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A Multiplicity Result for a Non-local Critical Problem

Hui Guo and Tao Wang*

Abstract. In this paper, we are interested in the multiple solutions of the following

fractional critical problem(−∆)su = |u|2∗
s−2u+ λu in Ω,

u = 0 on RN \ Ω,

where s ∈ (0, 1), N > 4s, 2∗s = 2N/(N−2s), Ω is a smooth bounded domain in RN and

(−∆)s is the fractional Laplace operator. Because the nonlocal property of fractional

Laplacian makes the variational functional of the fractional critical problem different

from the one of local operator −∆. To the best of our knowledge, it is still unknown

whether multiple solutions of the fractional critical problem exist for all λ > 0. In this

paper, we give a partial answer. Precisely, by introducing some new ideas and careful

estimates, we prove that for any s ∈ (0, 1), the fractional critical problem has at least

[(N + 1)/2] pairs of nontrivial solutions if 0 < λ 6= λn, and has [(N + 1− l)/2] pairs if

λ = λn with multiplicity number 0 < l < min{n,N + 2}, via constraint method and

Krasnoselskii genus. Here λn denotes the n-th eigenvalue of (−∆)s with zero Dirichlet

boundary data in Ω and [a] denotes the least positive integer k such that k ≥ a.

1. Introduction

The critical problem is an important topic in the development of mathematics, which has

been widely studied in the literature. One can see [3, 27] and references therein for more

details. Recently, many fruitful results for the critical problem with nonlocal operators

have appeared in the papers, especially for the ones with fractional Laplacian operator.

This operator describes an anomalous diffusion phenomena, like flames propagation and

chemical reactions of liquids, which appears in several fields such as physics, biology

and probability. It can also be viewed as the infinitesimal generator of a stable Lévy

process in probability theory (for details about backgrounds, please see [1, 4, 17, 19] and

references therein). In differential geometry, the Yamabe problem is an important well-

known critical problem and has been widely studied. Recently, as a nonlocal counterpart,
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the fractional Yamabe problem and related critical problems have attracted much attention

from mathematicians. For more details and applications, one can refer to [2, 19, 21] and

references therein.

In this paper, we focus our attention on the following critical problem involving frac-

tional Laplacian

(1.1)

(−∆)su = |u|2∗s−2u+ λu in Ω,

u = 0 on RN \ Ω,

where s ∈ (0, 1) is a fixed parameter, λ > 0, N > 4s, 2∗s = 2N/(N − 2s) is the fractional

critical Sobolev exponent and Ω is a smooth bounded domain. Here the fractional Lapla-

cian (−∆)s is the nonlocal integro-differential operator defined by, up to a normalization

number,

(1.2) (−∆)su(x) := P.V.

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2s
dy.

One can refer to [19] for more results and properties about fractional Laplacian. Note

that the homogeneous Dirichlet datum in (1.1) is given on RN \Ω, not simply on ∂Ω as in

the case of classical Laplacian, consistently with the nonlocal property of (−∆)s. For the

works related to the fractional Laplacian defined by (1.2), or to a more general integro-

differential operator, one can see [21, 22, 24, 25] and references therein. In particular, it

was proved in [21,22,24–26] that (1.1) admits a nontrivial solution, provided

• N > 4s and λ ∈ (0,+∞);

• N = 4s and λ ∈ (0,+∞) with λ 6= λi for all i = 1, 2, . . .;

• 2s < N < 4s and λ ∈ (0,+∞) is sufficiently large.

Here (λi)
∞
i=1 denote the eigenvalues of (−∆)s with zero Dirichlet boundary data. Note

that these results can be viewed as analog of that for Laplacian [6, 28], and there are

many multiplicity results for (1.1) with −∆ operator in the literature. For instance,

Devillanova and Solimini [12] proved that for any λ > 0, it has infinitely many solutions

provided N ≥ 7. Clapp and Weth [10] showed that for N ≥ 4, if λ ∈ (0, µ1), then it

has at least [(N + 2)/2] pairs of nontrivial solutions; if λ ∈ (µi, µi+1), then it has at least

[(N + 1)/2] pairs; if λ = µi is an eigenvalue of multiplicity l < N + 2, then it has at least

[(N + 1 − l)/2] pairs. Here µi denotes the eigenvalue of −∆ with homogeneous Dirichlet

boundary condition in Ω. Later, Chen, Shioji and Zou [8] extended the multiplicity results

to λ = µi, that is, the problem has at least [(N + 1)/2] pairs for N ≥ 5 and λ ≥ µ1. For

the history and more results about multiple solutions of (1.1) with −∆, one can refer
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to [3,8,12,13] and references therein. A natural question arises whether multiple solutions

of (1.1) exist for λ > 0 like that for Laplacian?

Up to our knowledge, there are few results in the literature on the multiplicity of

solutions to (1.1). In [14], the authors proved that the number of solutions to (1.1)

is bounded below by the number of eigenvalues λi lying in the open interval (λ, λ +

S|Ω|−2s/N ), where |Ω| is the Lebesgue measure of Ω and S is the best constant defined

in Section 2. Let us remark that it is not certain whether the interval (λ, λ+ S|Ω|−2s/N )

contain any eigenvalues or not.

In this paper, we give a partial answer. Let [a] denote the least positive integer k such

that k ≥ a.

Theorem 1.1. Let s ∈ (0, 1), N > 4s and Ω be a smooth bounded domain in RN . Then

(i) if λ > 0 with λ 6= λn for some n ≥ 1, problem (1.1) possesses at least [(N + 1)/2]

pairs of nontrivial solutions;

(ii) if λn−l < λn−l+1 = · · · = λn = λ < λn+1 with 0 < l < min{n,N + 2}, problem (1.1)

possesses at least [(N + 1− l)/2] pairs of nontrivial solutions.

Moreover, these solutions satisfy I(u) < 2s
N S

N/(2s).

This result will be proved by developing the method of [8], via a constraint method and

Krasnoselskii genus theory. Compared to Laplacian, the fractional Laplacian is nonlocal

and there are two difficulties to obtain our results. The first difficulty lies in that prob-

lem (1.1) is a critical problem. As usual, we use (PS)c condition instead of (PS) condition.

Here we say that I satisfies (PS)c (or (PS)) condition: if any sequence (um) satisfying

I(um) → c (or I(um) being bounded) and I ′(um) → 0 as n → ∞ is relatively compact,

(also see [27, Chapter II.2, Chapter III.2] for the definitions). Precisely, we shall apply the

global compactness results of fractional Sobolev space in this paper, which were obtained

in [20]. However, the nonexistence of nontrivial solutions to following limiting equation

are unknown,

(1.3)

(−∆)su = |u|2∗s−2u in RN+ ,

u = 0 in RN \ RN+ .

To overcome this difficulty, via the so-called “energy doubling” property, we show that

(1.3) admits no solutions such that the energy is less than or equal to twice the least

energy. Then the compactness is recovered for the functional between 0 and twice the

least energy.

The second difficulty lies in that fractional Laplacian operator defined in (1.2) is non-

local. This nonlocal property makes some calculations difficult, and a careful analysis is
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necessary in lots of estimates. See Lemma 2.1 and following sections for details. On the

other hand, a fractional power of the Laplacian defined by using spectral decomposition

is also nonlocal, but it can be transformed into a local problem via the extension tech-

nique introduced by Caffarelli and Silvestre in [5]. In this sense, many methods used for

Laplacian can be applied for fractional power of the Laplacian. As in [9], it has been

proved that the problem (1.1) with spectral fractional Laplacian admits infinitely many

solutions for N > 6s and λ > 0. In [15], it is showed that (1.1) has at least [(N + 1)/2]

for N > 2(1 +
√

2)s and λ > 0. However, this transformation is invalid here for fractional

Laplacian defined in (1.2), so it make this problem interesting and challenging. That’s

why we are interested in multiplicity results of problem (1.1). For more multiplicity results

and details about the equations involving the spectral fractional Laplacian, one can refer

to [9, 15].

The paper is organized as follows. In Section 2, we introduce notations and some

preliminary results for problem (1.1). In Section 3, we discuss the limiting problems of

(1.1) and a compactness lemma. Some useful estimates are obtained in Section 4. Finally,

we give a proof of Theorem 1.1 in Section 4.

2. Notations and preliminaries results

In this section, we introduce some notations and preliminary results.

• We denote by C the positive constants (possibly different), by N the set of all positive

integers and by ‖u‖p =
( ∫

Ω |u|
p dx

)1/p
the norm of Lp(Ω).

• The homogeneous fractional Sobolev space Ds(RN ), as the completion of C∞0 (RN )

under the norm ‖u‖Ds(RN ), is equivalently defined by

Ds(RN ) :=

{
u ∈ L2∗s (RN ) :

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy < +∞

}
with inner product

(u, v)Ds(RN ) :=

∫
R2N

[u(x)− u(y)][v(x)− v(y)]

|x− y|N+2s
dxdy

and the corresponding norm

‖u‖2Ds(RN ) =

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

For more details and related results, one can refer to [19].
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• Denote by S the best fractional critical Sobolev constant from Ds(RN ) into L2∗s (RN ),

i.e., S = infu∈Ds(RN )\{0}
‖u‖2

Ds(RN )

‖u‖2
L2∗s (RN )

. It follows from [11, Theorem 1.1] that S is

attained at the functions

ũ(x) = κ(µ2 + |x− x0|2)−(N−2s)/2, x ∈ RN

with κ ∈ R \ {0}, µ > 0 and x0 ∈ RN . Equivalently, the function u(x) :=

ũ(x)/‖ũ‖L2∗s (RN ) satisfies S = ‖u‖2
Ds(RN )

with ‖u‖L2∗s (RN ) = 1. In the following

sections, we always assume µ = 1 and let u∗(x) := u(x/S1/2s). According to [25], u∗

is an explicit solution of the problem

(2.1)

(−∆)su = |u|2∗s−2u in RN ,

u ∈ Ds(RN ),

and ‖u∗‖2
∗
s

L2∗s (RN )
= SN/(2s). Moreover, the family of functions

(2.2) Uε,z(x) = ε−(N−2s)/2u∗(x/ε) = κ̃

(
ε

ε2 + |x− z|2

)(N−2s)/2

, ε > 0, z ∈ RN ,

are solutions of (2.1) and verify

(2.3) ‖Uε,z‖2Ds(RN ) = ‖Uε,z‖2
∗
s

L2∗s (RN )
= SN/(2s).

• We write Ds(RN+ ) as the completion of C∞0 (RN+ ) in Ds(RN ).

• The space Xs
0(Ω) is a Hilbert space defined by

Xs
0(Ω) = {u ∈ Ds(RN ) : u = 0 a.e. in RN \ Ω}

with inner product (u, v)Xs
0

:= (u, v)Ds(RN ) and norm ‖u‖Xs
0

:= ‖u‖Ds(RN ). From

[24], we know that Xs
0(Ω) is a subspace of Ds(RN ). Moreover, Xs

0(Ω) is embedded

continuously into L2∗s (Ω), and compactly into Lt(Ω) for any t ∈ [1, 2∗s) if Ω has a

Lipschitz boundary.

• Let (λi)
∞
i=1 be the eigenvalues of (−∆)s with zero Dirichlet boundary data and (ei)

∞
i=1

be the L2-normalized orthogonal eigenfunctions corresponding to λi, that is,

(2.4)


(−∆)sei = λiei in Ω,

ei = 0 on RN \ Ω,∫
Ω |ei|

2 dx = 1.
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Then

(2.5)

‖ei‖2Xs
0(Ω) = λi for each i ≥ 1,

(ei, ej)Xs
0(Ω) = 0 and

∫
Ω
eiej dx = 0 for any i, j ≥ 1 with i 6= j.

According to [23, Proposition 9], there holds 0 < λ1 < λ2 ≤ · · · ≤ λi ≤ λi+1 ≤ · · ·
and λi → ∞ as i → ∞. For more information about the spectrum of fractional

Laplacian, one can refer to [23] and references therein. If λn ≤ λ < λn+1 for some

n ≥ 1, we set

H− := span{e1, . . . , en}, H+ := span{ei : i ≥ n+ 1}.

Before discussing problem (1.1), we first show some necessary lemmas.

Lemma 2.1. For any w, v ∈ Ds(RN ) with suppw ∩ supp v = ∅, we have

(2.6) (w, v)Ds(RN ) = −2

∫
R2N

w(x)v(y)

|x− y|N+2s
dxdy

and

‖w + v‖2Ds(RN ) = ‖w‖2Ds(RN ) + ‖v‖2Ds(RN ) − 4

∫
R2N

w(x)v(y)

|x− y|N+2s
dxdy.

Proof. Set

A1 = {(x, y) ∈ R2N : w(x) 6= 0, v(y) 6= 0}, A2 = {(x, y) ∈ R2N : w(x) 6= 0, v(y) = 0};

A3 = {(x, y) ∈ R2N : w(x) = 0, v(y) 6= 0}, A4 = {(x, y) ∈ R2N : w(x) = 0, v(y) = 0}.

By direct computations, we have∫
A2

[w(x)− w(y)][v(x)− v(y)]

|x− y|N+2s
dxdy =

∫
A3

[w(x)− w(y)][v(x)− v(y)]

|x− y|N+2s
dxdy = 0,∫

A1

[w(x)− w(y)][v(x)− v(y)]

|x− y|N+2s
dxdy =

∫
A1

−w(x)v(y)

|x− y|N+2s
dxdy = −

∫
R2N

w(x)v(y)

|x− y|N+2s
dxdy,∫

A4

[w(x)− w(y)][v(x)− v(y)]

|x− y|N+2s
dxdy =

∫
A4

−w(y)v(x)

|x− y|N+2s
dxdy =

∫
R2N

−w(y)v(x)

|x− y|N+2s
dxdy

= −
∫
R2N

w(x)v(y)

|x− y|N+2s
dxdy.

Then

(w, v)Ds(RN ) =

∫
A1∪A2∪A3∪A4

[w(x)− w(y)][v(x)− v(y)]

|x− y|N+2s
dxdy

= −2

∫
R2N

w(x)v(y)

|x− y|N+2s
dxdy
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and

‖w + v‖2Ds(RN ) = ‖w‖2Ds(RN ) + ‖v‖2Ds(RN ) + 2(w, v)Ds(RN )

= ‖w‖2Ds(RN ) + ‖v‖2Ds(RN ) − 4

∫
R2N

w(x)v(y)

|x− y|N+2s
dxdy.

The lemma follows.

Remark 2.2. As a consequence of this lemma, the Lebesgue integral on the right-hand

side of (2.6) is well defined, because |(w, v)Ds(RN )| ≤ ‖w‖Ds(RN )‖v‖Ds(RN ).

Set u± = max{±u, 0}. Then u = u+ − u−.

Lemma 2.3. Suppose that u ∈ Ds(RN ) is a weak solution of (2.1) with u± 6= 0, that is,

for any φ ∈ Ds(RN ), there holds

(u, φ)Ds(RN ) =

∫
RN
|u|2∗s−2uφ dx.

Then

I(u) >
2s

N
SN/(2s),

where I(u) = 1
2‖u‖

2
Ds(RN )

− 1
2∗s

∫
RN |u|

2∗s dx is the corresponding functional of (2.1).

Proof. Since u± 6= 0, by (2.6), we have

(u+, u−)Ds(RN ) = −2

∫
R2N

u+(x)u−(y)

|x− y|N+2s
dxdy

= 2

∫
{u>0}

∫
{u<0}

u(x)u(y)

|x− y|N+2s
dxdy < 0.

(2.7)

Note that 0 = I′(u)u± = (u, u±)Ds(RN )∓
∫
RN |u±|

2∗s dx and (u, u±)Ds(RN ) = ‖u±‖2Ds(RN )
−

(u+, u−)Ds(RN ). Then by (2.7), we deduce∫
RN
|u±|2

∗
s dx = ‖u±‖2Ds(RN ) − (u+, u−)Ds(RN ) > ‖u±‖2Ds(RN ),

and there exists a unique positive number t± given by

(2.8) t± =

(
‖u‖2

Ds(RN )∫
RN |u|2

∗
s dx

) 1
2∗s−2

=

(
‖u±‖2Ds(RN )

‖u±‖2Ds(RN )
− (u+, u−)Ds(RN )

) 1
2∗s−2

< 1

such that t±u± ∈ N := {v ∈ Ds(RN ) \ {0} : I′(v)v = 0}. Hence, ‖t±u±‖2Ds(RN )
=

‖t±u±‖2
∗
s

L2∗s (RN )
. This together with ‖t±u±‖2Ds(RN )

≥ S‖t±u±‖2L2∗s (RN )
gives that

(2.9) I(t±u±) ≥ s

N
SN/(2s).
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Consequently, by (2.8) and (2.9), we get from t±u± ∈ N that

I(u) =

(
1

2
− 1

2∗s

)∫
RN
|u|2∗s dx >

(
1

2
− 1

2∗s

)(∫
RN
|t+u+|2

∗
s dx+

∫
RN
|t−u−|2

∗
s dx

)
= I(t+u+) + I(t−u−) ≥ 2s

N
SN/(2s).

The proof is completed.

Lemma 2.4. Suppose that u ∈ Ds(RN+ ) is a weak solution of (1.3). Then

(i) if u has constant sign in RN+ , we have u ≡ 0.

(ii) if u is sign-changing in RN+ , we have

(2.10) L(u) >
2s

N
SN/(2s),

where L(u) := 1
2‖u‖

2
Ds(RN )

− 1
2∗s

∫
RN+
|u|2∗s dx is the corresponding functional of (1.3).

Proof. (i) According to [18, Corollary 2.5], it follows that if u ∈ Ds(RN+ ) is a constant sign

solution of (1.3), then u ≡ 0.

(ii) If u is a sign-changing solution of (1.3), by using the same argument as in Lemma 2.3,

we can obtain (2.10) and the details are omitted.

Now, we turn to problem (1.1). Recall that problem (1.1) is variational and its weak

formulation is given by

(2.11)
∫
R2N

[u(x)−u(y)][φ(x)−φ(y)]
|x−y|N+2s dxdy =

∫
Ω |u|

2∗s−2uφ dx+ λ
∫

Ω uφ dx for any φ ∈ Xs
0(Ω),

u ∈ Xs
0(Ω).

Then (2.11) is the Euler-Lagrange equation of functional I : Xs
0(Ω)→ R defined by

I(u) =
1

2

(∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy − λ

∫
Ω
|u|2 dx

)
− 1

2∗s

∫
Ω
|u|2∗s dx.

Then I ∈ C1(Xs
0(Ω),R) and the solutions of problem (1.1) correspond to critical points

of I.

In order to obtain our results, following the idea of [8], we consider a new functional

J(u) :=
‖u‖2Xs

0
− λ‖u‖22
‖u‖22∗s

= ‖u‖2Xs
0
− λ‖u‖22

constraint on the manifold

M := {u ∈ Xs
0(Ω) : ‖u‖2∗s = 1}.
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It is easy to see that M ⊂ Xs
0(Ω) is a complete manifold and invariant under the involution

u→ −u. Moreover, J ∈ C1(M,R) and u ∈ M is a critical point of J with J(u) = β > 0,

if and only if ũ = β
1

2∗s−2u is a critical point of I with I(ũ) = s
N β

N/(2s) > 0. Evidently,

(um)m≥1 ⊂ M is a (PS)β sequence for J if and only if (ũm)m≥1 ⊂ Xs
0(Ω) is a (PS)

β̃

sequence for I, where β̃ = s
N β

N/(2s) and ũm := β
1

2∗s−2um. Here, we say that a sequence

(um)m≥1 ⊂M is a (PS)β sequence for J if

J(um)→ β, ‖J ′(um)‖ → 0 as m→∞;

and that (ũm)m≥1 ⊂ Xs
0(Ω) is a (PS)

β̃
sequence for I if

I(ũm)→ β̃, ‖I ′(ũm)‖ → 0 as m→∞.

Since J(u) = J(−u), it is well known that there exists an odd Lipschitz continuous

map ν : M̂ → TM with ν(u) ∈ TuM and ‖ν(u)‖ < 2‖J ′(u)‖, 〈J ′(u), ν(u)〉 > ‖J ′(u)‖2,

where M̂ := {u ∈M : J ′(u) 6= 0} and TM is the tangent space of M . Moreover, similarly

as [8, Lemma 2.1], the following deformation lemma on the manifold M follows without

(PS) condition.

Denote

Jβ := {u ∈M : J(u) ≤ β}, Kβ = {u ∈M : J ′(u) = 0 and J(u) = β}.

Lemma 2.5. Let ε, δ > 0, β ∈ R and D ⊂M with D = −D such that ‖J ′(u)‖ ≥ 4ε/δ for

u ∈ J−1[β − 2ε, β + 2ε] ∩ D2δ, where Dδ = {u ∈ M : dist(u,D) ≤ δ}. Then there exists

η ∈ C1([0, 1]×M,M) such that η(t, · ) : M → M is an odd homeomorphism map for any

t ∈ [0, 1] and

(i) η(0, u) = u, ∀u ∈M ;

(ii) η(t, u) = u, ∀u /∈ J−1[β − 2ε, β + 2ε] ∩D2δ;

(iii) η(1, Jβ+ε ∩D) ⊂ Jβ−ε ∩Dδ.

Proof. The proof is similar to that of [8, Lemma 2.1]. But for the sake of completeness,

we give a sketch of the proof below. Define

A := J−1[β − 2ε, β + 2ε] ∩D2δ, B := J−1[β − ε, β + ε] ∩Dδ

and ψ : M → R by ψ(u) = dist(u,M\A)
dist(u,M\A)+dist(u,B) . Then ψ is locally Lipschitz continuous,

ψ = 1 on B and ψ = 0 on M \ A. Let us define the locally Lipschitz continuous vector

field

f(u) =

−ψ(u) ν(u)
‖ν(u)‖ if u ∈ M̂,

0 if u ∈M \ M̂,
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and consider the Cauchy problem

d

dt
ζ = f(ζ), ζ(0, u) = u.

Note that ‖f(u)‖ ≤ 1 on M . Then the Cauchy problem has a unique solution ζ(t, u) for

all t ∈ R such that ζ(t, u) is odd and homeomorphism with respect to u ∈ M . Now, let

η(t, u) = ζ(δt, u). Then it is easy to see that (i) and (ii) hold.

Since

d

dt
J(η(t, u)) = −δ

〈
J ′(η), ψ(η)

ν(η)

‖ν(η)‖

〉
≤ −δψ(η)

‖J ′(η)‖2

‖ν(η)‖
< 0,

J(η( · , u)) is nonincreasing. For any u ∈ Jβ+ε ∩D,

‖η(t, u)− u‖ =

∥∥∥∥∫ t

0

d

ds
η(s, u) ds

∥∥∥∥ ≤ ∫ t

0
δ‖f(w)‖ ds ≤ δt,

which implies that η(t, u) ∈ Dδ, ∀ t ∈ [0, 1]. Furthermore, if there is some t0 ∈ [0, 1) such

that J(η(t0, u)) ≤ β−ε, then J(η(1, u)) ≤ J(η(t0, u)) ≤ β−ε. Otherwise, J(η(t, u)) > β−ε
for all t ∈ [0, 1), and then η(t, u) ∈ B and ψ(η(t, u)) ≡ 1. It follows that

J(η(1, u)) = J(u)− δ
∫ 1

0

〈
J ′(η),

ν(η)

‖ν(η)‖

〉
dt ≤ J(u)− δ

∫ 1

0

‖ν(η)‖
2

dt ≤ β − ε,

that means η(1, u) ∈ Jβ−ε. Therefore, (iii) holds.

Now, for any j ∈ N, we define

(2.12) Σj = {A ⊂ E : γ(A) ≥ j}

and consider

βj := inf
A∈Σj

sup
u∈A

J(u),

where E = {A ⊂M : A is closed, symmetric} and γ denotes the usual Krasnoselskii genus.

Note that if 0 < λ < λ1, then

β1 ≥ inf
u∈M

J(u) = inf
u∈Xs

0(Ω)\{0}
‖u‖2Xs

0
− λ

∫
Ω
|u|2 dx ≥ inf

u∈Xs
0(Ω)\{0}

(
1− λ

λ1

)
‖u‖2Xs

0
> 0;

if λn ≤ λ < λn+1 for some n ≥ 1, then for any j ≥ n + 1 and A ∈ Σj , we have

A ∩ {u ∈ H+ : ‖u‖2∗s = 1} 6= ∅ and so

βj > 0.

Furthermore, by using Lemma 2.5 and following the similar arguments as in the proof

of [8, Lemmas 2.2 and 2.4], we have the following two lemmas.
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Lemma 2.6. The following statements are true:

(i) If 0 < λ < λ1, then for each j ∈ N, there exists a (PS)βj sequence (uk)k≥1 for J .

(ii) If λn ≤ λ < λn+1 for some n ≥ 1, then for each j ≥ n + 1, there exists a (PS)βj
sequence (uk)k≥1 for J .

Proof. Let j ∈ N for 0 < λ < λ1, and j ≥ n + 1 for λn ≤ λ < λn+1. If there is

no (PS)βj sequence (uk) for J , then by Lemma 2.5, there exists η ∈ C1([0, 1] ×M,M)

such that η(1, Jβj+ε) ⊂ Jβj−ε. By the definition of βj , there is a set A ∈ Σj such that

supA J(u) < βj + ε. Since η(1, · ) is odd, γ(η(1, A)) ≥ γ(A) ≥ j. Then η(1, A) ∈ Σj .

However, η(1, A) ⊂ η(1, Jβj+ε) ⊂ Jβj−ε, which contradicts with the definition of βj .

Lemma 2.7. If 0 < βj = βj+1 < 22s/NS, then Kβj is infinite.

Proof. The proof is similar to [8, Lemma 2.4] and the details are omitted here.

In view of (2.2), set

E := {Uε,z : ε > 0, z ∈ RN}.

According to [7] or [16], E contains all positive solutions of (2.1) in Ds(RN ). In addition,

by using Lemmas 2.3, 2.4 and [20, Theorem 1.1], we have the following lemma.

Lemma 2.8. Let (um)m≥1 be a (PS)βj sequence for functional J . Up to a subsequence,

the following conclusions hold.

(a) If βj ∈ (0, S), then (um)m≥1 converges in M and βj is a critical value of J .

(b) If βj ∈ (S, 22s/NS), then one of the following cases holds true:

(b1) (um)m≥1 converges in M and βj is a critical value of J .

(b2) There exists a critical point u of J in M with J(u) = β∗ = (β
N/(2s)
j −SN/(2s))2s/N

∈ (0, S) such that

(2.13)

dist

(
β

1
2∗s−2

j um − β
1

2∗s−2
∗ u,E

)
→ 0 or dist

(
β

1
2∗s−2

j um − β
1

2∗s−2
∗ u,−E

)
→ 0.

(c) If βj = S, then one of the following cases holds true:

(c1) (um)m≥1 converges in M and βj is a critical value of J .

(c2)

(2.14) dist

(
β

1
2∗s−2

j um, E

)
→ 0 or dist

(
β

1
2∗s−2

j um,−E
)
→ 0.



1400 Hui Guo and Tao Wang

Proof. Let (um)m≥1 be a (PS)βj sequence for J . Then it follows that the sequence (ũm),

given by ũm := β
1

2∗s−2

j um, is a (PS)
β̃

sequence for I with β̃ = s
N β

N/(2s)
j . It is easy to see

that (ũm)m≥1 are bounded in Xs
0(Ω) and thus there exists a (possibly trivial) solution

u0 ∈ Xs
0(Ω) of (1.1) such that

ũm ⇀ u0 in Xs
0(Ω).

By applying splitting lemma (see [20, Theorem 1.1]) to problem (1.1), we get that either

(2.15) ũm → u0 strongly in Xs
0(Ω),

or there exists two finite sets J1, J2, nontrivial solutions {uj}j∈J1 to (2.1) in Ds(RN ) and

solutions {uj}j∈J2 to (1.3) in Ds(RN+ ) such that

(2.16) I(um) = I(u0) +
∑
J1

I(uj) +
∑
J2

L(uj) + o(1)

and

(2.17) ‖um‖2Xs
0(Ω) = ‖u0‖2Xs

0
+
∑
j∈J1

‖uj‖2Ds(RN ) +
∑
j∈J2

‖uj‖2
Ds(RN+ )

+ o(1),

where I, L are defined in Lemmas 2.3 and 2.4, respectively. If (2.15) happens, then we are

done. Otherwise, for any β̃j ∈
(
0, 2s

N S
N/(2s)

)
, since I(u0), I(uj),L(vj) ≥ 0, it follows from

(2.16) and Lemma 2.4 that J2 = ∅. Furthermore, it yields from (2.16) and Lemma 2.3

that either J1 = {1} or J1 = ∅. Then, (2.16) and (2.17) are reduced to

(2.18) I(ũm) = I(u0) +
∑
j∈J1

I(uj) + o(1)

and

(2.19) ‖ũm‖2Xs
0

= ‖u0‖2Xs
0

+
∑
j∈J1

‖uj‖2Ds(RN ) + o(1),

where J1 = {1} or J1 = ∅.
Thus, it follows from (2.18) and (2.19) that if β̃j ∈

(
0, sN S

N/(2s)
)
, then J1 = ∅ and β̃j

is a critical value of I, so (a) holds. If β̃j ∈
(
s
N S

N/(2s), 2s
N S

N/(2s)
)
, then J1 = {1} and β̃j

is a critical value of I and thus (b1) holds. Otherwise, J1 = {1} and there is a critical

point ũ with I(ũ) = β̃j − s
N S

N/(2s) = s
N β

N/(2s)
∗ such that (2.13) holds, which implies (b2).

Similarly, if β̃j = s
N S

N/(2s), then β̃j is a critical value of I and (c1) follows. Otherwise,

(2.14) holds and (c2) follows.

The proof is completed.
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3. Some useful estimates

For any point z ∈ Ω, denote Br(z) = {y ∈ RN : |y − z| < r}. Without loss of generality,

we may assume that 0 ∈ Ω and Bd0(0) ⊂ Ω with some d0 > 0. For any 0 < η < d0, we

define

(3.1) ξη(x) =


0 if x ∈ Bη/2(0),

2
η |x| − 1 if x ∈ Bη(0) \Bη/2(0),

1 if x ∈ RN \Bη(0).

Clearly, |∇ξη| ≤ 2/η.

Lemma 3.1.
∫
R2N

|ξη(x)−ξη(y)|2
|x−y|N+2s dxdy ≤ C0η

N−2s for some C0 > 0 independent of η.

Proof. Set

Γ1 =
{

(x, y) : |x− y| ≥ η

2
, x ∈ Bη(0), y ∈ RN \Bη(0)

}
,

Γ2 =
{

(x, y) : |x− y| ≤ η

2
, x ∈ Bη(0), y ∈ RN \Bη(0)

}
.

According to the definition of ξη and mean value theorem, we have∫
Γ1

|ξη(x)− ξη(y)|2

|x− y|N+2s
dxdy ≤ 2

∫
Γ1

1

|x− y|N+2s
dxdy

= 2

∫
Bη(0)

∫
{|x−y|≥η/2}

1

|x− y|N+2s
dydx

≤ CηN−2s

(3.2)

and ∫
Γ2

|ξη(x)− ξη(y)|2

|x− y|N+2s
dxdy ≤ 4

η2

∫
Γ2

|x− y|2

|x− y|N+2s
dydx

=
4

η2

∫
Bη(0)

∫
{|x−y|≤η/2}

1

|x− y|N+2s−2
dydx

≤ CηN−2s.

(3.3)

Note that∫
Bη(0)

∫
Bη(0)

|ξη(x)− ξη(y)|2

|x− y|N+2s
dxdy ≤ 4

η2

∫
Bη(0)

∫
Bη(0)

|x− y|2

|x− y|N+2s
dydx

=
4

η2

∫
Bη(0)

∫
{|x−y|≤2η}

1

|x− y|N+2s−2
dydx

≤ CηN−2s.

(3.4)
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Then we conclude from (3.2)–(3.4) that∫
R2N

|ξη(x)− ξη(y)|2

|x− y|N+2s
dxdy

=

∫
Bη(0)

∫
Bη(0)

|ξη(x)− ξη(y)|2

|x− y|N+2s
dxdy + 2

∫
Bη(0)

∫
RN\Bη(0)

|ξη(x)− ξη(y)|2

|x− y|N+2s
dxdy

=

∫
Bη(0)

∫
Bη(0)

|ξη(x)− ξη(y)|2

|x− y|N+2s
dxdy + 2

∫
Γ1

|ξη(x)− ξη(y)|2

|x− y|N+2s
dxdy

+ 2

∫
Γ2

|ξη(x)− ξη(y)|2

|x− y|N+2s
dxdy

≤ C0η
N−2s

for some C0 independent of η. The proof is completed.

Now, for any m ≥ 1 with 2/m < d0 and any integer i ≥ 1, we set

emi (x) = ξ2/m(x)ei(x) for all x ∈ RN

and

H−m,n(λ) =


span{em1 , . . . , emn } if λn < λ < λn+1;

span{em1 , . . . , emn−l} if λn−l < λn−l+1 = · · · = λn = λ < λn+1

for some 0 < l < min{n,N + 2}.

Lemma 3.2. Suppose λn ≤ λ < λn+1 and 0 < l < min{n,N + 2}, then there exists

m0 > 1 such that for any m ≥ m0,

(3.5) max
u∈H−

m,n(λ)
‖u‖2=1

‖u‖2Xs
0
≤

λn + C1m
2s−N if λ ∈ (λn, λn+1),

λn−l + C1m
2s−N if λn−l < λn−l+1 = · · · = λn = λ < λn+1

for some C1 > 0 independent of m.

Proof. We first prove the following estimates:

‖emi ‖2Xs
0
≤ λi + Cm2s−N for any i ∈ N;(3.6)

|(emi , emj )Xs
0
| ≤ Cm2s−N for any i, j ∈ N, i 6= j;(3.7)

|(emi , emj )2| ≤ Cm−N for any i, j ∈ N, i 6= j;(3.8)

‖emi ‖22 ≥ 1− Cm−N for any i ∈ N;(3.9)



A Multiplicity Result for a Non-local Critical Problem 1403

According to [21, Proposition 2.4], it follows that ei ∈ L∞(Ω). Together with Lemma 3.1,

this gives that ∣∣∣∣∣
∫
R2N

ei(x)ei(y)[ξ2/m(x)− ξ2/m(y)]2

|x− y|N+2s
dxdy

∣∣∣∣∣
≤ C

∫
R2N

[ξ2/m(x)− ξ2/m(y)]2

|x− y|N+2s
dxdy ≤ Cm2s−N .

(3.10)

In addition, multiplying (2.4) by [ξ2
2/m(x)− 1]ei and integrating by parts, we have

λi

∫
Ω

[ξ2
2/m(x)− 1]e2

i dx

= ([ξ2
2/m(x)− 1]ei, ei)Xs

0

=

∫
R2N

[ξ2
2/m(x)− 1][ei(x)− ei(y)]2 + ei(y)[ξ2

2/m(x)− ξ2
2/m(y)][ei(x)− ei(y)]

|x− y|N+2s
dxdy

(3.11)

Then, it follows from (3.10) and (3.11) that

‖emi ‖2Xs
0
− ‖ei‖2Xs

0

=

∫
R2N

[ξ2/m(x)ei(x)− ξ2/m(y)ei(y)]2 − [ei(x)− ei(y)]2

|x− y|N+2s
dxdy

=

∫
R2N

[ξ2
2/m(x)− 1][ei(x)− ei(y)]2 + ei(y)[ξ2

2/m(x)− ξ2
2/m(y)][ei(x)− ei(y)]

|x− y|N+2s
dxdy

+

∫
R2N

ei(x)ei(y)[ξ2/m(x)− ξ2/m(y)]2

|x− y|N+2s
dxdy

= λi

∫
Ω

[ξ2
2/m(x)− 1]e2

i dx+

∫
R2N

ei(x)ei(y)[ξ2/m(x)− ξ2/m(y)]2

|x− y|N+2s
dxdy

≤

∣∣∣∣∣
∫
R2N

ei(x)ei(y)[ξ2/m(x)− ξ2/m(y)]2

|x− y|N+2s
dxdy

∣∣∣∣∣
≤ Cm2s−N .

This combined with (2.4) yields (3.6).

Multiplying (2.4) by [ξ2
2/m(x)− 1]ej and integrating, we have

λi

∫
Ω

[ξ2
2/m − 1]eiej dx

= (ei, (ξ
2
2/m − 1)ej)Xs

0

=

∫
R2N

[ei(x)− ei(y)]
(
[ξ2

2/m(x)− 1]ej(x)− [ξ2
2/m(y)− 1]ej(y)

)
|x− y|N+2s

dxdy

=

∫
R2N

[ξ2
2/m(x)− 1][ei(x)− ei(y)][ej(x)− ej(y)] + [ei(x)− ei(y)][ξ2

2/m(x)− ξ2
2/m(y)]ej(y)

|x− y|N+2s
dxdy.
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Similarly,

λj

∫
Ω

[ξ2
2/m − 1]eiej dx

= (ej , (ξ
2
2/m − 1)ei)Xs

0

=

∫
R2N

[ej(x)− ej(y)]
(
[ξ2

2/m(x)− 1]ei(x)− (ξ2
2/m(y)− 1)ei(y)

)
|x− y|N+2s

dxdy

=

∫
R2N

[ξ2
2/m(x)− 1][ei(x)− ei(y)][ej(x)− ej(y)] + [ej(x)− ej(y)][ξ2

2/m(x)− ξ2
2/m(y)]ei(y)

|x− y|N+2s
dxdy.

Then it follows that

λi + λj
2

∫
Ω

[ξ2
2/m(x)− 1]eiej dx

=

∫
R2N

1
2 [ei(x)ej(y) + ei(y)ej(x)− 2ei(y)ej(y)][ξ2

2/m(x)− ξ2
2/m(y)]

|x− y|N+2s

+
[ξ2

2/m(x)− 1][ei(x)− ei(y)][ej(x)− ej(y)]

|x− y|N+2s
dxdy.

This together with ei ∈ L∞(RN ), (2.5) and Lemma 3.1 gives that for any i 6= j,

|(emi , emj )Xs
0
|

= |(emi , emj )Xs
0
− (ei, ej)Xs

0
|

=

∣∣∣∣ ∫
R2N

[ξ2/m(x)ei(x)− ξ2/m(y)ei(y)][ξ2/m(x)ej(x)− ξ2/m(y)ej(y)]

|x− y|N+2s

− [ei(x)− ei(y)][ej(x)− ej(y)]

|x− y|N+2s
dxdy

∣∣∣∣
=

∣∣∣∣λi + λj
2

∫
Ω

(ξ2
2/m − 1)eiej dx−

1

2

∫
R2N

[ei(x)ej(y) + ej(x)ei(y)][ξ2/m(x)− ξ2/m(y)]2

|x− y|N+2s
dxdy

∣∣∣∣
≤ λi + λj

2

∫
B2/m

|eiej | dx+
1

2

∫
R2N

|ei(x)ej(y) + ej(x)ei(y)|[ξ2/m(x)− ξ2/m(y)]2

|x− y|N+2s
dxdy

≤ C
∫
B2/m

dx+ C

∫
R2N

[ξ2/m(x)− ξ2/m(y)]2

|x− y|N+2s
dxdy

≤ Cm−N + Cm2s−N

≤ Cm2s−N

if m is large enough. So (3.7) follows.

By (2.5) and (3.1), it follows that for i 6= j,

|(emi , emj )2| =
∣∣∣∣∫

Ω
ξ2
m(x)eiej dx

∣∣∣∣ =

∣∣∣∣∫
Ω

[ξ2
m(x)− 1]eiej dx

∣∣∣∣ ≤ C ∫
B2/m

dx ≤ Cm−N .

So (3.8) holds.
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By (2.4) and (3.1), we get

‖emi ‖22 =

∫
Ω
e2
i dx−

∫
Ω

[1− ξ2
2/m(x)]e2

i dx ≥ 1−
∫
B2/m

e2
i dx ≥ 1− Cm−N ,

which gives (3.9).

Now, we are ready to prove (3.5) by using the estimates (3.6)–(3.9). Let um ∈ H−m,n(λ)

with ‖um‖2 = 1 be such that

‖um‖2Xs
0

= max
u∈H−

m,n(λ),‖u‖2=1
‖u‖2Xs

0
.

Thus, for the first case λn < λ < λn+1, there exist real numbers am1 , . . . , a
m
n such that

um =
∑n

i=1 a
m
i e

m
i . Then we have

‖um‖2Xs
0

=
n∑
i=1

(ami )2‖emi ‖2Xs
0

+ 2
∑

1≤i<j≤n
ami a

m
j (emi , e

m
j )Xs

0

and

(3.12) 1 = ‖um‖22 =

n∑
i=1

(ami )2‖emi ‖22 + 2
∑

1≤i<j≤n
ami a

m
j (emi , e

m
j )2.

Thanks to (3.8) and (3.9), there exists m0 > 1 such that for any m ≥ m0,

‖emi ‖22 ≥
3

4
and |(emi , emj )L2(Ω)| ≤

1

4
for any i 6= j.

Hence it follows from (3.12) that

1 =

n∑
i=1

(ami )2‖emi ‖22 + 2
∑

1≤i<j≤n
ami a

m
j (emi , e

m
j )2

≥
n∑
i=1

(ami )2‖emi ‖22 − 2
∑

1≤i<j≤n
|ami ||amj ||(emi , emj )2|

≥ 3

4

n∑
i=1

(ami )2 − 1

4

∑
1≤i<j≤n

(|ami |2 + |amj |2)

≥ 1

4

n∑
i=1

(ami )2,

which derives

(3.13) |ami | ≤ C for some constant C independent of m and i.
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Then by (3.9), (3.12)and (3.13), we conclude

1 ≥
n∑
i=1

(ami )2‖emi ‖22 − 2
∑

1≤i<j≤n
|ami amj ||(emi , emj )2|

≥
n∑
i=1

(ami )2‖emi ‖22 − C
∑

1≤i<j≤n
|(emi , emj )2| ≥

n∑
i=1

(ami )2‖emi ‖22 − Cm−N

≥
n∑
i=1

(ami )2 − C
n∑
i=1

(ami )2m−N − Cm−N ≥
n∑
i=1

(ami )2 − Cm−N .

(3.14)

This combined with (3.6), (3.7) and (3.13), (3.14), implies that

‖um‖2Xs
0

=

n∑
i=1

(ami )2‖emi ‖2Xs
0

+ 2
∑

1≤i<j≤n
ami a

m
j (emi , e

m
j )Xs

0

≤ (1 + Cm−N )(λn + Cm2s−N ) + Cm2s−N

≤ λn + C1m
2s−N

(3.15)

for some C1 > 0. Therefore, (3.5) follows for λn < λ < λn+1.

For the second case λn−l < λn−l+1 = · · · = λn = λ < λn+1, by using similar argument

as above, we can prove

(3.16) ‖um‖2Xs
0
≤ λn−l + C1m

2s−N

and the details are omitted.

Thus, the conclusion follows from (3.15) and (3.16).

As a consequence of Lemma 3.2, the following lemma holds true.

Lemma 3.3. The following statements are true:

(i) If λn < λ < λn+1, then there exists m1 ≥ m0 such that for any m ≥ m1,

sup
H−
m,n(λ)

(
I(u) +

λ− λn
2(λ+ λn)

‖u‖2Xs
0

)
≤ 0.

(ii) If λn−l < λn−l+1 = · · · = λn = λ < λn+1 with 0 < l < min{n,N + 2}, then there

exists m̃1 ≥ m0 such that for any m ≥ m̃1,

sup
H−
m,n(λ)

(
I(u) +

λ− λn−l
2(λ+ λn−l)

‖u‖2Xs
0

)
≤ 0.

Proof. (i) For λn < λ < λn+1, by Lemma 3.2, there exists m1 ≥ m0 such that for any

m ≥ m1 and u ∈ H−m,n(λ),

‖u‖2Xs
0
≤ (λn + C1m

2s−N )‖u‖22 ≤
λ+ λn

2
‖u‖22.
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Then

I(u) +
λ− λn

2(λ+ λn)
‖u‖2Xs

0
=

λ

λ+ λn
‖u‖2Xs

0
− λ

2

∫
Ω
|u|2 dx− 1

2∗s

∫
Ω
|u|2∗s dx

≤ − 1

2∗s

∫
Ω
|u|2∗s dx

≤ 0.

Thus, (i) follows immediately.

(ii) For λn−l < λn−l+1 = · · · = λn = λ < λn+1 with 0 < l < min{n,N + 2}, by

using Lemma 3.2 and similar argument as above, there exists m̃1 ≥ m0 such that for any

m ≥ m̃1,

I(u) +
λ− λn−l

2(λ+ λn−l)
‖u‖2Xs

0
≤ 0.

Then (ii) follows.

Let Uε = Uε,0 = κ̃
(

ε
ε2+|x|2

)(N−2s)/2
and r1 = 1/(6m). For any r ∈ (0, r1] and ε > 0,

define a cut-off function U rε by

U rε (x) =

Uε(x)− Uε(r) in Br(0),

0 in RN \Br(0).

Then

(3.17) |U rε (x)| ≤ |Uε(x)| ≤ Cε(2s−N)/2 and |∇U rε (x)| ≤ |∇Uε(x)| ≤ Cε(2s−N)/2−1

for x ∈ RN . Moreover, for any 0 < η < ε/2, z ∈ Ω and x ∈ RN , we have

|∇(ξη(x− z)U rε (x))| ≤ |∇ξη(x− z)||U rε (x)|+ |ξη(x− z)||∇U rε (x)|

≤ Cη−1|U rε |+ |∇U rε | ≤ Cη−1ε(2s−N)/2.
(3.18)

In the following, we denote ξη ≡ 1 for η = 0. Let 0 ≤ 2η < ε < r, then the following

lemma holds true.

Lemma 3.4. For any z ∈ Ω, we have

(i)

∫
R2N

|ξη(x− z)U rε (x)− ξη(y − z)U rε (y)|2

|x− y|N+2s
dxdy ≤ SN/(2s) + C

(η
ε

)N−2s
,

(ii)

∫
Ω
|ξη(x− z)U rε (x)|2∗ dx ≥ SN/(2s) − C

( ε
r

)N−2s
− C

(η
ε

)N
.

Proof. (i) Note that ∫
RN\Br(0)

∫
RN\Br(0)

|U rε (x)− U rε (y)|2

|x− y|N+2s
dxdy = 0
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and ∫
Br(0)

∫
RN\Br(0)

|U rε (x)− U rε (y)|2

|x− y|N+2s
dydx =

∫
Br(0)

∫
RN\Br(0)

|Uε(x)− Uε(r)|2

|x− y|N+2s
dydx

≤
∫
Br(0)

∫
RN\Br(0)

|Uε(x)− Uε(y)|2

|x− y|N+2s
dydx.

Then ∫
R2N

|U rε (x)− U rε (y)|2

|x− y|N+2s
dxdy

=

∫
Br(0)

∫
Br(0)

|U rε (x)− U rε (y)|2

|x− y|N+2s
dxdy + 2

∫
Br(0)

∫
RN\Br(0)

|U rε (x)− U rε (y)|2

|x− y|N+2s
dxdy

+

∫
RN\Br(0)

∫
RN\Br(0)

|U rε (x)− U rε (y)|2

|x− y|N+2s
dxdy

≤
∫
Br(0)

∫
Br(0)

|Uε(x)− Uε(y)|2

|x− y|N+2s
dxdy + 2

∫
Br(0)

∫
RN\Br(0)

|Uε(x)− Uε(y)|2

|x− y|N+2s
dxdy

=

∫
RN

∫
RN

|Uε(x)− Uε(y)|2

|x− y|N+2s
dxdy

= SN/(2s).

(3.19)

In addition, set

Γ1 =
{

(x, y) ∈ RN × RN : |x− y| ≥ η

2
, x ∈ Bη(z), y ∈ RN \Bη(z)

}
,

Γ2 =
{

(x, y) ∈ RN × RN : |x− y| ≤ η

2
, x ∈ Bη(z), y ∈ RN \Bη(z)

}
.

By (3.17) and (3.18), we have∫
Γ1

|ξη(x− z)U rε (x)− ξη(y − z)U rε (y)|2

|x− y|N+2s
dxdy

≤ 2

∫
Γ1

|U rε (x)|2 + |U rε (y)|2

|x− y|N+2s
dxdy ≤ Cε2s−N

∫
Γ1

1

|x− y|N+2s
dxdy

≤ Cε2s−N
∫
Bη(z)

∫
{|x−y|>η/2}

1

|x− y|N+2s
dydx ≤ C

(η
ε

)N−2s

(3.20)

and ∫
Γ2

|ξη(x− z)U rε (x)− ξη(y − z)U rε (y)|2

|x− y|N+2s
dxdy

≤ Cη−2ε2s−N
∫

Γ2

|x− y|2

|x− y|N+2s
dydx

≤ Cη−2ε2s−N
∫
Bη(z)

∫
{|x−y|>η/2}

1

|x− y|N+2s−2
dydx ≤ C

(η
ε

)N−2s
.

(3.21)
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Moreover, ∫
Bη(z)

∫
Bη(z)

|ξη(x− z)U rε (x)− ξη(y − z)U rε (y)|2

|x− y|N+2s
dxdy

≤ Cη−2ε2s−N
∫
Bη(z)

∫
Bη(z)

|x− y|2

|x− y|N+2s
dydx

≤ Cη−2ε2s−N
∫
Bη(z)

∫
{|x−y|≤2η}

|x− y|2

|x− y|N+2s
dydx

≤ C
(η
ε

)N−2s
.

(3.22)

Then we deduce from (3.20)–(3.22) and (3.19) that∫
R2N

|ξη(x− z)U rε (x)− ξη(y − z)U rε (y)|2

|x− y|N+2s
dxdy

=

∫
RN\Bη(z)

∫
RN\Bη(z)

|U rε (x)− U rε (y)|2

|x− y|N+2s
dxdy

+ 2

∫
Γ1∪Γ2

|ξη(x− z)U rε (x)− ξη(y − z)U rε (y)|2

|x− y|N+2s
dxdy

+

∫
Bη(z)

∫
Bη(z)

|ξη(x− z)U rε (x)− ξη(y − z)U rε (y)|2

|x− y|N+2s
dxdy

≤
∫
RN

∫
RN

|U rε (x)− U rε (y)|2

|x− y|N+2s
dxdy + C

(η
ε

)N−2s

≤ SN/(2s) + C
(η
ε

)N−2s
.

(ii) According to (2.2), we have∫
RN\Br(0)

|Uε(x)|2∗s dx = C

∫ ∞
r

(
ε

ε2 + ρ2

)N
ρN−1 d0ρ

≤ CεN
∫ ∞
r

ρ−N−1 d0ρ ≤ C
( ε
r

)N(3.23)

and ∫
Br(0)

|Uε(x)|2∗s−1Uε(r) dx = κ̃2∗s

(
ε

ε2 + r2

)(N−2s)/2 ∫
Br(0)

(
ε

ε2 + |x|2

)(N+2s)/2

dx

≤ CεN

rN−2s

∫ r

0

ρN−1

(ε2 + ρ2)(N+2s)/2
dρ

≤ CεN

rN−2s

(∫ ε

0

ρN−1

εN+2s
dρ+

∫ r

ε

ρN−1

ρN+2s
dρ

)
≤ C

( ε
r

)N−2s
.

(3.24)
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Then by (2.3), (3.23) and (3.24), we get∫
Ω
|U rε |2

∗
s dx =

∫
Br(0)

|Uε(x)− Uε(r)|2
∗
s dx

≥
∫
Br(0)

|Uε(x)|2∗s dx− 2∗s

∫
Br(0)

|Uε(x)|2∗s−1Uε(r) dx

=

∫
RN
|Uε(x)|2∗s dx−

∫
RN\Br(0)

|Uε(x)|2∗s − 2∗s

∫
Br(0)

|Uε(x)|2∗s−1Uε(r) dx

≥
∫
RN
|Uε(x)|2∗s dx− CεNr−N − CεN−2sr2s−N

≥ SN/(2s) − C
( ε
r

)N−2s
.

This together with (3.17) shows that∫
Ω
|ξη(x− z)U rε |2

∗
s dx =

∫
Ω
|U rε |2

∗
s dx−

∫
Ω

[1− ξη(x− z)2]|U rε |2
∗
s dx

≥
∫

Ω
|U rε |2

∗
s dx−

∫
Bη(z)

|U rε |2
∗
s dx

≥ SN/(2s) − C
( ε
r

)N−2s
− C

∫
Bη(z)

ε−N dx

≥ SN/(2s) − C
( ε
r

)N−2s
− C

(η
ε

)N
.

The proof is completed.

4. Proof of Theorem 1.1

Let θ > 2s/(N − 4s) and εr = rθ+1, ηr = r2θ+1. Clearly, U rεr is continuous in Xs
0(Ω) with

respect to r ∈ (0, r1] = (0, 1/(6m)]. Moreover, let r ∈ (0, r1] and η ∈ [0, ηr], then the

following lemma holds true.

Proposition 4.1. For each value D > 0, there exists mD
1 ≥ m0 such that for any m ≥ mD

1

and z ∈ Ω, there holds

sup
τ≥0

(
I(τξη( · − z)U rεr) +DmN+2s‖τξη( · − z)U rεr‖

2
L1(Ω)

)
<

s

N
SN/(2s),

where m0 is defined in Lemma 3.2. Moreover, mD
1 is increasing with respect to D.

Proof. It follows from Lemma 3.4 that∫
R2N

|ξη(x− z)U rεr(x)− ξη(y − z)U rεr(y)|2

|x− y|N+2s
dxdy ≤ SN/(2s) + C

(
η

εr

)N−2s

≤ SN/(2s) + Crθ(N−2s)

(4.1)
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and ∫
Ω
|ξη(x− z)U rεr(x)|2∗ dx ≥ SN/(2s) − C

(εr
r

)N−2s
− C

(
η

εr

)N−2s

≥ SN/(2s) − Crθ(N−2s).

(4.2)

Moreover, by a direct computation,

‖ξη(x− z)U rεr(x)‖L1(Ω) ≤
∫

Ω
|U rεr(x)| dx ≤

∫
Br(0)

|Uεr(x)| dx

≤ C
∫ r

0

(
εr

ε2r + ρ2

)(N−2s)/2

ρN−1 dρ

≤ Cε(N−2s)/2
r

(∫ εr

0

ρN−1

εN−2s
r

dρ+

∫ r

εr

ρ2s−1 dρ

)
≤ Cε(N−2s)/2

r r2s = Cr(θ+1)(N−2s)/2+2s.

(4.3)

Note that for r small enough, we have εr < r and U rεr(x) = Uεr(x)− Uεr(r) ≥ 1
2Uεr(x) for

x ∈ Br/2(0). Then if η = 0,∫
Ω
|U rεr |

2 =

∫
Br(0)

|Uεr(x)− Uεr(r)|2 ≥
1

4

∫
Br/2(0)

|Uεr(x)|2

≥ C
∫ r/2

0

(
εr

ε2r + ρ2

)N−2s

ρN−1 dρ

≥ CεN−2s
r

(∫ εr

0

ρN−1

(2εr2)N−2s
+

∫ r/2

εr

ρN−1

(2ρ2)N−2s

)
≥ Cε2sr = Cr2s(θ+1),

(4.4)

and if η > 0,∫
Ω
|ξη(x− z)U rεr |

2 =

∫
Ω
|U rεr |

2 −
∫

Ω
(1− ξ2

η(x− z))|U rεr |
2

≥
∫

Ω
|U rεr |

2 −
∫
Bη(z)

|U rεr |
2 ≥ Cε2sr − CηN ε2s−Nr ≥ Cr2s(θ+1).

(4.5)

Note that for any constants B1, B2 > 0,

(4.6) sup
τ≥0

(
τ2

2
B1 −

τ2∗s

2∗s
B2

)
=

s

N
B1

(
B1

B2

)(N−2s)/(2s)

.

Then by (4.1)–(4.6) and mN+2srN+2s ≤ 6N+2s, we have

I(τξη( · − z)U rεr) +DmN+2s‖τξη( · − z)U rεr‖
2
L1(Ω)

=
τ2

2

(∫
R2N

|ξη(x− z)U rεr(x)− ξη(y − z)U rεr(y)|2

|x− y|N+2s
dxdy
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− λ
∫

Ω
|ξη(x− z)U rεr(x)|2 dx+ 2DmN+2s‖ξη( · − z)U rεr‖

2
L1(Ω)

)
− τ2∗s

2∗s

∫
Ω
|ξη(x− z)U rεr(x)|2∗s dx

≤ τ2

2

(
SN/(2s) + Crθ(N−2s) − λCr2s(θ+1) + CDmN+2sr(θ+1)(N−2s)+4s

)
− τ2∗s

2∗s

(
SN/(2s) − Crθ(N−2s)

)
≤ τ2

2

(
SN/(2s) + (C + 6N+2sD)rθ(N−2s) − λCr2s(θ+1)

)
− τ2∗s

2∗s

(
SN/(2s) − Crθ(N−2s)

)
≤ sup

τ≥0

[
τ2

2

(
SN/(2s) + (C + 6N+2sD)rθ(N−2s) − λCr2s(θ+1)

)
− τ2∗s

2∗s

(
SN/(2s) − Crθ(N−2s)

)]
≤ s

N

(
SN/(2s) + (C + 6N+2sD)rθ(N−2s) − λCr2s(θ+1)

)
×

(
SN/(2s) + (C + 6N+2sD)rθ(N−2s) − λCr2s(θ+1)

SN/(2s) − Crθ(N−2s)

)(N−2s)/(2s)

.

Since 2s(θ + 1) < θ(N − 2s), there exists mD
1 ≥ m0 increasing on D such that for any

m ≥ mD
1 and r ≤ 1/(6m),

(C + 6N+2sD)rθ(N−2s) − λCr2s(θ+1) < 0

and

sup
τ≥0

(
I(τξη( · − z̃)U rεr) +DmN+2s‖τξη( · − z̃)U rεr‖

2
L1(Ω)

)
≤ s

N

(
SN/(2s) + (C + 6N+2sD)rθ(N−2s) − λCr2s(θ+1)

)
<

s

N
SN/(2s).

Thus the lemma follows.

For any integer j ≥ 1, we write Bj = {x ∈ Rj : |x| ≤ 1} and Sj = {x ∈ Rj+1 : |x| = 1}.
By using Proposition 4.1, the following lemma holds.

Lemma 4.2. Let D > 0 and mD
1 be defined in Proposition 4.1. Then there exists mD

2 ≥
mD

1 such that for any m ≥ mD
2 , there is an odd continuous map h : RN+2 → Xs

0(B1/m(0))

satisfying

sup
u∈h(RN+2)

(
I(u) +DmN+2s‖u‖2L1(Ω)

)
<

2s

N
SN/(2s)

and lim|z|→∞
(
I(h(z)) +DmN+2s‖h(z)‖2L1(Ω)

)
= −∞.

Proof. For any z̃ ∈ BN and m ≥ mD
1 , set t = |z̃|, θ = z̃/|z̃| and define a continuous map

h1 : BN → Xs
0(B1/(2m)(0)) as

h1(z̃)(·) =

uηr1/2(·)− ξηr1 (·)ur1( ·+ 4tr2θ) if 0 ≤ t ≤ 1/2,

ut(2r1−ηr1 )−r1+ηr1
( · − 2r1(2tθ − θ))− ξηr1 (·)ur1( ·+ 2r1θ) if 1/2 ≤ t ≤ 1.



A Multiplicity Result for a Non-local Critical Problem 1413

Since ξηr1 (x) = 1 for |x| ≥ ηr1 , we have ξηr1 (·)ur1( · + 2r1θ) = ur1( · + 2r1θ). Then, h1 is

odd on SN−1 and it induces an odd continuous map h2 : SN → Xs
0(B1/(2m)(0)) defined by

h2(x1, . . . , xN+1) =

h1(x1, . . . , xN ) if xN+1 ≥ 0,

−h1(−x1, . . . ,−xN ) if xN+1 ≤ 0.

According to Proposition 4.1, one sees that

(4.7) sup
τ≥0,θ∈SN

(
I(τh2(θ)±) +DmN+2s‖τh2(θ)±‖2L1(Ω)

)
<

s

N
SN/(2s).

Now, let Z be a cylindric surface in RN+2 defined by

Z := (SN × [−1, 1]) ∪ (BN+1 × {−1, 1}),

and denote the top by Z1 = BN+1×{1}, the bottom by Z2 = BN+1×{−1} and the lateral

surface by Z3 = SN × (−1, 1). Obviously Z = Z1 ∪Z2 ∪Z3, and h2 can be extended to an

odd continuous map h3 : Z → Xs
0(B1/m(0)) defined as follows: for θ ∈ SN−1, t1 ∈ [0, 1],

t2 ∈ [−1, 1], define

h3(t1θ, t2) :=


(1− t2)[h2(θ)]− + (1 + t2)[h2(θ)]+ if t1 = 1 (i.e., if (t1θ, t2) ∈ Z3),

2t1[h2(θ)]+ + (1− t1)v0 if t2 = 1 (i.e., if (t1θ, t2) ∈ Z1),

2t1[h2(θ)]− − (1− t1)v0 if t2 = −1 (i.e., if (t1θ, t2) ∈ Z2),

where v0(·) := ξηr1 (·)ur1( · + y0) ∈ M1
m and y0 ∈ Ω is a fixed point with |y0| = 3/(4m).

Furthermore, we extend h3 to a map h : RN+2 → Xs
0(B11/(12m)(0)) as follows:

h(τz) := τh3(z) for z ∈ Z, τ ≥ 0.

By construction, h is an odd continuous map and lim|z|→+∞ I(h(z)) = −∞.

Since v0 ∈ Xs
0(B11/(12m)(0) \ B7/(12m)(0)), we see that supph(z)+ ∩ supph(z)− = ∅.

Then by Lemma 2.1, it follows that for any τ > 0, if z ∈ Z3,

I(τh3(z)) = I(τ(1− t2)h2(θ)+) + I(τ(1 + t2)h2(θ)−)

− 4τ2(1− t22)

∫
R2N

h2(θ)+(x)h2(θ)−(y)

|x− y|N+2s
dxdy

< I(τ(1− t2)h2(θ)+) + I(τ(1 + t2)h2(θ)−),

(4.8)

and if z ∈ Z1,

I(τh3(z)) = I(2τt1h2(θ)+) + I(τ(1− t1)v0)

− 8τ2t1(1− t1)

∫
R2N

h2(θ)+(x)v0(y)

|x− y|N+2s
dxdy

< I(2τt1h2(θ)+) + I(τ(1− t1)v0).

(4.9)
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Since Proposition 4.1 shows that supτ≥0,z∈Z1

(
I(τv0) + DmN+2s‖τv0‖2L1(Ω)

)
< s

N S
N/(2s),

by (4.7)–(4.9), we have

sup
τ≥0,z∈Z3

(
I(h(τz)) +DmN+2s‖h(τz)‖2L1(Ω)

)
= sup

τ≥0,z∈Z3

(
I(τh3(z)) +DmN+2sτ2‖h3(z)‖2L1(Ω)

)
< sup

τ≥0,z∈Z3

(
I(τ(1− t2)h2(θ)+) +DmN+2sτ2(1− t2)2‖h2(θ)+‖2L1(Ω)

+ I(τ(1 + t2)h2(θ)−) +DmN+2sτ2(1 + t2)2‖h2(θ)−‖2L1(Ω)

)
= sup

τ≥0,z∈Z3

(
I(τh2(θ)+) +DmN+2s‖τh2(θ)+‖2L1(Ω)

)
+ sup
τ≥0,z∈Z3

(
I(τh2(θ)−) +DmN+2s‖τh2(θ)−‖2L1(Ω)

)
<

2s

N
SN/(2s)

(4.10)

and

sup
τ≥0,z∈Z1

(
I(h(τz)) +DmN+2s‖h(τz)‖2L1(Ω)

)
= sup

τ≥0,z∈Z1

(
I(τh3(z)) +DmN+2sτ2‖h3(z)‖2L1(Ω)

)
< sup

τ≥0,θ∈SN−1

(
I(2t1τh2(θ)+) + 4DmN+2sτ2t21‖h2(θ)+‖2L1(Ω)

+ I(τ(1− t1)v0) +DmN+2sτ2(1− t1)2‖v0‖2L1(Ω)

)
≤ sup

τ≥0,θ∈SN−1

(
I(τh2(θ)+) +DmN+2s‖τh2(θ)+‖2L1(Ω)

)
+ sup
τ≥0,z∈Z1

(
I(τv0) +DmN+2s‖τv0‖2L1(Ω)

)
<

2s

N
SN/(2s).

(4.11)

In addition, since dist(supph2(θ)−, supp v0) ≥ r1/2, for any z ∈ Z2, by Lemma 3.4(iii),

we have

8t1(1− t1)

∫
R2N

[h2(θ)]−(x)v0(y)

|x− y|N+2s
dxdy

≤ 16t1(1− t1)

rN+2s
1

∫
Ω

[h2(θ)]−(x) dx

∫
Ω
v0(y) dy

≤ Ct21
rN+2s

1

‖h2(θ)−‖2L1(Ω) +
C(1− t1)2

rN+2s
1

‖v0‖2L1(Ω)

≤ CmN+2st21‖h2(θ)−‖2L1(Ω) + CmN+2s(1− t1)2‖v0‖2L1(Ω).
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Then

sup
τ≥0
z∈Z2

(
I(h(τz)) +DmN+2s‖h(τz)‖2L1(Ω)

)

= sup
τ≥0
z∈Z2

(
I(2t1τ [h2(θ)]−) + I(τ(1− t1)v0) + 8τ2t1(1− t1)

∫
R2N

[h2(θ)]−(x)v0(y)

|x− y|N+2s
dxdy

+DmN+2s‖2t1τh2(θ)−‖2L1(Ω) +DmN+2s‖τ(1− t1)v0‖2L1(Ω)

)
≤ sup

τ≥0
z∈Z2

(
I(2t1τ [h2(θ)]−) + I(τ(1− t1)v0) + (C +D)mN+2sτ2t21‖h(θ)−‖2L1(Ω)

+ (C +D)mN+2sτ2(1− t1)2‖v0‖2L1(Ω)

)
≤ sup

τ≥0
θ∈SN−1

(
I(τh2(θ)−) + (C +D)mN+2s‖τh2(θ)−‖2L1(Ω)

)
+ sup

τ≥0
θ∈SN−1

(
I(τv0) + (C +D)mN+2s‖τv0‖2L1(Ω)

)
,

(4.12)

where C is independent of m and D. By Proposition 4.1, there exists mC+D
1 ≥ mD

1 such

that if m ≥ mC+D
1 ,

(4.13) sup
τ≥0

θ∈SN−1

(
I(τh2(θ)−) + (C +D)mN+2s‖τh2(θ)−‖2L1(Ω)

)
<

s

N
SN/(2s)

and

(4.14) sup
τ≥0

θ∈SN−1

(
I(τv0) + (C +D)mN+2s‖τv0‖2L1(Ω)

)
<

s

N
SN/(2s).

Now, we take mD
2 := mC+D

1 and m ≥ mD
2 as in Lemma 4.2. Then by (4.13) and (4.14), it

follows from (4.12) that

(4.15) sup
τ≥0
z∈Z2

(
I(h(τz)) +DmN+2s‖h(τz)‖2L1(Ω)

)
<

2s

N
SN/(2s).

Thus, we conclude from (4.10), (4.11) and (4.15) that

sup
u∈h(RN+2)

(
I(u) +DmN+2s‖u‖2L1(Ω)

)
= sup

τ≥0
z∈Z1∪Z2∪Z3

(
I(h(τz)) +DmN+2s‖h(τz)‖2L1(Ω)

)
<

2s

N
SN/(2s).

The proof is completed.
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From now on, we fix m ≥ mD
2 , where mD

2 is defined in Lemma 4.2.

Lemma 4.3. (i) Suppose 0 < λ < λ1, then there exists an odd continuous map ĥ : RN+2

→ Xs
0(Ω) such that lim|x|→∞ I(ĥ(x)) = −∞ and

sup
u∈ĥ(RN+2)

I(u) <
2s

N
SN/(2s).

(ii) Suppose λn < λ < λn+1 for some n ≥ 1, then there exists an odd continuous map

h : Rn+N+2 → Xs
0(Ω) such that lim|x|→∞ I(h(x)) = −∞ and

sup
u∈h(Rn+N+2)

I(u) <
2s

N
SN/(2s).

(iii) Suppose λn−l < λn−l+1 = · · · = λn = λ < λn+1 with l < N + 2, then there exists an

odd continuous map h̃ : Rn+N+2−l → Xs
0(Ω) such that lim|x|→∞ I(h̃(x)) = −∞ and

sup
u∈h̃(Rn+N+2−l)

I(u) <
2s

N
SN/(2s).

Proof. (i) Let ĥ = h, where h : RN+2 → Xs
0(Ω) is defined as in Lemma 4.2, then (i) follows

easily from Lemma 4.2.

(ii) Let λn < λ < λn+1. Noting that emi ∈ Xs
0(Ω \ B1/m(0)), we define h4 : Rn →

Xs
0(Ω \B1/m(0)) by h4(a) =

∑n
i=1 aie

m
i . Then according to Lemma 3.3, we have

sup
u∈h4(Rn)

(
I(u) +

λ− λn
2(λ+ λn)

‖u‖2Xs
0

)
≤ 0.

Since all norms are equivalent in finite dimension space H−m,n(λ), it is easy to see that

lim|a|→∞ I(h(a)) = −∞.

Now, we define h : Rn+N+2 → Xs
0(Ω) by h(a, b) = h4(a)+h(b) for all a ∈ Rn, b ∈ RN+2.

Then h is an odd continuous map, and satisfies

lim
|(a,b)|→∞

I(h(a, b)) = −∞.

Moreover, since supph(b) ⊂ B11/(12m)(0) and supph(a) ⊂ B1/m(0), by Young inequality

and fractional Sobolev inequality, it follows that∫
R2N

h4(a)(x)h(b)(y)

|x− y|N+2s
dxdy

=

∫
B11/(12m)(0)

(∫
Ω\B1/m(0)

h4(a)(x)

|x− y|N+2s
dx

)
h(b)(y) dy

≤ ‖h(a)‖L2∗s (Ω\B1/m(0))
‖|x− y|−N−2s‖L2N/(N+2s)(Ω\B1/m(0))
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≤ C
∫
B11/(12m)(0)

(∫ ∞
1/(12m)

τ−N−1 dτ

)(N+2s)/(2N)

‖h4(a)‖L2∗s (Ω\B1/m(0))h(b)(y) dy(4.16)

≤ Cm(N+2s)/2‖h(b)‖L1(Ω)‖h4(a)‖L2∗s (Ω)

≤ Cm(N+2s)/2‖h(b)‖L1(Ω)‖h4(a)‖Xs
0

≤ C2m
N+2s‖h(b)‖2L1(Ω) +

λ− λn
2(λ+ λn)

‖h4(a)‖2Xs
0

for some constant C2 > 0 independent of m. Then by (4.16), Lemmas 3.3 and 4.2, we

have

I(h(a, b)) = I(h4(a)) + I(h(b)) + 4

∫
R2N

h4(a)(x)h(b)(y)

|x− y|N+2s
dxdy

≤ I(h4(a)) +
λ− λn

2(λ+ λn)
‖h4(a)‖2Xs

0
+ I(h(b)) + CmN+2s‖h(b)‖2L1(Ω)

<
2s

N
SN/(2s).

Thus, (ii) follows.

(iii) Letting λn−l < λn−l+1 = · · · = λn = λ < λn+1, we define

H̃1
m = {em1 , . . . , emn−l}

and h̃4 : Rn−l → Xs
0(Ω\B1/m(0)) by h̃4(a) =

∑n−l
i=1 aie

m
i . Then by using similar argument

as the proof of (i) above and Lemma 3.3(ii), we have

sup
u∈h̃4(Rn)

(
I(u) +

λ− λn−l
2(λ+ λn−l)

‖u‖2Xs
0

)
≤ 0.

Moreover, lim|a|→∞ I(h(a)) = −∞.

Define h̃ : Rn+N+2−l → Xs
0(Ω) by h(a, b) = h̃4(a) + h(b) for all a ∈ Rn, b ∈ RN+2,

where h is defined as in Lemma 4.2. Then h̃ is an odd continuous map, and satisfies

lim
|(a,b)|→∞

I(h̃(a, b)) = −∞.

Similar to (4.16), we can obtain that∫
R2N

h̃4(a)(x)h(b)(y)

|x− y|N+2s
dxdy ≤ C̃2m

N+2s‖h(b)‖2L1(Ω) +
λ− λn−l

2(λ+ λn−l)
‖h̃4(a)‖2Xs

0

for some constant C̃2 > 0 independent of m, and by using Lemmas 3.3 and 4.2 again,

I(h(a, b)) = I(h̃4(a)) + I(h(b)) + 4

∫
R2N

h̃4(a)(x)h(b)(y)

|x− y|N+2s
dxdy

≤ I(h̃4(a)) +
λ− λn−l

2(λ+ λn−l)
‖h̃4(a)‖2Xs

0
+ I(h(b)) + CmN+2s‖h(b)‖2L1(Ω)

<
2s

N
SN/(2s).

The proof is finished.
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Furthermore, the following lemmas hold true.

Lemma 4.4. The following statements are true:

(i) If 0 < λ < λ1, we have 0 < β1 ≤ · · · ≤ βN+2 < 22s/NS.

(ii) If λn < λ < λn+1 for some n ≥ 1, then 0 < βn+1 ≤ · · · ≤ βn+N+2 < 22s/NS.

(iii) If λn−l < λn−l+1 = · · · = λn = λ < λn+1 with 0 < l < min{n,N + 2}, then

0 < βn+1 ≤ · · · ≤ βn+N+2−l < 22s/NS.

Proof. For any k ≥ 1, let A = {u ∈ h(Rk) : ‖u‖2∗s = 1}. By using the same argument as

in [8, Lemma 2.11], it is easy to see that A ⊂ M and γ(A) ≥ k. So A ∈ Σk, where Σk is

defined as in (2.12).

(i) If 0 < λ < λ1, by taking k = N + 2 and v ∈ A, we have

2s

N
SN/(2s) > sup

u∈h(RN+2)

I(u) ≥ sup
τ≥0

I(τv) ≥ s

N

(
‖v‖2Xs

0
− λ‖v‖22
‖v‖22∗s

)N/(2s)
=

s

N
J(v)N/(2s).

Thus, supu∈A J(u) < 22s/NS. Then by the definition of βN+2, we have

βN+2 <
2s

N
SN/(2s).

Since β1 > 0 and β1 ≤ · · · ≤ βN+1, (i) follows soon.

(ii) If λn < λ < λn+1 for some n ≥ 1, by taking k = n+N + 2 and similar argument

as (i), we can prove supu∈A J(u) < 22s/NS and then 0 < βn+1 ≤ · · · ≤ βn+N+2 < 22s/NS.

Thus (ii) follows.

(iii) If λn−l < λn−l+1 = · · · = λn = λ < λn+1 with 0 < l < min{n,N + 2}, let

k = n+N + 2− l. By similar argument as (i), we can obtain supu∈A J(u) < 22s/NS and

βn+1 > 0. Hence 0 < βn+1 ≤ · · · ≤ βn+N+2−l < 22s/NS. Hence (iii) follows. The proof is

completed.

Proof of Theorem 1.1. IfKβ is infinite for some β ∈ (0, 22s/NS), then J possesses infinitely

many critical points, and so do I. Thus, we may assume that Kβ is finite for any β ∈
(0, 22s/NS) and

0 < β1 < · · · < βN+2 < 22s/NS if 0 < λ < λ1; or

0 < βn < · · · < βn+N+2 < 22s/NS if λn < λ < λn+1 with some n ≥ 1; or

0 < βn+1 < · · · < βn+N+2−l < 22s/NS if λn−l < λn−l+1 = · · · = λn = λ < λn+1

with 0 < l < min{n,N + 2},

due to Lemmas 2.7 and 4.4. Let j0 ∈ N be the least integer such that βj0+1 ≥ S. Then it

follows from Lemma 2.8 that
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(i) if 0 < λ < λ1, then J admits at least max{j0, N + 2 − j0} ≥ [(N + 1)/2] pairs of

nontrivial critical points;

(ii) if λn < λ < λn+1, then J has at least max{j0, N + 2− j0} ≥ [(N + 1)/2] pairs of

nontrivial critical points;

(iii) if λn−l < λn−l+1 = · · · = λn = λ < λn+1, then J possesses at least max{j0−n, n+

N + 2− l − j0} ≥ [(N + 1− l)/2] pairs of nontrivial critical points. So do the functional

I. The proof is completed.
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[4] X. Cabré and J.-M. Roquejoffre, The innfluence of fractional diffusion in Fisher-KPP

equations, Comm. Math. Phys. 320 (2013), no. 3, 679–722.

[5] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,

Comm. Partial Differential Equations 32 (2007), no. 7-9 1245–1260.

[6] A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear ellip-

tic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non
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