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On Stronger Forms of Sensitivity in Non-autonomous Systems

Radhika Vasisht and Ruchi Das*

Abstract. In this paper, some stronger forms of transitivity in a non-autonomous dis-

crete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self maps

converging uniformly to f , are studied. The concepts of thick sensitivity, ergodic sen-

sitivity and multi-sensitivity for non-autonomous discrete dynamical systems, which

are all stronger forms of sensitivity, are defined and studied. It is proved that under

certain conditions, if the rate of convergence at which (fn) converges to f is “suffi-

ciently fast”, then various forms of sensitivity and transitivity for the non-autonomous

system (X, f1,∞) and the autonomous system (X, f) coincide. Also counter examples

are given to support results.

1. Introduction

Dynamical system is one of the very significant and applicable branches of mathematics

devoted to the study of systems governed by a consistent set of laws over time such as

difference and differential equations. Beginning with the contributions of Poincaré and

Lyapunov, theory of dynamical systems has seen significant developments in the recent

years. This theory has gained considerable interest and has been found to have useful

connections with many different areas of mathematics [8–11,13].

Most of the natural systems in this world, whether it is the rhythm of day and night or

the yearly seasons or weather patterns which vary from one year to another are subjected

to time-dependent external forces and their modeling leads to a mathematical theory of

non-autonomous discrete dynamical systems. An autonomous discrete dynamical system

is a dynamical system which has no external input and always evolves according to the

same unchanging law. The theory of non-autonomous dynamical systems helps in char-

acterizing the behaviour of various natural phenomenons which cannot be modeled by

autonomous systems. The mathematical theory of non-autonomous systems is consider-

ably more involved than the theory of autonomous systems. Over recent years, the theory

of such systems has developed into a highly active field related to, yet recognizably distinct
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from that of classical autonomous dynamical systems [2, 16, 18, 21, 24, 25]. This develop-

ment was motivated by problems of applied mathematics, in particular, in life sciences

where genuinely non-autonomous systems are in abundance. In general the dynamics of

non-autonomous discrete dynamical system is much richer and quiet different from the

dynamics of autonomous discrete dynamical systems.

In recent years, non-autonomous discrete dynamical systems have been widely studied.

Let (X, d) be a metric space and fn : X → X, n ∈ N be a continuous map. Consider the

following non-autonomous discrete dynamical system (N.D.S.) (X, f1,∞), where

xn+1 = fn(xn), n ∈ N.

For convenience we denote (fn)∞n=1 by f1,∞. Naturally, a difference equation of the form

xn+1 = fn(xn) can be thought of as the discrete analogue of a non-autonomous differential

equation dx/dt = f(x, t). Non-autonomous discrete dynamical systems were introduced

by authors in [6]. In various mathematical problems including those in the area of applied

mathematics, we usually work with a sequence of maps instead of a single map.

Our main focus in this paper remains on two dynamical properties, namely, transi-

tivity and sensitive dependence on initial conditions, or simply sensitivity [1]. Sensitive

dependence on initial conditions, also known as the butterfly effect, is the main ingredient

of chaos. In a dynamical system exhibiting sensitivity, a small change in the initial condi-

tions leads to a significant change in the dynamics of the system. Sensitivity analysis has a

major application in the area of population biology for studying the effect of transmission

and treatment of diseases [3,5]. Roughly speaking, a dynamical system is sensitive if given

any region in the space X, there are always two points in that region and a unit of time say

n ∈ N such that n-th iterations of these two points under f1,∞ are seperated considerably.

For continuous self maps of compact metric spaces, Moothathu [19] has started a study of

stronger forms of transitivity and sensitivity in terms of the largeness of subsets of N. He

has defined and studied syndetic transitivity, syndetic sensitivity, cofinite sensitivity and

multi-sensitivity. Working on ideas of various types of large subsets of N, several other

stronger forms of transitivity and sensitivity have been studied for dynamical systems by

different researchers [7, 15, 25]. In this paper, we define thick sensitivity, ergodic sensi-

tivity and multi-sensitivity for non-autonomous discrete dynamical systems. In [20], the

authors have studied the relations of transitivity, weak-mixing, topological mixing, sen-

sitivity, cofinite sensitivity and various other dynamical properties of a non-autonomous

discrete dynamical system (X, f1,∞) generated by a sequence (fn) of continuous self-maps

uniformly converging to f with the autonomous system (X, f). For more results on non-

autonomous discrete dynamical systems, one can refer to recent researches done in this

direction [4, 14,17,22,23].

Motivated by the work done in this area, we investigate these relations for stronger
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forms of transitivity and sensitivity. In Section 2, we recall some already known concepts

by giving various definitions. In Section 3, we establish a necessary and sufficient condition

for the non-autonomous system (X, f1,∞) generated by a sequence (fn) of continuous self-

maps to be syndetically transitive and topologically ergodic. Further, we give examples to

support our hypothesis. In Section 4, we obtain a necessary and sufficient condition for the

non-autonomous system (X, f1,∞) generated by a sequence (fn) of continuous self-maps to

be syndetically sensitive, thickly sensitive, thickly syndetic sensitive, ergodically sensitive,

multi-sensitive, collective sensitive and synchronous sensitive. We also give example to

establish the necessity of hypothesis.

2. Preliminaries

In this section we recall some well known notions.

Given a subset A of a topological space X, int(A) denote the interior of A in X. For

any two open sets U and V of X, denote, Nf1,∞(U, V ) = {n ∈ N : fn1 (U) ∩ V 6= ∅}. Let

V ⊂ X be a nonempty open subset, N be the set of positive integers and δ > 0. Denote

Nf1,∞(V, δ) = {n ∈ N : there exist x, y ∈ V satisfying d(fn1 (x), fn1 (y)) > δ}.

Definition 2.1. A set F ⊂ N is called syndetic if there exists a positive integer a such

that {i, i+ 1, . . . , i+ a} ∩ F 6= ∅ for any i ∈ N.

Definition 2.2. A thick set is a set of integers that contains arbitrarily long intervals.

That is, given a thick set T , for every p ∈ N, there is some n ∈ N such that {n, n+ 1, n+

2, . . . , n+ p} ⊂ T .

Definition 2.3. A set F ⊂ N is called thickly syndetic if {n ∈ N : n+j ∈ F for 0 ≤ j ≤ k}
is syndetic for each k ∈ N. Then taking n = a in the definition of syndetic set, we have

that every thickly syndetic subset of N is syndetic.

Definition 2.4. A system (X, f1,∞) is said to be open if for any open set U in X, fn(U)

is open for each n ∈ N.

Definition 2.5. A system (X, f1,∞) is said to be feeble open if for any nonempty open

set U in X, int(fn(U)) is nonempty for each n ∈ N.

Definition 2.6. Let |Nf1,∞(U, V )| be the cardinal number of the set Nf1,∞(U, V ), then

lim sup
n→∞

|Nf1,∞(U, V ) ∩Nn|
n

is called the upper density of Nf1,∞(U, V ), where Nn = {0, 1, 2, . . . , n− 1}.
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Definition 2.7. The system (X, f1,∞) is said to be topologically transitive if for any two

nonempty open sets U and V in X, there exists a positive integer n ∈ N such that,

fn1 (U)∩V 6= ∅. Thus, the system (X, f1,∞) is said to be topologically transitive if for any

two nonempty open sets U0 and V0 of X, Nf1,∞(U0, V0) is nonempty.

Definition 2.8. The system (X, f1,∞) is said to be topologically mixing if for any two

nonempty open sets U0 and V0 in X, there exists a positive integer N ∈ N such that for any

n ≥ N , Un ∩ V0 6= ∅, where Ui+1 = fi(Ui), 1 ≤ i ≤ n, i.e., (fn ◦ fn−1 ◦ · · · ◦ f1)(U0) ∩ V0 6=
∅ for all n ≥ N . Thus, the system (X, f1,∞) is said to be topologically mixing if for

any two nonempty open sets U0 and V0 of X, there is a positive integer N such that

Nf1,∞(U0, V0) ⊃ [N,∞) ∩ N.

Definition 2.9. The system (X, f1,∞) is said to be syndetically transitive if for any two

nonempty open sets U0 and V0 in X, Nf1,∞(U0, V0) is syndetic.

Definition 2.10. The system (X, f1,∞) is said to be topologically ergodic if for any two

nonempty open sets U0 and V0 in X, Nf1,∞(U0, V0) has positive upper density.

Definition 2.11. The system (X, f1,∞) is said to have sensitive dependence on initial

conditions if there exists a constant δ0 > 0 such that for any x0 ∈ X and any neighbour-

hood U of x0 there exists y0 ∈ X ∩ U and a positive integer n such that d(xn, yn) > δ0,

where {xi}∞i=0 and {yi}∞i=0 are the orbits of the system (X, f1,∞) starting from x0 and y0

respectively. The constant δ0 > 0 is called a sensitivity constant of the system (X, f1,∞).

Here (xi)
∞
i=0 = {x ∈ X : fn1 (x), n ≥ 1} where fn1 (x) = fn◦· · ·◦f1(x). The system (X, f1,∞)

is said to have sensitive dependence on initial conditions or is sensitive in X if there exists

a constant δ > 0 such that for any nonempty open set V of X, Nf1,∞(V, δ) is nonempty.

Definition 2.12. The system (X, f1,∞) is called cofinitely sensitive in X if there exists a

constant δ > 0 such that for any nonempty open set V of X, there exists N ≥ 1 such that

[N,∞) ∩ N ⊂ Nf1,∞(V, δ), where δ is called a constant of cofinite sensitivity.

Definition 2.13. The system (X, f1,∞) is said to have syndetic sensitivity in X if there

exists a constant δ > 0 such that for any nonempty open set V of X, Nf1,∞(V, δ) is

syndetic, where δ is called a constant of syndetic sensitivity.

Clearly, syndetically sensitive implies sensitive as Nf1,∞(V, δ) is nonempty when system

is syndetically sensitive. Also, when system is cofinitely sensitive, then there exists a

positive integer N such that Nf1,∞(V, δ) ⊃ [N,∞)∩N, i.e., {N,N + 1, . . .} ⊂ Nf1,∞(V, δ).

Therefore, taking a = N in the definition of syndetic subset, we have that Nτ (V, δ) is

syndetic. Hence, cofinitely sensitive implies syndetically sensitive. Therefore, we have

Cofinitely Sensitive =⇒ Syndetically Sensitive =⇒ Sensitive.
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Definition 2.14. The system (X, f1,∞) is said to be thickly syndetic sensitive in X if

there exists a constant δ > 0 such that for any nonempty open set V of X, Nf1,∞(V, δ) is

thickly syndetic, where δ is called a constant of thickly syndetic sensitivity [17].

Note 2.15. Cofinitely Sensitive =⇒ Thickly Syndetically Sensitive =⇒ Syndetically Sen-

sitive =⇒ Sensitive.

Definition 2.16. The system (X, f1,∞) is said to have collective sensitivity in X if there

exists some δ > 0 such that for finitely many distinct points x1, x2, . . . , xn of X and an

arbitrary ε > 0, there exist the same number of distinct points y1, y2, . . . , yn of X and

some positive integer k satisfying the following two conditions:

(1) d(xi, yi) < ε, i = 1, 2, . . . , n.

(2) there exists an i0 with 1 ≤ i0 ≤ n such that d((fk1 (xi)), (f
k
1 (yi0))) ≥ δ, i = 1, 2, . . . , n

or d((fk1 (yi)), (f
k
1 (xi0))) ≥ δ, i = 1, 2, . . . , n.

Here, δ is called a constant of collective sensitivity [26].

Definition 2.17. The system (X, f1,∞) is said to have synchronous sensitivity in X if

there exists some δ > 0 such that for finitely many distinct points x1, x2, . . . , xn of X and

an arbitrary ε > 0, there exist the same number of distinct points y1, y2, . . . , yn of X and

some positive integer k satisfying the following two conditions:

(1) d(xi, yi) < ε, i = 1, 2, . . . , n.

(2) d((fk1 (xi)), (f
k
1 (yi))) ≥ δ, i = 1, 2, . . . , n.

Here, δ is called a constant of synchronous sensitivity [26].

Let (X, d) be a compact metric space and let C(X) denote the collection of continuous

self-maps on X. For any f, g ∈ C(X), the Supremum metric is defined by D(f, g) =

supx∈X d(f(x), g(x)). It is easy to observe that a sequence (fn) in C(X) converges to f

in C((X), D) if and only if fn converges to f uniformly on X and hence the topology

generated by the Supremum metric is called the topology of uniform convergence.

In [20], authors have proved several results for topological transitivity, weak mixing,

topological mixing, sensitive dependence on initial conditions and cofinite sensitivity in-

cluding the following proposition and corollary for the system (X, f1,∞).

Proposition 2.18. [20] Let (X, f1,∞) be an N.D.S. generated by a family f1,∞ and let f

be any continuous self map on X. If the family f1,∞ commutes with f then for any x ∈ X
and any k ∈ N, d(fk1 (x), fk(x)) ≤

∑k
i=1D(fi, f).

Corollary 2.19. [20] Let (X, f1,∞) be an N.D.S. generated by a family f1,∞ and let f be

any continuous self map on X. If the family f1,∞ commutes with f then for any x ∈ X
and any k ∈ N, d(fn+k1 (x), fk(fn1 (x))) ≤

∑k
i=1D(fi+1, f).
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3. Some stronger forms of transitivity

In this section, we give a necessary and sufficient condition for the system (X, f1,∞) to be

syndetically transitive and topologically ergodic, where (X, f1,∞) is an N.D.S. generated

by a family f1,∞ of feeble open maps commuting with a continuous self map f . We also

provide two examples to support our hypothesis.

Theorem 3.1. Let (X, f1,∞) be an N.D.S. generated by a family f1,∞ of feeble open maps

commuting with f . If
∑∞

i=1D(fi, f) <∞, then (X, f) is syndetically transitive if and only

if (X, f1,∞) is syndetically transitive.

Proof. Let (X, f) be syndetically transitive. Let ε > 0 be given and U = B(x, ε) and

V = B(y, ε) be two nonempty open sets in X. As
∑∞

i=1D(fi, f) < ∞, there exists r

such that
∑∞

i=rD(fi, f) < ε/2. As the family f1,∞ consists of feeble open maps, therefore

f r1 (U) has nonempty interior. Let U ′ = int(f r1 (U)) and V ′ = B(y, ε/2). Clearly, U ′

and V ′ are nonempty open sets in X. Then, since (X, f) is syndetically transitive so

Nf (U ′, V ′) is syndetic. Let m ∈ Nf (U ′, V ′) so there exists u′ ∈ U ′ such that fm(u′) ∈ V ′.
Now since U ′ = int(f r1 (U)) therefore there exists u ∈ U such that u′ = f r1 (u) therefore,

fm(f r1 (u)) ∈ V ′. Also by Corollary 2.19, we have

d(fm+r
1 (U), fm(f r1 (U))) ≤

m∑
i=1

D(fi, f) < ε/2

therefore by triangle inequality, we get,

d(y, fm+r
1 (U)) ≤ d(y, f r1 (U)) + d(fm(f r1 ), fm+r

1 (U)) < ε

which implies fm+r
1 (U) ∩ V 6= ∅ hence m+ r ∈ Nf1,∞(U, V ) and we get Nf (U ′, V ′) + r ⊆

Nf1,∞(U, V ) therefore Nf1,∞(U, V ) is syndetic. Thus, (X, f1,∞) is syndetically transitive.

Conversely, let ε > 0 be given and let B(x, ε) and B(y, ε) be two nonempty open sets

in X. As
∑∞

i=1D(fi, f) < ∞, choose r ∈ N such that
∑∞

i=rD(fi, f) < ε/2. Further,

the syndetic transitivity of the system (X, f1,∞) ensures that the number of times any

nonempty open set U visits B(y, ε) is infinite. Applying syndetic transitivity of (X, f1,∞)

to open sets U = (f r1 )−1B(x, ε) and V = B(y, ε/2), we get that Nf1,∞(U, V ) is syndetic.

Choose k such that f r+k1 (U) ∩ V 6= ∅. Consequently, there exists u ∈ U such that

d(f r+k1 (u), y) < ε/2. Also by Corollary 2.19, we have

d(f r+k1 (u), fk(f r1 (u))) <
k∑
i=1

D(fr+i, f) < ε/2

and therefore by triangle inequality

d(y, fk(f r1 (u))) < ε.
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As f r1 (u) ∈ B(x, ε), we have fkB(x, ε) ∩B(y, ε) 6= ∅ which implies

(Nf1,∞(U, V )− r) ⊆ Nf (B(x, ε), B(y, ε))

therefore Nf (B(x, ε), B(y, ε)) is syndetic. Hence, (X, f) is syndetically transitive.

Theorem 3.2. Let (X, f1,∞) be an N.D.S. generated by a family f1,∞ of feeble open maps

commuting with f . If
∑∞

i=1D(fi, f) <∞, then (X, f) is topologically ergodic if and only

if (X, f1,∞) is topologically ergodic.

Proof. Let (X, f) be topologically ergodic. Let ε > 0 be given and let U = B(x, ε) and

V = B(y, ε) be two nonempty open sets in X. As
∑∞

i=1D(fi, f) <∞, there exists r such

that
∑∞

i=rD(fn, f) < ε/2. Since the family f1,∞ consists of feeble open maps, therefore

f r1 (U) has nonempty interior. Let U ′ = int(f r1 (U)) and V ′ = B(y, ε/2). Clearly, U ′ and

V ′ are nonempty open sets in X. Then (X, f) being topologically ergodic, Nf (U ′, V ′)

has positive upper density. Let m ∈ Nf (U ′, V ′) then there exists u′ ∈ U ′ such that

fm(u′) ∈ V ′. Now, since U ′ = int(f r1 (U)) therefore there exists u ∈ U such that u′ = f r1 (u)

and hence, fm(f r1 (u)) ∈ V ′. Also, by Corollary 2.19, we have

d(fm+r
1 (U), fm(f r1 (U))) ≤

m∑
i=1

D(fi, f) < ε/2

therefore by triangle inequality, we get,

d(y, fm+r
1 (U)) ≤ d(y, f r1 (U)) + d(fm(f r1 ), fm+r

1 (U)) < ε

which implies fm+r
1 (U)∩V 6= ∅. So m+r ∈ Nf1,∞(U, V ) and Nf (U ′, V ′)+r ⊆ Nf1,∞(U, V )

implying Nf1,∞(U, V ) also has positive upper density. Hence, (X, f1,∞) is topologically

ergodic.

Conversely, let ε > 0 be given and let B(x, ε) and B(y, ε) be two nonempty open sets

in X. As
∑∞

i=1D(fi, f) < ∞, choose r ∈ N such that
∑∞

i=rD(fi, f) < ε/2. Further,

the topologically ergodicity of the system (X, f1,∞) ensures that the number of times any

nonempty open set in X visits B(y, ε) is infinite. Applying topologically ergodicity of

(X, f1,∞) to open sets U = (f r1 )−1B(x, ε) and V = B(y, ε/2) we get that, Nf1,∞(U, V ) has

positive upper density. Choose k such that f r+k1 (U) ∩ V 6= ∅. Consequently, there exists

u ∈ U such that d(f r+k1 (u), y) < ε/2. Also by Corollary 2.19, we have

d(f r+k1 (u), fk(f r1 (u))) <

k∑
i=1

D(fr+i, f) < ε/2

and therefore by triangle inequality

d(y, fk(f r1 (u))) < ε.
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As f r1 (u) ∈ B(x, ε), we have fk(B(x, ε)) ∩B(y, ε) 6= ∅ which implies

Nf1,∞(U, V )− r ⊆ Nf (B(x, ε), B(y, ε))

therefore Nf (B(x, ε), B(y, ε)) has positive upper density. Hence, (X, f) is topologically

ergodic.

In the following example, we show that the above results fail if the condition of taking

(fn, n ∈ N) to be feeble open is dropped from the hypothesis.

Example 3.3. Let I be the unit interval [0, 1] and f1, f2 be defined by

f1(x) =


2x for x ∈ [0, 1/5],

1 for x ∈ [1/5, 2/5],

x for x ∈ [2/5, 1],

and f2(x) =



4x for x ∈ [0, 1/4],

−4x+ 2 for x ∈ [1/4, 1/2],

4x− 2 for x ∈ [1/2, 3/4],

−4x+ 4 for x ∈ [3/4, 1].

Take f0(x) = f1(x) and fn(x) = f2(x) for all n > 1. Then (fn)∞n=0 converges uniformly

to f = f2 in X. Note that f is feeble open. Clearly, (X, f) is syndetically transitive and

topologically ergodic being topological mixing. However, the system (X, f1,∞) is not even

transitive because for open sets U = (1/5, 2/5) and V = (2/5, 3/4), Nf1,∞(U, V ) is empty

and hence it is not syndetically transitive or topologically ergodic. Our Theorems 3.1 and

3.2 fail here because in the family (fn), the function f0 is not feeble open.

In the following example, we provide a system (X, f1,∞) which satisfies the hypothesis

of Theorems 3.1 and 3.2.

Example 3.4. Let I be the interval [0, 2] and f1, f2 be defined by f1(x) = x for x ∈ [0, 2]

and

f2(x) =



4x for x ∈ [0, 1/4],

−4x+ 2 for x ∈ [1/4, 1/2],

4x− 2 for x ∈ [1/2, 3/4],

−4x+ 4 for x ∈ [3/4, 1].

Let f0(x) = f1(x) and fn(x) = f2(x) for all n > 1. Note that the functions f1 and

f = f2(x) are feeble open. Clearly, (X, f) is syndetically transitive and topologically

ergodic being topological mixing. The family fn consists of feeble open maps converging

uniformly to f . Thus, this family satisfies the hypothesis of our Theorems 3.1 and 3.2,

and hence, the system (X, f1,∞) is also syndetically transitive and topologically ergodic.
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4. Some stronger forms of sensitivity

In this section, we prove some results for various stronger forms of sensitivity. Some

stronger forms of sensitivity like syndetic sensitivity, thickly syndetic sensitivity, collective

sensitivity and synchronous sensitivity have already been defined for the non-autonomous

dynamical systems. However, thick sensitivity, ergodic sensitivity and multi-sensitivity

are some stronger forms of sensitivity that have been widely studied for autonomous

systems [7,12,15,19]. We study these notions for non-autonomous dynamical systems.

Definition 4.1. The system (X, f1,∞) is said to have thick sensitivity in X if there exists

a constant δ > 0 such that for any nonempty open set V of X, Nf1,∞(V, δ) is thick; δ is

called a constant of thick sensitivity.

Definition 4.2. The system (X, f1,∞) is said to have ergodic sensitivity in X if there

exists a constant δ > 0 such that for any nonempty open set V of X, Nf1,∞(V, δ) has

positive upper density; δ is called a constant of ergodic sensitivity.

Definition 4.3. The system (X, f1,∞) is said to have multi-sensitivity in X if there exists

a constant δ > 0 such that for every k ≥ 1 and any nonempty open subsets V1, V2, . . . , Vk

of X,
⋂k
i=0Nf1,∞(Vi, δ) is nonempty; δ is called a constant of multi-sensitivity.

Remark 4.4. Note that cofinite sensitivity implies each of the above defined forms of

sensitivity.

In the following theorems, we give a necessary and sufficient condition for the system

(X, f1,∞) to be syndetically sensitive, thickly sensitive, thickly syndetic sensitive, ergod-

ically sensitive and multi-sensitive, where (X, f1,∞) is an N.D.S. generated by a family

f1,∞ of feeble open maps commuting with a continuous self map f .

Theorem 4.5. Let (X, f1,∞) be an N.D.S. generated by a family f1,∞ of feeble open maps

commuting with f . If
∑∞

i=1D(fi, f) <∞, then (X, f) is syndetically sensitive if and only

if (X, f1,∞) is syndetically sensitive.

Proof. Let (X, f) be syndetically sensitive with constant of syndetic sensitivity δ > 0. Let

ε > 0 be given and U = B(x, ε) be a nonempty open set in X. As
∑∞

i=1D(fn, f) <∞, by

Corollary 2.19 we get, for any ε > 0, there exists n ∈ N such that d(fn+k1 (x), fk(fn1 (x))) < ε

for all x ∈ X, k ∈ N. Choose m ∈ N such that 1/m < δ/4. Then, there exists n0

such that d(fn0+k
1 (x), fk(fn0

1 (x))) < 1/m for all x ∈ X, k ∈ N. As fn’s are feeble

open, U ′ = int fn0
1 (U) is nonempty open and by syndetic sensitivity of (X, f), we get

Nf (U ′, δ) is syndetic. Let k ∈ Nf (U ′, δ) then there exist v1, v2 ∈ fn0
1 (U) such that

d(fk(v1), f
k(v2)) > δ. As v1, v2 ∈ fn0

1 (U), there exist v′1, v
′
2 ∈ Usuch that v1 = fn0

1 (v′1)

and v2 = fn0
1 (v′2) and

d(fk(fn0
1 (v′1)), f

k(fn0
1 (v′2))) > δ.
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Also d(fn0+k
1 (v′i), f

k(fn0
1 (v′i))) < 1/m for i = 1, 2.

Therefore, by triangle inequality,

d(fn0+k
1 (v′1), f

n0+k
1 (v′2)) > δ − 2/m > δ/2.

Thus, we obtain v′1 and v′2 ∈ U such that

d(fn0+k
1 (v′1), f

n0+k
1 (v′2)) > δ/2

which implies n0+k ∈ Nf1,∞(U, δ/2) hence Nf (U ′, δ)+n0 ⊆ Nf1,∞(U, δ/2). Since Nf (U ′, δ)

is syndetic therefore Nf1,∞(U, δ/2) is syndetic and hence (X, f1,∞) is syndetically sensitive.

Conversely, let (X, f1,∞) be syndetically sensitive with constant δ > 0 and let U be a

nonempty open set in X. Let m ∈ N such that 1/m < δ/4. Then there exists n0 ∈ N such

that d(fn0+k
1 (x), fk(fn0

1 (x))) < 1/m for all x ∈ X, k ∈ N. Since (X, f1,∞) is syndetically

sensitive, therefore for any n ∈ N, the set Nf1,∞(U, δ) is syndetic and hence the set {k :

diam(fk1 (U)) > δ} is infinite. Thus, for open set (fn0
1 )−1(U), the set Nf1,∞((fn0

1 )−1(U), δ)

is syndetic. So there exists k ∈ N such that k + n0 ∈ Nf1,∞((fn0
1 )−1(U), δ) implying there

exist v1, v2 ∈ (fn0
1 )−1(U) such that

d(fn0+k
1 (v1), f

n0+k
1 (v2)) > δ.

Since v1, v2 ∈ ((fn0
1 )−1(U)) therefore there exist v′1, v

′
2 ∈ U such that v′1 = fn0

1 (v1) and

v′2 = fn0
1 (v2) and hence

d((fn0+k ◦ · · · ◦ fn0+1)(v′1), (fn0+k ◦ · · · ◦ fn0+1)(v′2)) > δ.

Also d(fn0+k
1 (vi), f

k(fn0
1 (vi))) < 1/m or d(fn0+k

1 (vi), f
k(v′i)) < 1/m for i = 1, 2.

Therefore, by triangle inequality

d(fk(v′1), f
k(v′2)) > δ − 2/m > δ/2.

Hence, we obtain v′1, v
′
2 ∈ U such that d(fk(v′1), f

k(v′2)) > δ/2 which implies k ∈ Nf (U, δ/2)

so (Nf1,∞((fn0
1 )−1(U), δ)− n0) ⊆ Nf (U, δ/2) and Nf1,∞((fn0

1 )−1(U), δ) being syndetic im-

plies Nf (U, δ/2) is syndetic. Therefore, (X, f) is syndetically sensitive.

Theorem 4.6. Let (X, f1,∞) be an N.D.S. generated by a family f1,∞ of feeble open maps

commuting with f . If
∑∞

i=1D(fi, f) < ∞, then (X, f) is thickly sensitive if and only if

(X, f1,∞) is thickly sensitive.

Proof. Let (X, f) be thickly sensitive with constant of thick sensitivity δ > 0. Let ε > 0

be given and U = B(x, ε) be a nonempty open set in X. As
∑∞

i=1D(fi, f) <∞, by Corol-

lary 2.19 we obtain, for any ε > 0, there exists n ∈ N such that d(fn+k1 (x), fk(fn1 (x))) < ε
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for all x ∈ X, k ∈ N. Choose m ∈ N such that 1/m < δ/4. Thus, there exists n0

such that d(fn0+k
1 (x), fk(fn0

1 (x))) < 1/m for all x ∈ X, k ∈ N. As fn’s are feeble open,

U ′ = int fn0
1 (U) is nonempty open and by thick sensitivity of (X, f) we have Nf (U ′, δ) is

thick. Let k ∈ Nf (U ′, δ) then there exist v1, v2 ∈ fn0
1 (U) such that d(fk(v1), f

k(v2)) > δ.

As v1, v2 ∈ fn0
1 (U) so there exist v′1, v

′
2 ∈ U such that v1 = fn0

1 (v′1) and v2 = fn0
1 (v′2) and

hence

d(fk(fn0
1 (v′1)), f

k(fn0
1 (v′2))) > δ.

Also d(fn0+k
1 (v′i), f

k(fn0
1 (v′i))) < 1/m for i = 1, 2.

Therefore, by triangle inequality,

d(fn0+k
1 (v′1), f

n0+k
1 (v′2)) > δ − 2/m > δ/2.

Thus, we obtain v′1, v
′
2 ∈ U such that

d(fn0+k
1 (v′1), f

n0+k
1 (v′2)) > δ/2

which implies n0 + k ∈ Nf1,∞(U, δ/2) so Nf (U ′, δ) + n0 ⊆ Nf1,∞(U, δ/2). Since Nf (U ′, δ)

is thick therefore, Nf1,∞(U, δ/2) is thick and hence (X, f1,∞) is thickly sensitive.

Conversely, let (X, f1,∞) be thickly sensitive with constant δ > 0 and let U be a

nonempty open set in X. Let m ∈ N such that 1/m < δ/4. Thus, there exists n0 ∈ N
such that d(fn0+k

1 (x), fk(fn0
1 (x))) < 1/m for all x ∈ X, k ∈ N. Since (X, f1,∞) is thickly

sensitive, therefore for any n ∈ N, the set Nf1,∞(U, δ) is thick and hence the set {k :

diam(fk1 (U)) > δ} is infinite. Thus, for open set (fn0
1 )−1(U), the set Nf1,∞((fn0

1 )−1(U), δ)

is thick, which implies there exists k ∈ N such that k + n0 ∈ Nf1,∞((fn0
1 )−1(U), δ). Thus,

there exist v1, v2 ∈ (fn0
1 )−1(U) such that

d(fn0+k
1 (v1), f

n0+k
1 (v2)) > δ.

Since v1, v2 ∈ ((fn0
1 )−1(U)) therefore there exist v′1, v

′
2 ∈ U such that v′1 = fn0

1 (v1) and

v′2 = fn0
1 (v2) and hence

d(fn0+k ◦ · · · ◦ fn0+1(v′1), fn0+k ◦ · · · ◦ fn0+1(v′2)) > δ.

Also d(fn0+k
1 (vi), f

k(fn0
1 (vi))) < 1/m or d(fn0+k

1 (vi), f
k(v′i)) < 1/m for i = 1, 2.

Therefore, by triangle inequality

d(fk(v′1), f
k(v′2)) > δ − 2/m > δ/2.

Hence, there exist v′1, v
′
2 ∈ U such that d(fk(v′1), f

k(v′2)) > δ/2 which implies k ∈
Nf (U, δ/2) so Nf1,∞((fn0

1 )−1(U), δ)−n0 ⊆ Nf (U, δ/2). Since Nf1,∞((fn0
1 )−1(U), δ) is thick

therefore Nf (U, δ/2) is thick and hence (X, f) is thickly sensitive.
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Theorem 4.7. Let (X, f1,∞) be an N.D.S. generated by a family f1,∞ of feeble open maps

commuting with f . If
∑∞

i=1D(fi, f) < ∞, then (X, f) is thickly syndetic sensitive if and

only if (X, f1,∞) is thickly syndetic sensitive.

Proof. Let (X, f) be thickly syndetic sensitive with constant of thickly syndetic sensi-

tivity δ > 0. Let ε > 0 be given and U = B(x, ε) be a nonempty open set in X. As∑∞
i=1D(fi, f) < ∞, by Corollary 2.19 we obtain, for any ε > 0, there exists n ∈ N

such that d(fn+k1 (x), fk(fn1 (x))) < ε for all x ∈ X, k ∈ N. Choose m ∈ N such that

1/m < δ/4. Then, there exists n0 such that d(fn0+k
1 (x), fk(fn0

1 (x))) < 1/m for all x ∈ X,

k ∈ N. As fn’s are feeble open, U ′ = int fn0
1 (U) is nonempty open and by thickly synde-

tic sensitivity of (X, f), we have Nf (U ′, δ) is thickly syndetic which implies that the set

SNf
(U ′, δ) = {n ∈ N : n+ j; j ∈ Nf (U ′, δ), 0 ≤ j ≤ k, k ∈ N} is syndetic. Let k ∈ Nf(U ′,δ)

then there exist v1, v2 ∈ fn0
1 (U) such that d(fk(v1), f

k(v2)) > δ. As v1, v2 ∈ fn0
1 (U),

implying there exist v′1, v
′
2 ∈ U such that v1 = fn0

1 (v′1) and v2 = fn0
1 (v′2) and hence

d(fk(fn0
1 (v′1)), f

k(fn0
1 (v′2))) > δ.

Also d(fn0+k
1 (v′i), f

k(fn0
1 (v′i))) < 1/m for i = 1, 2.

By triangle inequality,

d(fn0+k
1 (v′1), f

n0+k
1 (v′2)) > δ − 2/m > δ/2.

Therefore, we obtain v′1, v
′
2 ∈ U such that d(fn0+k

1 (v′1), f
n0+k
1 (v′2)) > δ/2 which implies

n0 + k ∈ Nf1,∞(U, δ/2) for all k ∈ Nf (U ′, δ) and hence

{n ∈ N : n+ n0 + j; j ∈ Nf (U ′, δ), 0 ≤ j ≤ k, k ∈ N}

⊆ {n ∈ N : n+ j; j ∈ Nf1,∞(U, δ/2); 0 ≤ j ≤ k, k ∈ N}

= SNf1,∞
(U, δ/2),

thus SNf
(U ′, δ)+n0 ⊆ SNf1,∞

(U, δ/2). Since SNf
(U ′, δ) is syndetic therefore SNf1,∞

(U, δ/2)

is syndetic. Hence, Nf1,∞(U, δ/2) is thickly syndetic implying (X, f1,∞) is thickly syndetic

sensitive.

Conversely, let (X, f1,∞) be thickly syndetic sensitive with constant δ > 0 and let

U be a nonempty open set in X. Let m ∈ N such that 1/m < δ/4. Then, there ex-

ists n0 ∈ N such that d(fn0+k
1 (x), fk(fn0

1 (x))) < 1/m for all x ∈ X, k ∈ N. Since

(X, f1,∞) is thickly syndetic sensitive, therefore for any n ∈ N, the set Nf1,∞(U, δ) is

thickly syndetic. Hence the set {k : diam(fk1 (U)) > δ} is infinite implying for open set

(fn0
1 )−1(U), the set Nf1,∞((fn0

1 )−1(U), δ) is thickly syndetic, and hence there exists k ∈ N
such that k + n0 ∈ Nf1,∞((fn0

1 )−1(U), δ). So, there exist v1, v2 ∈ (fn0
1 )−1(U) such that
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d(fn0+k
1 (v1), f

n0+k
1 (v2)) > δ. Since v1, v2 ∈ ((fn0

1 )−1(U)) therefore there exist v′1, v
′
2 ∈ U

such that v′1 = fn0
1 (v1) and v′2 = fn0

1 (v2) and hence

d(fn0+k ◦ · · · ◦ fn0+1(v
′
1), fn0+k ◦ · · · ◦ fn0+1(v

′
2)) > δ.

Also d(fn0+k
1 (vi), f

k(fn0
1 (vi))) < 1/m or d(fn0+k

1 (vi), f
k(v′i)) < 1/m for i = 1, 2.

By triangle inequality,

d(fk(v′1), f
k(v′2)) > δ − 2/m > δ/2.

So there exist v′1, v
′
2 ∈ U such that d(fk(v′1), f

k(v′2)) > δ/2 which implies k ∈ Nf (U, δ/2)

and hence for every m ∈ Nf1,∞(U, δ),m− n0 ∈ Nf (U, δ/2). Thus, the set

{n ∈ N : n− n0 + j; j ∈ Nf1,∞(U, δ), 0 ≤ j ≤ k, k ∈ N}

⊆ {n ∈ N : n+ j; j ∈ Nf (U, δ/2), 0 ≤ j ≤ k, k ∈ N}

= SNf
(U, δ/2)

implying SNf
(U, δ/2) is syndetic and hence Nf (U, δ/2) is thickly syndetic. Therefore,

(X, f) is thickly syndetic sensitive

Theorem 4.8. Let (X, f1,∞) be an N.D.S. generated by a family f1,∞ of feeble open maps

commuting with f . If
∑∞

i=1D(fi, f) < ∞, then (X, f) is ergodically sensitive if and only

if (X, f1,∞) is ergodically sensitive.

Proof. Let (X, f) be ergodically sensitive with δ > 0 as constant of ergodic sensitivity. Let

ε > 0 be given and U = B(x, ε) be a nonempty open set in X. As
∑∞

i=1D(fi, f) <∞, by

Corollary 2.19 we obtain, for any ε > 0, there exists n ∈ N such that d(fn+k1 (x), fk(fn1 (x)))

< ε for all x ∈ X, k ∈ N. Choose m ∈ N such that 1/m < δ/4. Thus, there exists n0

such that d(fn0+k
1 (x), fk(fn0

1 (x))) < 1/m for all x ∈ X, k ∈ N. As fn’s are feeble open,

U ′ = int fn0
1 (U) is nonempty open and by ergodic sensitivity of (X, f), we have Nf (U ′, δ)

has positive upper density. Let k ∈ Nf (U ′, δ) then there exist v1, v2 ∈ fn0
1 (U) such that

d(fk(v1), f
k(v2)) > δ. As v1, v2 ∈ fn0

1 (U), there exist v′1, v
′
2 ∈ Usuch that v1 = fn0

1 (v′1)

and v2 = fn0
1 (v′2) and hence

d(fk(fn0
1 (v′1)), f

k(fn0
1 (v′2))) > δ.

Also d(fn1 0+k(v
′
i), f

k(fn0
1 (v′i))) < 1/m for i = 1, 2.

By triangle inequality,

d(fn0+k
1 (v′1), f

n0+k
1 (v′2)) > δ − 2/m > δ/2.

Therefore, there exist v′1, v
′
2 ∈ U such that

d(fn0+k
1 (v′1), f

n0+k
1 (v′2)) > δ/2
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which implies n0 + k ∈ Nf1,∞(U, δ/2) and hence Nf (U ′, δ) + n0 ⊆ Nf1,∞(U, δ/2). Since

Nf (U ′, δ) has positive upper density therefore Nf1,∞(U, δ/2) has positive upper density

and hence (X, f1,∞) is ergodically sensitive.

Conversely, let (X, f1,∞) be ergodically sensitive with constant δ > 0 and let U be a

nonempty open set in X. Let m ∈ N such that 1/m < δ/4. Then, there exists n0 ∈ N such

that d(fn0+k
1 (x), fk(fn0

1 (x))) < 1/m for all x ∈ X, k ∈ N. Since (X, f1,∞) is ergodically

sensitive, therefore for any n ∈ N, the set Nf1,∞(U, δ) has positive upper density, and

hence the set {k : diam(fk1 (U)) > δ} is infinite. Thus, for open set (fn0
1 )−1(U), the set

Nf1,∞((fn0
1 )−1(U), δ) has positive upper density, which implies there exists k ∈ N such

that k + n0 ∈ Nf1,∞((fn0
1 )−1(U), δ). So, there exist v1, v2 ∈ (fn0

1 )−1(U) such that

d(fn0+k
1 (v1), f

n0+k
1 (v2)) > δ.

Since v1, v2 ∈ ((fn0
1 )−1(U)) therefore there exist v′1, v

′
2 ∈ U such that v′1 = fn0

1 (v1) and

v′2 = fn0
1 (v2) and hence

d(fn0+k ◦ · · · ◦ fn0+1(v
′
1), fn0+k ◦ · · · ◦ fn0+1(v

′
2)) > δ.

Also, d(fn0+k
1 (vi), f

k(fn0
1 (vi))) < 1/m or d(fn0+k

1 (vi), f
k(v′i)) < 1/m for i = 1, 2.

By triangle inequality

d(fk(v′1), f
k(v′2)) > δ − 2/m > δ/2.

Therefore, we obtain v′1, v
′
2 ∈ U such that d(fk(v′1), f

k(v′2)) > δ/2 which implies k ∈
Nf (U, δ/2) and hence Nf1,∞((fn0

1 )−1(U), δ)−n0 ⊆ Nf (U, δ/2). Since Nf1,∞((fn0
1 )−1(U), δ)

has positive upper density thereforeNf (U, δ/2) has positive upper density and hence (X, f)

is ergodically sensitive.

Theorem 4.9. Let (X, f1,∞) be an N.D.S. generated by a family f1,∞ of feeble open maps

commuting with f . If
∑∞

i=1D(fi, f) < ∞, then (X, f) is multi-sensitive if and only if

(X, f1,∞) is multi-sensitive.

Proof. Let (X, f) be multi-sensitive with constant δ > 0. As
∑∞

i=1D(fi, f) <∞, by Corol-

lary 2.19 we obtain, for any ε > 0, there exists n ∈ N such that d(fn+k1 (x), fk(fn1 (x))) < ε

for all x ∈ X, k ∈ N. Choose m ∈ N such that 1/m < δ/4. Then, there exists n0 such

that d(fn0+k
1 (x), fk(fn0

1 (x))) < 1/m for all x ∈ X, k ∈ N. Let V1, V2, . . . , Vk be nonempty

open sets in X for some k ≥ 1. As fn’s are feeble open, V ′i = int fn0
1 (Vi) is nonempty open

for all 1 ≤ i ≤ k, and by multi-sensitivity of (X, f) we have
⋂k
i=0Nf (V ′i , δ) is nonempty.

Let m ∈
⋂k
i=0Nf (V ′i , δ) then, there exist yi, zi ∈ fn0

1 (Vi) such that d(fm(yi), f
m(zi)) > δ

for all 1 ≤ i ≤ k. As yi, zi ∈ fn0
1 (Vi), there exist y′i, z

′
i ∈ Vi such that yi = fn0

1 (y′i) and

zi = fn0
1 (z′i) and hence

d(fm(fn0
1 (y′i)), f

m(fn0
1 (z′i))) > δ.
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Also, d(fn0+m
1 (y′i), f

m(fn0
1 (y′i))) < 1/m for all 1 ≤ i ≤ k.

By triangle inequality,

d(fn0+m
1 (y′i), f

n0+m
1 (z′i)) > δ − 2/m > δ/2.

Therefore, we get y′i, z
′
i ∈ Vi such that d(fn0+m

1 (y′i), f
n0+m
1 (z′i)) > δ/2 for all 1 ≤ i ≤ k and

hence n0 +m ∈
⋂k
i=0Nf1,∞(Vi, δ/2) which implies

k⋂
i=0

Nf (V ′i , δ) + n0 ⊆
k⋂
i=0

Nf1,∞(Vi, δ/2).

Since
⋂k
i=0Nf (V ′i , δ) is nonempty therefore

⋂k
i=0Nf1,∞(Vi, δ/2) is nonempty and hence

(X, f1,∞) is multi-sensitive.

Conversely, let (X, f1,∞) be multi-sensitive with constant of multi-sensitivity δ > 0. Let

m ∈ N such that 1/m < δ/4. Then, there exists n0 ∈ N such that d(fn0+k
1 (x), fk(fn0

1 (x)))

< 1/m for all x ∈ X, k ∈ N. Let V1, V2, . . . , Vk be non empty open sets in X for some

k ≥ 1. Now, by Archimedean Property, there exists r ∈ N such that 1/r < ε which implies

1/n < ε for all n ≥ r. Now let vi ∈ Vi for all 1 ≤ i ≤ k. By multi-sensitivity of (X, f1,∞),⋂k
i=0Nf1,∞(B(vi, 1/n), δ) is nonempty for all n ≥ r, and therefore

⋂k
i=0Nf1,∞(B(vi, ε), δ)

is nonempty and in fact infinite. Hence,
⋂k
i=0Nf1,∞(Vi, δ) is nonempty and infinite for

each Vi, 1 ≤ i ≤ k, k ≥ 1. Since fn’s are continuous, therefore ((fn0
1 )−1(Vi)) is open, for

all 1 ≤ i ≤ k which implies
⋂k
i=0Nf1,∞(((fn0

1 )−1(Vi)), δ) is nonempty and infinite. Hence,

there exists m ∈ N such that m + n0 ∈
⋂k
i=0Nf1,∞((fn0

1 )−1(Vi), δ) which implies there

exist yi, zi ∈ (fn0
1 )−1(Vi) such that

d(fn0+m
1 (yi), f

n0+m
1 (zi)) > δ

for all 1 ≤ i ≤ k. Since yi, zi ∈ ((fn0
1 )−1(Vi)) therefore, there exist y′i, z

′
i ∈ Vi such that

y′i = fn0
1 (yi), z

′
i = fn0

1 (zi) and hence

d((fn0+m ◦ · · · ◦ fn0+1)(y
′
i), (fn0+m ◦ · · · ◦ fn0+1)(z

′
i)) > δ.

Also d(fn0+m
1 (yi), f

m(fn0
1 (yi))) < 1/m or d(fn0+m

1 (yi), f
m(y′i)) < 1/m for 1 ≤ i ≤ k.

By triangle inequality, d(fm(y′i), f
m(z′i)) > δ−2/m > δ/2. Therefore, we get y′i, z

′
i ∈ Vi

such that d(fm(y′i), f
m(z′i)) > δ/2 for all 1 ≤ i ≤ k, which implies m ∈

⋂k
i=0Nf (Vi, δ/2).

Thus, (
k⋂
i=0

Nf1,∞((fn0
1 )−1(Vi), δ)− n0

)
⊆

k⋂
i=0

Nf (Vi, δ/2).

Since
⋂k
i=0Nf1,∞((fn0

1 )−1(Vi), δ) is nonempty therefore
⋂k
i=0Nf (Vi, δ/2) is nonempty and

hence (X, f) is multi-sensitive.
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In the following example, we show that Theorems 4.5–4.9 fail if the condition of taking

(fn, n ∈ N) to be feeble open is dropped from the hypothesis.

Example 4.10. Let I be the closed unit interval [0, 1] and f1, f2 be defined by

f1(x) =


2x for x ∈ [0, 1/5],

1 for x ∈ [1/5, 2/5],

x for x ∈ [2/5, 1],

and f2(x) =


2x+ 1/2 for x ∈ [0, 1/4],

−2x+ 3/2 for x ∈ [1/4, 3/4],

2x− 3/2 for x ∈ [3/4, 1].

Let f0(x) = f1(x) and fn(x) = f2(x) for all n > 1. Then (fn)∞n=0 converges uniformly

to f = f2 in X. Note that the function f is feeble open. Clearly, (X, f) is syndetic

sensitive, thickly sensitive, thickly syndetic sensitive, multi-sensitive and ergodic sensitive

being cofinitely sensitive. However, the system (X, f1,∞) is not even sensitive because for

open set U = (1/5, 2/5), Nf1,∞(U, δ) is empty implying it is not syndetic sensitive, thickly

sensitive, thickly syndetic sensitive, multi-sensitive or ergodic sensitive. Our theorems fail

here because in the family (fn) the function f0 is not feeble open.

In the next example, we provide a system (X, f1,∞) which satisfies the hypothesis of

Theorems 4.5–4.9.

Example 4.11. Let I be the interval [0, 1] and f1, f2 be defined by f1(x) = x for x ∈ [0, 1]

and

f2(x) =


2x+ 1/2 for x ∈ [0, 1/4],

−2x+ 3/2 for x ∈ [1/4, 3/4],

2x− 3/2 for x ∈ [3/4, 1].

Let f0(x) = f1(x) and fn(x) = f2(x) for all n > 1. Note that f = f2(x) is feeble open.

Clearly, (X, f) is syndetic sensitive, thickly sensitive, thickly syndetic sensitive, multi-

sensitive and ergodic sensitive being cofinitely sensitive. The family (fn) consists of feeble

open maps converging uniformly to f . Thus, this family satisfies the hypothesis of our

theorem and therefore, the system (X, f1,∞) is also syndetic sensitive, thickly sensitive,

thickly syndetic sensitive, multi-sensitive and ergodic sensitive.

In the following two theorems, we give necessary and sufficient condition for the sys-

tem (X, f1,∞) to be collective sensitive and synchronous sensitive, where (X, f1,∞) is an

N.D.S. generated by a family f1,∞ of open maps commuting with a continuous self map

f .

Theorem 4.12. Let (X, f1,∞) be an N.D.S. generated by a family f1,∞ of open maps

commuting with f . If
∑∞

i=1D(fi, f) <∞, then (X, f) is collectively sensitive if and only

if (X, f1,∞) is collectively sensitive.
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Proof. Let ε > 0 be given and let x1, x2, . . . , xn be finitely many distinct points in X. Let

Ui = B(xi, ε) for all i = 1, 2, . . . , n. Since
∑∞

i=1D(fi, f) <∞, by Corollary 2.19 we obtain,

for any ε > 0, there exists n ∈ N such that d(fn+k1 (x), fk(fn1 (x))) < ε for all x ∈ X, k ∈ N.

Let δ > 0 be a constant of collective sensitivity. Choose m ∈ N such that 1/m < δ/4.

Then, there exists n0 such that d(fn0+k
1 (x), fk(fn0

1 (x))) < 1/m for all x ∈ X, k ∈ N. Let

ui = fn0
1 (xi) ∈ fn0

1 (Ui) for all i = 1, 2, . . . , n. So by collective sensitivity of (X, f), there

exist vi ∈ X, 1 ≤ i ≤ n, such that d(ui, vi) < ε for all i = 1, 2, . . . , n and there exists

1 ≤ i0 ≤ n such that

d(fk(ui), f
k(vi0)) ≥ δ or d(fk(vi), f

k(ui0)) ≥ δ

for some k. Since fn’s are open, therefore fn0
1 (Ui) is open for all i = 1, 2, . . . , n, and hence,

vi ∈ B(ui, ε) = B(fn0
1 (xi), ε) ⊆ fn0

1 (Ui). Thus, there exists yi ∈ Ui such that vi = fn0
1 (yi).

Since Ui = B(xi, ε) therefore, d(xi, yi) < ε for all i = 1, 2, . . . , n and by triangle inequality

we get,

d(fn0+k
1 (xi), f

n0+k
1 (yi0)) ≥ δ/2

for all i = 1, 2, . . . , n or

d(fn0+k
1 (yi), f

n0+k
1 (xi0)) ≥ δ/2

for all i = 1, 2, . . . , n. Hence, (X, f1,∞) is collectively sensitive.

Conversely, let (X, f1,∞) be collectively sensitive with constant δ > 0 and let m ∈ N
be such that 1/m < δ/4. Then, there exists n0 ∈ N such that d(fn0+k

1 (x), fk(fn0
1 (x))) <

1/m for all x ∈ X, k ∈ N. Let x1, x2, . . . , xn be finitely many distinct points in X.

Let Ui = B(xi, ε) for all i = 1, 2, . . . , n. For any r ∈ N, the collective sensitivity of

(X, f1,∞) ensures the existence of kr ∈ N and yr1, y
r
2, . . . , y

r
n such that d(xi, y

r
i ) < 1/r for

all 1 ≤ i ≤ n and d(fkr1 (xi), f
kr
1 (yi0)) ≥ δ or d(fkr1 (yi), f

kr
1 (xi0)) ≥ δ for some 1 ≤ i0 ≤ n.

Therefore, for Ui = B(xi, ε), there exist infinitely many k = kr such that d(xi, y
k
i ) < ε and

d(fk1 (xi), f
k
1 (yi0)) ≥ δ for some 1 ≤ i0 ≤ n or d(fk1 (yi), f

k
1 (xi0)) ≥ δ for some 1 ≤ i0 ≤ n.

Let ui = (fn0
1 )−1(xi) ∈ (fn0

1 )−1(Ui). Therefore, for open sets (fn0
1 )−1(Ui), 1 ≤ i ≤ n,

there exist vi ∈ (fn0
1 )−1(Ui) and k ∈ N such that d(ui, vi) < ε and for some 1 ≤ i0 ≤ n,

d(fn0+k
1 (ui), f

n0+k
1 (vi0)) ≥ δ for all 1 ≤ i ≤ n or d(fn0+k

1 (vi), f
n0+k
1 (ui0)) ≥ δ for all 1 ≤

i ≤ n. Since vi ∈ (fn0
1 )−1(Ui) there exists yi ∈ Ui such that yi = fn0

1 (vi), i = 1, 2, . . . , n.

Thus

d((fn0+k ◦ · · · ◦ fn0+1)(xi), (fn0+k ◦ · · · ◦ fn0+1)(yi0)) ≥ δ

or

d((fn0+k ◦ · · · ◦ fn0+1)(yi), (fn0+k ◦ · · · ◦ fn0+1)(xi0)) ≥ δ

for all 1 ≤ i ≤ n. Also d(fn0+k
1 (vi), f

k(fn0
1 (vi))) < 1/m or d(fn0+k

1 (vi), f
k(yi)) < 1/m.

Similarly, d(fn0+k
1 (ui), f

k(xi)) < 1/m. Since yi ∈ Ui = B(xi, ε) therefore d(xi, yi) < ε for
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all i = 1, 2, . . . , n. By triangle inequality,

d(fk(xi), f
k(yi0)) ≥ δ/2 or d(fk(yi), f

k(xi0)) ≥ δ/2.

Hence, (X, f) is collectively sensitive.

Theorem 4.13. Let (X, f1,∞) be an N.D.S. generated by a family f1,∞ of open maps

commuting with f . If
∑∞

i=1D(fn, f) < ∞, then (X, f) is synchronous sensitive if and

only if (X, f1,∞) is synchronous sensitive.

Proof. Let ε > 0 be given and let x1, x2, . . . , xn be finitely many distinct points in X. Let

Ui = B(xi, ε) for all i = 1, 2, . . . , n. As
∑∞

i=1D(fn, f) < ∞, by Corollary 2.19 we obtain,

for any ε > 0, there exists n ∈ N such that d(fn+k1 (x), fk(fn1 (x))) < ε for all x ∈ X, k ∈ N.

Let δ > 0 be a constant of synchronous sensitivity. Choose m ∈ N such that 1/m < δ/4.

Thus, there exists n0 such that d(fn0+k
1 (x), fk(fn0

1 (x))) < 1/m for all x ∈ X, k ∈ N. Let

ui = fn0
1 (xi) ∈ fn0

1 (Ui) for all i = 1, 2, . . . , n. So by synchronous sensitivity of (X, f) there

exist vi ∈ X, 1 ≤ i ≤ n, such that d(ui, vi) < ε for all i = 1, 2, . . . , n and there exists k ∈ N
such that

d(fk(ui), f
k(vi)) ≥ δ, i = 1, 2, . . . , n.

Since fn’s are open therefore fn0
1 (Ui) is open for all i = 1, 2, . . . , n, and hence, vi ∈

B(ui, ε) = B(fn0
1 (xi), ε) ⊆ fn0

1 (Ui). Thus, there exists yi ∈ Ui such that vi = fn0
1 (yi) for

i = 1, 2, . . . , n. Since Ui = B(xi, ε) therefore d(xi, yi) < ε for all i = 1, 2, . . . , n and by

triangle inequality

d(fn0+k
1 (xi), f

n0+k
1 (yi)) ≥ δ/2

for all i = 1, 2, . . . , n, therefore, (X, f1,∞) is synchronous sensitive.

Conversely, let (X, f1,∞) be synchronous sensitive with constant δ > 0 and letm ∈ N be

such that 1/m < δ/4. Then, there exists n0 ∈ N such that d(fn0+k
1 (x), fk(fn0

1 (x))) < 1/m

for all x ∈ X, k ∈ N. Let x1, x2, . . . , xn be finitely many distinct points in X. Let

Ui = B(xi, ε) for all i = 1, 2, . . . , n. For any r ∈ N, the synchronous sensitivity of (X, f1,∞)

ensures the existence of kr ∈ N and yr1, y
r
2, . . . , y

r
n such that d(xi, y

r
i ) < 1/n for all 1 ≤ i ≤ n

and d(fkr1 (xi), f
kr
1 (yi)) > δ. Therefore, for Ui = B(xi, ε), there exist infinitely many k = kr

such that d(xi, y
k
i ) < ε and d(fk1 (yi), f

k
1 (xi)) ≥ δ. Let ui = (fn0

1 )−1(xi) ∈ (fn0
1 )−1(Ui).

Then, for open sets (fn0
1 )−1(Ui), 1 ≤ i ≤ n, there exists vi ∈ (fn0

1 )−1(Ui) and k ∈ N such

that d(ui, vi) < ε and d(fn0+k
1 (ui), f

n0+k
1 (vi)) ≥ δ for all 1 ≤ i ≤ n. As vi ∈ (fn0

1 )−1(Ui)

there exists yi ∈ Ui such that yi = fn0
1 (vi), i = 1, 2, . . . , n. Hence

d((fn0+k ◦ · · · ◦ fn0+1)(xi), (fn0+k ◦ · · · ◦ fn0+1)(yi)) ≥ δ

for all 1 ≤ i ≤ n. Also d(fn0+k
1 (vi), f

k(fn0
1 (vi))) < 1/m or d(fn0+k

1 (vi), f
k(yi)) < 1/m.

Similarly, d(fn0+k
1 (ui), f

k(xi)) < 1/m. Since yi ∈ Ui = B(xi, ε) therefore d(xi, yi) < ε for
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all i = 1, 2, . . . , n. By triangle inequality,

d(fk(xi), f
k(yi)) ≥ δ/2.

Hence, (X, f) is synchronous sensitive.
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[2] J. Dvořáková, Chaos in nonautonomous discrete dynamical systems, Commun. Non-

linear Sci. Numer. Simul. 17 (2012), no. 12, 4649–4652.

[3] Fatmawati and H. Tasman, An optimal treatment control of TB-HIV coinfection, Int.

J. Math. Math. Sci. 2016 (2016), Art. ID 8261208, 11 pp.
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