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Counting Permutations by Simsun Successions

Yen-Chi Roger Lin*, Shi-Mei Ma and Yeong-Nan Yeh

Abstract. In this paper, we introduce the definitions of simsun succession statistics

and simsun patterns. In addition to its original definition by Brenti, we give two more

combinatorial interpretations of the q-Eulerian polynomials using simsun successions.

We also present a bijection between permutations avoiding the simsun pattern 132

and set partitions.

1. Introduction

Let Sn denote the symmetric group of all permutations of [n], where [n] = {1, 2, . . . , n}.
Let π = π(1)π(2) · · ·π(n) ∈ Sn. A descent in π is an index i ∈ [n − 1] such that

π(i) > π(i+ 1). We say that π contains no double descents if there is no index i ∈ [n− 2]

such that π(i) > π(i + 1) > π(i + 2). A permutation π ∈ Sn is called simsun if for all

k, the subword of π restricted to [k] (in the order they appear in π) contains no double

descents. For example, 35142 is simsun, but 35241 is not. Simsun permutations have

been introduced by Simion and Sundaram in [28] and extensively studied in the literature

(see [2,5,6,8–10,12,18] for instance). Let RSn be the set of simsun permutations of length

n. Simion and Sundaram [28, p. 267] showed that

#RSn = En+1,

where En is the nth Euler number, which is also the number of alternating permutations

in Sn.

Let des(π) be the number of descents of π. Define

Sn(x) =
∑

π∈RSn

xdes(π) =

bn/2c∑
k=0

S(n, k)xk.

It follows from [5] that the coefficients S(n, k) satisfy the recurrence relation

S(n, k) = (k + 1)S(n− 1, k) + (n− 2k + 1)S(n− 1, k − 1)
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with the initial conditions S(0, 0) = 1 and S(0, k) = 0 for k ≥ 1. In terms of generating

functions, this is equivalent to

Sn+1(x) = (1 + nx)Sn(x) + x(1− 2x)S′n(x)

with S0(x) = 1. An excedance in π ∈ Sn is an index i ∈ [n − 1] such that π(i) > i. Let

exc(π) be the number of excedances of π. The classical Eulerian polynomials are defined

by

An(x) =
∑
π∈Sn

xdes(π)+1 =
∑
π∈Sn

xexc(π)+1 for n ≥ 1.

From [11, Proposition 2.7], we have

An+1(x) = x

bn/2c∑
k=0

S(n, k)(2x)k(1 + x)n−2k.

A succession in π ∈ Sn is an index i ∈ [n − 1] such that π(i + 1) = π(i) + 1.

The study of successions began in the 1940s (see [13, 22]), and there have been a lot of

recent activities. There are many variants of successions, including circular successions

[29] and cycle successions [20]. The succession statistic has also been studied on various

combinatorial structures, such as compositions and words [14], and set partitions [19,

21]. For example, a succession in a partition of [n] is an occurrence of two consecutive

integers that appear in the same block. Following [26, p. 137, Exercise 108], the number of

partitions of [n] with no successions is B(n−1), where B(n) is the nth Bell number, which

is also the number of partitions of [n]. Let BSn be a subset ofRSn with the restriction that

for any π ∈ BSn and for all k, the subword of π restricted to [k] (in the order they appear in

π) does not contain successions. For example, BS5 = {25143, 21435, 24135, 24153, 52413}.
Motivated by the following result, we shall explore the connections between the succession

statistic for permutations and simsun permutations.

Proposition 1.1. For n ≥ 1, we have Sn(x) =
∑

π∈BSn+2
xdes(π)−1 and #BSn = En−1.

Proof. Let r(n, k) = #{π ∈ BSn+2 : des(π) = k + 1}. There are two ways in which

permutations in BSn+2 with k+1 descents can be obtained from a permutation σ ∈ BSn+1:

(a) If des(σ) = k + 1, then we distinguish two subcases:

(a1) If σ(n+1) = n+1, then we can insert n+2 right after σ(i), where i is a descent

index; or

(a2) If σ(n+ 1) < n+ 1, let the index j ∈ [n] be such that σ(j) = n+ 1. We insert

n+ 2 right after σ(i) if i is a descent index other than j, or insert n+ 2 at the

end.
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In either case, there are k + 1 ways to insert n+ 2, and we have r(n− 1, k) choices

for σ. This gives (k + 1)r(n− 1, k) possibilities.

(b) If des(σ) = k, then we cannot insert n+2 immediately before or right after a descent

index. Moreover, we cannot put n+2 at the end of σ. All of the remaining positions

are allowed to insert n + 2 so that the descent is increased by 1. Thus there are

n− 2k+ 1 ways to insert n+ 2, and we have r(n− 1, k− 1) choices for σ. This gives

(n− 2k + 1)r(n− 1, k − 1) possibilities.

Therefore, r(n, k) = (k+ 1)r(n−1, k) + (n−2k+ 1)r(n−1, k−1). Note that BS2 = {21}.
Thus r(0, 0) = 1 and r(0, k) = 0 for k ≥ 1. Hence the numbers r(n, k) satisfy the same

recurrence and initial conditions as S(n, k), so they agree.

This paper is organized as follows. In Section 2, we introduce the definition of simsun

cycle succession, and give a combinatorial interpretation of the q-Eulerian polynomials

introduced by Brenti [3]. In Section 3, we introduce the definition of simsun succession

and give another combinatorial interpretation of the q-Eulerian polynomials. In Section 4,

we present a bijection between permutations avoiding the simsun pattern 132 and set

partitions.

2. q-Eulerian polynomials and simsun cycle successions

Recall that π ∈ Sn can be written in the standard cycle form, where each cycle is written

with its smallest entry first and the cycles are arranged in increasing order of their smallest

entries. A cycle succession in π is an index i ∈ [n− 1] such that two consecutive entries i

and i+ 1 appear in that order within one cycle of the standard cycle form of π (see [20]).

For example, the permutation (1, 2, 6)(3, 5, 4) contains one cycle succession.

Definition 2.1. A permutation π ∈ Sn, written in the standard cycle form, avoids simsun

cycle successions if for any k ∈ [n], the subword of π restricted to [k] (in the order they

appear in the standard cycle form of π) does not contain cycle successions.

For example, π = (1543)(2) avoids simsun cycle successions, since any of the following

subwords of π does not contain cycle successions:

(1), (1)(2), (13)(2), (143)(2), (1543)(2).

Let CSn be the set of permutations in Sn that avoid simsun cycle successions. In partic-

ular, CS1 = {(1)}, CS2 = {(1)(2)}, and CS3 = {(1)(2)(3), (13)(2)}.
Brenti [3] considered a q-analog of the classical Eulerian polynomials defined by

A0(x; q) = 1, An(x; q) =
∑
π∈Sn

xexc(π)qcyc(π) for n ≥ 1,
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where cyc(π) is the number of cycles of π. The first few q-Eulerian polynomials are

A0(x; q) = 1, A1(x; q) = q, A2(x; q) = q(x+ q), A3(x; q) = q
(
x2 + (3q + 1)x+ q2

)
.

Clearly, An(x) = xAn(x; 1) for n ≥ 1. The real-rootedness of An(x; q) has been studied

in [1, 17].

The first main result of this paper is the following.

Theorem 2.2. For n ≥ 1, we have

(2.1) qAn(x; q) =
∑
π∈Sn

xexc(π)qcyc(π)+1 =
∑

σ∈CSn+1

xexc(σ)qcyc(σ).

In the rest of this section, we give a constructive proof of (2.1). Define

Sn,k,` = {π ∈ Sn : exc(π) = k, cyc(π) = `},

CSn,k,` = {π ∈ CSn : exc(π) = k, cyc(π) = `}.

We now introduce two labelings for permutations which are written in the standard cycle

form. The labels will be put as subscripts of entries of permutations.

• Let π ∈ Sn,k,`, and i1, i2, . . . , ik be the excedances of π, in the order of their ap-

pearances in π (in the standard cycle form). We put the subscript label ur after

ir, for each r = 1, 2, . . . , k. For the remaining entries, we put the subscript labels

v1, v2, . . . , vn−k from left to right.

• Let π ∈ CSn,k,`, and i1, i2, . . . , ik be the excedances of π, in the order of their

appearances in π (in the standard cycle form). We put the subscript label pr after ir

for each r = 1, 2, . . . , k. For the remaining entries other than n, we put the subscript

labels q1, q2, . . . , qn−k−1 from left to right.

In the following discussion, we always add labels to permutations in Sn,k,` and CSn,k,`.
As an example, consider the permutation π = (135)(26)(4). If we say that π ∈ S6,3,3, then

π is labeled as (1u13u25v1)(2u36v2)(4v3); if we say that π ∈ CS6,3,3, then π is labeled as

(1p13p25q1)(2p36)(4q2).

Now we start to construct a bijection Φ between Sn,k,` and CSn+1,k,`+1. When n = 1,

we have S1,0,1 = {(1)} and CS2,0,2 = {(1)(2)}. Set Φ((1v1)) = (1q1)(2). This gives

a bijection between S1,0,1 and CS2,0,2. Let n = m and assume that the bijections Φ

have been constructed between Sm,k,` and CSm+1,k,`+1 for all k and `. Consider the case

n = m + 1. For a permutation π ∈ Sm,k,` and σ = Φ(π) ∈ CSm+1,k,`+1, we consider the

following three cases:
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(i) If π̂ is obtained from π by inserting the entry m+ 1 to the position of π with label

ur, then we insert m+ 2 to the position of σ with label pr to form σ̂ = Φ(π̂). In this

case, exc(π̂) = exc(σ̂) = k and cyc(π̂) + 1 = cyc(σ̂) = `+ 1.

(ii) If π̂ is obtained from π by inserting the entry m+ 1 to the position of π with label

vj , then we insert m+ 2 to the position of σ with label qj to form σ̂ = Φ(π̂). In this

case, exc(π̂) = exc(σ̂) = k + 1 and cyc(π̂) + 1 = cyc(σ̂) = `+ 1.

(iii) If π̂ is obtained from π by appending (m+ 1) to π as a new cycle, then we append

(m + 2) to σ as a new cycle to form σ̂ = Φ(π̂). In this case, exc(π̂) = exc(σ̂) = k

and cyc(π̂) + 1 = cyc(σ̂) = `+ 2.

By induction, we see that Φ is the desired bijection between Sn,k,` and CSn+1,k,`+1 for all

k and `, hence it gives a constructive proof of (2.1).

Example 2.3. Given π = (135)(2)(4) ∈ S5,2,3. The correspondence between π and Φ(π)

is built up as follows:

(1v1) ⇐⇒ (1q1)(2);

(1v1)(2v2) ⇐⇒ (1q1)(2q2)(3);

(1u13v1)(2v2) ⇐⇒ (1p14)(2q1)(3q2);

(1u13v1)(2v2)(4v3) ⇐⇒ (1p14q1)(2q2)(3q3)(5);

(1u13u25v1)(2v2)(4v3) ⇐⇒ (1p14p26)(2q1)(3q2)(5q3).

3. Simsun successions

As a variant of simsun cycle successions, we introduce the following definition.

Definition 3.1. We say that a permutation π, written in word structure, avoids simsun

successions if for any k, the subword of π restricted to [k] (in the order they appear in π)

does not contain successions.

For example, the permutation π = 321465 contains a simsun succession, since π re-

stricted to [5] equals 32145 and it contains a succession. Let ASn denote the set of per-

mutations in Sn that avoid simsun successions. In particular, AS1 = {1}, AS2 = {21},
and AS3 = {213, 321}.

Let π = π(1)π(2) · · ·π(n) ∈ Sn. We say that an element π(i) is a left-to-right minimum

of π if π(i) is the smallest entry among π(1), π(2), . . . , π(i). Let lrmin(π) be the number

of left-to-right minima of π. For example, lrmin(3241) = 3. Let asc(π) be the number of

ascents of π ∈ Sn, i.e., the number of indices i ∈ [n−1] such that π(i) < π(i+1). Suppose

that σ ∈ ASn with left-to-right minima σ(i1), σ(i2), . . . , σ(ik), where i1 < i2 < · · · < ik.
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Let σ′ be the permutation obtained from σ by inserting a left parenthesis before each

left-to-right minimum, and then inserting right parentheses at the end of σ and before

each left parenthesis except the first one. It is clear that σ′ ∈ CSn. By reordering the

cycles, σ′ can be written in standard cycle form. For example, if σ = 3241, then σ′ =

(3)(24)(1) = (1)(24)(3). Note that asc(σ) = exc(σ′) and lrmin(σ) = cyc(σ). Combining

this with Theorem 2.2, we get the second main result of this paper.

Theorem 3.2. For n ≥ 1, we have

qAn(x; q) =
∑

σ∈ASn+1

xasc(σ)qlrmin(σ).

The number of peaks of permutations is certainly among the most important combi-

natorial statistics. See, e.g., [7,15,16,24] and the references therein. An interior peak in π

is an index i ∈ {2, 3, . . . , n−1} such that π(i−1) < π(i) > π(i+ 1). A left peak in π ∈ Sn

is an index i ∈ [n− 1] such that π(i− 1) < π(i) > π(i+ 1), where we take π(0) = 0. Let

pk(π) (resp. lpk(π)) be the number of interior peaks (resp. left peaks) of π. Similarly, a

valley in π is an index i ∈ {2, 3, . . . , n−1} such that π(i−1) > π(i) < π(i+ 1). Let val(π)

be the number of valleys of π. Clearly, interior peaks and valleys are equidistributed over

Sn.

Along the same lines as the proof of (2.1), it is easy to verify the following result.

Theorem 3.3. For n ≥ 1, we have

(3.1)
∑
π∈Sn

xval(π)+1ylpk(π) =
∑

σ∈ASn+1

xlpk(π)yval(π).

Motivated by the study of longest increasing subsequences, Stanley [25] initiated a

study of the longest alternating subsequences. An alternating subsequence of π ∈ Sn is a

subsequence π(i1), π(i2), . . . , π(ik) satisfying π(i1) > π(i2) < π(i3) > π(i4) < · · · , where

i1 < i2 < · · · < ik. Let as(π) be the length (number of terms) of the longest alternating

subsequence of a permutation π ∈ Sn. Note that as(π) = val(π) + lpk(π) + 1. Taking

x = y in (3.1), we get the following result.

Corollary 3.4. For n ≥ 1, we have∑
π∈Sn

xas(π) =
∑

π inASn+1

xas(π)−1.

4. Permutations avoiding the simsun pattern 132 and set partitions

In this section, containment and avoidance will always refer to consecutive patterns. Let

m and n be two positive integers with m ≤ n, and let π ∈ Sn and τ ∈ Sm. We say
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that π contains τ as a consecutive pattern if it has a subsequence of consecutive entries

order-isomorphic to τ . A permutation π avoids a pattern τ if π does not contain τ .

Definition 4.1. Let π ∈ Sn and τ ∈ Sm. We say that π avoids the simsun pattern τ

if for any k, the subword of π restricted to [k] (in the order they appear in π) does not

contain the consecutive pattern τ .

Let SPn(τ) denote the set of permutations in Sn that avoid the simsun pattern τ . In

particular, SPn(321) = RSn. Using the reverse map, we get #SPn(321) = #SPn(123) =

En+1. In the following, we study the relationship between SPn(132) and set partitions of

[n].

Let π = π(1)π(2) · · ·π(n) ∈ Sn. Let suc(π) be the number of successions of π. A right

peak in π is an entry π(i) with i ∈ {2, 3, . . . , n} such that π(i−1) < π(i) > π(i+1), where

we take π(n+ 1) = 0. Let rpk(π) be the number of right peaks of π. An inversion of π is

a pair (π(i), π(j)) such that i < j and π(i) > π(j). Let inv(π) be the number of inversions

of π. An exterior double descent in π is an entry π(i) such that π(i− 1) > π(i) > π(i+ 1),

where i ∈ [n] and we take π(0) = +∞ and π(n+ 1) = 0. Let exddes(π) be the number of

exterior double descents of π. For example, suc(42315) = 1, rpk(42315) = 2, inv(42315) =

5 and exddes(42315) = 1.

A partition σ of [n], written σ ` [n], is a collection of pairwise disjoint nonempty subsets

(called blocks) of [n] whose union is [n]. Let Πn denote the family of all set partitions of [n]

and let l(σ) be the number of blocks of σ. As usual, we always write σ = B1/B2/ · · · /Bk,
where we list the blocks in the standard order minB1 < minB2 < · · · < minBk. Let

σ = B1/B2/ · · · /Bk. For c ∈ Bs and d ∈ Bt, we say that the pair (c, d) is a free rise of

σ if c < d, where 1 ≤ s < t ≤ k. Let fr(σ) be the number of free rises of σ. A singleton

of a partition is a block with exactly one element (see [27] for instance). Let single(σ)

be the number of singletons of σ. We say that a block is non-singleton if it contains at

least two elements. Let nsingle(σ) be the number of non-singletons of σ. Let suc(σ) be

the number of successions of σ, i.e., occurrences of two consecutive integers appear in the

same block of σ. For example, suc({1, 2, 3}/{4}/{5}) = 2, single({1, 2, 3}/{4}/{5}) = 2,

nsingle({1, 2, 3}/{4}/{5}) = 1, and fr({1, 2, 3}/{4}/{5}) = 7.

Now we present the third main result of this paper.

Theorem 4.2. For n ≥ 1, we have∑
π∈SPn(132)

xdes(π)+1yrpk(π)zexddes(π)psuc(π)qinv(π)

=
∑
σ∈

∏
n

xl(σ)ynsingle(σ)zsingle(σ)psuc(σ)qfr(σ).

In the following, we shall present a constructive proof of Theorem 4.2.
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It is well known that the number of partitions of [n] with exactly k blocks is the Stirling

number of the second kind
{
n
k

}
. Recently, Chen et al. [4] presented a grammatical labeling

of partitions of [n]: For σ ∈ Πn, we label a block of σ by letter b and label the partition

itself by letter a, and the weight of a partition is defined to be the product of its labels.

Hence w(σ) = abk if l(σ) = k. They deduced that
∑

σ∈Πn
w(σ) = a

∑n
k=0

{
n
k

}
bk. As a

variant of the grammatical labeling, we introduce the following labelings on partitions and

permutations.

• Let σ = B1/B2/ · · · /Bk be a partition of [n]. Then we label Bi by the letter bk+1−i,

where 1 ≤ i ≤ k. Moreover, we put letter a at the end of σ.

• Suppose that π ∈ SPn(132) with k − 1 descents, where 1 ≤ k ≤ n. Let i1 < i2 <

· · · < ik−1 be the descent indices of π. We put the subscript labels sr after π(ir),

where 1 ≤ r ≤ k − 1. Moreover, we put the subscript label sk at the end of π and

the subscript label t at the front of π.

For example, the partition {1, 3}/{2, 4, 5} and the permutation 42315 are labeled as

follows:

{1, 3}b2/{2, 4, 5}b1a; t4s123s215s3 .

For 1 ≤ k ≤ n and 0 ≤ ` ≤
(
n
2

)
, we define Πn,k,` = {σ ∈ Πn : l(σ) = k, fr(σ) = `} and

SPn,k,`(132) = {π ∈ SPn(132) : des(π) = k − 1, inv(π) = `}.

In the following discussion, we always add labels to partitions and permutations.

Now we construct a bijection Ψ between SPn,k,`(132) and Πn,k,`. When n = 1, we have

SP1,1,0(132) = {1} and Π1,1,0 = {{1}}. The bijection between SP1,1,0(132) and Π1,1,0 is

given by t1s1 ⇐⇒ {1}b1a. When n = 2, if the entry 2 is inserted to the position with label

t of t1s1 , then we append the block {2} to {1}b1a; if the entry 2 is inserted to the position

with label s1 of t1s1 , then we insert the element 2 into the block {1}. In other words, the

bijection Ψ is given by

t2s11s2 ⇐⇒ {1}b2/{2}b1a;

t12s1 ⇐⇒ {12}b1a.

It should be noted that the block with label b1 consists of the entries of the corresponding

permutation lying before the label s1, and the block with label b2 (if exists) consists of

the entries lying between the labels s1 and s2.

For the induction step, assume that n = m ≥ 2, and the bijection Ψ has been con-

structed between SPm,k,`(132) and Πm,k,` for all k and `. Consider the case n = m + 1.

Suppose that π ∈ SPm,k,`(132) and π̂ is obtained from π by inserting the entry m+ 1 into



Counting Permutations by Simsun Successions 523

π. Set Ψ(π) = σ. Suppose further that the block of σ with label b1 consists of the entries

of π lying before the label s1, and for 1 < i ≤ k, the block of σ with label bi consists of

the entries of π lying between the labels si−1 and si. Consider the following two cases:

(i) If the entry m+ 1 is inserted to the position with label t of π, then we append the

block {m+1} to σ. In this case, des(π̂) = des(π)+1 = k and inv(π̂) = inv(π)+m =

`+m. Moreover, l(Ψ(π̂)) = l(σ) + 1 = k + 1 and fr(Ψ(π̂)) = fr(σ) +m = `+m.

(ii) If the entry m + 1 is inserted to the position with label si of π, then we insert the

element m + 1 into the block with label bi of σ. In this case, des(π̂) + 1 = l(Ψ(π̂))

and inv(π̂) = fr(Ψ(π̂)). More precisely, we distinguish two subcases:

(c1) if i = k, then des(π̂) = des(π) = k − 1, inv(π̂) = inv(p) = `, l(π̂) = l(σ) = k

and fr(π̂) = fr(σ) = `.

(c2) if 1 ≤ i < k and the label si lies right after π(j), then π(j) > π(j + 1).

By the induction hypothesis, there are m − j elements in the union of the

blocks with labels bi+1, bi+2, . . . , bk of σ. Therefore, des(π̂) = des(π) = k − 1,

inv(π̂) = `+m− j, l(π̂) = l(σ) = k and fr(π̂) = fr(σ) +m− j = `+m− j.

After the above step, we label the obtained permutations and partitions accordingly. It

is clear that the block of Ψ(π̂) with label b1 consists of the entries of π̂ lying before the

label s1, and for 1 < i ≤ k, the block of Ψ(π̂) with label bi consists of the entries of π̂

lying between the labels si−1 and si, and the block of Ψ(π̂) with label bk+1 (if it exists)

consists of the entries of π̂ lying between the labels sk and sk+1. By induction, we see

that Ψ is the desired bijection between SPn,k,`(132) and Πn,k,` for all k and `. Using Ψ,

we see that if π(i) is a right peak of π, then π(i− 1) and π(i) are in the same block and

π(i) is the largest element of that block. If π(i) is an exterior double descent of π, then

{π(i)} is a singleton of Ψ(π). Moreover, if i is a succession of π, then π(i) and π(i + 1)

must be in the same block of Ψ(π).

Furthermore, we define a map ϕ : Πn → SPn(132) as follows: For σ = B1/B2/ · · · /Bk ∈
Πn, let σr = Bk/Bk−1/ · · · /B1. Let ϕ(σ) be a permutation obtained from σr by erasing all

of the braces of blocks and bars of σr. For example, if σ = {1}b4/{2, 4}b3/{3, 5, 7}b2/{6}b1a,

then ϕ(σ) = t6s1357s224s31s4 . Combining this with Ψ, we see that ϕ is also a bijection

between SPn,k,`(132) and Πn,k,` and SPn,k,`(132) = {ϕ(σ) : σ ∈ Πn,k,`}. It is clear that if

Bi is a non-singleton of σ with the largest element m, then m is a right peak of ϕ(σ). If

{c} is a singleton of σ, then c is an exterior double descent of ϕ(σ). If d and d+1 appear in

different blocks of σ, then we have σ = · · · /{. . . , d, . . .}/ · · · /{. . . , d+ 1, . . .}/ · · · , or σ =

· · · /{e, . . . , d+ 1, . . .}/ · · · /{. . . , d, . . .}/ · · · , where e < d. Thus ϕ(σ) = · · · (d+ 1) · · · d · · · ,
or ϕ(σ) = · · · d · · · e · · · (d+ 1) · · · . Therefore, there exists an index i such that ϕ(σ)(i) = d
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and ϕ(σ)(i + 1) = d + 1 if and only if d and d + 1 appear in the same block of σ. In

conclusion, using the bijections Ψ and ϕ, we get a constructive proof of Theorem 4.2.

Example 4.3. Given π = 42351 ∈ SP5,3,6(132). The correspondence between π and

Ψ(π) is done as follows:

t1s1 ⇐⇒ {1}b1a;

t2s11s2 ⇐⇒ {1}b2/{2}b1a;

t23s11s2 ⇐⇒ {1}b2/{2, 3}b1a;

t4s123s21s3 ⇐⇒ {1}b3/{2, 3}b2/{4}b1a;

t4s1235s21s3 ⇐⇒ {1}b3/{2, 3, 5}b2/{4}b1a.

Let Bn(x) =
∑n

k=0

{
n
k

}
xk be the Stirling polynomials. Taking y = z = p = q = 1 in

Theorem 4.2 leads to the following.

Corollary 4.4. For n ≥ 1, we have

Bn(x) =
∑

π∈SPn(132)

xdes(π)+1.

By using the reverse and complement maps, it is clear that

Bn(x) =
∑

π∈SPn(231)

xasc(π)+1 =
∑

π∈SPn(312)

xasc(π)+1 =
∑

π∈SPn(213)

xdes(π)+1.

Using the bijection Ψ and [26, p. 137, Exercise 108], we get the following result.

Proposition 4.5. The number of permutations in SPn(132) with no successions is B(n−
1).

Let π = π(1)π(2) · · ·π(n) ∈ Sn. We say that an element π(i) is a left-to-right maximum

of π if π(i) is the largest entry among π(1), π(2), . . . , π(i). Let lrmax(π) be the number of

left-to-right maxima of π. For example, lrmax(2314) = 3. Let σ = B1/B2/ · · · /Bk be a

partition of [n]. Following [23], we define ai to be the number of c ∈ Bi with c > minBi−1,

where 2 ≤ i ≤ k. Let

D̂es(σ) = {2a2 , 3a3 , . . . , kak}

be the dual descent multiset of p, where id means that i is repeated d times. For example,

D̂es({1, 3, 5}/{2}/{4, 6, 7}) = {21, 33}. Let dudes(σ) = #D̂es(σ). Using the bijections Ψ

and ϕ, it is easy to verify the following result.

Proposition 4.6. For n ≥ 1, we have∑
π∈SPn(132)

xlrmax(π) =
∑
σ∈Πn

xn−dudes(σ).
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Let D(π) = {i : π(i) > π(i + 1)} be the descent set of π. The major index of

π is the sum of the descents: maj(π) =
∑

i∈D(π) i. Along the same lines as the proof

of [26, Eq. (1.41)], it is routine to check that∑
π∈SPn(132)

xinv(π) =
∑

π∈SPn(132)

x(n2)−maj(π).
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