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Abstract. In this paper, we present an efficient fully-discrete local discontinuous

Galerkin (LDG) method for nonlinear reaction-diffusion systems, which are often used

as mathematical models for many physical and biological applications. We can derive

numerical approximations not only for solutions but also for their gradients at the same

time, while most of methods derive numerical solutions only. And due to the strict

time-step restriction (∆t = O(h2min)) of explicit schemes for stability, we introduce the

implicit integration factor (IIF) method based on Krylov subspace approximation, in

which the time step can be taken as ∆t = O(hmin). Moreover, the method allows us to

compute element by element and avoid solving a global system of nonlinear algebraic

equations as the standard implicit schemes do, which can reduce the computational

cost greatly. Numerical experiments about the reaction-diffusion equations with ex-

act solutions and the well-studied Schnakenberg system are conducted to illustrate

the accuracy, capability and advantages of the method.

1. Introduction

Mathematical models for many physical and biological applications are of the following

form

(1.1)
∂u

∂t
= B∆u + F(u),

where u ∈ R2 represents a group of physical or biological species, B =
(
βu 0
0 βv

)
is the

diffusion constant matrix, F(u) describes the chemical or biological reactions and ∆ is

the Laplacian operator. Let Ω ⊂ R2 be an open, bounded domain and the system is

defined on Ω × [0, T ]. Turing-type models [30] are the typical examples, which include

the Schnakenberg model [28], the chloride-iodide-malonic acid reactive model [19], the

Gierer-Meinhardt model [9], the Gray-Scott model [11] and so on.

In order to obtain accurate numerical solutions to the nonlinear reaction-diffusion

system (1.1), which are usually highly stiff, many numerical schemes have been studied.
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These include the finite difference methods, spectral methods and finite element methods.

Due to the complex shapes of actual problems, the system (1.1) are often defined on

irregular geometrical domains. However, the extension of the finite difference or spectral

methods to complicated and irregular domains is not at all trivial. On the contrary, finite

element methods on unstructured meshes are powerful means for handling the complicated

domain geometries [17]. In the references [13, 22, 26, 29], continuous Galerkin (CG) finite

element methods were used to solve the reaction-diffusion systems on complex domains.

Recently, discontinuous Galerkin (DG) methods have attracted more attention since

they possess several advantages: the flexibility for easy hp-adaptivity including changes

of approximation orders between adjacent elements and allowing the existence of hanging

nodes, the compactness and efficient parallel implementation. The Cheng-Shu DG method

proposed in [6] was used to solve the system (1.1) in both [33] with the application of Strang

type symmetrical operator splitting technique and [5] with Krylov implicit integration

factor (IIF) method for temporal discretization. And Zhang et al. [32] introduced the direct

discontinuous Galerkin (DDG) method proposed in [21] to discrete the space-derivative

of the system (1.1). However, the above two kinds of DG methods both only derived the

numerical solutions.

While the gradients of solutions are usually very important in practical problems, for

example, the fluxes in fluid flow. And it is expected to derive the numerical approxima-

tions for both solutions and their gradients at the same time. So, in this paper, we choose

to pursue another kind of DG method, the local discontinuous Galerkin (LDG) method.

The LDG method is a generalization of the DG method which was designed for solving hy-

perbolic conservation laws containing only first order spatial derivatives in [25]. The LDG

method aims at solving equations containing higher than first order spatial derivatives. It

was proposed by Cockburn and Shu [8] to solve a convection-diffusion equation containing

a second order spatial derivative, motivated by the successful numerical experiments of

Bassi and Rebay [1] for the compressible Navier-Stokes equations. And the reason why it

is called local DG methods is illustrated in [8]: It is to emphasize the difference between

this method which uses discontinuous finite elements for space discretizations with the so-

called DG method for parabolic problems introduced by Jamet [15] which has approximate

solution discontinuous only in time, not in space. The LDG method need to rewrite the

equations with higher order derivatives as a first order system by introducing an auxiliary

variable (gradient), which can be locally solved in terms of the original variable (solution)

at element level. By a careful choice of the rewriting, nonlinear stability can be obtained

even without slope limiters, just like the DG method in the purely hyperbolic case [16].

The analysis of the LDG method can be see in [8,31], which shows sub-optimal O(hk) L2

error estimates for general triangulations and piecewise polynomials of degree k. However,
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in the DG method, approximations of the derivatives of the discontinuous approximate

solution are not obtained directly and need to use a projection into suitable finite elements

spaces. The projection requires the inversion of global mass matrices, which in [3, 4] are

“lumped” in order to maintain the high parallelizability of the method. And the mass

lumping needed to enforce the full parallelizability of the method could cause a degrada-

tion of the formal order of accuracy if polynomials of higher than one degree were used.

But it is not the case for the LDG method, in which the original idea of the DG method

is applied to both the solution and its gradient that are now independent unknowns. And

the resulting LDG method is a highly parallelizable method with high-order accuracy.

The temporal discretization can be carried out using the following schemes: explicit,

semi-implicit, implicit-explicit schemes, the exponential time-differencing scheme [18] and

more recently the Krylov IIF method [5] which is based on the IIF method [24]. How-

ever, considering of the the large number of degrees of freedom caused by LDG spatial

discretization which introduces another auxiliary variable, the computational cost can be

significant for implicit methods which needs to solve a global system of nonlinear equa-

tions. It is known to all that, like any other DG methods, with an appropriate temporal

discretization such as the explicit schemes and IIF schemes, the LDG discrete formulation

can be solved element by element at every time step. But explicit methods require a se-

vere time-step restriction (∆t = O(h2
min)). In this paper we adopt the Krylov IIF method

which is an IIF method based on Krylov subspace approximations. Using the IIF method

to discretize time can relax the time-step to ∆t = O(hmin) and maintain the property

of LDG method that the resulting algebraic system can be solved element by element.

However, by applying the IIF method, we need to evaluate the product of the matrix

exponential and a vector. And the Krylov subspace method can approximate it efficiently.

Therefore, we adopt the Krylov IIF method for temporal discretization. Recently, the

semi-implicit spectral deferred correction method is proposed in [12], by using which can

achieve the same effect as the IIF method, and we will study it in the future.

The rest of this paper is organized as follows. In Section 2, we present the LDG formu-

lation for spacial discretization, eliminate the auxiliary variable qh at the element level,

and then apply the Krylov IIF methods to discretize the resulting ordinary differential

equations (ODEs) which has only uh as unknown. In Section 3, numerical experiments

are conducted to confirm that the method has its advantages and is efficient for not only the

linear and nonlinear test equations with exact solutions but also for the reaction-diffusion

systems, for example, the classic Schnakenberg model.
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2. The LDG formulation and application of Krylov IIF methods

In this section, we take the scalar case of (1.1) as an example to illustrate the process of

combining LDG methods with Krylov IIF schemes to solve the nonlinear reaction-diffusion

systems.

2.1. The LDG methods for spatial discretization

For the sake of simplicity and convenience, in the following analysis, we consider the scalar

case of (1.1):

(2.1)
∂u

∂t
= β∆u+ F (u),

and now B = β is a diffusion constant. We take the boundary condition as

(2.2)
∂u(x, y, t)

∂n
= g · n in ∂Ω× (0, T )

with an appropriate initial condition

u(x, y, 0) = u0(x, y) in Ω,

where n is the outward unit normal to ∂Ω. The numerical formulation for the scalar case

can be straight forwardly extended to solve the system case component by component.

To develop a LDG formulation, we first rewrite the problem (2.1) as a system of first

order differential equations

q− β∇u = 0,
∂u

∂t
−∇ · q = F (u).

Let Th = {K} be a regular triangulation of Ω with h = max{hK | hK is the diameter of

K,∀K ∈ Th} the mesh size. Eh denotes the collection of all edges in Th. E◦h and Ebh are

the sets of interior edges and boundary edges, respectively.

To obtain the weak formulation, we multiply the above two equations by arbitrary,

smooth test functions w, v, respectively, integrate over each element K ∈ Th, and apply

divergence and Green’s theorems to obtain∫
K

q ·w dx +

∫
K
u∇ · (βw) dx−

∫
∂K

uβw · nK ds = 0,∫
K

∂u

∂t
v dx +

∫
K

q · ∇v dx−
∫
∂K

q · nKv ds =

∫
K
F (u)v dx,

where nK is the outward unite normal to ∂K. Note that the above equations are well

defined for any functions (q, u) and (w, v) in W × V , where

W = {w ∈ (L2(Ω))2 : w|K ∈ (H1(K))2, ∀K ∈ Th},

V = {v ∈ L2(Ω) : v|K ∈ H1(K), ∀K ∈ Th}.
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Define the finite element space as follows:

Vh = {vh ∈ L2(Ω) : vh|K ∈ P 1(K),∀K ∈ Th},

Wh = {wh ∈ (L2(Ω))2 : wh|K ∈ (P 1(K))2, ∀K ∈ Th},

where P 1(K) denotes the linear polynomials on K. Then the LDG formulation can be

defined as: finding (qh, uh) ∈Wh × Vh such that, for (wh, vh) ∈Wh × Vh and K ∈ Th,∫
K

qh ·wh dx +

∫
K
uh∇ · (βwh) dx−

∫
∂K

ûhβwh · nK ds = 0,∫
K

∂uh
∂t

vh dx +

∫
K

qh · ∇vh dx−
∫
∂K

q̂h · nK vh ds =

∫
K
F (uh)vh dx,

(2.3)

where the quantities ûh and q̂h are the so-called numerical fluxes and chosen as [2],

∀ e ∈ E◦h, ûh|e = {uh}+ C12 · [uh] and q̂h|e = {qh} − C11[uh]−C12[qh].

The stability parameter C11 > 0 and is taken to be O(h−1
e ) to enhance the accuracy of the

LDG method. The auxiliary vector parameter C12 are generally chosen as C12 ·ne = O(1)

on each edge e. The choice of these two parameters is stated in the reference [2,7]. We shall

emphasize here that the jump [ · ] and the mean value { · } take the standard definitions

in discontinuous Galerkin methods, that is, if we assume e = ∂K1 ∩ ∂K2, then [v] and [w]

on e are defined by

[v] = v1n1 + v2n2, [w] = w1 · n1 + w2 · n2,

the mean value { · } are defined by

{v} =
1

2
(v1 + v2), {w} =

1

2
(w1 + w2),

where (vi,wi) are the traces of (v,w) on e from the interior of Ki, i = 1, 2 and ni is the

outward unit normal to ∂Ki.

The boundary conditions (2.2) are imposed through the following definition of the

numerical fluxes

∀ e ∈ Ebh, ûh|e = uh and q̂h|e = g.

By use of basis functions, we can express qh = (qh,x, qh,y) and uh as

qh,l =

3∑
i=1

ql,iφi = ΦTql, l = x, y, uh =

3∑
i=1

uiφi = ΦTu,

where Φ = (φ1, φ2, φ3)T are basis functions, ql = (ql,1, ql,2, ql,3)T , l = x, y and u =

(u1, u2, u3)T are degrees of freedom.
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By the similar means as shown on p. 117 and p. 134 in [20], we derive that, for an

interior element K,(∫
K

ΦΦT dx

)
q +

(∫
K
∇(βφ)φT dx

)
u−

(∫
∂K

β(1
2 + C12)ΦΦTn ds

)
u

−
(∫

∂K
β(1

2 − C12)ΦΦT
(NB)n ds

)
u(NB) = 0,(∫

K
ΦΦT dx

)
∂u

∂t
+

(∫
K

(∇φ)φT dx

)
q−

(∫
∂K

(1
2 − C12)ΦΦTn ds

)
q

−
(∫

∂K
(1

2 + C12)ΦΦT
(NB)n ds

)
q(NB) +

(∫
∂K

C11ΦΦT ds

)
u

−
(∫

∂K
C11ΦΦT

(NB) ds

)
u(NB) =

∫
K
F (uh)Φ dx,

where n = nK and n = (nx, ny) to simplify notations; q = (qx,qy) and subscript (NB)

denotes the quantities belonging to the adjacent elements, see Figure 2.1. We also use the

relations that C12 = C12 · n and n(NB) = −n.

K
(NB,1)

(NB,2)

(NB,3)

(NB,1)_(NB,2)

(NB,1)_(NB,3)

(NB,2)_(NB,3) (NB,2)_(NB,1)

(NB,3)_(NB,1)

(NB,3)_(NB,2)

(NB,1)_(NB,1)

(NB,3)_(NB,3)

(NB,2)_(NB,2)

KK

K1

K2

K3

Figure 2.1: The sketch of triangular element K and its neighbor elements.

By calculation, we have the final matrix equation for the interior element K,
0 0 0

0 0 0

0 0 M




(qx)t

(qy)t

(u)t

+


M 0 Hx

0 M Hy

Jx Jy 0




qx

qy

u

+

3∑
i=1


0 0 Hx,i

0 0 Hy,i

Jx,i Jy,i Gu,i




qx

qy

u



+

3∑
i=1


0 0 Hx,B,i

0 0 Hy,B,i

Jx,B,i Jy,B,i Gu,B,i




qx

qy

u


(NB,i)

=


0

0

Su

 ,
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where (u)t = ∂u/∂t denotes time derivative and the matrices are calculated as follows:

for m,n = 1, 2, 3,

Hl,mn =

∫
K

∂(βφm)

∂l
φn dx, Jl,mn =

∫
K

∂φm
∂l

φn dx, l = x, y,

Mmn =

∫
K

φmφn dx, Su,m =

∫
K

F (uh)φm dx,

Gu,i,mn =

∫
(∂K)i

C11φmφn dx, Gu,B,i,mn = −
∫
(∂K)i

C11φm(φn)(NB,i) dx, i = 1, 2, 3,

Hl,i,mn = −
∫
(∂K)i

( 1
2 + C12)βφmφnnl ds, Hl,B,i,mn = −

∫
(∂K)i

( 1
2 − C12)βφm(φn)(NB,i)nl ds,

Jl,i,mn = −
∫
(∂K)i

( 1
2 − C12)φmφnnl ds, Jl,B,i,mn = −

∫
(∂K)i

( 1
2 + C12)φm(φn)(NB,i)nl ds,

with ∂K =
⋃3
i=1(∂K)i, (∂K)i denoting the common edge between the element K and its

adjacent element Ki. The notation Hl,mn denotes the (mth row, nth column) element of

the matrix Hl, and Hl,B,i,mn is the (mth row, nth column) element of the matrix Hl,B,i.

The meanings of other notations are the same.

In our numerical experiments, the above integrations are carried out by numerical

integration formulas. For the integrations on the element K, we employ the numerical

integration formula with midpoints at three edges of the triangular element∫
K
φdx ≈ |K|

3
(φM1 + φM2 + φM3),

where φM1 , φM2 , φM3 are values of midpoints at three edges of the element K and |K|
is the area of K. Its algebraic accuracy is 2, which is precise for quadratic polynomials,

linear polynomials and constants. For the integrations on the edge ∂K, we employ the

Gauss-Legendre quadrature formula with three Gauss points, whose algebraic accuracy

is 5.

The above derivation is aimed at interior elements, where we assume that K is an

interior element. Now, we consider the boundary elements. If K is an boundary element,

there exists at least one boundary edge. If the edge (∂K)i sharing by K and Ki is a

boundary edge, that is to say, Ki does not exist, then the above matrices related to the

edge (∂K)i can have some differences and be more simple. We only need to insert the

numerical fluxes on boundary edges instead of the numerical fluxes on interior edges into

(2.3). Then, by the same way as that derived the matrices for the interior edges, we can

derive the matrices for the boundary edge (∂K)i,

Jl,i,mn = 0, Gu,i,mn = 0, Hl,i,mn = −
∫

(∂K)i

βφmφnnl ds, l = x, y,

where we assume that the problem has the no-flux boundary condition. In addition, for

an boundary edge (∂K)i, the quantities Gu,B,i, Hl,B,i, Jl,B,i, l = x, y, do not exist and are

not needed.
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To facilitate computations, we rewrite the above matrix form into two separate matrix

equations M 0

0 M

qx

qy

+

Hx + HX

Hy + HY

u +
3∑
i=1

Hx,B,i

Hy,B,i

u(NB,i) =

0

0

 ,(2.4)

M
du

dt
+ GUu +

3∑
i=1

Gu,B,iu(NB,i) + (Jx + JX)qx + (Jy + JY )qy

+

3∑
i=1

∑
l=x,y

Jl,B,i(ql)(NB,i) = Su,

(2.5)

where we use the notifications

HX =
3∑
i=1

Hx,i, HY =
3∑
i=1

Hy,i, GU =
3∑
i=1

Gu,i, JX =
3∑
i=1

Jx,i, JY =
3∑
i=1

Jy,i.

If the degrees of freedom are taken as the values of midpoints at three edges of K,

then M ≈ |K|3 I with |K| the area of the element K and I the unit matrix. Su ≈ |K|3 F(u)

with F(u) =

(
F (u1)
F (u2)
F (u3)

)
. At this moment, (2.4) can be rewritten as, ∀K ∈ Th,

qx = − 3

|K|

(
(Hx + HX)u +

3∑
i=1

Hx,B,iu(NB,i)

)

qy = − 3

|K|

(
(Hy + HY )u +

3∑
i=1

Hy,B,iu(NB,i)

)
,

(2.6)

which is an advantage of LDG method that the auxiliary variable can be expressed by

original variable locally.

As a special case of (2.6), for the adjacent elements Ki, i = 1, 2, 3, we have

(qx)(NB,i) = − 3

|Ki|

(H(NB,i)
x + H(NB,i)

X )u(NB,i) +
3∑
j=1

H(NB,i)
x,B,j u(NB,i)(NB,j)


(qy)(NB,i) = − 3

|Ki|

(H(NB,i)
y + H(NB,i)

Y )u(NB,i) +

3∑
j=1

H(NB,i)
y,B,j u(NB,i)(NB,j)

 ,

where (NB, i), i = 1, 2, 3, denote the quantities belonging to K’s adjacent elements Ki,

see Figure 2.1. Similarly, (NB, i)(NB,j), j = 1, 2, 3, denote the adjacent elements Kij of

Ki, respectively. And u(NB,i)(NB,j)
= u when i = j.

Substituting the above equations and (2.6) into (2.5), we derive a system including

original variable only,

(2.7)
du

dt
= − 3

|K|

Nu +
3∑
i=1

Niu(NB,i) +
3∑
i=1

3∑
j=1

Ñiju(NB,i)(NB,j)

+ F(u),
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where

N = GU −
3

|K|
((Jx + JX)(Hx + HX) + (Jy + JY )(Hy + HY )) ,

Ni = Gu,B,i −
3

|K|
((Jx + JX)Hx,B,i + (Jy + JY )Hy,B,i)

− 3

|Ki|

(
Jx,B,i(H(NB,i)

x + H(NB,i)
X ) + Jy,B,i(H(NB,i)

y + H(NB,i)
Y )

)
,

Ñi,j = − 3

|Ki|

(
Jx,B,iH

(NB,i)
x,B,j + Jy,B,iH

(NB,i)
y,B,j

)
.

2.2. IIF methods based on Krylov subspace approximation for time discretization

Assembling (2.7) over all of the elements in Th, we derive the global system of ODEs,

(2.8)
dU

dt
= AU + F(U),

where U = (uT1 ,u
T
2 , . . . ,u

T
Ne

)T , F(U) = (F(u1)T ,F(u2)T , . . . ,F(uNe)
T )T , uj is the de-

grees of freedom on element Kj , j = 1, 2, . . . , Ne, and here Ne denotes the number of

triangular elements. The 3Ne× 3Ne global matrix A is sparse and formulated element by

element according to (2.7). Each element K ∈ Th contributes to the global matrix A with

no more than ten nonzero 3× 3 block matrices at three corresponding rows.

Then we apply the second order IIF scheme proposed in [24] for the time evolution in

the ODE system (2.8) and obtain the full discrete form

(2.9) U
n+1

= eA∆t

(
U
n

+
∆t

2
F(U

n
)

)
+

∆t

2
F(U

n+1
),

where n is the time level, tn+1 = tn + ∆t and U
n

= U(tn).

Now, we given the specific process to derive the above second order IIF scheme. First,

multiplying (2.8) by the integrating factor e−At, we integrate the equation over one time

step from tn to tn+1 ≡ tn + ∆t to get

U(tn+1) = U(tn)eA∆t + eA∆t

∫ ∆t

0
e−AτF(U(tn + τ)) dτ.

To construct a scheme of second order truncation, we define U
n

as the numerical solu-

tion for U(tn) and approximate g(τ) = e−AτF(U(tn + τ)) with a first order Lagrange

polynomial L1(τ) with interpolation points at tn+1, tn, i.e., g(0) = F(U
n
), g(∆t) =

e−A∆tF(U
n+1

), then the second order approximation to g(τ) is

L1(τ) =
1

∆t

(
F(U

n
)(∆t− τ) + e−A∆tF(U

n+1
)τ
)

= F(U
n
) +

1

∆t

(
e−A∆tF(U

n+1
)− F(U

n
)
)
τ, 0 ≤ τ ≤ ∆t.
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Now the above equation can be discretized as

U
n+1

= eA∆tU
n

+ eA∆t

∫ ∆t

0
L1(τ) dτ

with ∫ ∆t

0
L1(τ) dτ = F(U

n
)∆t+

∆t

2

(
e−A∆tF(U

n+1
)− F(U

n
)
)

=
∆t

2
F(U

n
) +

∆t

2
e−A∆tF(U

n+1
).

So we obtain the second order discrete scheme is of the form (2.9).

In the full discrete form (2.9), when we compute U
n+1

, the vector Q = eA∆t(U
n

+
∆t
2 F(U

n
)) is a known quantity related to the earlier time level and can be computed

in advance. Although the matrix A is sparse, the exponential matrix eA∆t is dense.

Computing eA∆t directly is not practical. And here, we do not need the the exponential

matrix eA∆t itself, but only the product of the matrix exponential and the vector U
n

+
∆t
2 F(U

n
). So the Krylov subspace approximation shown in [5] is applied to evaluate it,

which is a good choice in terms of both accuracy and efficiency.

Therefore, the nonlinear system at tn+1 is decoupled from the diffusion with a simple

form

U
n+1

= Q +
∆t

2
F(U

n+1
),

which can be solved element by element. And the Ne 3 × 3 systems are independent of

each other with every system of the same structure. Then we only need to solve the local

algebraic system on every element Kj , j = 1, 2, . . . , Ne,

R(un+1
j ) = 0

with

un+1
j =


un+1
j,1

un+1
j,2

un+1
j,3

 , R(un+1
j ) =


un+1
j,1 −Q3(j−1)+1 − ∆t

2 F (un+1
j,1 )

un+1
j,2 −Q3(j−1)+2 − ∆t

2 F (un+1
j,2 )

un+1
j,3 −Q3(j−1)+3 − ∆t

2 F (un+1
j,3 )

 ,

where Q3(j−1)+m, m = 1, 2, 3, are the [3(j−1)+m]th elements of the vector Q, respectively.

An iterative method such as the Newton method can be applied to implement for the

above system. In the iterations to compute un+1
j , we use the numerical value unj at time

tn as the initial guess. And the threshold value for judging Newton iteration can be set

small enough and we take 10−13 in the numerical examples.
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3. Numerical experiments

In this section, numerical experiments are presented to demonstrate the validity and ac-

curacy of the LDG method with Krylov IIF schemes for solving the reaction-diffusion

systems on two-dimensional triangular meshes. First, we give two test examples with

exact solutions to manifest the convergence accuracy of the method. Then we apply the

method to a two reaction-diffusion system. And numerical results agree well with those in

other references. In addition, we derive the gradients of solutions at the same time, which

is not available in other methods.

All of the numerical examples considered in this section are subject to no-flux bound-

ary conditions. The triangular partitions used here are Delaunay partitions got from

EasyMesh. And the auxiliary parameters in the numerical fluxes are taken as

C11 =
C̃

he
, C12 · ne =

1

2
sign(ne1 + ne2), ∀ e ∈ ∂K ∩ Eh,

where he is the length of edge e, C̃ > 0 is the penalization parameter and set to be C̃ = 1

in the following computation. ne = (ne1, ne2) is the outward unit normal vector of K on

e. The time step size is taken as ∆t = O(hmin) instead of ∆t = O(h2
min), where hmin is

the length of the minimum edge in the triangular partition. And the dimension of the

Krylov subspace, which was used when implement the Krylov algorithm, is chosen to be

the same 25 for all the following numerical examples.

3.1. Numerical examples with exact solutions

In this subsection, we consider the linear and nonlinear parabolic problems defined on the

unit square domain Ω = [0, 1]2. The simulation is carried up to t = 2.0 at which the errors

in L2-norm and L∞-norm are measured for both solutions and the gradients of solutions.

Example 3.1. We consider the linear reaction-diffusion problem defined by (2.1) with

β = 1, F (u) = f(x, y, t) − u. The initial condition and right-hand side f(x, y, t) are

determined by the following exact solution

u(x, y, t) = exp(−t) cos(πx) cos(πy).

We use LDG method for spatial discretization on various triangular meshes with the

second order Krylov IIF temporal discretization to solve this example. And the time step

size is taken as ∆t = 0.05 ∗ hmin. CPU time, errors and order of accuracy for the method

are presented in Table 3.1. We can see that numerical solutions possess the optimal

approximation results in both L2-norm and L∞-norm for the exact solution

‖u− uh‖0 ≈ O(h2), ‖u− uh‖∞ ≈ O(h2),
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where the two norms are defined by

‖u− uh‖0 =

∑
K∈Th

∫
K

(u(x, y, T )− uh(x, y, T ))2 dxdy

1/2

,

‖u− uh‖∞ = max
K∈Th

(
max

(x,y)∈K
|u(x, y, T )− uh(x, y, T )|

)
,

which are approximated by

‖u− uh‖0 ≈

∑
K∈Th

(u(xK , yK , T )− uh(xK , yK , T ))2|K|

1/2

,

‖u− uh‖∞ ≈ max
K∈Th

|u(xK , yK , T )− uh(xK , yK , T )|

with (xK , yK) and |K| the barycenter and area of the element K respectively.

Ne CPU(s) error ‖error‖0 Order ‖error‖∞ Order

44 0.08 u− uh 3.1624E-3 - 6.4101E-3 -

150 0.17 8.4925E-4 1.7733 2.0087E-3 1.5651

596 7.37 2.1449E-4 2.4124 5.6723E-4 2.2167

2388 53.98 5.3074E-5 1.6864 1.5677E-4 1.5528

9502 403.28 1.2932E-5 2.1290 4.1637E-5 1.9990

37930 3362.80 3.2233E-6 2.0088 1.1111E-5 1.9101

q− qh 1.6782E-2 - 3.1025E-2 -

7.2733E-3 1.1277 1.5119E-2 0.9695

3.4847E-3 1.2899 8.0486E-3 1.1053

1.6869E-3 0.8760 3.0903E-3 1.1558

8.3527E-4 1.0598 1.5482E-3 1.0421

4.2083E-4 0.9912 7.8215E-4 0.9873

Table 3.1: Numerical results for Example 3.1 at t = 2.0 discretized in time by the second

order Krylov IIF method.

And the numerical approximation for the gradients have the suboptimal-order conver-

gence accuracy in L2-norm and L∞-norm

‖q− qh‖0 ≈ O(h), ‖q− qh‖∞ ≈ O(h),
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where these two norms are approximated by

‖q− qh‖0 ≈

∑
K∈Th

∑
i=x,y

qi(xK , yK , T )− qhi(xK , yK , T )

2

|K|


1/2

,

‖q− qh‖∞ ≈ max
K∈Th

(
max
i=x,y

|qi(xK , yK , T )− qhi(xK , yK , T )|
)

with q = (qx, qy), qh = (qhx, qhy). Here, T is the final time we have calculated and T = 2

in the numerical experiments.

The numerical results are consistent with the priori error analysis for the LDG method

in [2].

Ne CPU(s) error ‖error‖0 Order ‖error‖∞ Order

44 12.68 u− uh 2.2154E-3 - 4.3794E-3 -

150 140.47 6.5091E-4 1.6520 1.4343E-3 1.5056

596 2408.69 1.7345E-4 2.3184 4.3966E-4 2.0728

2388 34535.88 4.3241E-5 1.6773 1.1163E-4 1.6553

q− qh 1.5516E-2 - 3.1418E-2 -

7.0270E-3 1.0684 1.4929E-2 1.0036

3.4099E-3 1.2676 8.0136E-3 1.0907

1.6826E-3 0.8529 3.1344E-3 1.1335

Table 3.2: Numerical results for Example 3.1 at t = 2.0 discretized in time by the second

order Runge-Kutta method.

Then we come to verify, compared with the explicit-LDG method, the IIF-LDG method

can shorten the calculation time greatly. We discretized this example by the LDG method

in space and the second order explicit Runge-Kutta method in time. Now, the time step

size is taken to be ∆t = 0.01 ∗ h2
min, where the CFL number 0.01 is the largest value to

remain stable. And we present the numerical results and CPU times cost in Table 3.2,

where we only calculate to the fourth grid partition with 2388 elements because the cost

time has been long. The data in Tables 3.1 and 3.2 show that these two methods both

derive the expected accuracy in space. Compared the CPU times in these two tables, we

can observe that the IIF-LDG method indeed improves the calculation efficiency and the

smaller the grid size, the more obvious the advantage.
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Example 3.2. Consider the nonlinear reaction-diffusion problem defined by (2.1) with

β = 1, F (u) = f(x, y, t)− u2. The initial condition and f(x, y, t) are chosen such that the

exact solution is also the form as the linear case.

First, we apply the LDG method and the second order Krylov IIF method to discretized

this problem in space and in time respectively, where the time step size is taken as ∆t =

0.05∗hmin. Numerical results at t = 2.0 are given in Table 3.3, from which we can observe

that, by using LDG method for spacial discretization, we derived the expected accuracy

orders in both L2-norm and L∞-norm as the linear case above: second-order convergency

for the solution u and first-order convergency for the gradient q.

Ne CPU(s) error ‖error‖0 Order ‖error‖∞ Order

44 0.14 u− uh 6.2293E-3 - 1.1794E-2 -

150 0.17 1.6289E-3 1.8092 3.1322E-3 1.7883

596 3.50 4.0714E-4 2.4306 8.2647E-4 2.3356

2388 63.39 1.0115E-4 1.6815 2.1224E-4 1.6415

9502 577.36 2.4315E-5 2.1493 5.3059E-5 2.0902

37930 4563.48 6.0484E-6 2.0117 1.3710E-5 1.9567

q− qh 1.7074E-2 - 3.1008E-2 -

7.3242E-3 1.1416 1.5231E-2 0.9589

3.4912E-3 1.2989 8.0777E-3 1.1118

1.6887E-3 0.8770 3.0933E-3 1.1590

8.3244E-4 1.0665 1.5635E-3 1.0288

4.2086E-4 0.9862 7.8224E-4 1.0013

Table 3.3: Numerical results for Example 3.2 at t = 2.0 discretized in time by the second

order Krylov IIF method.

Then we solve this example with the second order explicit Runge-Kutta method for

temporal discretization. The time step size is taken as ∆t = 0.01 ∗ h2
min, and here 0.01

is the largest value to remain stable. Numerical results and CPU times cost are given in

Table 3.4, where we only calculate to the fourth grid partition with 2388 elements also since

the cost time has been long. The errors and order of accuracy in Table 3.4 are basically

the same as Table 3.3. However, the CPU times are much bigger, which demonstrates

that the IIF-LDG method can improve the calculation efficiency greatly compared with

the explicit-LDG method.
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Ne CPU(s) error ‖error‖0 Order ‖error‖∞ Order

44 10.89 u− uh 2.2236E-3 - 4.3858E-3 -

150 120.23 6.5389E-4 1.6509 1.4408E-3 1.5015

596 3102.86 1.7426E-4 2.3182 4.4077E-4 2.0763

2388 45712.23 4.3442E-5 1.6774 1.1172E-4 1.6573

q− qh 1.5551E-2 - 3.1384E-2 -

7.0328E-3 1.0703 1.4937E-2 1.0015

3.4106E-3 1.2686 8.0166E-3 1.0909

1.6827E-3 0.8531 3.1347E-3 1.1338

Table 3.4: Numerical results for Example 3.2 at t = 2.0 discretized in time by the second

order Runge-Kutta method.

We should point out that, although the CPU time in Tables 3.1 and 3.3 is respectively

larger than that in Tables 6 and 8 of [5], we derive the approximations for the gradients

at the same time here.

3.2. Application to a morphogenesis problem

In this subsection, we apply LDG method with Krylov IIF schemes to solve the Schnaken-

berg system.

Example 3.3. The Schnakenberg system proposed by Schnakenberg [28], which was used

to model the spatial distribution of the morphogen, e.g., the distribution of calcium in the

hairs of the whorl in Acetabularia [10], is also a classical example applied to test numerical

methods for reaction-diffusion equations, such as [14,22,23,27,32,33]. In non-dimensional

form the system is written as

(3.1)
∂u

∂t
= βu∆u+ κ(a− u+ u2v),

∂v

∂t
= βv∆v + κ(b− u2v).

Following the setup in [14], we take the initial conditions as

(3.2) u(x, y, 0) = a+ b+ 10−3 exp
(
−100((x− 1

3)2 + (y − 1
2)2)

)
, v(x, y, 0) =

b

(a+ b)2

with the parameters κ = 100, a = 0.1305, b = 0.7695, βu = 0.05, βv = 1.

In the computation, we take the time step size as ∆t = 0.01 ∗ hmin. First, we compute

the problem (3.1)–(3.2) on the square domain Ω = [0, 1]2, which is divided into 14836
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triangular elements, see Figure 3.1(a). And the other three pictures in Figure 3.1 are

respectively the numerical approximations of u at t = 0.5, t = 1.0 and t = 2.0, which

agree well with those in [32,33]. Here, we do not show the numerical solutions of v because

they have the similar pattern with those of u. Moreover, we derive the approximations of

q = βu∇u and p = βv∇v at the same time, which is not available by other methods. The

two components of the numerical approximation for q are plotted in Figure 3.2.
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Figure 3.1: The time evolution of the numerical solution uh on the square domain.



Krylov IIF-LDG Methods for Reaction-diffusion Systems 743

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

U

1.2
1
0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4
-1.6

(a) x-direction component qh,x at t = 0.5

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

U

1.2
1
0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4

(b) x-direction component qh,x at t = 1.0

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

U

1.4
1.2
1
0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4

(c) x-direction component qh,x at t = 2.0

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

U

1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4
-1.6

(d) y-direction component qh,y at t = 0.5

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

U

1.4
1.2
1
0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4

(e) y-direction component qh,y at t = 1.0

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

U

1.4
1.2
1
0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4

(f) y-direction component qh,y at t = 2.0

Figure 3.2: The two components of the numerical approximation for q on the square

domain.
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Then we compute the system on the circular domain Ω = {(x, y) | (x − 0.5)2 + (y −
0.5)2 ≤ 0.52}. And we use the Delaunay partitions with 16698 triangular elements, see

Figure 3.3(a). The numerical solutions uh at t = 0.5, t = 1.0 and t = 2.0 are presented in

Figure 3.3(b-d). And they also agree well with those in [32, 33]. In addition, Figure 3.4

shows the two components of the numerical approximation for q.
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Figure 3.3: The time evolution of the numerical solution uh on the circular domain.
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Figure 3.4: The two components of the numerical approximation for q on the circular

domain.
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4. Conclusions

In this paper, we have developed the LDG method, coupled with the Krylov IIF time

discretization, for nonlinear reaction-diffusion systems. We choose the values of midpoints

at three edges of the triangular element as the degrees of freedom, which can simplify the

form of the discrete system when we apply the Gauss numerical integration formula with

midpoints at its three edges to approximate the integral on a triangular element. By using

the LDG method for spacial discretization, we derive not only the numerical solutions but

also the numerical approximations for the gradients at the same time. However, the DG

method is designed for solving equations containing only first order spatial derivatives

and the approximations of the gradients are not obtained directly which need to use a

projection into suitable finite elements spaces. Furthermore, the important property of

LDG method that the computation can proceed element by element can also be remained,

which benefits from applying the IIF method for temporal discretization. And It also

relaxes the strict time-step restriction that is necessary for explicit schemes. In addition,

the Krylov subspace approximation is applied to efficiently compute the product of the

matrix exponential and a vector, which is produced from IIF temporal discretization.

Direct numerical simulations on two test equations with exact solutions, as well as the

morphogenesis systems from developmental biology, show that the method is efficient,

accurate and possesses its advantages. What is more, by comparing the CPU times to

implement the first two examples with the second order Krylov IIF method and the second

order explicit Runge-Kutta method, we verify that the Krylov IIF method, coupled with

LDG method, can shorten the calculation time greatly.
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