ ). Then the Besov-type space with variable

smoothness and integrability, B
s(·),φ
p(·),q(·)(R

n), is defined to be the set of all f ∈ S ′(Rn) such

that

‖f‖ϕ
B
s(·),φ
p(·),q(·)(R

n)
:= sup

P∈Q

1

φ(P )

∥∥∥{2js(·)|ϕj ∗ f |
}
j≥(jP∨0)

∥∥∥
`q(·)(Lp(·)(P ))

<∞,

where Q is as in (1.9) and, when j = 0, ϕ0 is replaced by Φ, and the supremum is taken

over all dyadic cubes P in Rn.

Remark 1.6. (i) Since the quasi-norm ‖f‖ϕ
B
s(·),φ
p(·),q(·)(R

n)
is independent of the choice of the

admissible function pair (ϕ,Φ) satisfying (1.7) and (1.8), which will be proved in Theo-

rem 2.1 below, we usually denote ‖f‖ϕ
B
s(·),φ
p(·),q(·)(R

n)
simply by ‖f‖

B
s(·),φ
p(·),q(·)(R

n)
.
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(ii) We point out that, in [46], Yang et al. have introduced the variable Besov-type

space B
s(·),φ
p(·),q(·)(R

n). However, the variable exponents p(·) and q(·) in [46] are required to

satisfy the globally log-Hölder continuous condition C log(Rn), which seems to be a little

bit stronger than those used in Definition 1.5. Indeed, if p(·) ∈ C log(Rn) and p+ = ∞,

then p(·) ≡ ∞, while if p(·) ∈ P log(Rn) and p+ = ∞, then p(·) may not be equal to

infinity almost everywhere, one of such examples is p(x) := log(e + |x|) for any x ∈ Rn

(see [17, p. 103]). Moreover, by taking φ ≡ 1, the space in Definition 1.5 completely

goes back to the Besov space, with variable smoothness and integrability, B
s(·)
p(·),q(·)(R

n)

introduced by Almeida and Hästö in [6].

(iii) Let φ(Q) := ‖1Q‖Lτ(·)(Rn) with τ ∈ P log(Rn) and τ− ∈ (0,∞), where τ− is as in

(1.1) with p replaced by τ . Then, from [50, Lemma 2.6], we deduce that φ ∈ G(Rn+1
+ ). In

this case, the space B
s(·),φ
p(·),q(·)(R

n) is just the space B
s(·),τ(·)
p(·),q(·) (R

n) introduced and studied by

Drihem [21,22], which is defined to be the set of all f ∈ S ′(Rn) such that

‖f‖
B
s(·),τ(·)
p(·),q(·) (R

n)
:= sup

P∈Q

1

‖1P ‖Lτ(·)(Rn)

∥∥∥{2js(·)|ϕj ∗ f |
}
j≥(jP∨0)

∥∥∥
`q(·)(Lp(·)(P ))

<∞.

This article is organized as follows.

In Section 2, we prove that the space B
s(·),φ
p(·),q(·)(R

n) is independent of the choice of

admissible function pairs (ϕ,Φ) (see Theorem 2.1 below), via establishing a convolution-

type vector-valued inequality in Lemma 2.2 below under the setting of this article. The

Calderón reproducing formula also plays an important role in the proof of Theorem 2.1.

In Section 3, we first characterize the space B
s(·),φ
p(·),q(·)(R

n) by means of Peetre maximal

functions in Theorem 3.1 below via using the r-trick lemma obtained in [18, Lemma A.6]

(see also Lemma 3.2 below) and Lemma 2.2. Secondly, we establish a new characterization

of the space B
s(·),φ
p(·),q(·)(R

n) in terms of averages on balls in Theorem 3.5 below. To prove

Theorem 3.5, we obtain a key pointwise estimate for some operators via involving the

decay function: for any given v ∈ Z+ and m ∈ (0,∞),

(1.10) ηv,m(x) :=
2vn

(1 + 2v|x|)m
, ∀x ∈ Rn,

in Lemma 3.10 below. In the proofs of Theorems 3.1 and 3.5, the convolution-type vector-

valued inequality in Lemma 2.2 is repeatedly used.

We point out that, recently, Drihem [22, Theorem 4.9(i)] established an equivalent

characterization of the variable Besov-type space B
s(·),τ(·)
p(·),q(·) (R

n) in terms of ball means

of differences via some different methods from the ones used in this article. Compared

with [22, Theorem 4.9(i)], Theorem 3.5 below has an advantage that the smoothness index

s(·) has an essentially wider range; see Remark 3.11 below for more details.

Finally, we make some conventions on notation. Let N := {1, 2, . . .}, Z+ := N ∪ {0}
and Rn+1

+ := Rn × (0,∞). We denote by C a positive constant which is independent of
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the main parameters, but may vary from line to line. The symbol f . g means f ≤ Cg.

If f . g and g . f , we then write f ∼ g. We also use the following convention: If f ≤ Cg
and g = h or g ≤ h, we then write f . g ∼ h or f . g . h, rather than f . g = h or

f . g ≤ h. If E is a subset of Rn, we denote by 1E its characteristic function. For any

x ∈ Rn and r ∈ (0,∞), denote by Q(x, r) the cube centered at x with side length r, whose

sides are parallel to the axes of coordinates. For any a, b ∈ R, let a ∨ b := max{a, b}. For

any ϕ ∈ S(Rn), we use ϕ∨ to denote its inverse Fourier transform, which is defined by

setting ϕ∨(ξ) := ϕ̂(−ξ) for any ξ ∈ Rn.

2. Independence of choices of (ϕ,Φ)

In this section, we show that the space B
s(·),φ
p(·),q(·)(R

n) in Definition 1.5 is independent of

the choice of the admissible function pairs (ϕ,Φ).

Theorem 2.1. Let p, q ∈ P log(Rn), s ∈ C log
loc (Rn) ∩ L∞(Rn) and φ ∈ G(Rn+1

+ ). Then the

space B
s(·),φ
p(·),q(·)(R

n) in Definition 1.5 is independent of the choice of the admissible function

pairs (ϕ,Φ) as in (1.7) and (1.8).

To prove Theorem 2.1, we begin with the following convolution-type vector-valued

inequality, which generalizes [6, Lemma 4.7] (see also [27, Lemma 10]) by taking φ ≡ 1.

For any given v ∈ Z+, m ∈ (0,∞) and any x ∈ Rn, let ηv,m(x) be as in (1.10).

Lemma 2.2. Let φ ∈ G(Rn+1
+ ) and p, q ∈ P log(Rn). Suppose that p−, q− ∈ [1,∞] and

m ∈ (2n+Clog(1/q) + 2 log2 c1,∞), where p− is as in (1.1), q− as in (1.1) with p replaced

by q, Clog(1/q) as in (1.2) with g replaced by 1/q and c1 as in (1.5). Then there exists a

positive constant C such that, for any sequence {fv}v∈Z+ of measurable functions,

sup
P∈Q

1

φ(P )
‖{ηv,m ∗ fv}v≥(jP∨0)‖`q(·)(Lp(·)(P )) ≤ C sup

P∈Q

1

φ(P )
‖{fv}v≥(jP∨0)‖`q(·)(Lp(·)(P )),

where Q is as in (1.9).

Proof. For any given dyadic cube Q ∈ Q, any j ∈ Z+ and x ∈ Rn, we write

fj(x) =
∑
l∈Zn

[fj(x)1Q+l`(Q)(x)].

Then, by choosing r ∈
(
0, 12 min{p−, q−, 2}

]
, together with (ii) and (iv) of Remark 1.4 and

the well-known inequality that, for any d ∈ (0, 1] and {aj}j∈N ⊂ C,

(2.1)

∑
j∈N
|aj |

d

≤
∑
j∈N
|aj |d,
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we find that

1

φ(Q)

∥∥{ηj,m ∗ fj}j≥(jQ∨0)∥∥`q(·)(Lp(·)(Q))

≤ 1

φ(Q)

∥∥∥∥{∑
l∈Zn

[ηj,m ∗ {|fj |1Q+l`(Q)}]r
}
j≥(jQ∨0)

∥∥∥∥1/r
`q(·)/r(Lp(·)/r(Q))

.
1

φ(Q)

{∑
l∈Zn

∥∥{ηj,m ∗ [|fj |1Q+l`(Q)]}j≥(jQ∨0)
∥∥r
`q(·)(Lp(·)(Q))

}1/r

.

(2.2)

Observe that, for any l ∈ Zn, j ∈ Z+ ∩ [jQ ∨ 0,∞), x ∈ Q and y ∈ Q + l`(Q), we have

1 + 2j |x− y| & 1 + |l| and hence

ηj,m ∗ [|fj |1Q+l`(Q)](x) =

∫
Rn

2jn

(1 + 2j |x− y|)m
|fj(y)|1Q+l`(Q)(y) dy

.
1

(1 + |l|)λ
ηj,m−λ ∗ [|fj |1Q+l`(Q)](x),

where λ is a constant such that λ ∈ (n + 2 log2 c1,∞) and m − λ > n + Clog(1/q).

By this, (2.2) and the convolution-type vector-valued inequality on `q(·)(Lp(·)(Rn)) in [6,

Lemma 4.7] (see also [27, Lemma 10]), we know that

1

φ(Q)

∥∥{ηj,m ∗ fj}j≥(jQ∨0)∥∥`q(·)(Lp(·)(Q))

.

{∑
l∈Zn

(1 + |l|)−λr 1

[φ(Q)]r
∥∥{ηj,m−λ ∗ [|fj |1Q+l`(Q)]}j≥(jQ∨0)

∥∥r
`q(·)(Lp(·)(Q))

}1/r

.

{∑
l∈Zn

(1 + |l|)−λr 1

[φ(Q)]r
∥∥{|fj |1Q+l`(Q)}j≥(jQ∨0)

∥∥r
`q(·)(Lp(·)(Rn))

}1/r

.

{∑
l∈Zn

[φ(Q+ l`(Q))]r

(1 + |l|)λr[φ(Q)]r

}1/r

sup
P∈Q

1

φ(P )

∥∥{fj}j≥(jP∨0)∥∥`q(·)(Lp(·)(P ))
.

(2.3)

On another hand, since, for any Q ∈ Q and l ∈ Zn,

φ(Q+ l`(Q))

φ(Q)
. (1 + |l|)2 log2 c1

due to [45, Lemma 2.6(ii)], it follows that, for any Q ∈ Q,∑
l∈Zn

(1 + |l|)−λr [φ(Q+ l`(Q))]r

[φ(Q)]r
.
∑
l∈Zn

(1 + |l|)−λr(1 + |l|)2r log2 c1 . 1,

where we used the fact that λ > n + 2 log2 c1 in the last inequality. From this and (2.3),

we deduce that, for any Q ∈ Q,

1

φ(Q)

∥∥{ηj,m ∗ fj}j≥(jQ∨0)∥∥`q(·)(Lp(·)(Q))
. sup

P∈Q

1

φ(P )

∥∥{fj}j≥(jP∨0)∥∥`q(·)(Lp(·)(P ))
,



Ball Average Characterizations of Variable Besov-type Spaces 435

which, combined with the arbitrariness of Q ∈ Q, implies that the conclusion of this

lemma holds true. This finishes the proof of Lemma 2.2.

Remark 2.3. From the proof of Lemma 2.2, we deduce the following conclusion, the details

being omitted. Under the same assumptions as in Lemma 2.2, there exists a positive

constant C such that, for any sequence {fv}v∈N of measurable functions,

sup
P∈Q

1

φ(P )

∥∥{ηv,m ∗ fv}v∈N∥∥`q(·)(Lp(·)(P ))
≤ C sup

P∈Q

1

φ(P )

∥∥{fv}v∈N∥∥`q(·)(Lp(·)(P ))
,

where Q is as in (1.9).

The following Lemma 2.4 is just [27, Lemma 19], which is a variant of [18, Lemma 6.1].

Lemma 2.4. Let s ∈ C log
loc (Rn) and d ∈ [Clog(s),∞), where Clog(s) denotes the constant

as in (1.2) with g replaced by s. Then, for any m ∈ (0,∞), v ∈ N and x, y ∈ Rn,

2vs(x)ηv,m+d(x− y) ≤ C2vs(y)ηv,m(x− y) with C being a positive constant independent of

x, y and v.

Remark 2.5. Let all the notation be the same as in Lemma 2.4. Then, by Lemma 2.4, we

conclude that there exists a positive constant C such that, for any non-negative measurable

function f and x ∈ Rn,

2vs(x)ηv,m+d ∗ f(x) ≤ Cηv,m ∗ (2vs(·)f)(x).

Proof of Theorem 2.1. Let (ϕ,Φ) and (ψ,Ψ) be two pairs of admissible functions. To

prove Theorem 2.1, by symmetry, it suffices to show that

‖f‖ϕ
B
s(·),φ
p(·),q(·)(R

n)
. ‖f‖ψ

B
s(·),φ
p(·),q(·)(R

n)
.

By the Calderón reproducing formula (see, for instance, [47, (2.6)]), we know that

there exists another admissible function pair (ψ0,Ψ0) such that

Ψ̂(ξ)Ψ̂0(ξ) +

∞∑
j=1

ψ̂(2−jξ)ψ̂0(2−jξ) = 1, ∀ ξ ∈ Rn.

Then it follows, from [24, (12.4)] (see also [47, Lemma 2.1]), that

f =

∞∑
k=0

ψk ∗ ψ0
k ∗ f in S ′(Rn),

which implies that, for any j ∈ Z+,

ϕj ∗ f =
1∑

k=−1
ϕj ∗ ψ0

j+k ∗ ψj+k ∗ f,
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where ϕ0 := Φ, ψ0 := Ψ, ψ0
0 := Ψ0, ψ−1 := 0 and ψ0

−1 := 0. For any j ∈ Z+ and

k ∈ {−1, 0, 1}, by an argument similar to that used in the proof of [6, p. 1643], we find

that, for any r ∈ (0,min{1, p−, q−}) and m ∈ (0,∞) large enough,

|ϕj ∗ ψ0
j+k ∗ ψj+k ∗ f | . [ηj+k,3m ∗ (|ψj+k ∗ f |r)]1/r.

From this, Lemma 2.2 and Remarks 1.4(ii) and 2.5, we deduce that

‖f‖ϕ
B
s(·),φ
p(·),q(·)(R

n)
= sup

P∈Q

1

φ(P )

∥∥{2js(·)ϕj ∗ f}j≥(jP∨0)∥∥`q(·)(Lp(·)(P ))

.
1∑

k=−1
sup
P∈Q

1

φ(P )

∥∥{2jrs(·)ηj+k,3m ∗ (|ψj+k ∗ f |r)}j≥(jP∨0)
∥∥1/r
`q(·)/r(Lp(·)/r(P ))

.
1∑

k=−1
sup
P∈Q

1

φ(P )

∥∥{ηj+k,2m ∗ ([2js(·)|ψj+k ∗ f |]r)}j≥(jP∨0)
∥∥1/r
`q(·)/r(Lp(·)/r(P ))

.
1∑

k=−1
sup
P∈Q

1

φ(P )

∥∥{[2js(·)|ψj+k ∗ f |]r}j≥(jP∨0)∥∥1/r`q(·)/r(Lp(·)/r(P ))

. ‖f‖ψ
B
s(·),φ
p(·),q(·)(R

n)
,

which completes the proof of Theorem 2.1.

3. Equivalent characterizations of B
s(·),φ
p(·),q(·)(R

n)

In this section, we establish equivalent characterizations of the space B
s(·),φ
p(·),q(·)(R

n) via

Peetre maximal functions and averages on balls.

3.1. Peetre maximal function characterizations

Let (ϕ,Φ) be a pair of admissible functions on Rn. For any a ∈ (0,∞), s : Rn → R, j ∈ Z+

and f ∈ S ′(Rn), the Peetre maximal function ϕ∗,aj (2js(·)f) of f is defined by setting, for

any x ∈ Rn,

ϕ∗,aj (2js(·)f)(x) := sup
y∈Rn

2js(y)|ϕj ∗ f(y)|
(1 + 2j |x− y|)a

,

where ϕ0 is replaced by Φ.

Theorem 3.1. Let p, q, s and φ be as in Definition 1.5. Assume that

a ∈ (2n/min{1, p−, q−}+ clog(1/q) + 2 log2 c1,∞),

where p− and c1 are, respectively, as in (1.1) and (1.5), q− is as in (1.1) with p replaced

by q. Then f ∈ Bs(·),φ
p(·),q(·)(R

n) if and only if f ∈ S ′(Rn) and ‖f‖∗
B
s(·),φ
p(·),q(·)(R

n)
<∞, where

‖f‖∗
B
s(·),φ
p(·),q(·)(R

n)
:= sup

P∈Q

1

φ(P )

∥∥{ϕ∗,aj (2js(·)f)}j≥(jP∨0)
∥∥
`q(·)(Lp(·)(P ))

.
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Moreover, ‖f‖
B
s(·),φ
p(·),q(·)(R

n)
∼ ‖f‖∗

B
s(·),φ
p(·),q(·)(R

n)
with the positive equivalence constants inde-

pendent of f .

To prove Theorem 3.1, we first recall the following r-trick lemma, which comes from [18,

Lemma A.6] and its proof.

Lemma 3.2. Let r ∈ (0,∞), v ∈ Z+ and m ∈ (n,∞). Then there exists a positive

constant C, only depending on r, m and n, such that, for any x ∈ Rn and g ∈ S ′(Rn)

with supp ĝ ⊂ {ξ : |ξ| ≤ 2v+1},

sup
z∈Q
|g(z)| ≤ C[ηv,m ∗ (|g|r)(x)]1/r,

where Q ∈ Q contains x and `(Q) = 2−v.

Proof of Theorem 3.1. If f ∈ S ′(Rn) and ‖f‖∗
B
s(·),φ
p(·),q(·)(R

n)
is finite, then it is easy to see

that

‖f‖
B
s(·),φ
p(·),q(·)(R

n)
<∞,

namely, f ∈ Bs(·),φ
p(·),q(·)(R

n).

Conversely, let f ∈ Bs(·),φ
p(·),q(·)(R

n). Observe that, for any j ∈ Z+,

supp ϕ̂j ⊂ {ξ ∈ Rn : |ξ| ≤ 2j+1}

due to (1.7) and (1.8). Then, by Lemma 3.2, we know that, for any j ∈ Z+, t ∈ (0,∞)

and y ∈ Rn,

(3.1) |ϕj ∗ f(y)| . [ηj,2at ∗ (|ϕj ∗ f |t)(y)]1/t.

Notice that, for any x, y, z ∈ Rn,

(1 + 2j |x− y|)−at ≤ (1 + 2j |x− z|)−at(1 + 2j |y − z|)at.

Thus, by this, Lemma 2.4 and (3.1), we obtain, for any j ∈ Z+, t ∈ (0,∞) and x ∈ Rn,

[ϕ∗,aj (2js(·)f)(x)]t . sup
y∈Rn

2js(y)tηj,2at ∗ (|ϕj ∗ f |t)(y)

(1 + 2j |x− y|)at

. sup
y∈Rn

ηj,at ∗ (2js(·)t|ϕj ∗ f |t)(y)

(1 + 2j |x− y|)at

. sup
y∈Rn

∫
Rn

2jn2js(z)t

(1 + 2j |y − z|)at
|ϕj ∗ f(z)|t dz 1

(1 + 2j |x− y|)at

.
∫
Rn

2jn2js(z)t

(1 + 2j |x− z|)at
|ϕj ∗ f(z)|t dz

∼ ηj,at ∗ (2js(·)t|ϕj ∗ f |t)(x).
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Now, if we choose t ∈ (0,min{1, p−, q−}] such that at > 2n+tclog(1/q)+2t log2 c1, then,

by Remark 1.4(iv) and Lemma 2.2, we conclude that

sup
P∈Q

1

φ(P )

∥∥{ϕ∗,aj (2js(·)f)}j≥(jP∨0)
∥∥
`q(·)(Lp(·)(P ))

= sup
P∈Q

1

φ(P )

∥∥{[ϕ∗,aj (2js(·)f)]t}j≥(jP∨0)
∥∥1/t
`q(·)/t(Lp(·)/t(P ))

. sup
P∈Q

1

φ(P )

∥∥{ηj,at ∗ (2js(·)t|ϕj ∗ f |t)}j≥(jP∨0)
∥∥1/t
`q(·)/t(Lp(·)/t(P ))

. ‖f‖
B
s(·),φ
p(·),q(·)(R

n)
.

Therefore, ‖f‖∗
B
s(·),φ
p(·),q(·)(R

n)
. ‖f‖

B
s(·),φ
p(·),q(·)(R

n)
, which completes the proof of Theorem 3.1.

By Theorem 3.1 and an argument similar to that used in the proof of [46, Proposi-

tion 5.6], we conclude the following embedding properties, the details being omitted.

Proposition 3.3. Let p, q, s and φ be as in Definition 1.5. Then

S(Rn) ↪→ B
s(·),φ
p(·),q(·)(R

n) ↪→ S ′(Rn).

3.2. Characterizations via averages on balls

In this subsection, we establish a new characterization of the space B
s(·),φ
p(·),q(·)(R

n) via ball

averages. To this end, we first recall some notation. In what follows, we always use the

symbol L1
loc(Rn) to denote the set of all locally integrable functions. For any f ∈ L1

loc(Rn)

and ball B(x, t) ⊂ Rn with x ∈ Rn and t ∈ (0,∞), the ball average operator Bt is defined

by setting

Bt(f)(x) :=
1

|B(x, t)|

∫
B(x,t)

f(y) dy

and, for any ` ∈ N, the 2`-th order ball average operator B`,t by setting

B`,t(f)(x) := − 2(
2`
`

) ∑̀
j=1

(−1)j
(

2`

`− j

)
Bjt(f)(x),

here and hereafter, for any k, r ∈ N with k ≥ r,
(
k
r

)
denotes the binomial coefficient.

In what follows, for any p(·) ∈ P(Rn) and φ ∈ G(Rn+1
+ ), denote by the symbol L

p(·)
φ (Rn)

the set of all measurable functions f on Rn satisfying

‖f‖
L
p(·)
φ (Rn) := sup

P∈Q,`(P )≥1

1

φ(P )
‖f‖Lp(·)(P ) <∞,

where Q is as in (1.9).
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Remark 3.4. By Remark 1.4(i) and an argument similar to that used in the proof of

Lemma 2.2, we conclude that, if φ ∈ G(Rn+1
+ ), p ∈ P log(Rn) and m ∈ (0,∞) large enough,

then, for any f ∈ Lp(·)φ (Rn),

‖η0,m ∗ f‖Lp(·)φ (Rn) ≤ C‖f‖Lp(·)φ (Rn)

with C being a positive constant independent of f .

The main result of this subsection is stated as follows.

Theorem 3.5. Let p, q, s and φ be as in Definition 1.5 with p−, q− ∈ [1,∞] and c1 ∈
(0, 2n/p+), where p−, p+ and c1 are, respectively, as in (1.1) and (1.5), q− is as in (1.1)

with p replaced by q. If ` ∈ N and 0 < s− ≤ s+ < 2`, where s− and s+ are as in (1.1)

with p replaced by s, then f ∈ Bs(·),φ
p(·),q(·)(R

n) if and only if f ∈ S ′(Rn) ∩ Lp(·)φ (Rn) and

|||f |||
B
s(·),φ
p(·),q(·)(R

n)
:= ‖f‖

L
p(·)
φ (Rn) + sup

P∈Q

1

φ(P )

∥∥{2ks(·)[f −B`,k(f)]}k∈N
∥∥
`q(·)(Lp(·)(P ))

<∞,

where Q is as in (1.9). Moreover, ‖f‖
B
s(·),φ
p(·),q(·)(R

n)
∼ |||f |||

B
s(·),φ
p(·),q(·)(R

n)
with the positive

equivalence constants independent of f .

Remark 3.6. (i) Let p and φ be as in Theorem 3.5. Then L
p(·)
φ (Rn) ⊂ L1

loc(Rn). Indeed, if

f ∈ Lp(·)φ (Rn), then, by the Hölder inequality (see, for instance, [12, Theorem 2.26]), [45,

Lemma 2.6] and [12, Lemma 2.39], we know that, for any dyadic cube Q := Qjk ∈ Q with

j ∈ Z \ N, k ∈ Zn and Q as in (1.9),∫
Q
|f(x)| dx . ‖f‖Lp(·)(Q)‖1Q‖Lp∗(·)(Rn)

. ‖f‖
L
p(·)
φ (Rn)φ(Q)‖1Q‖Lp∗(·)(Rn)

. ‖f‖
L
p(·)
φ (Rn)2

j log2 c1(1 + |k|)2 log2 c1(|Q|+ 1) <∞,

where 1/p(·) + 1/p∗(·) = 1 and c1 is as in (1.5). Thus, f ∈ L1
loc(Rn) and hence the above

claim holds true. From this claim, we further deduce that Theorem 3.5 makes sense.

(ii) The conclusion of Theorem 3.5 is new even when φ ≡ 1, namely, it is new even on

the variable Besov space B
s(·)
p(·),q(·)(R

n).

To prove Theorem 3.5, we need some preparations. Let C(Rn) be the set of all complex-

valued uniformly continuous functions on Rn equipped with the sup-norm and C∞(Rn)

the set of all smooth functions on Rn. Following [47, Section 1.3.3], let Ψ ∈ C∞(Rn) be

a radial function with compact support such that, when |x| ≤ 1, Ψ(x) = 1 and, when

|x| ≥ 3/2, Ψ(x) = 0. If we let Ψ0 := Ψ and, for any j ∈ N, Ψj(·) := Ψ(2−j · )−Ψ(2−j+1 · ),
then we obtain a smooth decomposition of unity, namely, for any x ∈ Rn,

∑∞
j=0 Ψj(x) = 1.

Let, for any x ∈ Rn, ϕ(x) := Ψ̂(2 · )(−x),

(3.2) ϕ0(x) := Ψ̂(−x) and ϕj(x) := 2jnϕ(2jx), ∀ j ∈ N.
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Proposition 3.7. Let p, q, s and φ be as in Definition 1.5. If s− ∈ (0,∞), then

B
s(·),φ
p(·),q(·)(R

n) ↪→ L
p(·)
φ (Rn).

Proof. Let f ∈ Bs(·),φ
p(·),q(·)(R

n) and {ϕj}∞j=0 be a smooth decomposition of unity as in (3.2).

Then f =
∑∞

j=0 ϕj ∗ f in S ′(Rn). By an argument similar to that used in the proof

of [6, Theorem 6.1(ii)], we know that

B
s(·),φ
p(·),q(·)(R

n) ↪→ B0,φ
p(·),p(R

n),

where p := min{1, p−}. Thus, by Remark 1.2 and (2.1), we find that, for any P ∈ Q with

`(P ) ≥ 1, ∥∥∥∥ ∞∑
j=0

ϕj ∗ f
∥∥∥∥
Lp(·)(P )

≤
{ ∞∑
j=0

‖|ϕj ∗ f |p‖Lp(·)/p(P )

}1/p

. φ(P )‖f‖
B0,φ
p(·),p(R

n)

. φ(P )‖f‖
B
s(·),φ
p(·),q(·)(R

n)
,

(3.3)

which implies that
∑∞

j=0 ϕj ∗ f converges in L
p(·)
φ (Rn). In this sense, we regard f as a

function in L
p(·)
φ (Rn). Moreover, by (3.3), we know that

‖f‖
L
p(·)
φ (Rn) = sup

P∈Q,`(P )≥1

1

φ(P )

∥∥∥∥ ∞∑
j=0

ϕj ∗ f
∥∥∥∥
Lp(·)(P )

. ‖f‖
B0,φ
p(·),p(R

n)
. ‖f‖

B
s(·),φ
p(·),q(·)(R

n)
.

This finishes the proof of Proposition 3.7.

Lemma 3.8. Let p, q, s, φ be as in Definition 1.5. Assume that c1 ∈ (0, 2n/p+). Then

f ∈ Bs(·),φ
p(·),q(·)(R

n) if and only if f ∈ S ′(Rn) and ‖f |Bs(·),φ
p(·),q(·)(R

n)‖ < ∞; moreover, there

exists a positive constant C, independent of f , such that

(3.4) ‖f‖
B
s(·),φ
p(·),q(·)(R

n)
≤
∥∥∥f |Bs(·),φ

p(·),q(·)(R
n)
∥∥∥ ≤ C‖f‖

B
s(·),φ
p(·),q(·)(R

n)
,

where, for any f ∈ S ′(Rn),∥∥∥f |Bs(·),φ
p(·),q(·)(R

n)
∥∥∥ := sup

P∈Q

1

φ(P )

∥∥∥{2js(·)|ϕj ∗ f |
}
j∈Z+

∥∥∥
`q(·)(Lp(·)(P ))

.

Proof. To show this lemma, we only need to prove that, for any f ∈ B
s(·),φ
p(·),q(·)(R

n), the

second inequality of (3.4) holds true. Let P ⊂ Rn be any given dyadic cube and, for any

j ∈ Z+ and x ∈ Rn, fj(x) := 2js(x)|ϕj ∗ f(x)|. Then, by Remark 1.4(ii), we have

1

φ(P )

∥∥{fj}j∈Z+

∥∥
`q(·)(Lp(·)(P ))

.
1

φ(P )

∥∥{fj}(jP∨0)−1j=0

∥∥
`q(·)(Lp(·)(P ))

+
1

φ(P )

∥∥{fj}∞j=(jP∨0)
∥∥
`q(·)(Lp(·)(P ))

=: IP,1 + IP,2,

(3.5)
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where IP,1 := 0 if jP ≤ 0. Obviously, IP,2 . ‖f‖Bs(·),φ
p(·),q(·)(R

n)
.

To estimate IP,1, we only need to consider the case that jP > 0. It is easy to see that,

for any j ∈ Z+ with j ≤ jP −1, there exists a unique dyadic cube Pj such that P ⊂ Pj and

`(Pj) = 2−j and hence, by an argument similar to that used in the proof of [46, p. 1873],

we find that
1

φ(P )
‖fj‖Lp(·)(P ) . ‖f‖Bs(·),φ

p(·),q(·)(R
n)

‖1P ‖Lp(·)(Rn)
‖1Pj‖Lp(·)(Rn)

φ(Pj)

φ(P )
.

Observe that, for any cube Q ⊂ Rn, when |Q| ≤ 2n, then, for any x ∈ Q, ‖1Q‖Lp(·)(Rn) ∼
|Q|1/p(x) and, when |Q| ≥ 1, ‖1Q‖Lp(·)(Rn) ∼ |Q|1/p∞ (see [17, Corollary 4.5.9]), where p∞

is as in (1.3) with g replaced by p. Then it follows, from an argument similar to that used

in the proof of [50, Lemma 2.6], that

‖1P ‖Lp(·)(Rn)
‖1Pj‖Lp(·)(Rn)

. 2(j−jP )n/p+ ,

which, combined with the fact that φ(Pj)/φ(P ) . 2−(j−jP ) log2 c1 thanks to the assumptions

of φ, further implies that

1

φ(P )
‖fj‖Lp(·)(P ) . ‖f‖Bs(·),φ

p(·),q(·)(R
n)

2(j−jP )(n/p+−log2 c1).

Now, by choosing r ∈ (0, 12 min{p−, q−, 2}], (i), (ii) and (iv) of Remark 1.4 and the as-

sumption c1 ∈ (0, 2n/p+), we conclude that

IP,1 ∼
1

φ(P )

∥∥{f rj }jP−1j=0

∥∥1/r
`q(·)/r(Lp(·)/r(P ))

.

{ jP−1∑
j=0

1

[φ(P )]r
‖f rj ‖Lp(·)/r(P )

}1/r

∼
{ jP−1∑

j=0

1

[φ(P )]r
‖fj‖rLp(·)(P )

}1/r

. ‖f‖
B
s(·),φ
p(·),q(·)(R

n)

{ jP−1∑
j=0

2(j−jP )(n/p+−log2 c1)r
}1/r

. ‖f‖
B
s(·),φ
p(·),q(·)(R

n)
.

Therefore, by (3.5), we find that∥∥∥f |Bs(·),φ
p(·),q(·)(R

n)
∥∥∥ . sup

P∈Q
(IP,1 + IP,2) . ‖f‖Bs(·),φ

p(·),q(·)(R
n)
,

which completes the proof of Lemma 3.8.

The following conclusion is a variant of [27, Lemma 8].

Lemma 3.9. Let p, q ∈ P(Rn), φ ∈ G(Rn+1
+ ) and δ ∈ (0,∞). Assume that {gk}k∈Z is a

sequence of non-negative measurable functions on Rn and

Gv(x) :=

∞∑
k=v

2(v−k)δgk(x), ∀x ∈ Rn, ∀ v ∈ Z.
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Then there exist positive constants C1 and C2 such that

(3.6) sup
P∈Q

1

φ(P )

∥∥{Gv}v≥(jP∨0)∥∥`q(·)(Lp(·)(P ))
≤ C1 sup

P∈Q

1

φ(P )

∥∥{gk}k≥(jP∨0)∥∥`q(·)(Lp(·)(P ))

and

sup
P∈Q

1

φ(P )

∥∥{Gv}v∈N∥∥`q(·)(Lp(·)(P ))
≤ C2 sup

P∈Q

1

φ(P )

∥∥{gk}k∈N∥∥`q(·)(Lp(·)(P ))
,

where Q is as in (1.9).

Proof. To show this lemma, we only prove (3.6) by similarity. Let r ∈
(
0, 12 min{p−, q−, 2}

]
.

Then, by (ii) and (iv) of Remark 1.4, we know that

sup
P∈Q

1

φ(P )

∥∥{Gv}v≥(jP∨0)∥∥`q(·)(Lp(·)(P ))

= sup
P∈Q

1

φ(P )

∥∥∥∥{ ∞∑
k=v

2−(k−v)δgk

}
v≥(jP∨0)

∥∥∥∥
`q(·)(Lp(·)(P ))

= sup
P∈Q

1

φ(P )

∥∥∥∥{ ∞∑
l=0

[2−lδgl+v]
r

}
v≥(jP∨0)

∥∥∥∥1/r
`q(·)/r(Lp(·)/r(P ))

.

{ ∞∑
l=0

2−lrδ
[

sup
P∈Q

1

φ(P )

∥∥{gl+v}v≥(jP∨0)∥∥`q(·)(Lp(·)(P ))

]r}1/r

. sup
P∈Q

1

φ(P )

∥∥{gk}k≥(jP∨0)∥∥`q(·)(Lp(·)(P ))
,

which implies that (3.6) holds true. This finishes the proof of Lemma 3.9.

By a subtle modification of the proof of [14, Lemma 2.2], we obtain the following

conclusion.

Lemma 3.10. Let M ∈ (0,∞) and {Tt}t∈(0,∞) be a family of operators given by

Ttf(x) := ([m(t · )]∨) ∗ f(x), ∀x ∈ Rn, ∀ f ∈ S ′(Rn) ∩ L1
loc(Rn), ∀ t ∈ (0,∞)

for some m ∈ S(Rn). Then there exists a positive constant C such that, for any t ∈ (0,∞),

f ∈ S ′(Rn) ∩ L1
loc(Rn) and x ∈ Rn,

(3.7) |Ttf(x)| ≤ C
[
‖∇Mm‖L1(Rn) + ‖m‖L1(Rn)

]
(ηt,M ∗ |f |)(x).

Proof. For any t ∈ (0,∞), f ∈ S ′(Rn) ∩ L1
loc(Rn) and x ∈ Rn, by the definition of the

Fourier transform, we find that

|Tt(f)(x)| ∼
∣∣∣∣∫

Rn
f(y)

∫
Rn
m(tξ)ei(x−y)·ξ dξdy

∣∣∣∣
.

∣∣∣∣∣
∫
|x−y|<t

f(y)

∫
Rn
m(tξ)ei(x−y)·ξ dξdy

∣∣∣∣∣+

∣∣∣∣∣
∫
|x−y|≥t

· · ·

∣∣∣∣∣
=: I + II.

(3.8)
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For I, it is easy to see that

I .
∫
|x−y|<t

|f(y)|t−n
∫
Rn
|m(z)| dzdy

∼
∫
|x−y|<t

t−n

(1 + t−1|x− y|)M
|f(y)| dy ‖m‖L1(Rn)

. (ηt,M ∗ |f |)(x).

(3.9)

For II, via the Fubini theorem and the integration by parts, we conclude that

II .
∫
|x−y|≥t

|f(y)|
|x− y|M

∫
Rn
tM |∇Mm(tξ)| dξdy

∼
∫
|x−y|≥t

t−n|f(y)|
(1 + t−1|x− y|)M

∫
Rn
|∇Mm(ξ)| dξdy

. (ηt,M ∗ |f |)(x)‖∇Mm‖L1(Rn).

(3.10)

Combining (3.8), (3.9) and (3.10), we conclude that (3.7) holds true, which completes the

proof of Lemma 3.10.

Now we prove Theorem 3.5.

Proof of Theorem 3.5. Let f ∈ Bs(·),φ
p(·),q(·)(R

n) and {ϕj}∞j=0 be a smooth decomposition of

unity as in (3.2). Then, by the proof of Proposition 3.7, we find that f =
∑∞

j=0 ϕj ∗
f converges in L

p(·)
φ (Rn) and S ′(Rn), where {ϕj}∞j=0 is as in (3.2). Thus, by this and

Remark 3.6(i), we know that, for any k ∈ Z+,

(3.11) f −B`,2−k(f) =

k−1∑
j=0

+

∞∑
j=k

 (I −B`,2−k)(ϕj ∗ f).

Since supp ϕ̂j ⊂ {ξ ∈ Rn : |ξ| ≤ 2j+1} for any j ∈ Z+, it follows that

supp ϕ̂j ∗ f ⊂ {ξ ∈ Rn : |ξ| ≤ 2j+1},

which, together with the r-trick lemma (see Lemma 3.2), implies that, for any M ∈ (0,∞)

large enough and x ∈ Rn,

(3.12) |ϕj ∗ f(x)| ≤ (ηj,M ∗ |ϕj ∗ f |)(x).

When i ∈ {1, . . . , `}, it is easy to see that

|Bi2−k(ϕj ∗ f)(x)| = 1

|B(x, i2−k)|

∫
B(x,i2−k)

|f ∗ ϕj(y)| dy

∼
∫
B(x,i2−k)

2kn

(1 + 2k|x− y|)M
|f ∗ ϕj(y)| dy

. ηk,M ∗ (|f ∗ ϕj |)(x).
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By this, (3.12) and Remark 1.4(ii), we conclude that, for any P ∈ Q,

I :=

∥∥∥∥{2ks(·)
∞∑
j=k

|(I −B`,2−k)(ϕj ∗ f)|
}
k∈N

∥∥∥∥
`q(·)(Lp(·)(P ))

.

∥∥∥∥{2ks(·)
∞∑
j=k

ηj,M ∗ |ϕj ∗ f |
}
k∈N

∥∥∥∥
`q(·)(Lp(·)(P ))

+

∥∥∥∥{2ks(·)
∞∑
j=k

ηk,M ∗ |ϕj ∗ f |
}
k∈N

∥∥∥∥
`q(·)(Lp(·)(P ))

=: I1 + I2.

(3.13)

For I1, by Lemmas 3.9 with δ replaced by s− (hence we need s− > 0 here), 2.4 and 2.2

(here we need p−, q− ∈ [1,∞]), we know that

sup
P∈Q

1

φ(P )
I1 . sup

P∈Q

1

φ(P )

∥∥∥∥{ ∞∑
j=k

2(k−j)s−2js(·)ηj,M ∗ |ϕj ∗ f |
}
k∈N

∥∥∥∥
`q(·)(Lp(·)(P ))

. sup
P∈Q

1

φ(P )

∥∥∥{2js(·)ηj,M ∗ |ϕj ∗ f |
}
j∈N

∥∥∥
`q(·)(Lp(·)(P ))

. sup
P∈Q

1

φ(P )

∥∥∥{ηj,M/2 ∗ (2js(·)|ϕj ∗ f |)
}
j∈N

∥∥∥
`q(·)(Lp(·)(P ))

. sup
P∈Q

1

φ(P )

∥∥∥{2js(·)|ϕj ∗ f |
}
j∈N

∥∥∥
`q(·)(Lp(·)(P ))

. ‖f‖
B
s(·),φ
p(·),q(·)(R

n)
.

(3.14)

Similarly, for I2, we also have

sup
P∈Q

1

φ(P )
I2 . sup

P∈Q

1

φ(P )

∥∥∥∥{ηk,M/2 ∗
[
2ks(·)

∞∑
j=k

|ϕj ∗ f |
]}

k∈N

∥∥∥∥
`q(·)(Lp(·)(P ))

. sup
P∈Q

1

φ(P )

∥∥∥∥{2ks(·)
∞∑
j=k

|ϕj ∗ f |
}
k∈N

∥∥∥∥
`q(·)(Lp(·)(P ))

. sup
P∈Q

1

φ(P )

∥∥∥∥{ ∞∑
j=k

2(k−j)s−2js(·)|ϕj ∗ f |
}
k∈N

∥∥∥∥
`q(·)(Lp(·)(P ))

. sup
P∈Q

1

φ(P )

∥∥∥{2js(·)|ϕj ∗ f |
}
j∈N

∥∥∥
`q(·)(Lp(·)(P ))

. ‖f‖
B
s(·),φ
p(·),q(·)(R

n)
.

(3.15)

Combining (3.13), (3.14) and (3.15), we conclude that

(3.16) sup
P∈Q

1

φ(P )
I ≤ sup

P∈Q

1

φ(P )
I1 + sup

P∈Q

1

φ(P )
I2 . ‖f‖Bs(·),φ

p(·),q(·)(R
n)
.
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Next, we estimate the term
∑k−1

j=0 · · · in (3.11). To this end, let

T `k,j(f) := (I −B`,2−k)(ϕj ∗ f).

By the Calderón reproducing formula (see, for instance, [47, (2.6)]), we find that there

exists another admissible function pair (ψ,Ψ) such that, for any ξ ∈ Rn,

Φ(ξ)Ψ(ξ) +
∞∑
j=1

ϕ̂(2−jξ)ψ̂(2−jξ) = 1.

Let m`
k,j ∈ S(Rn) be as in [49, (2.11)]. Then, by an argument similar to that used in the

proof of [49, (2.11)], we conclude that, for any k ∈ Z+ and j ∈ {0, 1, . . . , k},

T `k,j(f) = ([mk,j(2
−j · )]∨) ∗ (ϕj−1 + ϕj + ϕj+1) ∗ f,

where ϕ0 := Φ and ϕ−1 := 0. Moreover, by the proof of [49, Theorem 1.3], we find that,

for any M ∈ N,

‖m`
k,j‖L1(Rn) + ‖∇Mm`

k,j‖L1(Rn) . 22`(j−k).

Thus, by Lemma 3.10, we find that

|(I −B`,2−k)(ϕj ∗ f)| . 22`(j−k)ηj,M ∗ |fj |,

where fj := (ϕj−1+ϕj +ϕj+1)∗f . Therefore, by this estimate, (ii) and (iv) of Remark 1.4

and (2.1), we find that, for any r ∈
(
0, 12 min{p−, q−, 2}

]
,

II :=

∥∥∥∥{2ks(·)
k−1∑
j=0

|(I −B`,2−k)(ϕj ∗ f)|
}
k∈N

∥∥∥∥
`q(·)(Lp(·)(P ))

.

∥∥∥∥{ k∑
j=0

2(k−j)s+22`(j−k)ηj,M/2 ∗ [2js(·)|fj |]
}
k∈N

∥∥∥∥
`q(·)(Lp(·)(P ))

∼
∥∥∥∥{ 0∑

v=−k
2v(2`−s+)ηk+v,M/2 ∗ [2(k+v)s(·)|fk+v|]

}
k∈N

∥∥∥∥
`q(·)(Lp(·)(P ))

.

∥∥∥∥{ 0∑
v=−k

[2v(2`−s+)ηk+v,M/2 ∗ {2(k+v)s(·)|fk+v|}]r
}
k∈N

∥∥∥∥1/r
`q(·)/r(Lp(·)/r(P ))

.

[ 0∑
v=−∞

2vr(2`−s+)
∥∥∥{[ηk+v,M/2 ∗ {2(k+v)s(·)|fk+v|γv,k}]r

}
k∈N

∥∥∥
`q(·)/r(Lp(·)/r(P ))

]1/r

∼
[ 0∑
v=−∞

2vr(2`−s+)
∥∥∥{ηk+v,M/2 ∗ [2(k+v)s(·)|fk+v|γv,k]

}
k∈N

∥∥∥r
`q(·)(Lp(·)(P ))

]1/r
,
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where γv,k := 1 when v ≥ −k and, otherwise, γv,k := 0. From this, s+ < 2`, Lemmas 2.2

and 3.8, we deduce that

sup
P∈Q

1

φ(P )
II .

[ 0∑
v=−∞

2vr(2`−s+) sup
P∈Q

1

φ(P )

∥∥∥{2ks(·)|fk|
}
k∈Z+

∥∥∥r
`q(·)(Lp(·)(P ))

]1/r
. ‖f‖

B
s(·),φ
p(·),q(·)(R

n)
.

(3.17)

By (3.17) and (3.16), we conclude that

sup
P∈Q

1

φ(P )

∥∥∥{2ks(·)[f −B`,k(f)]
}
k∈N

∥∥∥
`q(·)(Lp(·)(P ))

. ‖f‖
B
s(·),φ
p(·),q(·)(R

n)
,

which, together with Proposition 3.7, implies that |||f |||
B
s(·),φ
p(·),q(·)(R

n)
. ‖f‖

B
s(·),φ
p(·),q(·)(R

n)
.

Conversely, by the proof of [14, (2.16)], we find that, for any j ∈ N and x ∈ Rn \ {~0n},

f ∗ ϕj(x) = (h(2−j · ))∨ ∗ [f −B`,2−j (f)](x),

where ~0n denotes the origin of Rn and h is a function in C∞(Rn) with supph ⊂ {ξ ∈ Rn :

|ξ| ≤ 2}. Then, by Lemma 3.10, we know that, for any M ∈ N,

(3.18) |f ∗ ϕj(x)| . ηj,M ∗ [|f −B`,2−j (f)|](x), ∀x ∈ Rn, ∀ j ∈ N.

For any given P ∈ Q, if jP > 0, then, by (3.18) and Lemmas 2.4 and 2.2, we obtain

SP :=
1

φ(P )

∥∥∥{2js(·)|ϕj ∗ f |
}
j≥(jP∨0)

∥∥∥
`q(·)(Lp(·)(P ))

. sup
P∈Q

1

φ(P )

∥∥∥{2js(·)ηj,M ∗ [|f −B`,2−j (f)|]
}
j∈N

∥∥∥
`q(·)(Lp(·)(P ))

. sup
P∈Q

1

φ(P )

∥∥∥{ηj,M/2 ∗ [2js(·)|f −B`,2−j (f)|]
}
j∈N

∥∥∥
`q(·)(Lp(·)(P ))

. sup
P∈Q

1

φ(P )

∥∥∥{2js(·)[f −B`,2−j (f)]
}
j∈N

∥∥∥
`q(·)(Lp(·)(P ))

. |||f |||
B
s(·),φ
p(·),q(·)(R

n)
,

(3.19)

where M ∈ N is chosen large enough. If jP ≤ 0, then, from Remarks 1.4(ii) and 3.4,

(3.18), Lemmas 2.4 and 2.2 and the fact that |ϕ0 ∗ f | . η0,M ∗ (|f |), we deduce that

SP =
1

φ(P )

∥∥∥{2js(·)|ϕj ∗ f |
}
j≥0

∥∥∥
`q(·)(Lp(·)(P ))

. sup
P∈Q,`(P )≥1

1

φ(P )
‖ϕ0 ∗ f‖Lp(·)(P )

+ sup
P∈Q

1

φ(P )

∥∥∥{2js(·)ηj,M ∗ [|f −B`,2−j (f)|]
}
j∈N

∥∥∥
`q(·)(Lp(·)(P ))
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. ‖η0,M ∗ f‖Lp(·)φ (Rn)

+ sup
P∈Q

1

φ(P )

∥∥∥{ηj,M/2 ∗ [2js(·)|f −B`,2−j (f)|]
}
j∈N

∥∥∥
`q(·)(Lp(·)(P ))

. ‖f‖
L
p(·)
φ (Rn) + sup

P∈Q

1

φ(P )

∥∥∥{2js(·)[f −B`,2−j (f)]
}
j∈N

∥∥∥
`q(·)(Lp(·)(P ))

∼ |||f |||
B
s(·),φ
p(·),q(·)(R

n)
,

where M ∈ N is chosen large enough. Therefore, by this and (3.19), we further conclude

that

‖f‖
B
s(·),φ
p(·),q(·)(R

n)
= sup

P∈Q
SP . |||f |||

B
s(·),φ
p(·),q(·)(R

n)
.

This finishes the proof of Theorem 3.5.

Remark 3.11. (i) In particular, when ` = 1 and φ is as in Remark 1.6(iii), we obtain the

following conclusion. Let p, q, s be as in Definition 1.5 with p−, q− ∈ [1,∞], τ− ∈ (p+,∞)

and 0 < s− ≤ s+ < 2. Then, by Theorem 3.5, we know that f ∈ Bs(·),τ(·)
p(·),q(·) (R

n) if and only

if f ∈ Lp(·)τ(·)(R
n) and

|||f |||
B
s(·),τ(·)
p(·),q(·) (R

n)

:= ‖f‖
L
p(·)
τ(·)(R

n)

+ sup
P∈Q

1

‖1P ‖Lτ(·)(Rn)

∥∥∥∥{2k[s(·)+n]
∫
B(·,2−k)

[f(·)− f(y)] dy

}
k∈N

∥∥∥∥
`q(·)(Lp(·)(P ))

<∞,

where Q is as in (1.9) and

‖f‖
L
p(·)
τ(·)(R

n)
:= sup

p∈Q,`(P )≥1

1

‖1P ‖Lτ (Rn)
‖f‖Lp(·)(P ),

and, by [22, Proposition 4.1], we know that L
p(·)
τ(·)(R

n) ↪→ S ′(Rn).

(ii) Let φ be as in Remark 1.6(iii). Then, in [22, Theorem 4.9(i)], Drihem established

an equivalent characterization of the space B
s(·),τ(·)
p(·),q(·) (R

n) via ball means of differences.

Precisely, let τ ∈ P log(Rn), p, q, s be as in Definition 1.5 with p− ∈ (1,∞), 0 < q− ≤ q+ <

∞ and

0 < s− ≤ s+ < 1 + nmin

{
0,

(
1

p
− 1

τ

)
−

}
.

Then f ∈ Bs(·),τ(·)
p(·),q(·) (R

n) if and only if f ∈ Lp(·)τ(·)(R
n) and

‖̃f‖
B
s(·),τ(·)
p(·),q(·) (R

n)

:= ‖f‖
L
p(·)
τ(·)(R

n)

+ sup
P∈Q

1

‖1P ‖Lτ (Rn)

∥∥∥∥{2k[s(·)+n]
∫
B(·,2−k)

|f(·)− f(y)| dy
}
k≥(jP∨0)

∥∥∥∥
`q(·)(Lp(·)(P ))

<∞,
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where Q is as in (1.9).

(iii) Compared (ii) and (iii) of this remark, we find that the main difference of those

two quasi-norms exists in that the absolute value |f(·)−f(y)| in ‖̃f‖
B
s(·),τ(·)
p(·),q(·) (R

n)
is replaced

by [f(·)− f(y)] in |||f |||
B
s(·),τ(·)
p(·),q(·) (R

n)
. However, this slight change induces a quite different

behavior between ‖̃f‖
B
s(·),τ(·)
p(·),q(·) (R

n)
and |||f |||

B
s(·),τ(·)
p(·),q(·) (R

n)
. The former characterizes the space

B
s(·),τ(·)
p(·),q(·) (R

n) only with smoothness order less than 1 even when (1/p−1/τ)− > 0, while the

later characterizes the space B
s(·),τ(·)
p(·),q(·) (R

n) with smoothness order less than 2. Therefore,

in this sense, Theorem 3.5 essentially improves the corresponding result obtained in [22,

Theorem 4.9(i)].
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