
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 23, No. 5, pp. 1025–1040, October 2019

DOI: 10.11650/tjm/181006

On the Average Size of an (s, t)-Core Partition

Joseph L. P. Wang* and Jane Y. X. Yang

Abstract. Let s and t be two coprime integers. Bessenrodt and Olsson obtained the

number of (s, t)-cores for odd s and odd t by establishing a bijection between the

lattice paths in (s, t) Yin-Yang diagram and (s, t)-cores. In this paper, motivated by

their results, we extend the definition of Yin-Yang diagram and the bijection to all

possible coprime pairs (s, t), then obtain that the number of (s, t)-cores is
(bs/2c+bt/2c

bs/2c
)
.

Furthermore, based on the identities of Chen-Huang-Wang, we determine the average

size of an (s, t)-core depending on the parity of s, which is (s− 1)(t− 1)(s+ t− 2)/48

if s and t are both odd, or (t− 1)(s2 + st− 3s+ 2t+ 2)/48 if s is even and t is odd.

1. Introduction

The main purpose of this paper is to determine the number of all (s, t)-cores and the

average size of an (s, t)-core for any coprime integers s and t. To this end, it is necessary

to recall some basic definitions and notations of partitions and bar-core partitions.

A partition [2] of n is a finite nonincreasing sequence of positive integers (λ1, λ2, . . . , λm)

such that n = λ1 + λ2 + · · · + λm. We write λ = (λ1, λ2, . . . , λm), say the size |λ| of λ is

n and the length `(λ) of λ is m. For 1 ≤ i ≤ m, λi is a part of λ and denote by λi ∈ λ.

A partition λ = (λ1, λ2, . . . , λm) of n is called a bar partition if λ1 > λ2 > · · · > λm > 0,

which implies that a bar partition consists of distinct parts. For positive integer t, a t-core

partition, or t-core, is defined by t-abacus [8] as follows. The t-abacus has t runners running

from north to south such that the i-th runner contains positions numbered i, t+i, 2t+i, . . .

in increasing order from north to south. For 1 ≤ i ≤ b(t− 1)/2c, the runners numbered i

and t − i are called conjugate, and a pair of conjugate runners is simply referred to as a

runner pair. The abacus configuration of a bar partition is obtained by placing the parts

of the partition as beads on the t-abacus. A bar partition is a t-core if and only if its

abacus configuration satisfies the following four constraints:

i. the 0-th runner is has no beads;

ii. beads cannot occur simultaneously on a runner pair;
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iii. if t is even, then there is no restriction on the number of beads on runner t/2;

iv. a nonempty runner contains only beads in the top positions.

Equivalently, a bar partition λ = (λ1, λ2, . . . , λm) is a t-core if and only if the parts λi

satisfy the following conditions:

i. t - λi for 1 ≤ i ≤ m;

ii. if t is odd, then λi + λj 6≡ 0 (mod t) for 1 ≤ i, j ≤ m;

iii. if t is even, then λi+λj 6≡ 0 (mod t) for 1 ≤ i, j ≤ m except for λi, λj ≡ t/2 (mod t);

iv. if λi ∈ λ, then λi − t ∈ λ for 1 ≤ i ≤ m.

A partition is an (s, t)-core if it is simultaneous an s-core and a t-core.

After the structures of t-core and (s, t)-core posed, many results were obtained by

combinatorial researchers. A bar partition λ has a t-core λt, which is obtained from λ by

removing as many t from it as possible. The number of removed t-bars is the t-weight.

Bessenrodt [3] gave a classification of bar partitions of n that are of maximal t-weight for

all odd primes t ≤ n. In [9], Nath and Sellers obtained many Ramanujan-like congruences

of t-core partitions. Olsson [10] proved that if s and t are coprime odd integers, the s-core

of a t-core partition is again a t-core partition. Later, Gramain and Nath [6] generalized

the results for partitions and bar-partitions by removing the restriction that s and t are

coprime. Moreover, some combinatorial results related to quotient and representation are

obtained in [7, 8].

Let s and t be two coprime odd integers. In [4], by introducing the combinatorial struc-

tures Yin diagram, Yang diagram and Yin-Yang diagram related with s and t, Bessenrodt

and Olsson proved that the number of (s, t)-cores is finite.

Theorem 1.1. [4, Theorem 3.2] Let s, t be coprime odd integers. The number of (s, t)-

cores is given by (
u+ v

u

)
,

where u = (s− 1)/2 and v = (t− 1)/2.

Based on the bijection given in [4, Section 3.], by studying a rectangular diagram

A(s, t) arising from the Yin-Yang diagram, we can compute the sum of the sizes of all

(s, t)-cores for coprime odd integers s and t. Then combining with Theorem 1.1, we are

led to the average size of an (s, t)-core with the above restriction on s and t.

Theorem 1.2. Let s and t be coprime odd integers, then the average size of an (s, t)-core

is
(s− 1)(t− 1)(s+ t− 2)

48
.
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Inspired by the work of Bessenrodt and Olsson [4], we naturally extend the concepts of

Yin diagram, Yang diagram and Yin-Yang diagram only defined on coprime odd integers

s and t to all possible coprime integers s and t. Since gcd(s, t) = 1, without loss of

generality, assume that s is even then t is odd automatically. By establishing the bijection

between the set of lattice paths in a rectangular diagram B(s, t) and the set of (s, t)-cores,

we obtain the theorem of the total number of (s, t)-cores.

Theorem 1.3. Let s and t be coprime integers with even s. The number of (s, t)-cores is

given by (
u+ v

u

)
,

where u = s/2 and v = (t− 1)/2.

By Theorem 1.3, using the similar technique in the proof of Theorem 1.2, we acquire

the average size of an (s, t)-core for coprime integers s and t with even s, which together

with Theorem 1.2, completely determine the average size the of an (s, t)-core for any

coprime integers s and t.

Theorem 1.4. Let s and t be coprime positive integers with even s, then the average size

of an (s, t)-core is
(t− 1)(s2 + st− 3s+ 2t+ 2)

48
.

Note that combining Theorems 1.1 and 1.3, we have the following unified result on the

enumeration of (s, t)-cores.

Theorem 1.5. Let s and t be any coprime positive integers. The number of (s, t)-cores

is given by (bs/2c+ bt/2c
bs/2c

)
.

The rest of this paper is organized as follows. In Section 2, considering the case of s

and t are coprime odd integers, we recall the main results of the Yin-Yang diagram in [4],

then obtain the average size of an (s, t)-core (Theorem 1.2). For coprime positive integers

s and t with even s, the corresponding Yin-Yang diagram is generalized and researched in

Section 3, and the number of (s, t)-cores (Theorem 1.3) is also computed in this section.

Finally, in Section 4, we solve the average size of an (s, t)-core (Theorem 1.4) with even

constraint on s.

2. The average size of an (s, t)-core for coprime odd integers s and t

Throughout this section, we assume that t > s > 1 are coprime odd integers and set

u = (s− 1)/2, v = (t− 1)/2. To obtain the average size of an (s, t)-core, we begin with a

review of the works on the structure of (s, t)-cores.
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To calculate the number of (s, t)-cores, Bessenrodt and Olsson [4] defined the Yin

diagram and the Yang diagram corresponding to (s, t)-cores.

Definition 2.1. Given an (s, t)-core, the corresponding Yin diagram and Yang diagram

are two lower triangular arrays with positive integer entries that are determined by the

following rule: for the Yin (resp. Yang) diagram, start with the largest entry (s−1)t/2−s
(resp. (t − 1)s/2 − t) in the lower-left corner and subtract multiples of s along the rows

and multiples of t along the columns as long as possible.

From the above definition, it is easy to see that the number of rows of the Yin diagram

and the Yang diagram are both u. Figures 2.1 and 2.2 show the details of the Yin diagram

and the Yang diagram corresponding to (9, 17)-core.

59

42

25

8

50 41 32 23 14 5

33 24 15 6

16 7

Figure 2.1: The Yin diagram of (9, 17)-core.
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Figure 2.2: The Yang diagram of (9, 17)-core.

Bessenrodt and Olsson [4] proved that by rotating the Yang diagram 180◦ and com-

bining with the Yin diagram, we can assemble a u × v-rectangular diagram called the

Yin-Yang diagram. The original Yin (resp. Yang) diagram can be referred as the Yin

(resp. Yang) part of the Yin-Yang diagram. For example, the (9, 17) Yin-Yang diagram

is presented in Figure 2.3, where the solid line is the boundary splitting the Yin part and

the Yang part.

59

42

25

8 1 10 19 28 37 46 55

16 7 2 11 20 29 38

33 24 15 6 3 12 21

50 41 32 23 14 5 4

Figure 2.3: The (9, 17) Yin-Yang diagram.

The following proposition gives the sum of entries in the (s, t) Yin-Yang diagram.

Proposition 2.2. [4, Proposition 3.7] The sum of entries in the (s, t) Yin-Yang diagram
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is
1

6
uv(ut+ vs− 2).

In the proof of Theorem 1.1 (see [4, Theroem 3.2]), Bessenrodt and Olsson [4] con-

structed a bijection concerning with the lattice paths in the Yin-Yang diagram, which

plays a essential role in the rest of paper.

Theorem 2.3 (Bessenrodt and Olsson [4]). Given an (s, t) Yin-Yang diagram, there

exists a bijection between the set of (s, t)-cores and the set of lattice paths in the Yin-Yang

diagram from the upper-left corner to the lower-right corner. Moreover, for any lattice

path, the corresponding (s, t)-core consists of the entries in the area enclosed by the lattice

path and the boundary of the Yin part and the Yang part.

For example, the dashed line in Figure 2.3 is a lattice path in (9, 17) Yin-Yang diagram

that encloses an area together with the boundary of the Yin part and the Yang part. Then

the entries in this area are {1, 10, 19, 2, 6, 5}, which comprise the corresponding (9, 17)-core

(19, 10, 6, 5, 2, 1).

To simplify the computation of the average size of an (s, t)-core, we need to slightly ad-

just the Yin-Yang diagram. Bessenrodt and Olsson [4] verified that the sum of two adjacent

entries in the left and right side of the boundary is exactly s. Therefore, given any (s, t)

Yin-Yang diagram, flipping the Yin-Yang diagram horizontally and taking all entries in

the Yin part into negative, we obtain a rectangular u×v-array A(s, t) = (Ai,j)1≤i≤u,1≤j≤v

with entries

(2.1) Ai,j = −s+ 1

2
t+ js+ it for 1 ≤ i ≤ u and 1 ≤ j ≤ v,

where i ranges from top to bottom and j ranges from left to right. Let A(s, t) = A

and P(A) be the set of lattice paths in A from the lower-left corner to the upper-right

corner. For a lattice path P ∈ P(A), denote by MA(P ) the set of positive entries Ai,j

above P and the absolute values of negative entries Ai,j below P . See Figure 2.4 for an

example of A = A(9, 17), where the solid lines represent a lattice path P in P(A) and

MA(P ) = {1, 10, 19, 2, 6, 5}. By these notations, it is evident that the following corollary

is straightly from Theorem 2.3.

-59

-42

-25

-8

-50

-33

-16

1

-41 -32 -23 -14 -5 4

-24 -15 -6 3 12 21

-7 2 11 20 29 38

10 19 28 37 46 55

Figure 2.4: A lattice path in the array A(9, 17).
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Corollary 2.4. Let A = A(s, t) be the array defined by (2.1). Then there exists a bijection

Φ between the set P(A) of lattice paths and the set of (s, t)-cores such that for P ∈ P(A),

the set of the parts of Φ(P ) is given by MA(P ).

For any lattice path P in the array A(s, t), denote by P (resp. P ) the set of cells

(i, j) in A(s, t) that are above (resp. below) P . Based on the bijection Φ, we obtain the

following lemma.

Lemma 2.5. Let A = A(s, t), then for any lattice path P ∈ P(A), we have

|Φ(P )| =
∑

(i,j)∈P

Ai,j −
uv

6
(u+ 1)(1− 2v).

Proof. By Corollary 2.4, we deduce that

|Φ(P )| =
∑

(i,j)∈P
Ai,j>0

Ai,j −
∑

(i,j)∈P
Ai,j<0

Ai,j

=
∑

(i,j)∈P

Ai,j −
∑

(i,j) : Ai,j<0

Ai,j .

From (2.1), it is clear that

(2.2)
∑

1≤i≤u
1≤j≤v

Ai,j =
∑

1≤i≤u
1≤j≤v

(
−s+ 1

2
t+ js+ it

)
=
uv

2
(u− v).

Since the sum of absolute values of entries in A(s, t) is exactly the same as the sum of

entries in the corresponding (s, t) Yin-Yang diagram, by Proposition 2.2, we have

(2.3)
∑

1≤i≤u
1≤j≤v

|Ai,j | =
uv

6
(4uv + u+ v − 2).

Combining (2.2) and (2.3), we obtain∑
(i,j) : Ai,j<0

Ai,j =
1

2

∑
1≤i≤u
1≤j≤v

(Ai,j − |Ai,j |) =
uv

6
(u+ 1)(1− 2v),

which completes the proof.

Let m and n be positive integers, and Dmn be an m × n rectangular diagram whose

row index ranges from up to bottom and column index ranges form left to right, i.e., the

coordinates of the cells of the first row are (1, 1), (1, 2), . . . , (1, n), and so on. Denote by

P(Dmn) the set of lattice paths from the lower-left corner to the upper-right corner of

Bmn. Let f(i, j) be the number of lattice paths in P(Dmn) that lie below the cell (i, j),
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possibly touching the right or lower border of cell (i, j). In the investigation of the average

size of a self-conjugate (s, t)-core, Chen, Huang and Wang [5] concluded the following

identities.

Lemma 2.6. [5, Lemmas 2.4, 2.5] For positive integers m and n, we have∑
1≤i≤m
1≤j≤n

f(i, j) =

(
m+ n

m

)
mn

2
,

∑
1≤i≤m
1≤j≤n

if(i, j) =

(
m+ 2

3

)(
m+ n

m+ 1

)

and ∑
1≤i≤m
1≤j≤n

jf(i, j) =

(
n+ 2

3

)(
m+ n

n+ 1

)
.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let BC(s, t) denote the set of (s, t)-cores. By Corollary 2.4, we

find that

(2.4)
∑

λ∈BC(s,t)

|λ| =
∑

P∈P(A)

|Φ(P )|.

It follows from Lemma 2.5 that

(2.5)
∑

P∈P(A)

|Φ(P )| =
∑
P∈P (A)

 ∑
(i,j)∈P

Ai,j −
uv

6
(u+ 1)(1− 2v)

 .

Combining (2.4) and (2.5), we arrive at∑
λ∈BC(s,t)

|λ| =
∑

P∈P(A)

∑
(i,j)∈P

Ai,j −
uv

6
(u+ 1)(1− 2v)

(
u+ v

u

)

since |P(A)| =
(
u+v
u

)
. According to (2.1) and Lemma 2.6, we get∑

P∈P(A)

∑
(i,j)∈P

Ai,j =
∑

P∈P(A)

∑
(i,j)∈P

(
−s+ 1

2
t+ js+ it

)

= s
∑

1≤i≤u
1≤j≤v

jf(i, j) + t
∑

1≤i≤u
1≤j≤v

if(i, j)− s+ 1

2
t
∑

1≤i≤u
1≤j≤v

f(i, j)

= s

(
v + 2

3

)(
u+ v

v + 1

)
+ t

(
u+ 2

3

)(
u+ v

u+ 1

)
− s+ 1

2
t

(
u+ v

v

)
uv

2

=

(
uv

6
(v + 2)s+

uv

6
(u+ 2)t− uv(s+ 1)t

4

)(
u+ v

v

)
=
uv

6
(2u+ 1)(1− v)

(
u+ v

v

)
.
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Hence, we have

(2.6)
∑

λ∈BC(s,t)

|λ| = uv

6
((2u+ 1)(1− v)− (u+ 1)(1− 2v))

(
u+ v

u

)
=
uv

6
(u+ v)

(
u+ v

u

)
.

Substituting u by (s− 1)/2 and v by (t− 1)/2 in (2.6), combining with Theorem 1.1, we

finally obtain that the average size of an (s, t)-core is given by∑
λ∈BC(s,t) |λ|(

u+v
u

) =
(s− 1)(t− 1)(s+ t− 2)

48
.

The proof is completed.

3. The number of (s, t)-cores for coprime integers s and t with even s

To obtain the number of (s, t)-cores for coprime pairs (s, t) with even s, we begin with

extending the concept of Yin-Yang diagram defined only for odd coprime integers s and t

to all possible coprime integers s and t.

In the rest of the paper, unless otherwise stated, we always assume that s and t are

coprime and s is even. Thus, we may set u = s/2, v = (t− 1)/2. Similar as the Yin-Yang

diagram and the array A(s, t) in Section 2, we build a u × v-rectangular integer array

B(s, t) = (Bi,j)1≤i≤u,1≤j≤v such that

(3.1) Bi,j = −s+ 2

2
t+ js+ it for 1 ≤ i ≤ u and 1 ≤ j ≤ v,

where i ranges from top to bottom and j ranges from left to right. Following the approach

of Bessenrodt and Olsson [4], we show that the absolute values of entries in B(s, t) are

exactly the possible parts of all (s, t)-cores.

Lemma 3.1. The set of the absolute values of entries in B(s, t) contains all integers which

may occur as parts of an (s, t)-core λ.

Proof. Let N (resp. N+) be the set of all nonnegative (resp. positive) integers. By the

definition of an (s, t)-core, if a is a part of λ, then a cannot be represented in the form

ks+ `t, where k, ` ≥ 0. Thus the parts of λ are contained in the set

Xs,t = N \ {ks+ `t | k, ` ≥ 0}.

According to [1, 11], we can rewrite Xs,t in the form

(3.2) Xs,t = N+ ∩ {st− s− t− (ks+ `t) | k, ` ≥ 0}.

Depending on the values of s and t, the proof is divided into three cases.
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Case 1: t > s = 2. By (3.2), we have X2,t = N+ ∩{t− 2k | k ≥ 1}. Notice that the set

of 2-cores consists of partitions λ(k) = (2k−1, 2k−3, . . . , 1) for k ≥ 1 and empty partition

λ(0). Thus X2,t contains all integers which may occur as parts of an (2, t)-core since λ(k)

must be a (2, t)-core provided 2k − 1 < t. On the other hand, B(2, t) = (B1,j)1≤j≤v with

B1,j = 2j − t. Hence, it is clear that the set of absolute values of B1,j = 2j − t coincident

with X2,t.

Before giving the detailed proof of Cases 2 and 3, for s ≥ 4, note that

s

2
+ t = st− s− t−

(
t− 3

2
s+

s− 4

2
t

)
∈ Xs,t,

we claim that s/2 + t cannot be a part of any (s, t)-core λ. Suppose that s/2 + t is a

part of an (s, t)-core λ. If s < 2t, then t − s/2 = s/2 + t − s is also a part of λ since λ

is an s-core. Adding these two parts together, we get s/2 + t + t − s/2 = 2t, which is a

contradiction since λ is an t-core. Otherwise s > 2t, then s/2− t = (s/2 + t)− 2t is also

a part of λ since it is a t-core. Similarly, we find s/2 + t+ s/2− t = s, contradicting with

the fact that λ is also an s-core.

Motivating by the constructions in [4,11], we arrange the elements of Xs,t in an (s, t)-

diagram in the following way. Start with the largest element st − s − t in the lower-left

corner and subtract multiples of s along the rows and multiples of t along the columns as

long as possible (see Figure 3.1).

st− s− t

s
2t− s

s
2

s
2
+ t

t−1
2 s− t

(s2 − j)t− s

(s2 + j)t− s

Figure 3.1: The (s, t)-diagram.

Recall that the set of parts of any (s, t)-core is closed under the subtraction of multiples

of s and t. Since s/2 + t cannot be a part of an (s, t)-core λ, the entries in the rectangular

which is determined by the lower-left corner element st− s− t and the upper-right corner

element s/2 + t cannot be parts of λ. Thus we can remove the rectangular from the (s, t)-

diagram. It is evident that the size of this rectangular is (u − 1) × v. Here we also refer

the remaining two smaller diagrams as the Yin diagram and the Yang diagram, which

generalize the concept of the Yin diagram and the Yang diagram to all possible coprime

pairs.
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Case 2: t > s ≥ 4. Clearly, the top Yin diagram has u rows with st/2− s as its largest

element, and the bottom Yang diagram has u − 1 rows with (t − 1)s/2 − t as its largest

element. Recall that the entries in the rectangular which is determined by the lower-left

corner element st− s− t and the upper-right corner element s/2 + t cannot be parts of λ.

Consequently, we derive that for any positive integer a, it is a part of an (s, t)-core if and

only if a is in the Yin or Yang diagram. As an example, the (8, 13)-diagram is shown in

Figure 3.2.

83

70

57

44

31

18

5

75

62

49

36

23

10

67

54

41

28

15

2

59

46

33

20

7

51

38

25

12

43

30

17

4

35

22

9

27

14

1

19

6

11 3

Figure 3.2: The (8, 13)-diagram.

Next we will prove some properties about the number ci of elements of residue i modulo

s in (s, t)-diagram. For 1 ≤ i ≤ s−1, since ci entries of residue i modulo s in (s, t)-diagram

are i, s + i, . . . , s(ci − 1) + i, we deduce that sci + i ≡ 0 (mod t). By Lemma 3.2 in [11],

we have

(3.3) ci =
tσ(i)− i

s
,

where σ is the permutation on {1, 2, . . . , s − 1} satisfying tσ(i) ≡ i (mod s). Note that

the definition of σ implies that for all 1 ≤ i ≤ s− 1,

tσ(i) + tσ(s− i) ≡ 0 (mod s).

Since s and t are coprime and 1 ≤ σ(i), σ(s− i) ≤ s− 1, we see

σ(i) + σ(s− i) = s.

It follows from (3.3) that

(3.4) ci + cs−i = t− 1.
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Thus the number of entries in the (s, t)-diagram is

(3.5)
s− 1

2
× (t− 1) = (2u− 1)v.

For accuracy in the rest of proof, we assign the row indices of the Yin diagram from

bottom to top as 0, 1, . . . , u− 1, and row indices of the Yang diagram from top to bottom

as 1, 2, . . . , u− 1. Note that the largest and smallest entry in the 0-th row of Yin diagram

(the shadowed row in Figure 3.1) are st/2− s and s/2, respectively. Hence the length of

the 0-th row is (t−1)/2, which implies that it consists of all entries of residue s/2 modulo

s in the (s, t) diagram. Moreover, we know that for 1 ≤ j ≤ u− 1, the entries in the j-th

row of the Yin diagram are of residue (s/2 − j)t − s modulo s, and symmetrically, the

entries in the j-th row of the Yang diagram are of residue (s/2 + j)t − s modulo s (see

Figure 3.1). Since (s/2− j)t− s+ (s/2 + j)t− s ≡ 0 (mod s), by (3.4), the sum of lengths

of j-th rows of the Yin and Yang diagrams is also (t− 1)/2.

Therefore, the Yang diagram rotated 180◦, together with the Yin diagram, can combine

a u×v-rectangular diagram by gluing the j-th rows of both diagrams for 1 ≤ j ≤ u−1 and

leaving the 0-th row of the Yin diagram as the bottom row of the rectangular diagram.

Here we also refer this rectangular diagram as the (s, t) Yin-Yang diagram.

Note that in each row of (s, t) Yin-Yang diagram, the entries in the Yin (resp. Yang)

part are of residue i (resp. s− i) modulo s for some 1 ≤ i ≤ s− 1. Let pj (resp. qj) be the

smallest entry in the Yin (resp. Yang) part of the j-th row (from top to bottom) of the

Yin-Yang diagram for 1 ≤ j ≤ u − 1. Based on the analysis above, we have pj + qj = s.

Thus, flipping the Yin-Yang diagram by x-axis and turning the entries in the Yin part

into negative, we can obtain a uniform expression for all entries. Computing directly, it

is easy to deduce that the result rectangular diagram is exactly B(s, t) (see Figure 3.3 for

example of s = 8 and t = 13).

Case 3: s > t ≥ 3. The proof goes similar as Case 2 except we consider the (s, t)-

diagram in aspect of columns rather than rows. Since s > t, after removing the rectangle

with corners st− s− t and s/2 + t, and size (u− 1)× v, one can check that the Yin and

Yang diagram both consist of v columns. Denote by di the number of elements of residue

i modulo t in (s, t)-diagram for 1 ≤ i ≤ t− 1. By [11, Lemma 3.2] and same approach in

Case 2, for each i we deduce di + dt−i = s− 1 = 2u− 1.

We assign the column indices of the Yin diagram from left to right as 1, 2, . . . , v, and

column indices of the Yang diagram from right to left as 1, 2, . . . , v. For 1 ≤ j ≤ v, the

entries in the j-th column of the Yin diagram are of residue st/2 − js modulo t, and

symmetrically, the entries in the j-th column of the Yang diagram are of residue js − t
modulo t. Since st/2− js+ js− t ≡ 0 (mod t), then the sum of lengths of j-th columns

of the Yin and Yang diagrams is u in view of (2u − 1) − (u − 1) = u. It follows that the

Yang diagram rotated 180◦ and the Yin diagram also give the (s, t) Yin-Yang diagram
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with size u × v. Note that in each column of (s, t) Yin-Yang diagram, the entries in the

Yin (resp. Yang) part are of residue i (resp. t− i) modulo t for some 1 ≤ i ≤ t− 1. Let pj

(resp. qj) be the smallest entry in the Yin (resp. Yang) part of the j-th column (from left

to right) of the Yin-Yang diagram for 1 ≤ j ≤ v. Then we have pj + qj = t. Therefore,

flipping the (s, t) Yin-Yang diagram horizontally then taking the entries in Yin part into

negative, we arrive at the array B(s, t).

In conclusion, since the (s, t) Yin-Yang diagram contains all possible parts may occur

in (s, t)-cores, so dose the set of the absolute values of entries in B(s, t).

Let P(B) be the set of lattice paths in B = B(s, t) from the lower-left corner to the

upper-right corner (see the solid lines in Figure 3.3). For a lattice path P in P(B), denote

by MB(P ) the set of positive entries above P and the absolute values of negative entries

below P . For example, MB(P ) = {1, 10, 2, 4} in Figure 3.3.

-44

-31

-18

-5

-36

-23

-10

3

-28

-15

-2

11

-20

-7

6

19

-12

1

14

27

-4

9

22

35

Figure 3.3: A lattice path in the array B(8, 13).

Based on Lemma 3.1, we find the similar bijective behavior as stated in Corollary 2.4

for coprime pairs (s, t) with even s.

Theorem 3.2. Let B = B(s, t) be the array defined by (3.1). Then there exists a bijection

Ψ between the set P(B) of lattice paths and the set of (s, t)-cores such that for P ∈ P(B),

the set of the parts of Ψ(P ) is given by MB(P ).

Since the number of lattice paths in B(s, t) is
(
u+v
u

)
, the proof of Theorem 1.3 is directly

followed from Theorem 3.2.

Proof of Theorem 3.2. By Lemma 3.1, we know that the set of the absolute values of the

array entries in B contains all possible parts in an (s, t)-cores. Given any P ∈ P(B), we

shall prove that MB(P ) is the set of the parts of an (s, t)-core λ. It is trivial for s = 2.

Assuming s ≥ 4 and |Bi,j | ∈MB(P ), we consider the following two cases.

Case 1. If Bi,j > 0, then Bi,j is above the path P . Since P is a lattice path in B from

the lower-left corner to the upper-right corner, the entry Bi−1,j (resp. Bi,j−1) must be in

MB(P ) if Bi−1,j > 0 (resp. Bi,j−1 > 0), which implies that MB(P ) ∩ {Bi,j : Bi,j > 0}
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is closed under subtraction of multiples of s and t. Meanwhile, if Bi−1,j < 0 (resp.

Bi,j−1 < 0), then |Bi−1,j | (resp. |Bi,j−1|) cannot be in MB(P ). In other words, the

elements in the conjugate runner of the runner containing Bi,j (both with respect to the

s- and t-abacus) cannot be in MB(P ).

Case 2. If Bi,j < 0, then Bi,j is below the path P . Thus for Bi+1,j < 0 (resp. Bi,j+1 <

0), |Bi+1,j | (resp. |Bi,j+1|) must be in MB(P ), and for Bi+1,j > 0 (resp. Bi,j+1 > 0),

|Bi+1,j | (resp. |Bi,j+1|) cannot be in MB(P ). With the same argument in Case 1, we

derive that |Bi,j | also satisfies the constraints of an (s, t)-core.

By the definition of the (s, t)-core, the elements in MB(P ) indeed form an (s, t)-core.

For example in Figure 3.3, (10, 4, 2, 1) is an (8, 13)-core.

On the other hand, if λ is an (s, t)-core, denote by Bi,ji the rightmost element in the

i-th row of the array B whose absolute value is a part of λ. To prove all parts of λ form

some lattice path P in B from the lower-left corner to the upper-right corner, it equivalent

to show ji ≥ ji+1. If Bi,ji > 0 and Bi+1,ji+1 < 0, by the staircase shapes of the Yin and

Yang diagrams, then clearly ji ≥ ji+1. If Bi,ji , Bi+1,ji+1 > 0 or Bi,ji , Bi+1,ji+1 < 0, we also

have ji ≥ ji+1 since the part set of λ is closed under subtraction of multiples of s and t.

If Bi,ji < 0 and Bi+1,ji+1 > 0, then |Bi+1,ji | must be a part of λ since |Bi+1,ji | = |Bi,ji | − t
and λ is a t-core. However, noting that Bi+1,ji < 0, we are led to |Bi+1,ji |+ |Bi+1,ji+1 | ≡ 0

(mod s), contracting λ is also a s-core.

4. The average size of an (s, t)-core for coprime integers s and t with even s

As the same in Section 2, for any lattice path P in the array B(s, t), denote by P (resp. P )

the set of cells (i, j) in B(s, t) that are above (resp. below) P . Then in terms of the bijection

Ψ, we obtain the following lemma.

Lemma 4.1. Let P ∈ P(B), we have

(4.1) |Ψ(P )| =
∑

(i,j)∈P

Bi,j −
(u+ 1)v

6
(u− v − 2uv − 1).

Proof. By Theorem 3.2, we see that

|Ψ(B)| =
∑

(i,j)∈P
Bi,j>0

Bi,j −
∑

(i,j)∈P
Bi,j<0

Bi,j

=
∑

(i,j)∈P

Bi,j −
∑

(i,j) : Bi,j<0

Bi,j .

To prove (4.1), it is sufficient to show that
∑

(i,j) : Bi,j<0Bi,j = v
6 (u+1)(u−v−2uv−1).



1038 Joseph L. P. Wang and Jane Y. X. Yang

By (3.1), we have

∑
1≤i≤u
1≤j≤v

Bi,j =
∑

1≤i≤u
1≤j≤v

(
−s+ 2

2
t+ js+ it

)
=
uv

2
(u− 2v − 1).

We proceed to prove

(4.2)
∑

1≤i≤u
1≤j≤v

|Bi,j | =
v

6
(4u2v + u2 + 2v − 3u+ 2),

which means ∑
(i,j) : Bi,j<0

Bi,j =
1

2

∑
1≤i≤u
1≤j≤v

(Bi,j − |Bi,j |) =
(u+ 1)v

6
(u− v − 2uv − 1),

as expected.

If s = 2, we have ∑
1≤j≤v

|B1,j | =
∑

1≤j≤v
(t− 2j) = v2,

which is the same as (4.2) with u = s/2 = 1. Thus we can assume s ≥ 4 in the rest proof.

Recall that the number of entries in the (s, t)-diagram is (2u− 1)v by (3.5), implying that

the sum of the entries in the (s, t)-diagram is (s2−1)(t2−1)/24+
(
(2u−1)v

2

)
, by Lemma 3.4

of [11]. Subtracting the sum of the entries in the (u − 1) × v-rectangular diagram with

corners st− s− t and s/2 + t = u+ 2v + 1 (see Figure 3.1), we derive

∑
(i,j)

|Bi,j | =
(s2 − 1)(t2 − 1)

24
+

(
(2u− 1)v

2

)

−

(u− 1)v(u+ 2v + 1) + (u− 1)

v−1∑
i=0

is+ v

u−2∑
j=0

jt


=

(s2 − 1)(t2 − 1)

24
+

(
(2u− 1)v

2

)
− (u− 1)v(u+ 2v + 1)

− (u− 1)s

(
v

2

)
− vt

(
u− 1

2

)
=
v

6
(4u2v + u2 + 2v − 3u+ 2),

which completes the proof.

Now we are ready to give the average size of an (s, t)-core for any coprime integer pair

(s, t) with even s.
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Proof of Theorem 1.4. Let BC(s, t) denote the set of (s, t)-cores. Combining Theorem 3.2

and Lemma 4.1, we obtain

(4.3)
∑

λ∈BC(s,t)

|λ| =
∑

P∈P(B)

 ∑
(i,j)∈P

Bi,j −
(u+ 1)v

6
(u− v − 2uv − 1)

 .

By (3.1) and Lemma 2.6, we have

∑
P∈P(B)

∑
(i,j)∈P

Bi,j =
∑

P∈P(B)

∑
(i,j)∈P

(
−s+ 2

2
t+ js+ it

)

= −s+ 2

2
t
∑

1≤i≤u
1≤j≤v

f(i, j) + s
∑

1≤i≤u
1≤j≤v

jf(i, j) + t
∑

1≤i≤u
1≤j≤v

if(i, j)

= −s+ 2

2
t

(
u+ v

v

)
uv

2
+ s

(
v + 2

3

)(
u+ v

v + 1

)
+ t

(
u+ 2

3

)(
u+ v

u+ 1

)
=

(
−uv(s+ 2)t

4
+
uv

6
(v + 2)s+

uv

6
(u+ 2)t

)(
u+ v

v

)
=
uv

6
(2u− 2uv − 2v − 1)

(
u+ v

v

)
.

(4.4)

Applying (4.4) to (4.3), since |P(B)| =
(
u+v
u

)
, we arrive at

(4.5)
∑

λ∈BC(s,t)

|λ| =
(
uv

6
(2u− 2uv − 2v − 1)− (u+ 1)v

6
(u− v − 2uv − 1)

)(
u+ v

u

)
.

Finally, replacing u by s/2 and v by (t − 1)/2 in (4.5) and combining with Theorem 1.3

lead to the average size of an (s, t)-core:∑
λ∈BC(s,t) |λ|(

u+v
u

) =
(t− 1)(s2 + st− 3s+ 2t+ 2)

48
.

The proof is completed.
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