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An Expectation Formula Based on a Maclaurin Expansion

Mingjin Wang

Abstract. In this paper, we obtain an expectation formula with respect to the q-

probability distribution W (x, y; q) based on a Maclaurin expansion. The formula has

many applications in mathematics. Some of the applications are also given, which

include a probability version of the Al-Salam and Verma q-integral.

1. Introduction

Probabilistic methods are useful tools in the study of q-series, see [5,6,9,17–19]. Recently,

the present author [20] constructed the following discrete probability space (Ω,F ,P), where

Ω = {ω0, ω1, ω2, . . .}, F is the collection of all subsets of Ω and P is defined by

P({ω2k}) =
(yqk+1/x, qk+1; q)∞q

k

(q, yq/x, x/y; q)∞

and

P({ω2k+1}) =
−x(qk+1, xqk+1/y; q)∞q

k

y(q, yq/x, x/y; q)∞

for k = 0, 1, 2, . . . and xy < 0. We call a random variable X has a probability distribution

W (x, y; q), if,

P (X = yqk) =
(yqk+1/x, qk+1; q)∞q

k

(q, yq/x, x/y; q)∞
, k = 0, 2, 4, . . .

and

P (X = xqk) =
−x(qk+1, xqk+1/y; q)∞q

k

y(q, yq/x, x/y; q)∞
, k = 1, 3, 5, . . . .

In this paper, we use the Maclaurin expansion of a function f(x) to obtain an expectation

formula with respect to W (x, y; q). We shall give some applications of our main result in

later parts of the paper.
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We recall some definitions, notation and known results in [2, 7] which will be used

throughout this paper. In particular, we assume 0 < q < 1 throughout this paper. The

q-shifted factorials are defined as

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(1− aqk), (a; q)∞ =

∞∏
k=0

(1− aqk).

We also adopt the following compact notation for multiple q-shifted factorials:

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

where n is either an integer or ∞. The q-binomial coefficient is defined by[
n

k

]
=

(q; q)n
(q; q)k(q; q)n−k

.

Heine introduced the r+1φr basic hypergeometric series, which is defined by

r+1φr

(
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, x

)
=
∞∑
n=0

(a1, a2, . . . , ar+1; q)nx
n

(q, b1, b2, . . . , br; q)n
.

We also recall the q-binomial theorem

(1.1)
∞∑
n=0

(a; q)nx
n

(q; q)n
=

(ax; q)∞
(x; q)∞

, |x| < 1,

and its special case

(1.2)
∞∑
n=0

q(
n
2)xn

(q; q)n
= (−x; q)∞

as well as the q-Gauss summation formula

(1.3) 2φ1

(
a, b

c
; q,

c

ab

)
=

(c/a, c/b; q)∞
(c, c/ab; q)∞

,
∣∣∣ c
ab

∣∣∣ < 1.

In addition to the above notation, we also need F. Jackson’s q-integral defined by [8]∫ d

0
f(t) dqt = d(1− q)

∞∑
n=0

f(dqn)qn,

where ∫ d

c
f(t) dqt =

∫ d

0
f(t) dqt−

∫ c

0
f(t) dqt.

He also defined ∫ ∞
0

f(t) dqt = (1− q)
∞∑

n=−∞
f(qn)qn.
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On the other hand, the bilateral q-integral is defined by∫ ∞
−∞

f(t) dqt = (1− q)
∞∑

n=−∞
[f(qn) + f(−qn)]qn.

The q-integrals are important in the theory and applications of basic hypergeometric

series. For example, the present author gave some applications of the q-integrals in basic

hypergeometric series in [12–16].

An important class of q-hypergeometric polynomials is given by the Al-Salam-Carlitz

polynomials ϕ
(a)
n (x|q), which are defined as [11]

ϕ(a)
n (x|q) =

n∑
k=0

[
n

k

]
xk(a; q)k.

If a = 0, we get the Rogers-Szegö polynomials

hn(x|q) =

n∑
k=0

[
n

k

]
xk.

If X ∼W (x, y; q), −1 < x < 0, and 0 < y ≤ 1, then [20]

(1.4) E
{

Xn

(aX, bX; q)∞

}
=

(abxy; q)∞
(ax, ay, bx, by; q)∞

n∑
k=0

[
n

k

]
(ay, by; q)k
(abxy; q)k

xkyn−k

provided that |a| < 1, |b| < 1. If X ∼ W (x, y; q), −1 < x < 0, and 0 < y ≤ 1, and f(x) is

a measurable function, then [20]

(1.5) E {f(X)} =
1

y(1− q)(q, yq/x, x/y; q)∞

∫ y

x
(qt/x, qt/y; q)∞f(t) dqt,

provided that the q-integral in (1.5) converges absolutely. Here E(·) denotes the expected

value.

Finally, we recall Lebesgue’s dominated convergence theorem: Suppose that {Xn, n ≥
1} is a sequence of random variables, that Xn → X pointwise almost everywhere as

n→∞, and that |Xn| ≤ Y for all n, where the random variable Y is integrable. Then X

is integrable, and

lim
n→∞

EXn = EX.

2. Main results

It follows from (1.5) that any expectation formula of a q-probability distribution W (x, y; q)

can be rewritten in terms of a q-integral formula. As a result, in order to obtain some new

q-integrals, it is useful to find some new expectation formulas. In this section, we use the

Maclaurin expansion of f(x) to obtain a commonly encountered expectation formula.

We now state the main result of this paper:
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Theorem 2.1. Suppose f(t) admits a Maclaurin expansion when |t| ≤ 1 and the series∑∞
n=0 |f (n)(0)|/n! converges absolutely. If X ∼ W (x, y; q), −1 < x < 0, and 0 < y ≤ 1,

then

(2.1) E
{

f(X)

(aX, bX; q)∞

}
=

(abxy; q)∞
(ax, ay, bx, by; q)∞

∞∑
n=0

n∑
k=0

[
n

k

]
(ay, by; q)k
(abxy; q)k

(
x

y

)k f (n)(0)yn

n!

provided that |a| < 1, |b| < 1.

Proof. It follows from the assumption of the theorem that

(2.2) f(t) =

∞∑
n=0

f (n)(0)

n!
tn, |t| ≤ 1

holds. First, let t = X in (2.2), and then multiply both sides of (2.2) by 1/(aX, bX; q)∞,

we obtain

(2.3)
f(X)

(aX, bX; q)∞
=
∞∑
n=0

f (n)(0)Xn

n!(aX, bX; q)∞
,

where the random variable X ∼W (x, y; q). Applying the expectation operator E on both

sides of (2.3) yields

(2.4) E
{

f(X)

(aX, bX; q)∞

}
= E

{ ∞∑
n=0

f (n)(0)Xn

n!(aX, bX; q)∞

}
.

Since ∣∣∣∣∣ f (n)(0)Xn

n!(aX, bX; q)∞

∣∣∣∣∣ ≤ 1

(|a|, |b|; q)∞
|f (n)(0)|

n!

and the series
∞∑
n=0

|f (n)(0)|
n!

converges absolutely, Lebesgue’s dominated convergence theorem and (1.4) assert that

E

{ ∞∑
n=0

f (n)(0)Xn

n!(aX, bX; q)∞

}
=
∞∑
n=0

f (n)(0)

n!
E
{

Xn

(aX, bX; q)∞

}

=
(abxy; q)∞

(ax, ay, bx, by; q)∞

∞∑
n=0

n∑
k=0

[
n

k

]
(ay, by; q)k
(abxy; q)k

(
x

y

)k f (n)(0)yn

n!

(2.5)

holds. Substituting (2.5) into (2.4) yields (2.1).
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Under the conditions of the theorem, (2.1) is equivalent to the following q-integral

formula: ∫ y

x

(qt/x, qt/y; q)∞f(t)

(at, bt; q)∞
dqt

=
y(1− q)(q, yq/x, x/y, abxy; q)∞

(ax, ay, bx, by; q)∞

∞∑
n=0

n∑
k=0

[
n

k

]
(ay, by; q)k
(abxy; q)k

(
x

y

)k f (n)(0)yn

n!
.

(2.6)

Letting a = b = 0 in (2.1) gives

Corollary 2.2. Suppose f(t) admits a Maclaurian expansion in |t| ≤ 1 and the series∑∞
n=0 |f (n)(0)|/n! converges absolutely. If X ∼ W (x, y; q), −1 < x < 0, and 0 < y ≤ 1,

then

(2.7) E{f(X)} =

∞∑
n=0

f (n)(0)ynhn(x/y)

n!
.

We observe that (2.7) is equivalent to the following q-integral formula:∫ y

x
(qt/x, qt/y; q)∞f(t) dqt

= y(1− q)(q, yq/x, x/y; q)∞

∞∑
n=0

f (n)(0)ynhn(x/y)

n!
.

(2.8)

We give some applications of the above formula.

• Let f(t) = et in (2.8). Then f (n)(0) = 1, n = 0, 1, 2, . . .. We have∫ y

x
(qt/x, qt/y; q)∞e

t dqt = y(1− q)(q, yq/x, x/y; q)∞

∞∑
n=0

ynhn(x/y)

n!
.

• Let f(t) = ln(1 + θt), |θ| < 1 in (2.8). Then

f (n)(0)

n!
=

(−1)n−1θn

n
, n = 0, 1, 2, . . . ,

and the series
∑∞

n=0 |f (n)(0)|/n! converges. We have∫ y

x
(qt/x, qt/y; q)∞ ln(1 + θt) dqt

= y(1− q)(q, yq/x, x/y; q)∞

∞∑
n=0

(−1)n−1(θy)nhn(x/y)

n
.

• Let f(t) = (1 + t)α, α > 0, in (2.8). Then

f (n)(0)

n!
=
α(α− 1) · · · (α− n+ 1)

n!
, n = 0, 1, 2, . . . ,
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and the series
∑∞

n=0 |f (n)(0)|/n! converges. We have∫ y

x
(qt/x, qt/y; q)∞(1 + t)α dqt

= y(1− q)(q, yq/x, x/y; q)∞

∞∑
n=0

α(α− 1) · · · (α− n+ 1)ynhn(x/y)

n!
.

On the other hand, the (2.1) (and its equivalent q-integral formula (2.6)) contains

some well-known results as special cases. For example, letting f(x) = 1 in (2.6) gives the

following Andrews-Askey integral [3], was first derived from Ramanujan’s 1ψ1 summation

formula: ∫ d

c

(qt/c, qt/d; q)∞
(at, bt; q)∞

dqt =
d(1− q)(q, dq/c, c/d, abcd; q)∞

(ac, ad, bc, bd; q)∞
,

provided that the denominator of the integral does not vanish.

3. Some applications

We can use (2.1) to derive a number of expectation formulas. Let us recall from earlier

discussion that in general, for any given f(x), substituting its Maclurian expansion into

(2.1), we could derive an expectation formula of random variable X with distribution

W (x, y; q).

3.1. The Al-Salam and Verma q-integral

Al-Salam and Verma gave an extension of the Andrews-Askey integral, which is called the

Al-Salam and Verma q-integral [1],

(3.1)

∫ y

x

(qt/x, qt/y, dt; q)∞
(at, bt, ct; q)∞

dqt =
y(1− q)(q, yq/x, x/y, d/a, d/b, d/c; q)∞

(ax, ay, bx, by, cx, cy; q)∞
,

provided that the denominator of the integral does not vanish, where d = abcxy. The

following is a probabilistic version of the Al-Salam and Verma q-integral:

Theorem 3.1. Suppose X ∼W (x, y; q), −1 < x < 0, and 0 < y ≤ 1. Then

(3.2) E
{

(abcxyX; q)∞
(aX, bX, cX; q)∞

}
=

(abxy, acxy, bcxy; q)∞
(ax, ay, bx, by, cx, cy; q)∞

,

provided that |a| < 1, |b| < 1, |c| < 1.

Proof. Let

(3.3) f(t) =
(abcxyt; q)∞

(ct; q)∞
.
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Using the q-binomial theorem (1.1), we have

f(t) =
(abcxyt; q)∞

(ct; q)∞
=

∞∑
n=0

(abxy; q)n(ct)n

(q; q)n
, |t| ≤ 1.

Consequently

(3.4)
f (n)(0)

n!
=

(abxy; q)nc
n

(q; q)n

and the series
∑∞

k=n |f (n)(0)|/n! converges. Substituting (3.3) and (3.4) into (2.1) gives

E
{

(abcxyX; q)∞
(aX, bX, cX; q)∞

}
=

(abxy; q)∞
(ax, ay, bx, by; q)∞

∞∑
n=0

n∑
k=0

[
n

k

]
(ay, by; q)k
(abxy; q)k

(
x

y

)k (abxy; q)n(cy)n

(q; q)n
.

(3.5)

After some simple computations and using the q-Gauss summation formula (1.3), we

obtain

∞∑
n=0

n∑
k=0

[
n

k

]
(ay, by; q)k
(abxy; q)k

(
x

y

)k (abxy; q)n(cy)n

(q; q)n

=
(abcxy2; q)∞

(cy; q)∞

∞∑
k=0

(ay, by; q)k
(q, abcxy2; q)k

(cx)k =
(acxy, bcxy; q)∞

(cx, cy; q)∞
.

(3.6)

Substituting (3.6) into (3.5) gives (3.2).

We remark that using the expectation formula for function f(X) the (1.5), (3.2) can

be rewritten as (3.1).

3.2. A formula involving Al-Salam-Carlitz polynomials

The Rogers-Szegö polynomials play an important role in the theory of orthogonal polyno-

mials, particularly in the study of the Askey-Wilson integral [4, 10].

The set of Rogers-Szegö polynomials is a special case of the Al-Salam-Carlitz polyno-

mials ϕ
(a)
n (x|q) when a = 0. Using Mehler’s formula and (2.1), we obtain the following

theorem.

Theorem 3.2. Suppose X ∼W (x, y; q), −1 < x < 0, and 0 < y ≤ 1. Then

E
{

(t1t2c
2X2; q)∞

(aX, bX, cX, ct1X, ct2X, ct1t2X; q)∞

}
=

(abxy; q)∞
(ax, ay, bx, by; q)∞

∞∑
n=0

hn(t1|q)hn(t2|q)(cy)n

(q; q)n

n∑
k=0

[
n

k

]
(ay, by; q)k
(abxy; q)k

(
x

y

)k
,

(3.7)

provided that |a| < 1, |b| < 1, |c| < 1, |t1| < 1, |t2| < 1.
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Proof. Let

(3.8) f(x) =
(t1t2c

2x2; q)∞
(cx, ct1x, ct2x, ct1t2x; q)∞

.

Using Mehler’s formula

∞∑
k=0

hk(t1|q)hk(t2|q)
xk

(q; q)k
=

(t1t2x
2; q)∞

(x, t1x, t2x, t1t2x; q)∞
,

we get
∞∑
k=0

hk(t1|q)hk(t2|q)
(cx)k

(q; q)k
=

(t1t2c
2x2; q)∞

(cx, ct1x, ct2x, ct1t2x; q)∞
, |x| ≤ 1.

So

(3.9)
f (n)(0)

n!
=
hn(t1|q)hn(t2|q)cn

(q; q)n
,

and the series
∑∞

n=0 |f (n)(0)|/n! converges. Subsisting (3.8) and (3.9) into (2.1) gives

(3.7).

Using the expectation formula for function f(X) (1.5), (3.7) can be rewritten as∫ y

x

(qt/x, qt/y, t1t2c
2t2; q)∞

(at, bt, ct, ct1t, ct2t, ct1t2t; q)∞
dqt

=
y(1− q)(q, yq/x, x/y, abxy; q)∞

(ax, ay, bx, by; q)∞

∞∑
n=0

hn(t1|q)hn(t2|q)(cy)n

(q; q)n

×
n∑
k=0

[
n

k

]
(ay, by; q)k
(abxy; q)k

(
x

y

)k
,

(3.10)

provided that the q-integral in (3.10) converges absolutely.

If b = 0, y = 1 in (3.7), we obtain

E
{

(t1t2c
2X2; q)∞

(aX, cX, ct1X, ct2X, ct1t2X; q)∞

}
=

1

(ax, a; q)∞

∞∑
n=0

hn(t1|q)hn(t2|q)ϕ(a)
n (x|q)cn

(q; q)n
,

which is equivalent to the formula∫ y

x

(qt/x, qt, t1t2c
2t2; q)∞

(at, ct, ct1t, ct2t, ct1t2t; q)∞
dqt

=
(1− q)(q, q/x, x; q)∞

(ax, ay; q)∞

∞∑
n=0

hn(t1|q)hn(t2|q)ϕ(a)
n (x|q)cn

(q; q)n
.
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3.3. A formula involving Bernoulli numbers

The Bernoulli numbers Bn are a sequence of signed rational numbers that can be defined

by the generating function

(3.11)
x

ex − 1
=
∞∑
n=0

Bnx
n

n!
, |x| < 2π.

Theorem 3.3. Suppose X ∼W (x, y; q), −1 < x < 0, and 0 < y ≤ 1. Then

E
{

X

(aX, bX; q)∞(eX − 1)

}
=

(abxy; q)∞
(ax, ay, bx, by; q)∞

∞∑
n=0

n∑
k=0

[
n

k

]
(ay, by; q)k
(abxy; q)k

(
x

y

)k Bnyn
n!

,

(3.12)

where Bn is the Bernoulli number and |a| < 1, |b| < 1.

Proof. Let

(3.13) f(x) =
x

ex − 1
.

Using the formula (3.11), we know

(3.14)
f (n)(0)

n!
=
Bn
n!
,

and the series
∑∞

n=0 |f (n)(0)|/n! converges. Substituting (3.13) and (3.14) into (2.1) gives

(3.12).

Using the expectation formula for function f(X) (1.5), (3.12) can be rewritten as∫ y

x

(qt/x, qt/y; q)∞t

(at, bt; q)∞(et − 1)
dqt

=
y(1− q)(q, yq/x, x/y, abxy; q)∞

(ax, ay, bx, by; q)∞

∞∑
n=0

n∑
k=0

[
n

k

]
(ay, by; q)k
(abxy; q)k

(
x

y

)k Bnyn
n!

,

provided that the q-integral in (3.14) converges absolutely.

3.4. New formulas from the q-binomial theorem

Using (2.1), we can also derive some new identities. Here are two examples.

Theorem 3.4. Suppose |a| < 1, |b| < 1, −1 < x < 0, and 0 < y ≤ 1. Then

∞∑
n=0

(−by)n

(q; q)n

(
n∑
k=0

[
n

k

]
(ay, by; q)k
(abxy; q)k

(
x

y

)k)( n∑
l=0

[
n

l

]
q(

l
2)+(n−l

2 )
(a
b

)l)

=
(ax, ay, bx, by; q)∞

(abxy; q)∞
.

(3.15)
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Proof. Let

f(x) = (ax, bx; q)∞.

Then

(3.16) E
{

f(X)

(aX, bX; q)∞

}
= 1.

Using the q-binomial theorem (1.2), we know

(3.17)
f (n)(0)

n!
=

(−b)n

(q; q)n

n∑
l=0

[
n

l

]
q(

l
2)+(n−l

2 )
(a
b

)l
,

and the series
∑∞

n=0 |f (n)(0)|/n! converges. Subsisting (3.16) and (3.17) into (2.1) gives

(3.15).

Theorem 3.5. Suppose |a| < 1, |b| < 1, −1 < x < 0, and 0 < y ≤ 1. Then

(3.18)
∞∑
n=0

n∑
i=0

aibn−iynhn(x/y)

(q; q)i(q; q)n−i
=

(abxy; q)∞
(ax, ay, bx, by; q)∞

.

Proof. Let

(3.19) f(t) =
1

(at, bt; q)∞
.

Using the q-binomial theorem (1.1) gives

f(t) =
1

(at, bt; q)∞
=
∞∑
i=0

aiti

(q; q)i

∞∑
j=0

bjtj

(q; q)j
.

We know

(3.20)
f (n)(0)

n!
=

n∑
i=0

aibn−i

(q; q)i(q; q)n−i

and the series
∑∞

n=0 |f (n)(0)|/n! converges. Substituting (3.19) and (3.20) into (2.7) yields

E
{

1

(aX, bX; q)∞

}
=

∞∑
n=0

n∑
i=0

aibn−iynhn(x/y)

(q; q)i(q; q)n−i
.

We obtain (3.18) after applying (1.4).
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