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Superconvergence of FEM for Distributed Order Time Fractional Variable

Coefficient Diffusion Equations

Yanhua Yang and Jincheng Ren*

Abstract. In this paper, a numerical fully discrete scheme based on the finite element

approximation for the distributed order time fractional variable coefficient diffusion

equations is developed and a complete error analysis is provided. The weighted and

shifted Grünwald formula is applied for the time-fractional derivative and finite el-

ement approach for the spatial discretization. The unconditional stability and the

global superconvergence estimate of the fully discrete scheme are proved rigorously.

Extensive numerical experiments are presented to illustrate the accuracy and efficiency

of the scheme, and to verify the convergence theory.

1. Introduction

Recently, there has been growing interest in fractional differential equations (FDEs) be-

cause their widespread applications in describing processes arising from various fields of

physics, finance, material science, control theory, viscoelasticity, chaos and others are fill-

ing up quickly, see, e.g., [9, 12, 13, 25, 30–32]. Analytical methods, such as the Fourier

transform method and the Laplace transform method, have been used to obtain closed-

form solutions to FDEs [20, 24]. However, analytical methods do not work well on the

majority of FDEs. Therefore, it is of great importance to find efficient and reliable nu-

merical methods to solve these FDEs.

It is pointed out recently that the time-fractional anomalous diffusion equation with a

constant-order temporal derivative cannot describe processes lacking temporal scaling [3,

4]. In other words, the single-order time-fractional diffusion equation cannot characterize

this process and it must be generalized. The distributed-order time-fractional diffusion

equation turns out to be a good alternative choice. The distributed-order differential

equation can also be regarded as a natural generalization of the single-order and the
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multi-term FDEs [7]. Many numerical approaches to the single-order and the multi-term

FDEs have been proposed in the literature. Zhuang et al. [35] introduced a new way for

solving sub-diffusion equation by integration of the original equation on the both sides to

obtain an implicit numerical method. The stability and convergence of the scheme were

proved by the energy method. In [34], Zhang et al. constructed a Crank-Nicolson-type

difference scheme and a compact difference scheme for solving the time fractional sub-

diffusion equation with Riemann-Liouville fractional derivative, respectively. They proved

that the two difference schemes were unconditionally stable and the numerical solution was

convergent in the maximum norm. Cui [6] and Zhang et al. [33] constructed alternating

direction implicit scheme and compact alternating direction implicit scheme for solving the

two-dimensional time fractional sub-diffusion equation, respectively. Inspired by [18] on

the weighted and shifted Grünwald difference operator, Wang and Vong [27,28] established

high order schemes for the fractional diffusion-wave equation and the modified anomalous

fractional subdiffusion equation and fractional Klein-Gordon equation, respectively. For

the multi-term time-fractional diffusion equation, Liu et al. [17] firstly reformulated the

original multi-term problem into a system of single-term fractional differential equations

and a fractional predictor-corrector method was then used to solve the system. Recently,

Ren and Sun [22, 23] provided the high-order spatially compact scheme for multi-term

time-fractional sub-diffusion equations and diffusion-wave equation, respectively.

However, the discussion on the numerical methods for the time-fractional diffusion

equation of distributed order is meager. Now we review some recent contributions on

this issue. Liao et al. [15] derived a Du Fort-Frankel type explicit scheme for solving

the distributed order subdiffusion equation by combining the L1 formula of Riemann-

Liouville derivative with the midpoint quadrature of the weighted integral. Based on the

L1 approximation for the Caputo fractional derivative in temporal direction and fractional

centered difference discretization Riesz derivative, Liu et al. [29] investigated the time-

space distributed order fractional diffusion equations. Using the weighted and shifted

Grünwald formula proposed in [26], some effective difference schemes are developed for one-

dimensional and two-dimensional distributed order FPDEs. The unconditional stability

and convergence of the obtained schemes are investigated using the energy method in

[10,11,14].

The usual way of analyzing superconvergence properties of postprocessed computed

solutions consists of two steps: (1) Supercloseness property: an interpolation approximat-

ing the finite element solution of higher order. Often such an interpolation does exist if

the underlying mesh has a special structure. (2) A postprocessing operator: an interpo-

lation operator (in a higher order finite element space) with certain stability, invariance

and higher order approximation properties. Applying this interpolation operator to the
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original finite element solution, we obtain the postprocessed solution, which has a su-

perconvergence property (cf. [8]). Although the superconvergence property was widely

discussed in classical PDEs and achieved fruitful results, to our knowledge, the superclose

and global superconvergence properties have not been proved for finite element schemes

of distributed order FPDEs. This motivates us to consider the superclose and global

superconvergence properties of this equations. The main purpose of this paper is to ob-

tain the superconvergence of fully discrete finite element approximation for the FPDEs

of distributed order. The weighted and shifted Grünwald formula (cf. [26, 27]) is applied

for the time-fractional derivative and the finite element approach works for the spatial

discretization. Based on the integral identity technique developed in [16], the global su-

perconvergence error estimates for variable coefficient fractional subdiffusion equations are

proved rigorously.

The plan of this paper is as follows. In Section 2, some preliminary numerical quadra-

ture formulae and useful lemmas are prepared. In Section 3, a fully discrete scheme for

the distributed order fractional equations is developed. The unconditional stability and

superconvergence of the obtained scheme are proved in Section 4. In Section 5, some

numerical examples are presented to verify our theoretical results. Some conclusions are

given in the last section. Throughout, the notation c denotes a generic constant, which

may not be the same at different occurrences, but it is always independent of the mesh

size h, the time step size τ and ∆α.

2. Preliminaries

In this section, some useful notations, lemmas and formulae will be prepared for the

forthcoming work.

We denote by W k,p(Ω) the standard Sobolev space of k-differential functions in Lp(Ω),

its norm by ‖ · ‖k,p, and the norm of Hk(Ω) by ‖ · ‖k. When k = 0, we let L2(Ω) denote

the corresponding space defined on Ω with norm ‖ · ‖. Let C∞0 (Ω) stand for the space of

smooth functions with compact support in Ω, and Hs
0(Ω) denote the closure of C∞0 (Ω)

with respect to norm ‖ · ‖s (cf. [1] for details).

For the finite difference discretization of the distributed order fractional derivative,

we divide the interval [0, 1] into 2J-subintervals with ∆α = 1/(2J) and αl = l∆α, l =

0, 1, 2, . . . , 2J . Similarly, the interval [0, T ] is divided into N -subintervals with τ = T/N

and tk = kτ , k = 0, 1, 2, . . . , N . Let un denote the solution u(x, y, t) at t = tn.

To describe the numerical approximation, several formulae and lemmas are presented

below.
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Lemma 2.1 (The composite trapezoid formula). Let s(α) ∈ C2[0, 1], then we have∫ 1

0
s(α) dα = ∆α

2l∑
l=0

cls(αl)−
(∆α)2

12
s′′(ξ), ξ ∈ (0, 1),

where c0 = c2J = 1/2, cl = 1, l = 1, 2, . . . , 2J − 1.

Denote

C n+α(R) =

{
f
∣∣∣ f ∈ L1(R) and

∫ ∞
−∞

(1 + |κ|)n+α|f̂(κ)| dκ <∞
}
,

where f̂(κ) =
∫∞
−∞ e

iκtf(t) dt is the Fourier transformation of f(t).

Lemma 2.2 (The Grünwald formula). [19] Suppose that f ∈ C 1+α(R), and let

−∞D
α
t f(t) =

1

Γ(1− α)

d

dt

∫ t

−∞

f(s)

(t− s)α
ds

and

Aατ,rf(t) =
1

τα

∞∑
k=0

g
(α)
k f(t− (k − r)τ),

where r is an integer and g
(α)
k = (−1)k

(
α
k

)
. Then

Aατ,rf(t) = −∞D
α
t f(t) +O(τ)

uniformly holds in t ∈ R as τ → 0.

Lemma 2.3. [26, 27] Suppose that f ∈ C 2+α(R), then we get(
1 +

α

2

)
Aατ,0f(t)− α

2
Aατ,−1f(t) =

1

τα

∞∑
k=0

λ
(α)
k f(t− kτ) = −∞D

α
t f(t) +O(τ2)

uniformly holds in t ∈ R as τ → 0, where

(2.1) λ
(α)
0 =

(
1 +

α

2

)
g

(α)
0 , λ

(α)
k =

(
1 +

α

2

)
g

(α)
k − α

2
g

(α)
k−1, k ≥ 1.

We then have the following property on λ
(α)
k .

Lemma 2.4. [11,27] Let λ
(α)
k be defined by (2.1), then for any positive integer k and real

vector (v0, v1, v2, . . . , vm)T ∈ Rm+1, it holds that

m∑
n=0

(
n∑
k=0

λ
(α)
k vn−k

)
vn ≥ 0.

Lemma 2.5. [11] Let µ = ∆α
∑2J

l=0 clw(αl) · 1
ταl λ

(αl)
0 , it holds that

µ =
1

O(τ | ln τ |)
.
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3. Construction the fully discrete finite element scheme

This section is devoted to obtain the stability analysis of the time distributed order frac-

tional diffusion equations.

Consider the following fractional diffusion equations

(3.1)


D[w]
t u(x, y, t) = ∇ · (b(x, y)∇u(x, y, t)) + g(x, y, t) (x, y) ∈ Ω, t ∈ (0, T ],

u(x, y, 0) = 0 (x, y) ∈ Ω,

u(x, y, t)|∂Ω = 0 t ∈ [0, T ],

where Ω ⊂ R2 is a rectangular domain with boundary ∂Ω parallel to the x-axis or y-axis in

the plane and (0, T ] is the time interval. The symbols ∇· and ∇ denote the divergence and

gradient operators, respectively. The function b(x, y) is assumed to be smooth, bounded

and satisfy following assumption

(3.2) 0 < β1 ≤ b(x, y) ≤ β2.

Here, D[w]
t u denotes the distributed order fractional derivative of u in time t (with respect

to the weight function w) defined by

D[w]
t u(x, y, t) =

∫ 1

0
w(α) C0D

α
t u(x, y, t) dα,

w(α) ≥ 0,

∫ 1

0
w(α) dα = ω0 > 0,

C
0D

α
t u(x, y, t) =


1

Γ(1− α)

∫ t

0
(t− s)−α∂u(x, y, s)

∂s
ds 0 ≤ α < 1,

∂u(x, y, t)

∂t
α = 1.

(3.3)

It is without loss of generality to assume that u(x, y, 0) = 0. If u(x, y, 0) = φ(x, y) 6= 0,

we can let v(x, y, t) = u(x, y, t)−φ(x, y) and consider the problem with respect to v(x, y, t).

Based on the method introduced in [11], we describe a discrete scheme for problem

(3.1). Suppose w(α) ∈ C2[0, 1] and C
0D

α
t u ∈ C2([0, T ];Hm+2(Ω)∩H1

0 (Ω)). By Lemma 2.1,

we have

D[w]
t u(x, y, tk) =

∫ 1

0
w(α) C0D

α
t u(x, y, tk) dα

= ∆α
2J∑
l=0

clw(αl)
C
0D

αl
t u(x, y, tk)

− (∆α)2

12

∂2[w(α) C0D
α
t u(x, y, tk)]

∂α2

∣∣∣∣
α=ξ(k)

= ∆α
2J∑
l=0

clw(αl)
C
0D

αl
t u(x, y, tk) +O((∆α)2),

(3.4)
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where ξ(k) ∈ (0, 1).

In the current work, we assume that the solution u(x, y, t) can be extended by zero

from the bounded time domain [0, T ] to R. Noticing the equivalence between the Riemann-

Liouville fractional derivative −∞D
α
t f(t) with f(t) = 0 when t ≤ 0 and the Caputo

fractional derivative C
0D

α
t f(t), by Lemma 2.3 and (3.4), we obtain

D[w]
t u(x, y, tk) = ∆α

2J∑
l=0

clw(αl)

 1

ταl

k∑
j=0

λ
(αl)
j u(x, y, tk−j) +O(τ2)

+O((∆α)2).

Before establishing fully discrete finite element scheme for the problem (3.1), we first

introduce some more notations as follows.

Let =h be a family of rectangular subdivisions such that Ω =
⋃
K∈=h K. We use h to

denote the maximum diameter of the rectangular subdivisions. Let Vh ⊂ H1
0 (Ω) be the

standard finite element space consisting of continuous, piecewise polynomial of degree m,

that vanish on the entire boundary ∂Ω. Moreover, denoting Ih : C(Ω)→ Vh the Lagrange

interpolation operator, the interpolation error estimates imply that for u ∈ Hr+1(Ω)

(cf. [5])

(3.5) ‖u− Ihu‖s ≤ chr−s‖u‖r+1, 0 ≤ s ≤ r, 0 < r ≤ m.

Then the fully discrete finite element for the problem (3.1) can be formulated as: find

Ukh ∈ Vh such that

∆α

2J∑
l=0

clw(αl)
1

ταl

k∑
j=0

λ
(αl)
j (Uk−jh , vh) + (b∇Ukh ,∇vh) = (gk, vh), ∀ vh ∈ Vh,

U0
h = 0.

(3.6)

Next, we focus on the stability analysis of the fully discrete scheme (3.6). In this

regard, we have the following theorem.

Theorem 3.1. The fully discrete finite element scheme (3.6) is unconditionally stable

with respect to the inhomogeneous term g. That is to say

τ

n∑
k=1

‖∇Ukh‖2 ≤ cτ
n∑
k=1

‖gk‖2, ∀ 1 ≤ n ≤ N.

Proof. Taking vh = Ukh in (3.6), using Cauchy-Schwarz inequality and noticing the equiv-

alence of norms in H1
0 (Ω), we have

∆α

2J∑
l=0

clw(αl)
1

ταl

k∑
j=0

λ
(αl)
j (Uk−jh , Ukh ) + (b∇Ukh ,∇Ukh )

= (gk, Ukh )

≤ c‖gk‖2 +
β1

2
‖∇Ukh‖2, ∀ 1 ≤ k ≤ N.

(3.7)
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For the second term on the left-hand side of (3.7), noticing (3.2), we have

|(b∇Ukh ,∇Ukh )| ≥ β1‖∇Ukh‖2.

Summing up the above inequality for k from 1 to n, we obtain

∆α

2J∑
l=0

clw(αl)
1

ταl

n∑
k=1

k∑
j=0

λ
(αl)
j (Uk−jh , Ukh ) +

β1

2

n∑
k=1

‖∇Ukh‖2

≤ c
n∑
k=1

‖gk‖2, ∀ 1 ≤ n ≤ N.

Adding µ(U0
h , U

0
h) on both sides of the above inequality, we get

∆α
2J∑
l=0

clw(αl)
1

ταl

n∑
k=0

k∑
j=0

λ
(αl)
j (Uk−jh , Ukh ) +

β1

2

n∑
k=1

‖∇Ukh‖2

≤ µ(U0
h , U

0
h) + c

n∑
k=1

‖gk‖2, ∀ 1 ≤ n ≤ N.

When τ is sufficiently small, using Lemmas 2.4 and 2.5 yield

τ

n∑
k=1

‖∇Ukh‖2 ≤
2µτ

β1
‖U0

h‖2 + cτ
n∑
k=1

‖gk‖2, ∀ 1 ≤ n ≤ N.

Noticing U0
h = 0, the desired result is obtained. This completes the proof.

4. Superconvergence estimate for the fully discrete finite element scheme

In this section, we state an error estimate for the fully discrete scheme. In order to analyze

the spatial discretization error, we assume that the solution is sufficiently smooth.

To begin, we introduce two lemmas, which play a very important role in proving

supercloseness analysis.

Lemma 4.1. [16] Assume that u ∈ Hm+2(Ω), then we have

|(∇(u− Ihu),∇v)| ≤ chm+1‖u‖m+2‖∇v‖, ∀ v ∈ Vh.

Lemma 4.2. Suppose that C0D
α
t u ∈ C2([0, T ];Hm+1(Ω)∩H1

0 (Ω)), Ihu is the finite element

interpolation of function u. Then we have for 1 ≤ k ≤ N∣∣∣∣∣∣
D[w]

t uk −∆α
2J∑
l=0

clw(αl)
1

ταl

k∑
j=0

λ
(αl)
j Ihu

k−j , v

∣∣∣∣∣∣
≤ c(τ2 + (∆α)2 + hm+1)2

1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖m+1

2

+
β1

4
‖∇v‖2, ∀ v ∈ Vh.
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Proof. Using the triangle inequality, we have the following equation∣∣∣∣∣∣
D[w]

t uk −∆α
2J∑
l=0

clw(αl)
1

ταl

k∑
j=0

λ
(αl)
j Ihu

k−j , v

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
D[w]

t uk −∆α
2J∑
l=0

clw(αl)
1

ταl

k∑
j=0

λ
(αl)
j uk−j , v

∣∣∣∣∣∣
+

∣∣∣∣∣∣∆α
2J∑
l=0

clw(αl)
1

ταl

k∑
j=0

λ
(αl)
j ((I − Ih)uk−j , v)

∣∣∣∣∣∣
≡ |(Rk1 , v)|+ |(Rk2 , v)|, ∀ 1 ≤ k ≤ N.

(4.1)

By (3.4) and the Cauchy-Schwarz inequality, noticing the equivalence of norms in H1
0 (Ω),

we obtain

|(Rk1 , v)| ≤ c(τ2 + (∆α)2)‖v‖

≤ c(τ2 + (∆α)2)2 +
β1

8
‖∇v‖2, ∀ 1 ≤ k ≤ N.

(4.2)

It follows from (3.3) and Lemma 2.1 that∣∣∣∣∣∆α
2J∑
l=0

clw(αl)

∣∣∣∣∣ ≤
∣∣∣∣∣∆α

2J∑
l=0

clw(αl)−
∫ 1

0
w(α) dα

∣∣∣∣∣+

∫ 1

0
w(α) dα

≤ O((∆α)2) + ω0

≤ 1 + ω0.

(4.3)

In view of Lemma 2.3, when τ is sufficiently small, we note that 1 ≤ k ≤ N∣∣∣∣∣∣ 1

ταl

k∑
j=0

λ
(αl)
j uk−j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1

ταl

k∑
j=0

λ
(αl)
j uk−j − C

0D
αl
t u

k

∣∣∣∣∣∣+ |C0D
αl
t u

k|

≤ O(τ2) + max
0≤s≤T

|C0D
αl
t u(s)|

≤ 1 + max
0≤s≤T
0≤α≤1

|C0Dαt u(s)|.

(4.4)

Invoking (4.3), (4.4) and (3.5), we find that

|(Rk2 , v)| ≤ c(1 + ω0)hm+1

∥∥∥∥∥∥ 1

ταl

k∑
j=0

λ
(αl)
j uk−j

∥∥∥∥∥∥
m+1

‖v‖

≤ chm+1

1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖m+1

 ‖v‖
≤ ch2m+2

1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖m+1

2

+
β1

8
‖∇v‖2, ∀ 1 ≤ k ≤ N.

(4.5)
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The desired result follows on inserting (4.2) and (4.5) into (4.1). This completes the

proof.

Our task now is to derive the supercloseness estimate of the scheme (3.6).

Theorem 4.3. Suppose that C
0D

α
t u ∈ C2([0, T ];Hm+1(Ω) ∩ H1

0 (Ω)), ut ∈ Hm+2(Ω) ∩
H1

0 (Ω), let Ukh and Ihu
k be the fully discrete finite element solution and finite element

interpolation of uk, respectively. Then we have the following supercloseness estimate for

1 ≤ n ≤ N

τ
n∑
k=1

‖Ihuk − Ukh‖1

≤ c(τ2 + (∆α)2 + hm+1)

1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖m+1 +

∫ T

0
‖ut(s)‖m+2 ds

 .

Proof. For convenience, we employ the following splitting of the error

ek = (uk − Ihuk) + (Ihu
k − Ukh ) ≡ ρk + θk.

Taking an inner product of (3.1) with vh ∈ Vh and comparing with (3.6), we obtain

the error equation for 1 ≤ k ≤ N

∆α

2J∑
l=0

clw(αl)
1

ταl

k∑
j=0

λ
(αl)
j (θk−j , vh) + (b∇θk,∇vh)

= −(Rk, vh)− (b∇ρk,∇vh), ∀ vh ∈ Vh,

(4.6)

where

Rk = D[w]
t uk −∆α

2J∑
l=0

clw(αl)
1

ταl

k∑
j=0

λ
(αl)
j Ihu

k−j .

Taking vh = θk in (4.6), then it follows that

∆α

2J∑
l=0

clw(αl)
1

ταl

k∑
j=0

λ
(αl)
j (θk−j , θk) + (b∇θk,∇θk)

= −(Rk, θk)− (b∇ρk,∇θk), ∀ 1 ≤ k ≤ N.

(4.7)

Let b = 1
|K|
∫
K b(x, y) dxdy. Applying the Bramble-Hilbert Lemma (cf. [5]), it holds that

(4.8) ‖b(x, y)− b‖0,∞ ≤ ch‖b‖1,∞.
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Using the Cauchy-Schwarz inequality, Lemma 4.1 and (4.8), we arrive at

| − (b∇ρk,∇θk)| = |((b− b)∇ρk,∇θk) + (b∇ρk,∇θk)|

=

∣∣∣∣∣∣((b− b)∇ρk,∇θk) +
∑
K∈=h

b

∫
K
∇ρk · ∇θk dxdy

∣∣∣∣∣∣
≤ ch‖b‖1,∞‖∇ρk‖‖∇θk‖+ chm+1‖uk‖m+2‖∇θk‖

≤ chm+1‖uk‖m+2‖∇θk‖

≤ ch2m+2‖uk‖2m+2 +
β1

4
‖∇θk‖2

≤ ch2m+2

(
‖u0‖m+2 +

∫ tk

0
‖ut(s)‖m+2 ds

)2

+
β1

4
‖∇θk‖2.

(4.9)

Substituting (4.9) and Lemma 4.2 into (4.7), and summing up k from 1 to n, we obtain

∆α
2J∑
l=0

clw(αl)
1

ταl

n∑
k=1

k∑
j=0

λ
(αl)
j (θk−j , θk) + β1

n∑
k=1

‖∇θk‖2

≤ c(τ2 + (∆α)2 + hm+1)2
n∑
k=1

1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖m+1 +

∫ tk

0
‖ut(s)‖m+2 ds

2

+
β1

2

n∑
k=1

‖∇θk‖2, ∀ 1 ≤ n ≤ N.

Adding µ(θ0, θ0) on both sides of the above inequality, we have

∆α
2J∑
l=0

clw(αl)
1

ταl

n∑
k=0

k∑
j=0

λ
(αl)
j (θk−j , θk) + β1

n∑
k=1

‖∇θk‖2

≤ c(τ2 + (∆α)2 + hm+1)2
n∑
k=1

1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖m+1 +

∫ tk

0
‖ut(s)‖m+2 ds

2

+ µ(θ0, θ0) +
β1

2

n∑
k=1

‖∇θk‖2, ∀ 1 ≤ n ≤ N.

Applying Lemma 2.4 yields the desired result. This completes the proof.

Furthermore, we can construct the interpolation postprocessing operator Π2h to ob-

tain the following global superconvergent result of the fully discrete scheme as [16]. For

completeness, we describe the construction method of the postprocessing interpolation op-

erator Π2h. First we combine four neighboring elements into a big element K̃ =
⋃4
i=1Ki,
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which has the following properties (cf. [16, 21])

(4.10)



Π2hu|K̃ ∈ Qm+1(K̃) ∀ K̃ ∈ =2h,

Π2hIhu = Π2hu ∀u ∈ C(Ω),

‖Π2hu− u‖1 ≤ chm+1‖u‖m+2 ∀u ∈ Hm+2(Ω),

‖Π2hvh‖1 ≤ c‖vh‖1 ∀ vh ∈ Vh,

where Qm+1(K̃) is a space polynomials whose degrees for x, y are no more than m + 1,

respectively, =2h consists of the four small elements Ki (i = 1, 2, 3, 4) in =h.

Theorem 4.4. Under the conditions of Theorem 4.3, then we have the following super-

convergence result for 1 ≤ n ≤ N

τ

n∑
k=1

‖uk −Π2hU
k
h‖1

≤ c(τ2 + (∆α)2 + hm+1)

1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖m+1 +

∫ T

0
‖ut(s)‖m+2 ds

 .

Proof. We can deduce from the property (4.10) and Theorem 4.3 that

τ

n∑
k=1

‖uk −Π2hU
k
h‖1

≤ τ
n∑
k=1

‖uk −Π2hIhu
k‖1 + τ

n∑
k=1

‖Π2hIhu
k −Π2hU

k
h‖1

≤ τ
n∑
k=1

‖uk −Π2hu
k‖1 + τ

n∑
k=1

‖Ihuk − Ukh‖1

≤ c(τ2 + (∆α)2 + hm+1)

1 + max
0≤s≤T
0≤α≤1

‖C0Dαt u(s)‖m+1 +

∫ T

0
‖ut(s)‖m+2 ds

 .

This completes the proof.

5. Numerical experiment

In this section, test example based on piecewise bilinear polynomials will be performed to

illustrate the computational efficiency and convergence rate of the proposed method.

Example 5.1. Let Ω = [0, π]×[0, π], T = 0.5, b(x, y) = sinx sin y+0.1, w(α) = Γ(β+1−α)

and initial conditions u0(x, y) = 0 and ψ(x, y) = 0 in the problem (3.1), then the exact

solution of the example is

u(x, y, t) = (2t)β sinx sin y,



1540 Yanhua Yang and Jincheng Ren

where β is a positive constant. Then f(x, y, t) is chosen corresponding to the exact solution.

τ ‖un − Unh ‖1 rate

1/2 2.8602e-2 2.07

1/4 6.8097e-3 2.03

1/8 1.6620e-3 2.04

1/16 4.0529e-4 2.10

1/32 9.4220e-5 *

Table 5.1: Numerical errors and convergence orders in temporal direction with h = π/300,

∆α = 1/200 and β = 3.

Our first concern is to test the numerical convergence rate of the proposed scheme in

time. Taking the fixed and sufficiently small h and ∆α, the numerical errors and conver-

gence orders in H1 norm are given in Table 5.1. The space step size h and distributed-order

step size ∆α are fixed to be sufficiently small to ensure that the dominant numerical er-

rors come from the approximation of time-fractional derivatives. From Table 5.1, the

second-order accuracy of scheme (3.6) in time is verified by the example.

Secondly, the numerical accuracies of the fully finite element scheme in space is verified

by the example. With fixed sufficiently small temporal stepsizes, the ‖un−Unh ‖, ‖un−Unh ‖1,

‖Ihun−Unh ‖1 and ‖un−Π2hU
n
h ‖1 norm errors and spatial convergence orders of the scheme

are illustrated in Table 5.2. As predicted by the theoretical estimates, the second-order

supercloseness and superconvergence of the scheme in space variable for computing this

example are verified.

h ‖un − Un
h ‖ rate ‖un − Un

h ‖1 rate ‖Ihun − Un
h ‖1 rate ‖un −Π2hU

n
h ‖1 rate

π/4 2.7783e-1 1.96 6.4095e-1 0.99 8.8916e-2 2.13 7.3428e-2 1.95

π/8 7.1625e-2 1.99 3.2382e-1 1.00 2.0343e-2 2.04 1.8993e-2 1.96

π/16 1.8037e-2 2.00 1.6239e-1 1.00 4.9636e-3 2.01 4.8653e-3 1.99

π/32 4.5157e-3 2.00 8.1256e-2 1.00 1.2311e-3 2.01 1.2246e-3 2.01

π/64 1.1277e-3 * 4.0636e-2 * 3.0493e-4 * 3.0451e-4 *

Table 5.2: Numerical errors and convergence orders in spatial direction with τ = 1/200,

∆α = 1/200 and β = 3.

Thirdly, we would like to investigate the numerical accuracy of the scheme (3.6) in

distributed-order variable. The H1 norm errors decrease as the step sizes in distribute

order are reduced. The second-order numerical convergence rate of the scheme (3.6) in
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distributed order can be well visible from Table 5.3.

∆α ‖un − Unh ‖1 rate

1/2 1.4746e-2 2.00

1/4 3.6936e-3 2.08

1/8 8.7375e-4 2.10

1/16 2.0423e-4 1.99

1/32 5.1254e-5 *

Table 5.3: Numerical errors and convergence orders in distributed order with h = π/300,

τ = 1/200 and β = 3.

β τ ‖un − Unh ‖1 rate

1/2 2.6046e-2 1.81

1/4 7.4269e-3 1.86

β = 2 1/8 2.0430e-3 1.88

1/16 5.5631e-4 1.91

1/32 1.4851e-4 *

1/2 1.0850e-2 1.50

1/4 3.8245e-3 1.16

β = 3/2 1/8 1.7168e-3 1.18

1/16 7.5893e-4 1.23

1/32 3.2251e-4 *

1/2 1.8643e-1 0.78

1/4 1.0873e-1 0.81

β = 1 1/8 6.1966e-2 0.86

1/16 3.4045e-2 0.90

1/32 1.8235e-3 *

Table 5.4: Numerical errors and convergence orders in temporal direction under h =

π/300,∆α = 1/200 with different constants β.

To this end, in this example, we are concerned with the computational results of the

scheme (3.6) for the cases β = 2, 3/2, 1, respectively. Table 5.4 lists the computational

errors and convergence orders in time variable for these three cases, from which, one can
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find that the second-order convergence of the scheme in time variable can still be achieved

for the case β = 2, whereas the numerical accuracy is obviously reduced to less than

two for the latter two cases. We have pointed out that the condition ∂nu(x,y,t)
∂tn

∣∣∣
t=0

= 0

(n = 0, 1, . . . , 4) is sufficient but unnecessary for the numerical accuracy of the proposed

scheme.

6. Conclusions

In this paper, we have dealt with the numerical solutions to some distributed order time

fractional diffusion equations. An effective Galerkin finite element fully discrete scheme

is developed for equations variable coefficient. The unconditional stability and supercon-

vergence error estimates of the obtained scheme is investigated using integral identities

and postprocessing techniques. The global second-order convergence in time variable of

the obtained schemes is attainable. In Section 5, we have pointed out that the condition
∂nu(x,y,t)

∂tn

∣∣∣
t=0

= 0 (n = 0, 1, . . . , 4) is sufficient but unnecessary for the numerical accu-

racy of the proposed scheme. Hence, the direct application of the shifted and weighted

Grünwald Letnikov formula can not produce the ideal computational results to approx-

imate the time fractional derivatives in (3.1). However, Alikhanov [2] derived a new

numerical differentiation formula, called the L2− 1σ formula, to approximate the Caputo

fractional derivative at a special point. And the time second-order difference scheme for

fractional diffusion equations is developed and analyzed in [2]. It is possible that the

L2− 1σ formula can solve nonzero boundary value problems. In future work, the numeri-

cal solutions for nonzero boundary value problems and the nonlinear fractional differential

equations of distributed order will be investigated.
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