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Open Problem on σ-invariant

Kinkar Ch. Das and Seyed Ahmad Mojallal*

Abstract. Let G be a graph of order n with m edges. Also let µ1 ≥ µ2 ≥ · · · ≥
µn−1 ≥ µn = 0 be the Laplacian eigenvalues of graph G and let σ = σ(G) (1 ≤ σ ≤ n)

be the largest positive integer such that µσ ≥ 2m/n. In this paper, we prove that

µ2(G) ≥ 2m/n for almost all graphs. Moreover, we characterize the extremal graphs

for any graphs. Finally, we provide the answer to Problem 3 in [8], that is, the

characterization of all graphs with σ = 1.

1. Introduction

Let G = (V,E) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge

set E(G), where |V (G)| = n, |E(G)| = m. Let di be the degree of the vertex vi

(i = 1, 2, . . . , n). The maximum vertex degree is denoted by ∆1 (= d1) and the sec-

ond maximum by ∆2 (= d2). Let N(vi) be the neighbor set of vertex vi, i = 1, 2, . . . , n.

We denote by G, the complement of the graph G. Let A(G) and D(G) be the adja-

cency matrix and the diagonal matrix of vertex degrees of G, respectively. The Lapla-

cian matrix of G is L(G) = D(G) − A(G). This matrix has nonnegative eigenvalues

n ≥ µ1 ≥ µ2 ≥ · · · ≥ µn = 0. To know more information about Laplacian eigenvalues of

graphs, see [2,4,10,16]. When more than one graph is under consideration, then we write

µi(G) instead of µi.

For a graph G, consider the positive number σ = σ(G) (1 ≤ σ ≤ n) of the Laplacian

eigenvalues greater than or equal to the average degree 2m/n. More precisely σ is the

largest positive integer for which µσ ≥ 2m/n. This number as a spectral graph invariant

with several open problems and conjectures are introduced in [8].

Let I be an interval of the real line. Denote by mG(I) the number of Laplacian

eigenvalues, multiplicities included, that belong to I. Notice that mG(I) is a natural

extension of multiplicity mG(µ) of a Laplacian eigenvalue µ. Merris in [16] presented

several results on mG(I) and gave some references for its applications. This research topic
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was extensively investigated in many papers (see, [10,12,15–17]). Indeed, by the definition

of σ, we have

σ(G) = mG

([
2m

n
, n

])
.

It is worth noticing that the value of σ(G) sheds light on the distribution of the Laplacian

eigenvalues of a graph G. Actually it determines how many Laplacian eigenvalues of graph

G are greater than or equal to the average of the Laplacian eigenvalues of graph.

A further Laplacian-spectrum-based graph invariant was put forward by Gutman and

Zhou [11] as

LE = LE(G) =

n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ .

For its basic properties, including various lower and upper bounds, see [5, 6, 20]. It is not

difficult to see that

(1.1) LE(G) = 2

σ∑

i=1

µi −
4mσ

n
.

This is another motivation to study this graph invariant for the Laplacian energy of a

graph G.

Therefore, the spectral parameter σ is reasonable relevant in spectral graph theory.

To know more information about this spectral graph invariant and its applications, see

[7,8,19]. In [7], all graphs with σ(G) = n−1 were characterized and the result was applied

for Laplacian energy of graphs. It is interesting to characterize all graphs for some specific

value of σ = σ(G) between 1 and n−2. In particular, the following problem is given in [8].

Problem 1.1. [8] Characterize the graphs with σ = 1.

Li and Pan [14] showed that

(1.2) µ2(G) ≥ ∆2

with equality if G is an r × s complete bipartite graph Kr,s (r + s = n) or a tree T

with degree sequence π(T ) = (n/2, n/2, 1, . . . , 1︸ ︷︷ ︸
n−2

), where n ≥ 4 is even. This result was

improved by one of the present authors in [2] as follows:

µ2(G) ≥





(∆2 + 2 +
√

(∆2 − 2)2 + 4c12)/2 if v1v2 ∈ E(G),

(∆2 + 1 +
√

(∆2 + 1)2 − 4c12)/2 if v1v2 /∈ E(G),

where v1 and v2 are the maximum and the second maximum degree vertices of graph G,

respectively, and c12 = |N(v1)∩N(v2)|. We refer to [2,14,22] for more background on the

second largest Laplacian eigenvalues of graphs.
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For two vertex-disjoint graphs G1 and G2, we use G1 ∪G2 to denote their union. The

join G1 ∨ G2 of graphs G1 and G2 is the graph obtained from the disjoint union of G1

and G2 by adding all edges between V (G1) and V (G2). For any two sets A,B ⊆ V (G)

(E(G)), let A\B be the set of vertices (edges) belongs to A, but not B. Denote by |A| the

cardinality of the set A. As usual, Kn, K1,n−1 and DSp,q (p ≥ q ≥ 2, p+ q = n), denote,

respectively, the complete graph, the star graph, and the double star graph on n vertices.

The paper is organized as follows. In Section 2, we give a list of some previously known

results. In Section 3, we give a lower bound on the second largest Laplacian eigenvalue of

graph G and characterize the extremal graphs. We present an upper bound for the third

smallest Laplacian eigenvalue of G. In Section 4, we obtain the solution for Problem 1.1.

Finally we apply this result for Laplacian energy of graphs.

2. Preliminaries

In this section, we shall list some previously known results that will be needed in the next

two sections. We begin with first two results on symmetric matrices of order n.

Lemma 2.1. [9] Let A and B be two real symmetric matrices of size n. Then for any

1 ≤ k ≤ n,
k∑

i=1

λi(A+B) ≤
k∑

i=1

λi(A) +
k∑

i=1

λi(B),

where λi(M) is the i-th largest eigenvalue of M (M = A,B).

Lemma 2.2. [21] Let B be an n × n symmetric matrix and let Bk be its leading k × k
submatrix. Then, for i = 1, 2, . . . , k,

λn−i+1(B) ≤ λk−i+1(Bk) ≤ λk−i+1(B),

where λi(B) is the i-th largest eigenvalue of B.

The following result is well-known as interlacing theorem on Laplacian eigenvalues.

Lemma 2.3. [13] Let G be a graph of n vertices and let H be a subgraph of G obtained

by deleting an edge in G. Then

µ1(G) ≥ µ1(H) ≥ µ2(G) ≥ µ2(H) ≥ µ3(G) ≥ · · ·
≥ µn−1(G) ≥ µn−1(H) ≥ µn(G) ≥ µn(H) ≥ 0,

where µi(F ) is the i-th largest Laplacian eigenvalue of the graph F .

Merris in [16] gave a lower bound on Laplacian spectral radius of a graph G as follows:
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Lemma 2.4. [16] Let G be a graph on n vertices which has at least one edge. Then

(2.1) µ1 ≥ ∆1 + 1.

Moreover, if G is connected, then the equality holds in (2.1) if and only if ∆1 = n− 1.

We now mention an upper bound on the Laplacian spectral radius of graph G:

Lemma 2.5. [1] Let G be a graph. Then

µ1(G) ≤ max{di + dj | vivj ∈ E(G)} ≤ ∆1 + ∆2,

where di is the degree of vertex vi ∈ V (G).

The following result is obtained in [3].

Lemma 2.6. [3] Let G be a connected graph with n ≥ 3 vertices. Then µ2 = µ3 = · · · =
µn−1 if and only if G ∼= Kn, G ∼= K1,n−1 or G ∼= Kn/2,n/2 (n is even).

Pan and Hou [18] obtained the necessary condition for a graph to have an equality of

the second largest Laplacian eigenvalue µ2 and its lower bound ∆2:

Lemma 2.7. [18] Let G � K1,n−1 be a connected graph of order n ≥ 3 with maximum

degree vertex v1 and the second maximum degree vertex v2, where v1v2 ∈ E(G). If µ2(G) =

∆2, then

(1) N(v1) ∩N(v2) = ∅;

(2) ∆1 = ∆2;

(3) ∆1 + ∆2 = n.

The nice relation between Laplacian spectrum of graph G and the Laplacian spectrum

of graph G is the following:

Lemma 2.8. [16] Let G be a graph with Laplacian spectrum {0 = µn, µn−1, . . . , µ2, µ1}.
Then the Laplacian spectrum of G is {0, n− µ1, n− µ2, . . . , n− µn−2, n− µn−1}, where G
is the complement of the graph G.

3. Lower bound for the second largest Laplacian eigenvalue of graphs

In this section we give some lower bounds on the second largest Laplacian eigenvalue

of graph G and characterize the extremal graphs. Moreover, we give an upper bound

for the third smallest Laplacian eigenvalue of graph G. From now we always assume that

∆1 = d1 ≥ ∆2 = d2 ≥ · · · ≥ dn. Let k (2 ≤ k ≤ n) be the largest positive integer such that
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d2 = · · · = dk = ∆2. For G ∼= DSp,q (p ≥ q ≥ 2, p+q = n), we have ∆2 = d2 = q > 1 = d3

and hence k = 2. For G ∼= K1,n−1, we have d2 = d3 = · · · = dn = ∆2 and k = n. For any

graph G we have

(3.1)
2m

n
=

∆1 + ∆2 +
∑n

i=3 di
n

≤ ∆2 +
∆1 −∆2

n
< ∆2 + 1.

Now we have the following result:

Lemma 3.1. Let G be a graph of order n > 2 with m edges. If ∆2 < 2m/n, then

(i) ∆1 −∆2 >
∑n

i=3(∆2 − di),

(ii) ∆2 = d3,

(iii) ∆1 > ∆2 + n− k,

(iv) k ≥ ∆2 + n+ 1−∆1 ≥ ∆2 + 2.

Proof. (i) Since ∆2 < 2m/n, we have

n∑

i=1

di = 2m > n∆2, that is, ∆1 −∆2 >
n∑

i=3

(∆2 − di).

(ii) We have ∆2 ≥ d3. If ∆2 > d3, then

∆1 > ∆2 +
n∑

i=3

(∆2 − di) ≥ ∆2 + n− 2 ≥ n− 1,

a contradiction. Hence ∆2 = d3.

(iii) From (i), we have

∆1 ≥ ∆2 + 1 +
n∑

i=k+1

(∆2 − di) ≥ ∆2 + 1 + n− k > ∆2 + n− k.

(iv) From (iii), we have

k ≥ ∆2 + n+ 1−∆1 ≥ ∆2 + 2.

This completes the proof of the result.

Let S be the set of vertices vj ∈ V (G) \ {v1} such that dj = ∆2, that is,

S = {vj ∈ V (G) \ {v1} | dj = ∆2}.
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Since ∆2 = d2, we have |S| ≥ 1. Denote by T = V (G) \ (S ∪ {v1}) (see Figure 3.1). Then

we have di ≤ ∆2− 1 for any vertex vi ∈ T . Since d2 = · · · = dk = ∆2, we have |S| = k− 1

and hence |T | = n− k. Let S1 and S2 be two sets of vertices such that

S1 = {vj ∈ S | v1vj ∈ E(G)}, S2 = S \ S1.

Let S be the set of vertices vj ∈ V (G)\{v1} such that dj = ∆2, that is,

S =
{
vj ∈ V (G)\{v1} | dj = ∆2

}
.

Since ∆2 = d2, we have |S| ≥ 1. Denote by T = V (G)\(S ∪ {v1}) (see Fig. 1). Then we

have di ≤ ∆2 − 1 for any vertex vi ∈ T . Since d2 = · · · = dk = ∆2, we have |S| = k − 1

and hence |T | = n− k. Let S1 and S2 be two sets of vertices such that

S1 =
{
vj ∈ S | v1vj ∈ E(G)

}
, S2 = S\S1.

�

1υ

�

G

Fig. 1. The graph G with the vertex set V (G) = {v1} ∪ S ∪ T .

We need the following two results for our main result on the lower bound of µ2.

Lemma 3.2. Let G be a graph of order n > 2 with m edges. If there is an edge in the

subgraph induced by S in G and ∆2 <
2m
n
, then µ2(G) > 2m

n
.

Proof: Let vi and vj be two vertices in the subgraph induced by S in G such that

vivj ∈ E(G). Here we consider the following two cases:

Case 1 : vi, vj ∈ S1 or vi, vj ∈ S2. In this case the 3× 3 leading principal submatrix M∗

(two possibilities) corresponding to vertices v1, vi, vj is of the form

M∗ =




∆1 a a
a ∆2 −1
a −1 ∆2


 , where a ∈ {0, −1}.

7

Figure 3.1: The graph G with the vertex set V (G) = {v1} ∪ S ∪ T .

We need the following two results for our main result on the lower bound of µ2.

Lemma 3.2. Let G be a graph of order n > 2 with m edges. If there is an edge in the

subgraph induced by S in G and ∆2 < 2m/n, then µ2(G) > 2m/n.

Proof. Let vi and vj be two vertices in the subgraph induced by S in G such that vivj ∈
E(G). Here we consider the following two cases:

Case 1: vi, vj ∈ S1 or vi, vj ∈ S2. In this case the 3 × 3 leading principal submatrix

M∗ (two possibilities) corresponding to vertices v1, vi, vj is of the form

M∗ =




∆1 a a

a ∆2 −1

a −1 ∆2


 , where a ∈ {0,−1}.

One can easily see that the eigenvalues of M∗ are ∆1, ∆2 + 1, ∆2 − 1 for a = 0, and

∆1 + ∆2 − 1

2
± 1

2

√
(∆1 −∆2)(∆1 −∆2 + 2) + 9, ∆2 + 1 for a = −1.

Hence by Lemma 2.2 with the above and (3.1), we obtain

µ2(G) ≥ µ2(M∗) = ∆2 + 1 >
2m

n
.
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Case 2: vi ∈ S1, vj ∈ S2. Since ∆2 < 2m/n, from Lemma 3.1(iii) with |T | = n − k,

we get ∆1 ≥ ∆2 + 1 + |T |. Since N(v1) ⊆ S1 ∪ T , therefore there are at least ∆2 + 1

vertices in S1, adjacent to v1. Thus we have |S1| ≥ ∆2 + 1 ≥ 3 (as ∆2 = di ≥ 2) and

|S2| ≥ 0. From this result, we can assume that a vertex set W = {w1, . . . , w∆2} ⊆ S1,

where vi /∈ W . If there exists an edge (say, vrv`) in the subgraph induced by W ∪ {vi}
in G, then by Case 1 (M∗ corresponding to vertices v1, vr and v`), we get the required

result. Otherwise, W ∪ {vi} is an independent set in G. First we assume that vjwi /∈
E(G) for 1 ≤ i ≤ ∆2. Then K1,∆2 ∪ K1,∆2 is a subgraph of G with one star K1,∆2

induced by {v1, w1, w2, . . . , w∆2} and the other star K1,∆2 induced by {vj}∪N(vj), where

{v1, w1, w2, . . . , w∆2} ∩ ({vj} ∪N(vj)) = ∅ and |N(vj)| = ∆2. By Lemma 2.3, we have

µ2(G) ≥ µ2(K1,∆2 ∪K1,∆2) = ∆2 + 1 >
2m

n

by (3.1).

Next we assume that there exists at least one vertex in W , wq (say), adjacent to vj .

In this case we consider 4 × 4 leading principal submatrix N∗ corresponding to vertices

v1, vi, wq and vj of Laplacian matrix L(G), where

N∗ =




∆1 −1 −1 0

−1 ∆2 0 −1

−1 0 ∆2 −1

0 −1 −1 ∆2



.

Let g(x) = det(xI −N∗) be the characteristic polynomial of N∗. For b ∈ {1, 2, 3}, we

obtain

g(∆2 + b/3) = det((∆2 + b/3)I −N∗)

=

∣∣∣∣∣∣∣∣∣∣∣∣

∆2 −∆1 + b/3 1 1 0

1 b/3 0 1

1 0 b/3 1

0 1 1 b/3

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

∆2 −∆1 + b/3 0 0 −b/3
1 b/3 0 1

1 0 b/3 1

0 1 1 b/3

∣∣∣∣∣∣∣∣∣∣∣∣

= (∆1 −∆2 − b/3)

(
2

3
b− 1

27
b3
)
− 2

9
b2.

(3.2)

Similarly, we have

(3.3) g(∆1) = −2(∆1 −∆2)2 < 0 as ∆1 > ∆2.

From ∆1 ≥ ∆2 + 1, we now consider the following two subcases:
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Subcase 2.1: ∆1 = ∆2 + i, where i = 1 or 2. From (3.2), one can easily see that

g

(
∆2 +

i

3

)
= − 2

81
i4 +

2

9
i2 > 0.

From the above result with (3.3), we conclude that µ2(N∗) > ∆2 + i/3 as µ1(N∗) > ∆1.

Since in this case n ≥ 4, by Lemma 2.2 and (3.1), we get

µ2(G) ≥ µ2(N∗) > ∆2 +
i

3
> ∆2 +

i

n
= ∆2 +

∆1 −∆2

n
≥ 2m

n
.

Subcase 2.2: ∆1 ≥ ∆2 +3. From (3.2), we have g(∆2 +1) = ∆1−∆2−3 ≥ 0. Similarly,

as the above subcase, we have µ2(N∗) ≥ ∆2 + 1. Again by Lemma 2.2 with (3.1), we have

µ2(G) ≥ µ2(N∗) ≥ ∆2 + 1 >
2m

n
.

This completes the proof of the result.

Let T1 and T2 be two sets of vertices such that

T1 = {vj ∈ T | v1vj ∈ E(G)}, T2 = T \ T1.

If |T1| = t1 and |T2| = t2, then we have

(3.4) n− k = t1 + t2.

Lemma 3.3. Let G � K1,n−1 be a connected graph of order n with m edges. If there is

not any edge in the subgraph induced by S in G and ∆2 < 2m/n, then µ2(G) > 2m/n.

Proof. We have that S is an independent set. Since G is connected and G � K1,n−1, we

have ∆2 ≥ 2. Again since ∆2 < 2m/n, by Lemma 3.1, we have that Lemma 3.1(i), (iii)

and (iv) hold. From |S2| ≥ 0, we consider the following two cases:

Case 1: |S2| ≥ 1. Let vk be any one vertex in S2. Then the degree of vk is ∆2. Since

S is an independent set, one can easily see that K1,∆2 ∪K1,∆2 is a subgraph of G with one

star K1,∆2 induced by {v1} with any ∆2 vertices in S1 and the other star K1,∆2 induced by

{vk}∪N(vk), where N(vk) ⊆ T , |N(vk)| = ∆2 (see Figure 3.2), that is, K1,∆2 ∪K1,∆2 ⊆ G
and hence

µ2(G) ≥ µ2(K1,∆2 ∪K1,∆2) = ∆2 + 1 >
2m

n

by (3.1).
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Since mT ≥ 0, from the above with ∆1 = k − 1 + t1, we get

(k − 1)(∆2 − 1) ≤
∑

vi∈T
di − t1

=
∑

vi∈T1

(di − 1) +
∑

vi∈T2

di

≤ t1(∆2 − 2) + t2(∆2 − 1) as di ≤ ∆2 − 1 for vi ∈ T

≤ (t1 + t2)(∆2 − 1). (13)

��

1υ

��

� 2∆

kυ

2∆

G

Fig. 2. The graph G contains two vertex-disjoint stars K1,∆2 with central vertices v1

and vk .

Since ∆2 ≥ 2, therefore from the above k − 1 ≤ t1 + t2. This result with (12), we

have t2 < t1 + t2 − ∆2, that is, t1 > ∆2. If t1(∆2 − 2) + t2(∆2 − 1) = (t1 + t2)(∆2 − 1)

(see the last inequality (13)), then t1 = 0, a contradiction as t1 > ∆2 ≥ 2. Hence the last

inequality (13) is strict, that is, k ≤ t1+ t2 and hence k ≤ n/2, by (11). Using k ≤ t1+ t2

in (12), we get t2 < t1 + t2 − ∆2 − 1 , that is, t1 ≥ ∆2 + 2. Using this and (8), from

∆1 = k − 1 + t1, we get ∆1 ≥ 2∆2 + 3. Also we have

2m

n
=

∆1 + (k − 1)∆2 +
∑n

i=k+1 di

n
≤ ∆2 +

∆1 −∆2 + k − n

n
.

11

Figure 3.2: The graph G contains two vertex-disjoint stars K1,∆2 with central vertices v1

and vk.

Case 2: |S2| = 0. From the definitions, we have ∆1 = k − 1 + t1. Using this with

Lemma 3.1(iii) and (3.4), we get

(3.5) t2 < k − 1−∆2.

Let GT be the subgraph of G induced by vertex set T with |E(GT )| = mT ≥ 0. Since

S = S1 is an independent set, we have

m = ∆1 + (k − 1)(∆2 − 1) +mT ≤
∑

vi∈T
di + k − 1.

Since mT ≥ 0, from the above with ∆1 = k − 1 + t1, we get

(k − 1)(∆2 − 1) ≤
∑

vi∈T
di − t1

=
∑

vi∈T1
(di − 1) +

∑

vi∈T2
di

≤ t1(∆2 − 2) + t2(∆2 − 1) as di ≤ ∆2 − 1 for vi ∈ T
≤ (t1 + t2)(∆2 − 1).

(3.6)

Since ∆2 ≥ 2, therefore from the above k − 1 ≤ t1 + t2. This result with (3.5), we

have t2 < t1 + t2 −∆2, that is, t1 > ∆2. If t1(∆2 − 2) + t2(∆2 − 1) = (t1 + t2)(∆2 − 1)

(see the last inequality of (3.6)), then t1 = 0, a contradiction as t1 > ∆2 ≥ 2. Hence the

last inequality of (3.6) is strict, that is, k ≤ t1 + t2 and hence k ≤ n/2, by (3.4). Using

k ≤ t1 + t2 in (3.5), we get t2 < t1 + t2 − ∆2 − 1, that is, t1 ≥ ∆2 + 2. Using this and

Lemma 3.1(iv), from ∆1 = k − 1 + t1, we get ∆1 ≥ 2∆2 + 3. Also we have

2m

n
=

∆1 + (k − 1)∆2 +
∑n

i=k+1 di

n
≤ ∆2 +

∆1 −∆2 + k − n
n

.
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From the above with k ≤ n/2, one can easily get

(3.7)
2m

n
< ∆2 +

1

2
.

We now consider the following two subcases:

Subcase 2.1: There exists at least one vertex in S non-adjacent to any vertex in T2.

Suppose that vertex vi in S is not adjacent to any vertex in T2. Then the vertex vi is

adjacent to v1 and ∆2 − 1 vertices in T1 as the degree of vi is ∆2. Again since vertex v1

is adjacent to all the vertices in T1, one can easily see that K2 ∨K∆2−1 (see Figure 3.3)

is a subgraph of G. Then we have µ2(G) ≥ µ2(K2 ∨K∆2−1) = ∆2 + 1 > 2m/n, by (3.7).

From the above with k ≤ n/2, one can easily get

2m

n
< ∆2 +

1

2
. (14)

We now consider the following two subcases:

Subcase 2.1 : There exists at least one vertex in S non-adjacent to any vertex in T2.

Suppose that vertex vi in S is not adjacent to any vertex in T2. Then the vertex vi is

adjacent to v1 and ∆2 − 1 vertices in T1 as the degree of vi is ∆2. Again since vertex v1

is adjacent to all the vertices in T1, one can easily see that K2 ∨K∆2−1 (see Fig. 3) is a

subgraph of G. Then we have µ2(G) ≥ µ2(K2 ∨K∆2−1) = ∆2 + 1 > 2m
n
, by (14).

2 1∆ −

1υ

iυ

G ∼= K2 ∨K∆2−1

Fig. 3. The graph G ∼= K2 ∨K∆2−1 .

Subcase 2.2 : Any one vertex in S is adjacent to at least one vertex in T2.

We have dℓ ≤ ∆2 − 1 for any vℓ ∈ T2. Therefore

t2 ≥
⌈

k − 1

∆2 − 1

⌉
. (15)

If ∆2 = 2, then from the above, t2 ≥ k − 1. From (12), we have t2 < k − 3, a

contradiction. Hence ∆2 ≥ 3. Now we have to prove that µ2(G) > 2m
n

for ∆2 ≥ 3. Let

X = {vi ∈ T | di ≤ ∆2 − 2} and |X| = x. Then

n∆2 < 2m ≤ ∆1 + (k − 1)∆2 + x(∆2 − 2) + (n− k − x)(∆2 − 1),

that is,

x < ∆1 −∆2 − n+ k . (16)

12

Figure 3.3: The graph G ∼= K2 ∨K∆2−1.

Subcase 2.2: Any one vertex in S is adjacent to at least one vertex in T2. We have

d` ≤ ∆2 − 1 for any v` ∈ T2. Therefore

(3.8) t2 ≥
⌈
k − 1

∆2 − 1

⌉
.

If ∆2 = 2, then from the above, t2 ≥ k − 1. From (3.5), we have t2 < k − 3, a

contradiction. Hence ∆2 ≥ 3. Now we have to prove that µ2(G) > 2m/n for ∆2 ≥ 3. Let

X = {vi ∈ T | di ≤ ∆2 − 2} and |X| = x. Then

n∆2 < 2m ≤ ∆1 + (k − 1)∆2 + x(∆2 − 2) + (n− k − x)(∆2 − 1),

that is,

(3.9) x < ∆1 −∆2 − n+ k.

Let T ′ = T \X. We define two edge sets ESX and EST ′ , where

ESX = {vivj ∈ E(G) | vi ∈ S, vj ∈ X} and EST ′ = {vivj ∈ E(G) | vi ∈ S, vj ∈ T ′}.

Denoted by |X ∩ T1| = x1 and |X ∩ T2| = x2, then we obtain

(3.10) |ESX | ≤ (∆2 − 3)x1 + (∆2 − 2)x2
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as all the vertices in T1 are adjacent to v1. Note that
∑

vi∈S
di = (k − 1)∆2 = k − 1 + |ESX |+ |EST ′ |.

From the above result with (3.9) and (3.10), we have

|EST ′ | = (k − 1)(∆2 − 1)− |ESX |
≥ (k − 1)(∆2 − 1)− ((∆2 − 3)x1 + (∆2 − 2)x2)

≥ (k − 1)(∆2 − 1)− x1(∆2 − 1)− x2(∆2 − 1)

= (k − 1− x)(∆2 − 1) as x = x1 + x2

> (n−∆1 + ∆2 − 1)(∆2 − 1) as ∆2 ≥ 2.

(3.11)

Claim 3.4. (n−∆1 + ∆2 − 1)(∆2 − 1) > k − 1.

Proof. By contradiction, we assume that (n −∆1 + ∆2 − 1)(∆2 − 1) ≤ k − 1. From the

above and using (3.8), we have

n−∆1 + ∆2 − 1 ≤ k − 1

∆2 − 1
≤ t2.

Since n = ∆1 + 1 + t2, from the above, we get ∆2 ≤ 0, a contradiction. Hence the proof

is finished.

From Claim 3.4 with (3.11), we get |EST ′ |/(k−1) > 1. Suppose that all the vertices in

S are adjacent to at most one vertex in T ′. Then k− 1 < |EST ′ | ≤ k− 1, a contradiction.

Hence we conclude that there is at least one vertex in S (say, v2) adjacent to at least two

vertices (say, vi, vj ∈ N(v2), i, j 6= 1) of degrees ∆2 − 1 in T ′. Thus vertex v2 is adjacent

to vertices v1, vi and vj . Then the 4× 4 leading principal submatrix L∗ corresponding to

vertices v1, v2, vi, vj (six possibilities up to permutation) is of the form

L∗ =




∆1 −1 a b

−1 ∆2 −1 −1

a −1 ∆2 − 1 c

b −1 c ∆2 − 1



, where a, b, c ∈ {0,−1}.

Let f(x) = det(xI − L∗) be the characteristic polynomial of L∗. Then

f(∆2 + 1) = det((∆2 + 1)I − L∗)

=

∣∣∣∣∣∣∣∣∣∣∣∣

∆2 −∆1 + 1 1 −a −b
1 1 1 1

−a 1 2 −c
−b 1 −c 2

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

∆2 −∆1 1 −a− 1 −b− 1

0 1 0 0

−a− 1 1 1 −c− 1

−b− 1 1 −c− 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
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= (∆2 −∆1)(1− c2
1) + 2a1b1c1 − a2

1 − b21 ≤ 0,

where (a1, b1, c1) = (−a− 1,−b− 1,−c− 1) ∈ {0,−1}3. Similarly,

f(∆2 + 1/2) = det((∆2 + 1/2)I − L∗)

=

∣∣∣∣∣∣∣∣∣∣∣∣

∆2 −∆1 + 1/2 1 −a −b
1 1/2 1 1

−a 1 3/2 −c
−b 1 −c 3/2

∣∣∣∣∣∣∣∣∣∣∣∣

= −a2b2c2 +
1

4
(a2

2 + b22) +
1

16
(4c2

2 − 1)(2∆1 − 2∆2 + 3) ≥ 0,

where a2 = a+ 2, b2 = b+ 2, c2 = c+ 2 and a, b, c ∈ {0,−1}.
One can easily see that µ1(L∗) ≥ ∆1 ≥ 2∆2 + 3 and consequently µ2(L∗) ≥ ∆2 + 1/2.

By Lemma 2.2 with (3.7), we conclude that

µ2(G) ≥ µ2(L∗) ≥ ∆2 +
1

2
>

2m

n
.

This completes the proof of the lemma.

We are now ready to give a lower bound on µ2 of connected graph G and characterize

the extremal graphs.

Theorem 3.5. Let G be a connected graph of order n > 2 with m edges. If G ∼= K1,n−1,

then µ2(G) = 1. Otherwise,

(3.12) µ2(G) ≥ 2m

n

with equality holding if and only if G ∼= Kn/2,n/2 (n is even).

Proof. If G ∼= K1,n−1, then from the Laplacian spectrum of K1,n−1, we have µ2(G) = 1.

Otherwise, G � K1,n−1. Thus we have ∆2 ≥ 2. If ∆2 ≥ 2m/n, then by (1.2), we have

µ2(G) ≥ ∆2 ≥
2m

n

and (3.12) holds. Otherwise, ∆2 < 2m/n. By Lemma 3.1(iv), we conclude that there are

at least ∆2 + 1 vertices of degree ∆2. From Lemma 3.1(iii), we get ∆1 ≥ ∆2 + 1 + |T |.
Since S ∪ T ∪ {v1} = V (G), therefore there are at least ∆2 + 1 vertices in S, adjacent to

v1. Hence |S1| ≥ ∆2 + 1 ≥ 3 and |S2| ≥ 0. If there is an edge in the subgraph induced by

S in G, then by Lemma 3.2, we get the required result in (3.12). Otherwise, there is not

any edge in the subgraph induced by S in G. By Lemma 3.3, again we get the required

result in (3.12). The first part of the theorem is done.
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Suppose that equality holds in (3.12). By Lemmas 3.2 and 3.3, we must have µ2(G) =

∆2 = 2m/n. By Lemma 2.7, we have ∆1 = ∆2 as G � K1,n−1. Thus we have ∆1 = 2m/n

and hence G is a regular graph. Again from nµ2(G) = 2m, we have

µ1(G)− 2µ2(G) =
n−1∑

i=3

(µ2(G)− µi(G)) ≥ 0,

i.e., µ1(G) ≥ 2µ2(G) = 4m/n. On the other hand, by Lemma 2.5, we have

µ1(G) ≤ ∆1 + ∆2 = 2∆2 =
4m

n
.

From the above results, we conclude that

µ1(G) =
4m

n
and µ2(G) = µ3(G) = · · · = µn−1(G) =

2m

n
.

By Lemma 2.6, we get G ∼= Kn/2,n/2 (n is even) as G � K1,n−1 and µ1(G) 6= µ2(G).

Conversely, one can easily see that the equality holds in (3.12) for Kn/2,n/2 (n is even).

We now generalize our result in Theorem 3.5 as follows. For this let Γ1 be the class

of graphs H of order n > 2 such that H ∼= K1,n−1 or H ∼= K2 ∪ (n − 2)K1 or H ∼=
K1,n−r−1 ∪ rK1 (1 ≤ r ≤ dn/2e − 2). For G ∈ Γ1, µ2(G) = 0 when G ∼= K2 ∪ (n− 2)K1,

and µ2(G) = 1 when G ∈ Γ1 \ {K2 ∪ (n− 2)K1}. Otherwise, we have the following result:

Theorem 3.6. Let G /∈ Γ1 be a graph of order n > 2 with m edges. Then

(3.13) µ2(G) ≥ 2m

n

with equality holding if and only if G ∼= nK1 or G ∼= Kn/2,n/2 (n is even) or G ∼= K1,n/2 ∪
(n/2− 1)K1 (n is even).

Proof. Suppose that G is a connected graph. Since G /∈ Γ1, we have G � K1,n−1 and by

Theorem 3.5, we get the required result in (3.13). Next suppose that G is a disconnected

graph. For G ∼= nK1, (3.13) holds. Then there exists an edge in G. We can assume that

Gi is the i-th connected component of order ni with mi > 0 edges in G for 1 ≤ i ≤ k

such that G ∼=
⋃k
i=1Gi ∪ sK1 (s ≥ 0). First we assume that k = 1 and then s > 0. For

G1
∼= K1,n−r−1, dn/2e − 1 ≤ r ≤ n− 3, then

(3.14) µ2(G) = µ2(G1) = 1 ≥ 2m

n
as 2 ≤ m = n− r − 1 ≤ bn/2c.

Otherwise, G1 � K1,n−r−1 for 1 ≤ r ≤ n− 2 as G /∈ Γ1. By Theorem 3.5, we have

µ2(G) = µ2(G1) ≥ 2m1

n1
=

2m

n1
>

2m

n
as n > n1.
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Next we assume that k ≥ 2. Without loss of generality we can assume that

(3.15)
2m1

n1
≥ 2m2

n2
≥ · · · ≥ 2mk

nk
.

We now prove 2m/n ≤ 2m1/n1 by contradiction. For this, we suppose that 2m/n >

2m1/n1. Then we have
2m

n
>

2m1

n1
≥ 2m2

n2
≥ · · · ≥ 2mk

nk
,

that is, 2mni > 2nmi, i = 1, 2, . . . , k, that is,

2m

k∑

i=1

ni > 2n

k∑

i=1

mi,

that is, 2m(n− s) > 2mn, a contradiction.

If G1 � K1,n1−1 for some n1 ≥ 2, then by Theorem 3.5 we have

(3.16) µ2(G) ≥ µ2(G1) ≥ 2m1

n1
≥ 2m

n
.

Otherwise, G1
∼= K1,n1−1 for some n1 ≥ 2 and we have µ1(G1) = n1 ≥ 2. Since G2 is

a connected graph of order at least 2, we have K2 ⊆ G2 (K2 is a subgraph of G2) and

therefore µ1(G2) ≥ µ1(K2) = 2. From the above, we get

µ2(G) ≥ 2 >
2(n1 − 1)

n1
=

2m1

n1
≥ 2m

n
.

The first part of the theorem is proved.

Suppose that equality holds in (3.13). Then all inequalities in the above argument

must be equalities. For connected graph G, by Theorem 3.5, G ∼= Kn/2,n/2 (n is even).

For disconnected graph G, the equality holds in (3.14) and (3.16). From the equality in

(3.14), we get

µ2(G) = µ2(G1) = 1 =
2m

n
, 2 ≤ m = n− r − 1 ≤

⌊n
2

⌋
,

that is, m = n− r − 1 = n/2. In this case G ∼= K1,n/2 ∪ (n/2− 1)K1 (n is even).

From the equality in (3.16), we get

(3.17) µ2(G) = µ2(G1) =
2m1

n1
=

2m

n
.

We now consider the following two cases:

Case 1: 2m1/n1 = 2mk/nk. Then

µ2(G) = µ2(G1) =
2m1

n1
=

2m2

n2
= · · · = 2mk

nk
=

2m

n
.
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From the second equality, by Theorem 3.5, we have G1
∼= Kn1/2,n1/2. Since µ1(G1) = n1 >

2m1/n1 = 2m/n = µ2(G), from the above, we must have

µ1(Gi) ≤ µ2(G) =
2mi

ni
, i = 2, 3, . . . , k.

But we have

µ1(Gi) ≥ ∆(Gi) + 1 >
2mi

ni
, i = 2, 3, . . . , k,

which gives a contradiction.

Case 2: 2m1/n1 > 2mk/nk. From (3.15), we have

2mi ≤
2m1

n1
ni, i = 2, 3, . . . , k − 1.

Thus we have

2m = 2

k∑

i=1

mi <
2m1

n1

k∑

i=1

ni =
2m1

n1
(n− s),

i.e., 2m/n ≤ 2m/(n− s) < 2m1/n1, a contradiction by (3.17).

Conversely, one can easily see that the equality holds in (3.13) for nK1 or Kn/2,n/2 (n

is even) or K1,n/2 ∪ (n/2− 1)K1.

We now give an upper bound on the third smallest Laplacian eigenvalue µn−2(G) in

terms of m and n. For this let Γ2 be the class of graphs H of order n > 2 such that H ∼=
2K1 ∨Kn−2 or H ∼= K1 ∪Kn−1 or H ∼= (K1 ∪Kn−r−1)∨Kr (1 ≤ r ≤ dn/2e− 2). One can

easily see that H ∈ Γ2 ⇔ H ∈ Γ1, which is equivalent to H /∈ Γ2 ⇔ H /∈ Γ1. For G ∈ Γ2,

µn−2(G) = n when G ∼= 2K1 ∨Kn−2, and µn−2(G) = n− 1 when G ∈ Γ2 \ {2K1 ∨Kn−2}.
Otherwise, we have the following result:

Theorem 3.7. Let G /∈ Γ2 be a graph of order n > 2 with m edges. Then

(3.18) µn−2(G) ≤ 2m

n
+ 1

with equality holding if and only if G ∼= Kn or G ∼= 2Kn/2 (n is even) or G ∼= (K1 ∪
Kn/2) ∨Kn/2−1 (n is even).

Proof. Since G /∈ Γ2, we have G /∈ Γ1. Let m be the number of edges in G. Then, by

Lemma 2.8 and Theorem 3.6, we have

µ2(G) ≥ 2m

n
, or n− µn−2(G) ≥ n(n− 1)− 2m

n
, or µn−2(G) ≤ 2m

n
+ 1.

By Theorem 3.6, the equality holds in (3.18) if and only if G ∼= nK1 or G ∼= Kn/2,n/2 (n is

even) or G ∼= K1,n/2 ∪ (n/2− 1)K1 (n is even), that is, G ∼= Kn or G ∼= 2Kn/2 (n is even)

or G ∼= (K1 ∪Kn/2) ∨Kn/2−1 (n is even).
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4. Solution of Problem 1.1 and application to Laplacian energy

In this section, we provide the answer to Problem 1.1. Using this solution, we give an

upper bound for Laplacian energy of graphs.

By the definition of σ(G), we can rewrite Theorem 3.6 as follows:

Theorem 4.1. Let G /∈ Γ1 be a graph of order n > 2. Then σ(G) ≥ 2.

If G ∈ Γ1, then one can easily see that µ2(G) < 2m/n. This result with Theorem 4.1

leads to the following result which is a complete solution to Problem 1.1.

Theorem 4.2. Let G be a graph. Then σ = 1 if and only if G ∈ Γ1.

Using the above result, we can improve an upper bound on Laplacian energy of graphs.

The following upper bound on Laplacian energy of graphs is obtained in [6]:

Theorem 4.3. Let G be a graph of order n with m ≥ n/2 edges and maximum degree ∆1.

Then

(4.1) LE(G) ≤ 4m− 2∆1 −
4m

n
+ 2.

Now we improve this upper bound in the following:

Theorem 4.4. Let G /∈ Γ1 be a graph of order n with m ≥ n/2 edges and maximum

degree ∆1. Then

(4.2) LE(G) ≤ 4m− 2∆1 −
8m

n
+ 4.

Proof. By Theorem 4.1, we have σ ≥ 2. From Lemma 2.1, one can easily see that

σ∑

i=1

λi(L(G)) ≤
σ∑

i=1

λi(L(K1,∆1)) +

σ∑

i=1

λi(L(G \K1,∆1)),

where ∆1 is the maximum degree of G (For subgraph H of G, let G \H be a subgraph of

G such that V (G \H) = V (G) and E(G \H) = E(G) \ E(H)). Since

σ∑

i=1

λi(L(K1,∆1)) =
σ∑

i=1

µi(K1,∆1) ≤ ∆1 + σ

and
σ∑

i=1

λi(L(G \K1,∆1)) =

σ∑

i=1

µi(G \K1,∆1) ≤ 2(m−∆1),

from the above, we get

Sσ(G) =

σ∑

i=1

µi(G) ≤ 2m−∆1 + σ.
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Using the above result in (1.1), we get

LE(G) = 2Sσ(G)− 4mσ

n
≤ 4m− 2∆1 − 2σ

(
2m

n
− 1

)
,

which gives the required result in (4.2) by σ ≥ 2 and m ≥ n/2.

Remark 4.5. For graph G /∈ Γ1 with m ≥ n/2, the upper bound in (4.2) is always better

than the upper bound in (4.1).
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